18.725 PROBLEM SET 1

Due date: Friday, September 17 in lecture. Late work will be accepted only with a medical note or for another Institute-approved reason. You are strongly encouraged to work with others, but the final write-up should be entirely your own and based on your own understanding.
Read through all the problems. Write solutions to the "Required Problems", 1-4, together with 5 others of your choice to a total of 9 problems. Difficult problems are labelled "Difficult Problems".
Required Problem 1 Do Exercise 1.11 from the notes for Lecture 1. Try to use the Nullstellensatz only when necessary.
Required Problem 2 (a) Prove that \mathbb{A}_{k}^{1} with the Zariski topology is not Hausdorff.
(b) Prove that any bijection $F: \mathbb{A}_{k}^{1} \rightarrow \mathbb{A}_{k}^{1}$ is a homeomorphism with respect to the Zariski topology.
Required Problem 3 Let $V \subset \mathbb{A}_{k}^{m}$ and $W \subset \mathbb{A}_{k}^{n}$ be affine algebraic sets with $\mathbb{I}(V)=I \subset k\left[x_{1}, \ldots, x_{m}\right]$ and $\mathbb{I}(W)=J \subset k\left[y_{1}, \ldots, y_{n}\right]$ respectively. Define $K \subset k\left[z_{1}, \ldots, z_{m}, z_{m+1}, \ldots, z_{m+n}\right]$ to be the ideal,

$$
K=\left\langle f\left(z_{1}, \ldots, z_{m}\right) \mid f\left(x_{1}, \ldots, x_{m}\right) \in I\right\rangle+\left\langle g\left(z_{m+1}, \ldots, z_{m+n}\right) \mid g\left(y_{1}, \ldots, y_{n}\right) \in J\right\rangle
$$

(a) Prove the map
$\left(\pi_{1}, \pi_{2}\right): \mathbb{A}_{k}^{m+n} \rightarrow \mathbb{A}_{k}^{m} \times \mathbb{A}_{k}^{n},\left(z_{1}, \ldots, z_{m}, z_{m+1}, \ldots, z_{m+n}\right) \mapsto\left(\left(z_{1}, \ldots, z_{m}\right),\left(z_{m+1}, \ldots, z_{m+n}\right)\right)$,
restricts to a bijection from $\mathbb{V}(K)$ to $V \times W$.
(b) Prove the projections $\pi_{1}: \mathbb{V}(K) \rightarrow V, \pi_{2}: \mathbb{V}(K) \rightarrow W$ are regular morphisms.
(c) For every affine algebraic set T prove the following set map is a bijection,
$\operatorname{Regular} \operatorname{morphisms}(T, \mathbb{V}(K)) \rightarrow \operatorname{Regular} \operatorname{morphisms}(T, V) \times \operatorname{Regular} \operatorname{morphisms}(T, W)$,

$$
(f: T \rightarrow \mathbb{V}(K)) \mapsto\left(\left(\pi_{1} \circ f: T \rightarrow V\right),\left(\pi_{2} \circ f: T \rightarrow W\right)\right)
$$

In other words, the pair of regular morphisms $\left(\pi_{1}, \pi_{2}\right)$ is a product of V and W in the category of affine algebraic sets.
Required Problem 4(a) Prove the induced topology on every subset of a Noetherian topological space is Noetherian.
(b) Prove every Noetherian topological space is quasi-compact. (Hint: Given an open covering \mathcal{U} of X by open subsets, consider the collection of closed subsets that are complements of unions of finite subcoverings.)
Problem 5 Give an example of a Jacobson ring that is not a finitely-generated algebra over a field. Prove your example is a Jacobson ring.
Problem 6 Denote $f(X, Y)=C_{2,0,0} X^{2}+C_{1,1,0} X Y+C_{0,2,0} Y^{2}+C_{1,0,1} X+C_{0,1,1} Y+$ $C_{0,0,2}$ for coefficients $C_{i, j, k} \in k$ satisfying $\left(C_{2,0,0}, C_{1,1,0}, C_{0,2,0}\right) \neq(0,0,0)$.
(a) Prove $\mathbb{V}(f) \subset \mathbb{A}_{k}^{2}$ is nonempty.
(b) If the following symmetric matrix M is invertible, prove f is irreducible (and thus $\mathbb{V}(f)$ is irreducible).

$$
M=\left(\begin{array}{rrr}
2 C_{2,0,0} & C_{1,1,0} & C_{1,0,1} \\
C_{1,1,0} & 2 C_{0,2,0} & C_{0,1,1} \\
C_{1,0,1} & C_{0,1,1} & 2 C_{0,0,2}
\end{array}\right)
$$

(c) If M has rank at least 2 , prove f is not the square of a linear polynomial (and thus $\mathbb{V}(f)$ is not a line).

Problem 7 With notation from Problem 6 and assuming $\operatorname{char}(k) \neq 2$, prove that $\mathbb{V}(f)$ is a line if M has rank 1 , and that $\mathbb{V}(f)$ is reducible if M has rank 2. Don't write up: What if $\operatorname{char}(k)=2$?
Difficult Problem 8 With notation as in Problem 3, prove that K is a radical ideal. Warning: You will need to use that k is algebraically closed; for k not a perfect field there are examples where the ideals I and J are radical, but K is not radical.
Problem 9 Prove $V=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in k\right\}$ is an affine algebraic subset of \mathbb{A}_{k}^{3} and find $\mathbb{I}(V) \subset k\left[x_{1}, x_{2}, x_{3}\right]$.
Difficult Problem 10 Prove the subset $V=\left\{\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right) \mid s, t \in k\right\}$ is an affine algebraic subset of \mathbb{A}_{k}^{4} and find $\mathbb{I}(V) \subset k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$. Don't write up: If you do both Problem 9 and Problem 10, compare your answers.
Problem 11 Let $g \geq 1$ be an integer, let $a_{1}, a_{2}, \ldots, a_{2 g-1} \in k-\{0,1\}$ be distinct elements, and denote $f=y^{2}-x(x-1)\left(x-a_{1}\right) \ldots\left(x-a_{2 g-1}\right) \in k[x, y]$.
(a) Prove f is an irreducible polynomial. (Hint: Eisenstein's criterion.)
(b) Prove the ring $k[x, y] /\langle f\rangle$ is not a unique factorization domain.
(c) Conclude the affine algebraic set $\mathbb{V}(f) \subset \mathbb{A}_{k}^{2}$ is not isomorphic to \mathbb{A}_{k}^{1}. This affine algebraic set is the affine part of a genus g hyperelliptic curve.
Difficult Problem 12 With notation from Problem 11, prove there is no nonconstant regular morphism $F: \mathbb{A}_{k}^{1} \rightarrow \mathbb{V}(f)$. (Hint: If there where such a morphism, what could you say about the irreducible factors of $F^{*} y, F^{*} x, F^{*}(x-1)$, etc.)
Problem 13 Let $F: V \rightarrow W$ be a regular morphism of affine algebraic sets, and let $F^{*}: k[W] \rightarrow k[V]$ be the induced k-algebra homomorphism on coordinate rings.
(a) Prove $\operatorname{Kernel}\left(F^{*}\right)$ is a radical ideal of $k[W]$.
(b) Describe the ideal $\mathbb{I}(F(V))$.
(c) Give a geometric interpretation to the condition that F^{*} is injective.
(d) Give an example where F^{*} is injective, but $F(V) \neq W$.

Problem 14 Give an example of a homeomorphic regular morphism of affine algebraic sets that is not an isomorphism of affine algebraic sets. Don't write up: Try to find an example where the coordinate ring of the target is a unique factorization domain.
Problem 15 For every choice of $a, b \in k$, find the irreducible components of the affine algebraic set $\mathbb{V}(x y-z, b x+a y-z-a b) \subset \mathbb{A}_{k}^{3}$.

