18.725 SOLUTIONS TO PROBLEM SET 1

Required Problem 1 Do Exercise 1.11 from the notes for Lecture 1. Try to use
the Nullstellensatz only when necessary.

Solution:(i) Clearly I((}) = k[z1,...,2,]). The Strong Nullstellensatz implies
I(A}) = I(V({0})) = rad{0} = {0}. This can also be proved by induction on
n. For n = 0, it is trivial. Let n > 0 and assume the result known for n — 1.
For every f € k[z1,...,2,] — {0}, expand it as f = Z?:o gi(x1,...,xn_1)x! where
ga # 0. By the induction hypothesis, there exists (a1,...,an—1) € Azfl such
that g4(a1,...,an—1) # 0. The polynomial f(ai,...,an-1,%,) = Z?:o gizt has
degree d, so at most d roots. Since k is infinite there exists a,, € k such that
flar, ... an—1,a,) #0, ie., f ¢ I(AD).

(ii) For every f € I(W), since f vanishes on W it also vanishes on V, i.e., f € I(V).

(iii) Denote V' = Ny\Vy and denote I = >, I(V). By Exercise 1.3(iii), V = V(I).
By the Strong Nullstellensatz, I(V') = I(V(I)) = rad(]).

(iv) By (i), (VU W) Cc (V) NI(W). By Exercise 1.3(ii), V(I(V) N I(W)) D
V UW, so that by (ii) again, I(V)NI(W) Cc (V(I(V)NI(W))) C [(VUW). Thus
I(VuUw)=IV)nI(W).

(v) Clearly V C V(I(V)). For every Zariski closed W containing V', I(W) C I(V)
by (ii), and V(I(V)) C V(I(W)) = W by Exercise 1.3(ii). Thus V(I(W)) is the
smallest Zariski closed set containing V.

Required Problem 2 (a) Prove that A} with the Zariski topology is not Haus-
dorft.

Solution: The zero locus of a polynomial function on A} is all of A}, or a finite set.
So the intersection of any 2 nonempty open subsets is the complement of a finite
set, and thus nonempty.

(b) Prove that any bijection F : A}, — A} is a homeomorphism with respect to the
Zariski topology.

Solution: The preimage under F of a finite set is a finite set, and of A} is A}.
Thus F is continuous. Since F~! is a bijection, it is also continuuous and F is a
homeomorphism.

Required Problem 3 Let V' C A" and W C A} be affine algebraic sets with
(V) =1 C kl[z1,...,2m) and I(W) = J C k[y1,...,yn] respectively. Define
K Cklz1,--+, 2m, Zm+1s - - - s Zm+n) t0 be the ideal,

K={f(z1, -, zm)lf(@1,...sxm) €I) +{(g(Zmt1s- s Zmaen)|gY1, - -, Yn) € J).

(a) Prove the map

(my,m2) : AZ”” — ATXAL, (21, Zmy Zmtds - - s Zmtn) — (21,05 2m)s (Bt - -

restricts to a bijection from V(K) to V x W.
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Solution: First of all, 7} (I(V)) and 73 (I(W)) are contained in K, thus 1 (V(K)) C
V and m(V(K)) C W. For every p = (a1,...,am,) € V and ¢ = (by,...,b,) €
W, all generators of K are zero on r = (a1,...,am,b1,...,b,), i.e., v € V(K) is
an element such that (m1,m)(r) = (p,q). Hence (m,m2) is surjective. Finally,
(m1,m2) + AT — AP x A7 is injective, thus also (mi,m2) : V(K) — V x W is
injective.

(b) Prove the projections 71 : V(K) — V', ma : V(K) — W are regular morphisms.

Solution: The coordinates of m; and w9 are usual coordinates on AZ””, which are
polynomials.

(c) For every affine algebraic set T prove the following set map is a bijection,

(w1, 735) : Regular morphisms(T, V(K')) — Regular morphisms(T, V') x Regular morphisms(7, W),
(f+T—=V(K))— (mof:T—-V) (mof:T—W))

In other words, the pair of regular morphisms (71, m2) is a product of V and W in
the category of affine algebraic sets.

Solution: By the correspondence between polynomial mappings and k-algebra
homomorphisms, it suffices to prove for every reduced k-algebra A the following set
map is a bijection,

Homy_aig(kl21, ..., Zman] /K, A) — Homy_ag(k[V], A) x Homy_a1(k[W], A).

First this is proved injective, then surjective. Let ¢1, ¢ : k[21, ..., Zmin]/K — Abe
k-algebra homomorphisms giving equal k-algebra homomorphisms 75¢; : k[V] — A
and 75 ¢; : k[W] — A. In particular, for every j = 1,...,m, $1(Z;) = ¢2(Z;) since
both equal the image in A of T; € k[V]. Similarly, for j = m + 1,...,m + n,
¢1(Z7) = ¢2(%;). Thus for every polynomial p € k[z1,. .., Zmnl,

¢1(P) = p(d1(21), - P1(2m+n)) = P(P2(21), - - -, P2(2mtn)) = G2(D).
So ¢1 = ¢a, i.e., (77, 75) is injective.
Next, let ¢y : k[V] — A and ¢w : k[W] — A be k-algebra homomorphisms. Define
a k-algebra homomorphism ¢ : k[z1,...,2,] — A by,

~ ov(@),  1<i<m,
¢(Z")_{¢w(yim), m+1<i<n

For every f € I,

O(f(21,- - zm)) = F(D(21),- ., d(zm)) =
flov (1), v (Tm)) = dv(f(@1, ..y 2m)) = v (0) = 0.

Similarly, for every g € J, ¢(g(zm+1,- -, 2m+n)) = 0. Therefore K is contained in
the kernel of ¢. So it factors through a k-algebra homomorphism ¢ : k[z1, ..., Zmin]/K —
A. By construction 7i¢ = ¢y, m5¢ = ¢y . Therefore (77, 75) is also surjective.

Required Problem 4(a) Prove the induced topology on every subset of a Noe-
therian topological space is Noetherian.

Solution: Let X be a Noetherian topological space, let Y C X be a subset, and
let C be a nonempty collection of closed subset of Y. The collection D of closures
in X of sets in C contains a minimal closes set V. The intersection V NY is in C.
For every W C V NY in C, the closure of W in X is in D and a subset of V', thus
equals V. So W =V nNY, ie, VNY is a minimal closed set in C.
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(b) Prove every Noetherian topological space is quasi-compact. (Hint: Given an
open covering U of X by open subsets, consider the collection of closed subsets that
are complements of unions of finite subsets.)

Solution: Because X is Noetherian, the collection C of complements of unions
of finite subsets of U contains a minimal closed set V; say V = X — (UL U;)
for Uy,...,U, in U. Every element of X is contained in some set U in U. Since
V-U=X—-(UUUl;)),V-U CVisinCsothat V—U = V. So every element
of X is not in V, i.e. V = {). Therefore (Uy,...,U,) is a finite subcovering of U.

Problem 5 Give an example of a Jacobson ring that is not a finitely-generated
algebra over a field. Prove your example is a Jacobson ring.

Solution: The ring of integers Z is a Jacobson ring: the only prime ideal that is
not a maximal ideal is (0), which is the intersection over all primes p of NpZ.

Problem 6 Denote f(X, Y) = 02,070X2+01,170XY+CQ,270Y2+Cl,071X+CO71,1Y+
Co,0,2 for coefficients C; ; 1 € k satisfying (C2,0,0,C1,1,0, Co.2,0) # (0,0,0).

(a) Prove V(f) C A? is nonempty.

Solution: It is not hard to prove this directly, but it also follows from the Weak
Nullstellensatz: because f is not constant, it it is not invertible and therefore is
contained in a maximal ideal, which is I(p) for some p € V(f).

(b) If the following symmetric matrix M is invertible, prove f is irreducible (and
thus V(f) is irreducible).

2C200 Cii0 Cron
M = Ciio 2Ch20 Coaa
Cio1  Coi1 2Co0,2

Solution: Assume f is reducible. The matrix M will be proved singular. Because
degree(f) = 2, f = g1go for linear polynomials g; and go. The rows of the matrix
M are the coefficients of X, Y and the constant coefficient in df/90X, 0f /Y and
2f—X0f/0X —YOf/0Y. Expanding this in g; and g, all three are constant linear
combinations of g; and go; thus the three rows are linearly dependent.

(c) If M has rank at least 2, prove f is not the square of a linear polynomial (and
thus V(f) is not a line).

Solution: Assume f = g2. By the same argument as above, the three rows of M
are the coefficients of constant multiples of g so that M has rank at most 1.

Problem 7 With notation from Problem 6 and assuming char(k) # 2, prove that
V(f) is a line if M has rank 1, and that V(f) is reducible if M has rank 2. Don’t
write up: What if char(k) = 27

Solution: Assume first M has rank 1. Because (C2,0,0, C1,1,0,Co,2,0) # (0,0,0), at
least one of 0f/0X or 0f/0Y is nonzero; say 9f/0X # 0. The other 2 rows are
multiples of 9f/0X, i.e., there exist a,b € k such that,

of /oY = adf/0X,
2f = X0f/0X —YOf/0Y = bof/0X
Substituting in,
2f = (X +aY +0)0f/0X.
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Partial differentiating both sides with respect to X and cancelling,
f/0X = (X +aY +b)d*f/0X>.
Therefore,
2f = (X +aY +b)(9%f/0X?),
and V(f) =V(2f) = V(X +aY +b) is a line.

Next suppose that M has rank 2. Then there exists (u, v, w) # (0,0,0) and a linear
relation,

wdf JOX +vdf/OY +w(2f — XOf /OX — YOf/dY) = 0.

If w = 0 then, after a linear change of coordinates, the relation gives 9f/9Y = 0.
Therefore f = C3,0,0X2+ C1,0,1X + Cp 0,2, which is the equation of 2 parallel lines.
If w # 0, then after translating to (u/w,v/w), f has no constant or linear terms,
i.e., f is the equation of 2 lines intersecting in (u/w,v/w).

Difficult Problem 8 With notation as in Problem 3, prove that K is a radical
ideal. Warning: You will need to use that k is algebraically closed; for k£ not a
perfect field there are examples where the ideals I and J are radical, but K is not
radical.

Solution: First comes a lemma of interest in its own right.
Lemma 0.1. If V and W are irreducible, then K is a prime ideal.

Proof. Tt suffices to prove for every pair f’, f” € k[z1,...,2m+n] not in K, f'f"
is not in K. Together f’ and f” involves only finitely many monomials, whose
(21, ..., zm)-parts map to elements in k[V] spanning a finite dimensional k-vector
space, and whose (241, - - -, Zm4n)-Parts map to elements in k[W] spanning a finite
dimensional k-vector space. Denote by ai,...,a, € klz1,..., 2] elements map-
ping to a basis for the finite dimensional k-subspace of k[V], and by by,...,bs €
Elzm+1, - - -, Zm+n] elements mapping to a basis for the finite dimensional k-subspace
of k[W]. Modulo K, f"is congruent to g = 3_, . ¢; ;a;b; and f” is congruent to

i,
g" = >, ci jaib; for elements ¢} ;, ¢ ; € k. Because f', f” are not in K, also ¢, g"

J T4J 1,57 74,J
are not in K. To prove f’f” is not in K, it suffices to prove ¢’¢” is not in K.

Because g' # 0, >, ¢ a; # 0 for some ji; denote this o} . Because g" # 0,
i Cij,ai # 0 for some ja; denote this af,. The images o/, € k[V] are
nonzero because ay, ..., a, map to k-linearly independent elements. Because k[V]
is an integral domain, o/;, a”;, # 0, i.e., there exists p = (p1,...,pm) € V such
that o'j, (p),a”;,(p) # 0. Denote by ¢'(p),g”(p) € k[W] the elements obtained
by substituting in z; = a; for ¢t = 1,...,m and z,,+; = 7y; for t = 1,...,n. Each
is a linear combination of the k-linearly independent elements by, ...,0bs, and the
coefficients of b;, in ¢’(p) and of b;, in ¢g”(p) are nonzero, i.e., ¢g'(p),g"(p) # 0.
Because k[W] is an integral domain, ¢'(p)g”(p) # 0, i.e., there exists ¢ € W such
that ¢'(p, q)g” (p,q) # 0. By Problem 3, r = (p,q) is in V(K), therefore g'¢” is not
in K. ([l

If either V = () or W = 0, the problem is trivial; hence assume both nonempty.

Let Vi,...,V, be the irreducible components of V, and let Wy,..., W, be the

irreducible components of W. For each 1 <7 <7 and 1 < j <'s, denote by K; ; C

k[z1,..., Zm+n] the ideal determined by I(V;) and I(W;). Clearly K C n; ; K; ;. The
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claim is that K = N; ;K ;. Let f € N; ;K; ; be any element. Just as in the proof
of the lemma, there exist sequences ay,...,a, € N;;K;; and by,...,bs € N ; K; ;
mapping to k-linearly independent sets in k[V] and k[W] and such that, modulo
K, f is congruent to an element g = Zv,w Co,wlypby. If fis not in K, then g # 0
so that for some w, ), ¢y way € k[V] is nonzero. Therefore there exists p € V' for
which this element is nonzero. Thus g(p) € k[W] is nonzero. Because g € N; ; K; j,
g(p) is in N;I(W;) = (0). This contradiction proves f € K. So K =N, ;K; ;. By
the lemma, each ideal K ; is a prime ideal. Therefore K is a radical ideal.

Problem 9 Prove V = {(t,t?,t3)|t € k} is an affine algebraic subset of A} and find
]I(V) - k[{El, T, xg]

Solution: Clearly V = V({xy — 2%, 23 — 23)).

Difficult Problem 10 Prove the subset V = {(s3, s*¢, st?,t3)|s,t € k} is an affine
algebraic subset of A} and find I(V) C k[zg,z1,%2,23]. Don’t write up: If you
do both Problem 9 and Problem 10, compare your answers.

Solution: Consider the ideal I = (xoxy — 22, x93 — T179, 7123 — 73). Denote
W = V(I). Clearly V. C W; the claim is W C V. Let p = (ao,...,a3) be an
element of W. 1If ag = az = 0, then a? = apas = 0 and a3 = aja3 = 0 so
that p = (0,0,0,0), which is in V. Therefore assume ag # 0 or az # 0; without
loss of generality ag # 0. Denote by s € k any cube root of ag and denote t =
saj/ag = a1/s®. Then a; = s%t, ay = (apas)/ag = a?/ag = s*t?/s> = st?, and
as = (apaz)/ap = (araz)/ag = $3t3 /s> = 3. So p = (s*,s%t, st?,¢3), which is in V.
Therefore V = V(I).

Every I-congruence class of elements in k[zg, x1, 2, x3] contains an expression, f =
a(zo, x3)+b(xo, x3)x1+c(T0, 23)T2, for unique polynomials a(zg, z3), b(zo, x3), c(xo, z3) €
k[xg,x3). Consider the k-algebra homomorphism

¢ klxo, w1, 22, 23] — ks, t],
xo — 53,961 — 5275,;102 — st27x3 — 3

The image ¢(f) is a(s3,t3) +b(s3,t3)s%t +c(s3,t3)st?. Gathering monomials whose
s and t exponent are congruent modulo 3, ¢(f) = 0 iff a(s®,t3) = b(s>,t3) =
c(s3,13) =0, i.e., iff f =0. So ¢ determines an injective k-algebra homomorphism
klzo,...,z3]/I — k[s,t]. Since k[s,t] is an integral domain, also k[xo,...,zs]/]
is an integral domain. Hence I is a prime ideal. By the Strong Nullstellensatz,
I(V) =rad(l) = I.

Problem 11 Assume char(k) # 2. Let g > 1 be an integer, let ai,as,...,a29—1 €
k—{0, 1} be distinct elements, and denote f = y? —z(z—1)(z—ay)...(x—azs_1) €
k[, y].

(a) Prove f is an irreducible polynomial. (Hint: Eisenstein’s criterion.)
Solution: This follows immediately from Eisenstein’s criterion for irreducibility.
(b) Prove the ring k[z,y]/(f) is not a unique factorization domain.

Solution: By way of contradiction, suppose it is a UFD. The claim is that 7 is a

square. Every irreducible factor p of Z is a factor of . Let § = p®q with ¢ & (p).

Then 3% = p*¢q%. For every a € k — {0}, a =T — (Z — a) and p does not divide a,

thus p does not divide Z — a. So p?¢ divides Z. Because p does not divide ¢, it does
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not divide ¢2, hence T = p?¢r with r € (p). Therefore the irreducible factorization

_. 9 . _
of T is p{®* -+ p2¢m ie., T =u? for u = p{ - pim.

Every element in k[z,y] is congruent modulo (f) to a(z) + b(x)y for unique poly-
nomials a(x),b(z) € klx]; call this the standard form of the congruence class. Let
a(x) + b(x)y be a standard form such that u = a(z) + b(z)y. Modulo f,

(a(z) +b(2)y)? = a(z)? + 2a(z)b(x)y + b(x)*y”
= (a(x)? +b(x)*z(z — 1) -+ (z — azg—1)) + (2a(z)b(z))y,
which is also congruent modulo f to x 4+ 0y. Because the standard form of the con-
gruence class is unique, 2a(x)b(x) = 0 and (a(z)?+b(x)*z(z—1) - (x—agy—1)) = .
Because char(k) # 2, a(z)b(z) = 0, i.e., a(z) = 0 or b(z) = 0. If a(z) = 0, then
z = b(z)?x(x — 1)+ (z — agg—1). But then, in particular, z — 1 divides x which
is absurd. If b(z) = 0, then 2 = a(x)? which is again absurd. This contradiction
proves the hypothesis is false, i.e., k[z,y]/(f) is not a UFD.

(c) Conclude the affine algebraic set V(f) C A? is not isomorphic to A}. This
affine algebraic set is the affine part of a genus g hyperelliptic curve.

Solution: The coordinate ring of A} is k[t], which is a UFD. Since the coordinate
ring of V(f) is not isomorphic to the coordinate ring of A}, V(f) is not isomorphic
to Al

Difficult Problem 12 With notation from Problem 11, prove there is no non-
constant regular morphism F : A} — V(f). (Hint: If there where such a morphism,
what could you say about the irreducible factors of F*y, F*x, F*(x — 1), etc.)

Solution: Let F : A}C — V(f) be a regular morphism. The coordinate ring of
A} is k[t], which is a UFD. Because they differ by nonzero constants, the ir-
reducible factors of F*z, F*(x — 1), etc. are all distinct. But the concatena-
tion of these irreducible factors is the irreducible factorization of F*y?, which
is a square. Therefore each of F*z, F*(x — 1), etc. is a square. In particu-
lar, F*z = u? and F*(x — 1) = v? for some polynomials u,v € k[t]. But then
l=Fa2—-F(@x-1)=u?>-1>=(u—v)(u+v). Sou—v=au+v=a?for
some nonzero constant. Solving, 2u = a + a~!. Thus F*z is a constant. So also
F*(z(x—1)...(x—ags_1)) is a constant. Thus F*(y?) is a constant, which implies
F*(y) is a constant. Therefore F is a constant morphism.

Problem 13 Let F': V — W be a regular morphism of affine algebraic sets, and
let F* : kK[W] — k[V] be the induced k-algebra homomorphism on coordinate rings.

(a) Prove Kernel(F™) is a radical ideal of k[W].

Solution: The image of F'* is a subalgebra of a reduced ring, and so is itself a
reduced ring. Therefore the kernel of F** is a radical ideal.

(b) Describe the ideal I(F(V)).

Solution: A polynomial function on W is zero on F (V) iff the precomposition
with F' is zero iff it is in the kernel of F*. Thus I(F(V)) is Kernel(F™*).

(c) Give a geometric interpretation to the condition that F* is injective.

By (b), F** is injective iff I(F(V)) is the zero ideal iff the Zariski closure V(I(F(V)))
is all of W. Therefore F* is injective iff (V) C W is dense in the Zariski topology.

(d) Give an example where F** is injective, but F(V) # W.
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Solution: Let V = V(zy—1) C A2, let W = A} andlet F' : V — W be F(z,y) = x.
Then F* : klz] — k[z,y]/(zy — 1) = k[z][1/z] is injective. But 0 € W — F(V).

Problem 14 Give an example of a homeomorphic regular morphism of affine alge-
braic sets that is not an isomorphism of affine algebraic sets. Don’t write up: Try
to find an example where the coordinate ring of the target is a unique factorization
domain.

Solution: A standard example is to take V = Aj, W = V(23 — y?) C A? and
F:V — Wis F(t) = (¢3,t%). Tt isn’t hard to see this is a bijection. Because the
Zariski closed subset of V', resp. W, are V itself, resp. W itself, together with all
finite subsets, F' is a homeomorphism. But it is not an isomorphism, because the
map of coordinate rings is not an isomorphism.

A more interesting example is the following, called the Frobenius morphism (ubiq-
uitous in positive characteristic algebra). Let k be an algebraically closed field of
positive characteristic p. Let n > 1 and define F' : A} — A} by F(z1,...,2,) =
(xF,...,xP). This is a bijection because every element of k has a unique p*® root.
Moreover, for every polynomial g € k[x1,...,x,], g = F*(h) for some element h €
k[z1,...,2,]. Therefore V(g) = V(g?) = F~1(V(h)), implying F(V(g)) = V(h). So
F' is a closed, continuous bijection, i.e., F' is a homeomorphism. However F' is not
an isomorphism since there is no h € k[xy, ..., x,] such that F*h = ;.

Problem 15 For every choice of a,b € k, find the irreducible components of the
affine algebraic set V(zy — z,bx + ay — z — ab) C A3.

Solution: The irreducible components are V(z — a, z — ay) and V(y — b, z — bx).



