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Problems.

Problem 0.(Lie’s Theorem.) Let g be a finite-dimensional Lie k-algebra, let h
be a Lie ideal in g, and let (V, ρ) be a finite-dimensional representation of g. Let λ
denote a morphism of Lie algebras from h to the unique 1-dimensional Lie algebra,

λ : h→ k, X 7→ 〈λ,X〉 ∈ k.

For every integer r ≥ 0, denote by V rh,λ the simultaneous kernel in V over all

X ∈ h of the k-linear endomorphisms (ρX − 〈λ,X〉IdV )1+r. The subspace V 0
h,λ is

the h-eigenspace of V with weight λ. The nondecreasing sequence of k-subspaces
(V rh,λ)r=0,1,... stabilizes to the h-generalized eigenspace V gen

h,λ of V .

(a) Prove that each subspace V rh,λ is an h-subrepresentation of V .

(b) For every Y ∈ g, since adY (X) is in h for every X ∈ h, use the identity,

ρY ◦ ρX − ρX ◦ ρY = ρadY (X),

to conclude that ρY maps V rh,λ to V 1+r
h,λ . Conclude that V gen

h,λ is a g-subrepresentation.

(c) Prove that Lie’s Theorem is equivalent to Lie’s Lemma: each eigenspace V rh,λ is
a g-subrepresentation of V . Also show that this is equivalent to the claim that for
every λ with V gen

h,λ nonzero (i.e., for each h-weight of the representation), for every

X ∈ h and for every Y ∈ g, the pairing 〈λ, adY (X)〉 is zero.

(d) For a nonzero element v in V 0
h,λ, prove that the smallest ρY -stabilized h-

subrepresentation W that contains v has a basis of the form (ρ0Y (v), . . . , ρm−1
Y (v))

for some positive integer m.

(e) Check thatW is a generalized eigenspace of ρadY (X) with eigenvalue 〈λ, adY (X)〉,
so that the trace of ρadY (X) on W equals m〈λ, adY (X)〉. However, since ρadY (X)

equals a commutator of k-linear endomorphisms of W , namely ρY ◦ ρX − ρX ◦ ρY ,
conclude that the trace equals 0. Since the characteristic of k equals 0, conclude
that 〈λ, adY (X)〉 is zero, proving Lie’s Lemma (and thus Lie’s Theorem).

(f) Finally, if h is solvable, use induction along the lower central series to prove
that for every Jordan-Hölder filtration of (V, ρ) by g-subrepresentations, every sim-
ple factor is an h-eigenspace for some weight λ, and thus every k-subspace of the
representation is a h-subrepresentation. This is equivalent to Lie’s Theorem.

Problem 1.(Engel’s Theorem.) Consider the following assertion (the weak form
of Engel’s Theorem). An action of a Lie algebra g on a finite-dimensional vector
space V is a nilpotent action if the image of g in gl(V ) is contained in the nilpotent
cone of gl(V ), i.e., every image element is a nilpotent linear transformation of V .

Theorem 0.1 (Weak Engel’s Theorem). Every nilpotent action of a Lie algebra
on a vector space of finite, positive dimension annihilates a nonzero vector in the
vector space.
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Obviously this is a property only of the image of g in gl(V ), which is a Lie algebra
of finite dimension. Thus, it suffices to prove the result for Lie algebras that have
finite dimension and faithful representation that have finite dimension.

(a) For a Lie algebra g as above, for every g-subrepresentation W of V , prove
that the images of g in both gl(W ) and gl(V/W ) are contained in the nilpotent
cones. Up to replacing g by its image in U = gl(V ), assume that the action on V
is faithful. For the adjoint action of g on U = gl(V ), check that the image of g is
contained in the nilpotent cone of gl(U). In particular, the adjoint image of g in
gl(g) is contained in the nilpotent cone, so that g is a nilpotent Lie algebra. In the
not necessarily faithful case, the quotient of g by the kernel of the representation is
a nilpotent Lie algebra.

(b) If g has dimension 0 or 1, prove the weak form of Engel’s Theorem.

Now, by way of induction, assume that g has dimension > 1, and assume the weak
Engel’s Theorem is true for all Lie subalgebras that have strictly smaller dimension
than the dimension of g.

(c) For every proper Lie subalgebra h of g containing the kernel of ρ that is max-
imal among proper Lie subalgebras of g containing the kernel of ρ, conclude that
the adjoint action of h on g is nilpotent and preserves h. Thus the induced rep-
resentation of h on g/h is nilpotent. By the induction hypothesis, conclude that
there exists an element X of g \ h such that the adjoint action of h on X has image
contained in h, i.e., [X, h] ⊂ h. Deduce that h + span(X) is a Lie subalgebra of g
containing the kernel of ρ and that strictly contains h. Since h was maximal among
proper Lie subalgebras, deduce that h + span(X) equals g. Thus, h is a subspace
of g of codimension 1, and it is a Lie ideal.

(d) Continuing the previous part, use the induction hypothesis to conclude that
there exists a nonzero vector w of V that is annihilated by h. If also w is annihilated
by the action of X, deduce that v = w satisfies the weak form of Engel’s Theorem.
If w is not annihilated by the action of X, deduce that v = X · w satisfies the
weak form of Engel’s Theorem. Thus, the weak form of Engel’s Theorem holds by
induction on the dimension of g.

(e) Use the weak form of Engel’s Theorem and induction on the dimension of V to
conclude the strong form of Engel’s Theorem:

Theorem 0.2 (Engel’s Theorem). Every nilpotent action of a Lie algebra g on
a vector space of finite dimension admits a maximal flag of subspaces that are g-
subrepresentations whose associated graded one-dimensional g-representations are
each trivial.

There is a slightly sharper version. Now let g be a finite-dimensional Lie algebra, let
n be a Lie ideal in g, and let (V, ρ) be a nonzero, finite-dimensional g-representation
whose restriction to n acts nilpotently on V . By the weak form of Engel’s Theorem,
the annihilator V n in V of n is nonzero. Of course V n is a n-subrepresentation of
the n-representation V (the “invariant subrepresentation”).

(f) Since n is a Lie ideal in g, prove that V n is, in fact, a g-subrepresentation of V .
By considering the induced action of g on the quotient V/V n and using induction
on the dimension of V , conclude the following variant of Engel’s Theorem.
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Corollary 0.3. For every finite-dimensional representation (V, ρ) of a Lie algebra
g and for every Lie ideal n of g that acts nilpotently on V , for every Jordan-
Hölder filtration of (V, ρ) by g-subrepresentations, every simple factor is a trivial
n-subrepresentation.

(g) For a finite-dimensional representation (V, ρ) of a Lie algebra g, and for Lie
ideals m and n that both act nilpotently on V , for the flag of g-subrepresentations
as above such that n acts trivially on the associated graded g-representations,
conclude that the m-action on each associated graded g-representation is nilpo-
tent. Thus, there exists a flag of g-subrepresentations of each associated graded
g-subrepresentations, such that m also acts trivially on the new associated graded
g-subrepresentations. Conclude that there exists a refinement of the original flag to
a flag of g-subrepresentations of V such that the action of m+n on each associated
graded g-representation is trivial. Altogether, this proves the following.

Corollary 0.4. For every finite dimensional representation of a Lie algebra g, for
every pair of Lie ideals, m and n, that both act nilpotently on the representation,
also the Lie ideal m+ n acts nilpotently on the representation. Thus, there exists a
maximal Lie ideal of g that acts nilpotently on the representation.

The maximal Lie ideal of g that acts nilpotently on a given finite-dimensional
representation (V, ρ) is the nilradical of the representation, nilρ(g).

(h) In particular, apply this to the adjoint representation (g, adg) to conclude
that there exists a flag of Lie ideals in g whose associated graded Lie algebras are
each trivial representations when restricted to the nilradical of the Lie algebra,
nil(g) = nilad(g).

(i) Let (V, ρ) be a finite-dimensional representation of a finite-dimensional Lie al-
gebra g such that the associated representation V/V g of the quotient Lie algebra
g/nilρ(g) is nilpotent. Use induction on the dimension of V to prove that nilρ(g)
equals all of g. Conclude the following corollary.

Corollary 0.5. A Lie algebra acts nilpotently on a finite-dimensional representa-
tion if the Lie algebra is the sum of a Lie ideal and a Lie subalgebra, each of which
act nilpotently on the representation.

Problem 2. (Universal Enveloping Algebras are Noetherian.) Read about
the (left, resp. right) Noetherian property for an associative, unital ring: every
ascending chain of (left, resp. right) ideals stabilizes. For an associative, unital ring
that is filtered, the ring is (left, resp. right) Noetherian if the associated graded
ring of the filtration is (left, resp. right) Noetherian. Read about the Hilbert Basis
Theorem: a commutative, unital ring is (both left and right) Noetherian if it is a
quotient of a finitely generated polynomial ring over a commutative, unital ring that
is (both left and right) Noetherian. Since the associated graded ring of the filtered
universal enveloping algebra of a Lie algebra g is a quotient of the polynomial
algebra with first graded piece equal to g, conclude that the universal enveloping
algebra of every finite dimensional Lie algebra is both left and right Noetherian.
(Conversely, if the universal enveloping algebra of a Lie algebra is Noetherian, then
the Lie algebra is finite dimensional.) Thus, a g-module has a (finite) Jordan-
Hölder filtration by g-submodules whose associated graded g-modules are simple
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if and only if the g-module is Artinian, e.g., this holds if the g-module has finite
dimension as a vector space. The length of the Jordan-Hölder filtration, and the
sequence of simple modules (up to permutation) are independent of the choice of
Jordan-Hölder filtration.

Prove that in this case, the nilradical nilρ(g) is the simultaneous annihilator in g of
all of these simple g-modules, and the “nilpotency degree” for the induced nilpotent
action of the nilradical is bounded above by the length ` of the Jordan-Hölder
filtration. Define the nilradical in Uk(g), Nilρ(Uk(g)), to be the simultaneous
annihilator in Uk(g) of all of these simple g-modules as a two-sided ideal, so that
the ιg-preimage of Nilρ(Uk(g)) equal nilρ(g), and the power of the ideal, Nilρ(Uk(g))`

annihilates the module V .

Problem 3.(Derivations and Ideals in the Universal Enveloping Algebra.)
For a Lie k-algebra g and its associated universal enveloping k-algebra ιg : g →
Uk(g), recall from Problem 4 of Problem Set 8 that the Lie algebra k-derivations of
g are precisely the k-derivations of the associative, unital algebra Uk(g) that map
the subspace ιg(g) back to itself. For such a derivation θ, check that the image of the
derivation applied to Uk(g) is contained in the two-sided ideal of Uk(g) generated
by ιg(θ(g)). Thus, also for every Lie subalgebra s of the Lie algebra of such k-
derivations, the subspace of Uk(g) spanned by the images of all derivations of s is
contained in the two-sided ideal of Uk(g) generated by ιg(θ(g)). Similarly, for every
two-sided ideal N of Uk(g) that is mapped back to itself by the derivations in s,
check that for each integer m ≥ 0, the two-sided ideal Nm is also mapped back to
itself by the derivations in s.

Problem 4.(The Zassenhaus Extension Lemma.) This problem is taken from
notes by Theo Johnson-Freyd on Lie groups and Lie algebras. Let g be a finite
dimensional Lie algebra that equals a semidirect product of a Lie ideal r and a Lie
subalgebra s via a derivation,

θ : s→ Derk(r, r).

Let (V, ρ) be a representation of r whose nilradical nilρ(r) contains the image of
the derivation θX on r for every X in s, and thus also the nilradical Nilρ(Uk(r))
contains the image of the extended derivation θX on Uk(r) for every X in s.

Lemma 0.6 (Zassenhaus Extension Lemma). For all integers m that are suffi-
ciently positive, the left Uk(r)-module map,

ρ̃ : Uk(r)⊗k V � V, (a, v) 7→ ρ̃a(v),

factors through the quotient,

ρ : (Uk(r)/Nm)⊗k V � V,

the left r-module structure on the domain has a natural extension to a left g-module
structure, and the nilradical in g of this left g-module contains the nilradical in r of
the left r-module (V, ρ).

(a) Since nilρ(g) contains the image of each derivation θX , show that also the two-
sided ideal N = Nilρ(Uk(r) is mapped back to itself by the extended derivation θX
on Uk(g). Thus, the ideal N is mapped back to itself by all of s. Use the previous
exercise to conclude that s also maps each power of the ideal, Nm, back to itself.
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Conclude that there is an induced action of s on the quotient ring Uk(g)/Nm by
derivations that maps each quotient ideal Nn/Nm back to itself for n = 0, . . . ,m.

(b) For each integerm ≥ 0, use the natural left-module action of Uk(r) on Uk(r)/Nm

and the action of s by derivations from the previous part to conclude that there is
an action on Uk(r)/Nm of the semidirect product Lie algebra g whose restriction
to the submodule r is the usual left-module action.

(c) Since Uk(r) is Noetherian, the two-sided ideal N = Nilρ(Uk(r)) as well as each
of its powers, Nm, is finitely generated. Conclude that each associated graded
Nm/N1+m is also finitely generated, both as a Uk(r)-module and as a Uk(r)/N -
module. By definition of Nilρ(Uk(r)), the quotient ring Uk(r)/N is the image of
Uk(r) in the product of the Uk(r)-endomorphism ring of the finitely many sim-
ple modules Vi in a Jordan-Hölder filtration of the Uk(r)-module V . Of course
each of these endomorphism rings is a subring of the finite dimensional k-vector
space Homk(Vi, Vi). Conclude that also that the quotient ring Uk(r)/N is a finite-
dimensional k-vector space. Therefore, the associated graded Nm−1/Nm is a finite
dimensional k-vector space for each integer m ≥ 0 (since it is a finitely generated
module over a k-algebra that is a finite-dimensional k-vector space). Also, for the
length ` of the Jordan-Hölder filtration, the power N ` is in the annihilator of V .
Thus the action of Uk(r) on V factors through the quotient ring Uk(r)/N `, and
this is a finite-dimensional k-vector space, since the filtration by powers of N is a
finite filtration whose associated graded pieces are each finite-dimensional k-vector
spaces. Finally, since s acts on Uk(r)/N ` by derivations, conclude that this induces
an action of the semidirect product Lie algebra g on Uk(r)/N ` whose restriction to
r is the usual action.

(d) Since the action of Uk(r) on V factors Uk(r)/N `, conclude that the natural
k-bilinear module action,

ρ̃ : Uk(r)× V → V, (a, v) 7→ a · v,
factors through a k-linear transformation,

ρ :
(
Uk(r)/N `

)
⊗k V → V.

Define W to be the domain of this k-linear transformation. Since both V and
Uk(r)/N ` are finite-dimensional, conclude that also W is a finite-dimensional k-
vector space. Make the tensor product k-vector space W into a left g-module via
the g-module action on Uk(r)/N ` constructed above and the trivial action on V ;
denote by σ the induced representation of g on W . For the g-representation σ on
W with its restriction to the Lie ideal r of g, and for the r-module representation ρ
on V , check that ρ is a morphism of left r-modules.

(e) Check that the intersection with the Lie ideal r of the nilradical nilσ(g) contains
the nilradical nilρ(r). This completes the proof of the Zassenhaus Extension Lemma.

(f) As a bonus, check that the nilradical in g of the action on (Uk(r)/N `)⊗k V also
contains s if the derivation θX of r is a nilpotent endomorphism of r for each X
in s. (Hint. Note that the associated graded g-representations of a Jordan-Hölder
filtration on (Uk(r)/N `)⊗k V factors through the action of the quotient Lie algebra
g/r ∼= s.)

Problem 5.(Derivations of a solvable Lie algebra.) For a finite-dimensional,
solvable Lie algebra r with nilradical nil(r), the adjoint representation of r preserves
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a maximal flag of subspaces that are actually r-subrepresentations. Moreover, the
Lie ideal nil(r) equals the kernel of the morphism of Lie algebras from r to the
direct sum of the trivial Lie algebra Endk(Vi, Vi) = k taken over all 1-dimension
associated graded r-representations Vi in this flag. Thus, the quotient Lie algebra
r/nil(r) is identified with a Lie subalgebra of this finite-dimensional, Abelian Lie
algebra.

(a) Conclude that r/nil(r) is an Abelian Lie algebra. Equivalently, conclude that
nil(r) contains the commutator ideal.

(b) Assume that r/nil(r) is nonzero. Denote by Φ ⊂ Homk(r/nil(r), k) the set of all
nontrivial k-linear transformations that occur among the 1-dimensional subquo-
tients above. Deduce that Φ is a spanning set of the k-vector space Homk(r/nil(r), k)
that is a finite set whose size is bounded above the dimension of nil(r).

(c) Deduce that the filtration of r by powers of the nilradical is a “characteristic”
filtration by r-Lie subalgebras, i.e., it is preserved by all automorphisms of the Lie
algebra r. For each associated graded r-representation for this filtration, deduce
that the r-action factors through the Abelian Lie algebra r/nil(r). For the action of
this finite-dimensional Lie algebra on this finite-dimensional vector space, deduce
that the generalized eigenspace decomposition of this representation has nonzero
terms only for characters in the finite set Φ, and each character in Φ has a nonzero
term for some associated graded r-representation of this filtration. Deduce that
the direct sum decomposition by generalized eigenspaces for Φ is also characteristic
in the sense that every automorphism of r permutes the set Φ and permutes the
corresponding generalized eigenspaces.

(d) Since the group of automorphisms is an algebraic subgroup of GL(g), conclude
that it has finitely many connected components. Show that every automorphism
in the connected component of the identity acts as the identity permutation on
Φ, and thus preserves (setwise) each generalized eigenspace in the direct sum de-
composition above. Thus, the filtration by powers of the nilradical, refined by
the generalized eigenspaces, gives a decomposition of the adjoint representation as
r-subrepresentations that is “characteristic” for automorphisms of r in the same
connected component as the identity automorphism.

(e) In particular, since the automorphism acts as the identity permutation on Φ,
and since the elements of Φ span the dual k-vector space of r/nil(r), deduce that
each automorphism of r in the connected component of the identity acts as the
identity automorphism on the quotient Lie algebra r/nil(r).

(f) Since derivations of r exponentiate to automorphisms of r in the connected
component of the identity, conclude that every derivation of r induces the zero
derivation of the quotient Lie algebra r/nil(r). Deduce that every derivation of a
finite-dimensional, solvable Lie algebra (in characteristic zero), maps the solvable
Lie algebra to its nilradical Lie ideal.

(g) In the Zassenhaus Extension Lemma, additionally assume that the Lie ideal r
is a solvable Lie algebra. Use the result above to show that a finite-dimensional
representation (V, ρ) of r satisfies the hypothesis of the lemma if the nilradical of ρ
contains nil(r). Thus, such (V, ρ) is a quotient r-representation of the restriction to
r of a finite-dimensional g-representation whose nilradical in g contains both nilρ(r)
and s.
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Problem 6.(Ado’s Theorem.) This proof of Ado’s theorem also follows the
notes by Theo Johnson-Freyd, and the strategy traces back (at least) to the work
of Harish-Chandra in his article Faithful representations of Lie algebras.

Theorem 0.7 (Ado’s Theorem). Over a field k of cheracteristic 0, every Lie k-
algebra (g, [•, •]g : g× g→ g) that has finite dimension as a k-vector space admits
a faithful representation whose nilradical contains nil(g).

(a) First prove this when the Lie algebra g is itself nilpotent by induction on the
dimension of the Lie algebra. The base case is when g is the zero vector space,
in which case the result is tautological. If the dimension is strictly positive, use
Engel’s Theorem to prove that there exists a Lie ideal r of codimension 1 in g
that contains the commutator ideal. Let s be the span of any element of g not
in r. By the induction hypothesis, there exists a faithful representation of r. By
the Zassenhaus Extension Lemma, there is an extension of this representation to
a g-representation. The kernel of this extension has trivial intersection with r.
Therefore we get a faithful representation of all of g by taking the direct sum of this
faithful representation with any faithful, nilpotent representation of the quotient
Lie algebra g/r ∼= s, e.g., the unique 2-dimensional faithful, nilpotent representation
of the 1-dimensional Lie algebra s.

(b) Next, when g is a solvable Lie algebra, adapt the proof above to the case where
the Lie ideal r is a codimension 1 Lie ideal that contains the nilradical of g (which,
in turn, contains the commutator ideal).

(c) Finally, in the general case, let r denote the solvable radical of g, and let s
be a Levi factor (which exists by Levi’s Theorem). Use the Zassenhaus Extension
Lemma to prove that there exists a finite-dimensional g-representation whose kernel
has trivial intersection with r and whose nilradical contains nil(r)+s. Take the direct
sum of this representation with the adjoint representation of s = g/r. By Cartan’s
Semisimplicity Criterion, conclude that the kernel of this direct sum is trivial, so
that this gives a faithful representation.
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