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Problem 1. (Duals of irreducibles are irreducible.) For every representation
of a Lie group, prove that the representation is indecomposable, resp. irreducible,
resp. completely reducible, if and only if the dual representation also has this
property. Show by example that a tensor product of two indecomposable repre-
sentations, resp. irreducible representations, need not have this property. (Hint.
Consider the identity and the trace for the tensor product of a representation with
its dual.)

Problem 2. (Natural decomposition into irreducibles.) Let G be a Lie
group. Let (U, σ) and (V, ρ) be C-linear (left) G-representation. The following
C-bilinear map,

HomC(U, V )× U → V, ((T : U → V ), u) 7→ T (u),

induces a C-linear map,

cU,V : HomC(U, V )⊗C U → V.

This is natural in both U and V .

(a) For the induced C-linear (left) G-representations on Hom and tensor product of
representations, prove that cU,V is a morphism of C-linear (left) G-representations.
In particular, conclude that for the G-invariant subrepresentation,

HomRepC
G

((U, σ), (V, ρ)) ⊆ HomC(U, V ),

the following restriction of cU,V is a morphism of C-linear (left) G-representations,

H ⊗C U → V, H := HomRepC
G

((U, σ), (V, ρ)).

(b) Denote by I = I(V, ρ) the finite set of isomorphism classes of irreducible C-
linearG-representations (Vi, ρi) that are isomorphic to a C-linearG-subrepresentation
of (V, ρ). Conclude the existence of a natural morphism of C-linearG-representations,

a(V,ρ) :
⊕
i∈I

Hi ⊗C (Vi, ρi)→ (V, ρ), Hi := HomRepC
G

((Vi, ρi), (V, ρ)).

(c) Complete the proof from lecture of the corollary of Schur’s Lemma: (V, ρ) is
completely reducible if and only if a(V,ρ) is an isomorphism.

(d) When (V, ρ) is completely reducible, use Schur’s Lemma to prove that the iso-
morphism a(V,ρ) induces a natural decomposition of unital, associative, C-algebras,

ã(V,ρ) : HomRepC
G

((V, ρ), (V, ρ))
∼=−→

∏
i∈II

HomC(Hi, Hi).

In particular, conclude an isomorphism of the centers of these algebras,

Z(ã(V,ρ)) : Z(HomRepC
G

((V, ρ), (V, ρ)))
∼=−→

∏
i∈I

C · IdHi
.
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(e) In particular, conclude that the cardinality of I equals the C-vector space
dimension of the center of this algebra. For each i ∈ I, the multiplicity of (Vi, ρi)
in (V, ρ) is defined to be mi := dimC(Hi). Conclude that the algebra has C-vector
space dimension equal to ∑

i∈I
m2
i .

Problem 3. (Schur’s Lemma and Weyl’s Trick for Lie algebras.) Formulate
the analogue of Schur’s Lemma, the Weyl Unitarian Trick, etc., for real Lie algebras
instead of real Lie groups. In particular, for a real Lie algebra gR whose associated
simply connected, real Lie group GR is compact, conclude that all finite dimensional
C-linear, (left) g-modules are completely reducible. Also conclude that for the
associated complex Lie algebra gC, the same holds for finite dimensional, C-linear,
(left) gC-modules. Finally, conclude that the same holds for every simply connected,
complex Lie group GC whose Lie algebra is a complexification of gR.

Problem 4. (Hopf algebra structure on the group algebra.) Let Γ be a
finite group considered as a (compact, totally disconnected) Lie group of dimension
0. As usual, denote the identity element by e. Denote the unital, associative group
C-algebra by (C[Γ],be, ∗).

The trace (sometimes called the counit) is defined to be

TrΓ : C[Γ]→ C,
∑
g∈Γ

zgbg 7→
∑
g∈Γ

zg.

The comultiplication is defined to be

∆Γ : C[Γ]→ C[Γ]⊗C C[Γ],
∑
g∈Γ

zgbg 7→
∑
g∈Γ

zg(bg ⊗ bg).

The antipode is defined to be

SΓ : C[Γ]→ C[Γ],
∑
g∈Γ

zgbg 7→
∑
g∈Γ

zgbg−1 .

Check that these operations (together with the usual unital, associated C-algebra
operations) make C[Γ] into a Hopf C-algebra. Precisely, check all of the following.

(a) The comultiplication is coassociative, i.e., the following two compositions are
equal,

C[Γ]
∆Γ−−→ C[Γ]⊗C C[Γ]

∆Γ⊗Id−−−−→ (C[Γ]⊗C C[Γ])⊗C C[Γ],

C[Γ]
∆Γ−−→ C[Γ]⊗C C[Γ]

Id⊗∆Γ−−−−→ C[Γ]⊗C (C[Γ]⊗C C[Γ]) .

(b) The counit is a left-right coidentity, i.e., the following two compositions both
equal the identity map,

C[Γ]
∆Γ−−→ C[Γ]⊗C C[Γ]

TrΓ⊗Id−−−−−→ C⊗C C[Γ] = C[Γ],

C[Γ]
∆Γ−−→ C[Γ]⊗C C[Γ]

Id⊗TrΓ−−−−−→ C[Γ]⊗C C = C[Γ].
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(c) The unital, associative C-algebra structure and the counital, coassociative C-
coalgebra structure satisfy the axioms of a bialgebra, i.e., each of the following
diagram commute.

C[Γ]⊗C C[Γ]
∆Γ◦(−∗−)−−−−−−−→ C[Γ]⊗C C[Γ]

∆⊗∆Γ⊗∆Γ

y x(−∗−)⊗(−∗−)

C[Γ]⊗C C[Γ]⊗C C[Γ]⊗C C[Γ] −−−−−−−−−−−−→
pr1⊗pr3⊗pr2⊗pr4

C[Γ]⊗C C[Γ]⊗C C[Γ]⊗C C[Γ]

.

C[Γ]⊗C C[Γ]
(−∗−)−−−−→ C[Γ]

TrΓ⊗TrΓ

y yTrΓ

C⊗C C −−−−→∼= C

.

C
∼=−−−−→ C⊗C C

be

y ybe⊗be

C[Γ] −−−−→
∆Γ

C[Γ]⊗C C[Γ]

.

C Id−−−−→ C

be

y xTrΓ

C[Γ] −−−−→
Id

C[Γ]

.

(d) The antipode S satisfies the axioms of a Hopf algebra, i.e., the following
diagram commutes.

C[Γ]⊗C C[Γ]
SΓ⊗Id−−−−→ C[Γ]⊗C C[Γ]

∆Γ

x y−∗−
C[Γ]

TrΓ(−)be−−−−−−→ C[Γ]

∆Γ

y x−∗−
C[Γ]⊗C C[Γ]

Id⊗SΓ−−−−→ C[Γ]⊗C C[Γ]

.

(e) For every pair (U, σ) and (V, ρ) of left modules over a Hopf C-algebra R, for
every element r ∈ R with

∆R(t) =
∑
α

sα ⊗ rα,

there is an associated left R-module structure on U ⊗C V defined by

(σ ⊗ ρ)(t) · (u⊗ v) :=
∑
α

(σ(sα) · u)⊗ (ρ(rα) · v) .

Check that for the comultiplication ∆Γ defined above, this equals the structure
of Γ-representation on U ⊗C V as defined in lecture. Also, check that the trivial
representation (i.e., the left-right identity for the tensor product operation on C-
linear left Γ-representations) is the unique representation such that the associated
trace on C[Γ] equals TrΓ.
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(f) Similarly, for every left module (V, ρ) over R, define a left R-module on the
dual C-vector space V ∨ of C-linear functional χ on V by

(t · χ)(v) := χ(S(t) · v).

Check that for the antipode SΓ defined above, this equals the structure of Γ-
representation on V ∨ as defined in lecture. Thus, the “extra structures” on C-linear
Γ-representations are explained by the Hopf algebra structure on C[Γ]. Conversely,
these extra structures uniquely determine the Hopf algebra structures ∆Γ, TrΓ, and
SΓ on the group C-algebra C[Γ].

(g) Finally, check that the comultiplication is cocommutative, i.e., ∆ equals its
postcomposition with the involution

pr2 ⊗ pr1 : C[Γ]⊗C C[Γ]→ C[Γ]⊗C C[Γ], a1 ⊗ a2 7→ a2 ⊗ a1.

For every Hopf C-algebra that is cocommutative and that is finite dimensional as
a C-vector space, there is an associated group Γ consisting of all elements b such
that ∆(b) equals b⊗ b. Moreover, the Hopf C-algebra is canonically isomorphic, as
a Hopf C-algebra, to the group C-algebra of this group.

In particular, we can recover the finite group Γ from the structure of the group C-
algebra C[Γ] as a Hopf algebra, and we can recover this from the group C-algebra as
a unital, associative C-algebra together with the extra structures on tensor product
and duals of C-linear, (left) Γ-representations.

Problem 5. (A universal property of the group algebra as a represen-
tation.) As in the previous problem, let C[Γ] be the group C-algebra of a finite
group Γ. Give C[Γ] its natural structure of C-linear (left) G-representation, i.e.,
(g,bh) 7→ bgh.

(a) Prove the following claim from lecture. For every C-linear Γ-representation
(V, ρ), the following C-linear map is an isomorphism,

HomRepC
Γ
(C[Γ], (V, ρ))→ V, (T : C[Γ]→ V ) 7→ T (be).

Also, show that this isomorphism is natural in (V, ρ). Stated in terms of category
theory, there is a fiber functor,

F : RepC
Γ → C−Vect, (V, ρ) 7→ V, HomRepC

Γ
((U, σ), (V, ρ)) ↪→ HomC(U, V ).

This is a covariant functor, and it is represented by C[Γ].

(b) Invert the isomorphism above to get a C-linear map,

V
∼=−→ HomRepC

Γ
(C[Γ], (V, ρ)) ⊆ HomC(C[Γ], V ).

Use adjointness of Hom and tensor product to obtain an associated C-linear map,

C[Γ]⊗C V → V.

Prove that this C-linear map is a morphism of C-linear G-representations for the
following structures of C-linear G-representation,

C[Γ]⊗C (V, triv)→ (V, ρ).

(c) Apply this in the special case that (V, ρ) equals C[Γ] itself, and deduce that the
C-linear map,

C[Γ]⊗C C[Γ]→ C[Γ],

is the usual C-algebra multiplication on the group C-algebra.
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Thus, the natural isomorphism above is enough to deduce the algebra structure.
Altogether, this means that we can recover the group C-algebra as a unital, asso-
ciative C-algebra from the data of the category of finite dimensional, C-linear (left)
Γ-representations as a category whose Hom sets are binaturally given structures of
finite dimensional C-vector spaces with C-bilinear composition operations and the
fiber functor.

The previous problem sketched how the extra operations of tensor product of rep-
resentations, the trivial (1-dimensional) representation, and Hom objects define the
additional Hopf algebra structures. Altogether, we can (explicitly) recover the fi-
nite group Γ from the category of C-linear (left) Γ-representations with these extra
operations (a structure of “rigid, symmetric, monoidal category”) and the fiber
functor (a structure of “Tannakian category”).

(d) By Maschke’s Theorem, every finite dimensional C-linear Γ-representation is
completely reducible. Combine this with Schur’s Lemma and (a) above to con-
clude that every finite dimensional, irreducible, C-linear Γ-representation (Vi, ρi) is
isomorphic to a C-linear subrepresentation of C[Γ].

(e) Use the morphism of C-linear Γ-representations from (c) to conclude that right
multiplication of C[Γ] on itself (the “right regular representation”) gives an isomor-
phism of unital, associative C-algebras,

C[Γ]opp ∼=−→ HomRepC
Γ
(C[Γ],C[Γ]).

Here, for every unital, associative C-algebra A, the opposite algebra Aopp is the
same C-vector space but with multiplication defined by a • b := ba.

(f) Combine the isomorphism in (e) with the previous exercise and Problem 2 from
the previous problem set to conclude that the number #I of isomorphism classes
[(Vi, ρi)] of irreducible C-linear Γ-representations equals the number of conjugacy
classes in Γ, that every C-bilinear pairing below is a perfect pairing of C-vector
spaces,

Hi × Vi → C[Γ]
TrΓ−−→ C, Hi := HomRepC

Γ
((Vi, ρi),C[Γ]),

that each multiplicity mi equals the C-vector space dimensions ni = dimC(Vi), and
that there is an equality of positive integers,

#Γ =
∑
i∈I

n2
i .

Problem 6. (Central idempotents of the group algebra give the irre-
ducible representations.) Inside the center Z(C[Γ]) considered as a C-algebra,
an element e is an idempotent if e2 equals e. For each idempotent e, the annihi-
lator of e is

Ann(e) := {b ∈ C[Γ]|eb = 0}.

(a) With respect to the C-algebra isomorphism

Z(ã) : Z(C[Γ]) = Z(C[Γ]opp)
∼=−→

∏
i∈I

C · IdHi
,

check that the idempotent elements correspond to those elements (aiIdHi
)i∈I such

that every a2
i equals ai, i.e., such that ai equals 1 or 0.
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(b) For an idempotent e, define the support, supp(e), to be the subset of I such
that ai equals 1. Check that the annihilator of e maps isomorphically to the left-
right ideal,

{(Mi)i∈I ∈
∏
i∈I

HomC(Hi, Hi)|∀i ∈ supp(e), Mi = 0}.

(c) In particular, check that the unique nonzero idempotents with codimension-1
annihilator in Z(C[Γ]) are the primitive idempotents ei for each i ∈ I,

ei 7→ (ajIdHj
)j∈I , ai = 1, aj = 0,∀j 6= i.

Moreover, for each i ∈ I, check that the common annihilator in C[Γ] of ej for all
j 6= i maps isomorphically to the left-right ideal that is the factor HomC(Hi, Hi).
As a C-linear left Γ-representation, this C-algebra is a direct sum of ni copies of the
irreducible representation (Vi, ρi). Thus, we can construct the irreducible, C-linear,
Γ-representations from the full list of idempotents in Z(C[Γ]) having codimension-1
annihilator in Z(C[Γ]).

Problem 7 (Schur’s Orthogonality Relations and idempotents in the
group algebra.) This exercise reconstructs the primitive idempotents (and thus
the irreducible representations) in the group algebra from the information of the
irreducible characters. The key is a natural Hermitian inner product on the center
of the group algebra, together with Schur’s Orthogonality Relations.

(a) For every C-linear (left) Γ-representation (V, ρ) and for every conjugacy class
C in Γ, check that the following C-linear operator on V is a morphism of C-linear
(left) Γ-representations, ∑

g∈C
ρ(g) ∈ HomC(V, V ).

(b) If (V, ρ) if a finite dimensional, irreducible representation, use Schur’s Lemma
to conclude that this morphism is a multiple of the identity, say ρCIdV . Taking
traces, deduce the identity,

ρC · dimC(V ) =
∑
g∈C

TrV (ρ(g)).

(c) Similarly, conclude that the image of the following C-linear operator is contained
in the C-linear subrepresentation of invariant elements,∑

g∈Γ

ρ(g) ∈ HomC(V, V ).

If (V, ρ) is a finite dimensional representation whose invariant subspace is zero,
conclude that ∑

C

ρC = 0, i.e.,
∑
g∈Γ

TrV (ρ(g)) = 0.

In particular, this holds if (V, ρ) is a nontrivial irreducible representation. Con-
versely, if (V, ρ) is a trivial representation, show that the sum equals dimC(V )#Γ.
Thus, since trace is additive for direct sum decomposition, for a general (V, ρ),
conclude the identity

1

#Γ

∑
g∈Γ

TrV (ρ(g)) = dimC(V Γ).
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(d) For every finite dimensional, C-linear, (left) Γ-representation (V, ρ), the char-
acter of this representation is the class function,

χ(V,ρ) : Γ→ C, g 7→ TrV (ρ(g)).

Every ρ(g) is diagonalizable with eigenvalues ζ that are roots of unity with ζ−1 = ζ.
Conclude the identity

χ(V ∨,ρ∨)(g) = χ(V,ρ)(g
−1) = χ(V,ρ)(g).

Similarly, for representations (U, σ) and (V, ρ), for the tensor product of the eigen-
decompositions to prove the identity,

χ(U⊗V,σ⊗ρ)(g) = χ(U,σ)(g)χ(V,ρ)(g).

Consequently, conclude the identity,

χHomC(U,V )(g) = χ(U,σ)(g)χ(V,ρ)(g).

Sum over g and use (c) to deduce the identity,

dimCHomRepC
Γ
((U, σ), (V, ρ)) =

1

#Γ

∑
g∈Γ

χ(U,σ)(g) · χ(V,ρ)(g).

(e) Now assume that (V, ρ) is irreducible. For every class function,

α : Γ→ C,
with associated central element,

1

#Γ

∑
g∈Γ

α(g)bg−1 ,

conclude that the associated C-linear operator on V ,∑
g∈Γ

α(g)ρ(g−1),

equals λIdV where λ satisfies the identity

λdimC(V ) =
1

#Γ

∑
g∈Γ

α(g)χ(V,ρ)(g
−1) =

1

#Γ

∑
g∈Γ

α(g)χ(V,ρ)(g).

In particular, this central element annihilates the primitive idempotent correspond-
ing to (V, ρ) if and only if the class function α is orthogonal to the class function
χ(V,ρ) with respect to the Hermitian inner product on the C-vector space of class
functions defined by

〈α, β〉 :=
1

#Γ

∑
g∈Γ

α(g)β(g).

(f) Let (U, σ) and (V, ρ) be finite dimensional, C-linear, (left) Γ-representations.
Reinterpret (d) as an identity,

dimCHomRepC
Γ
((U, σ), (V, ρ)) = 〈χ(V,ρ), χ(U,σ)〉.

In particular, if (U, σ) and (V, ρ) are irreducible representations, conclude that
〈χ(V,ρ), χ(U,σ)〉 equals 0 unless the representations are isomorphic, in which case
〈χ(V,ρ), χ(U,σ)〉 equals 1. Thus, the characters of irreducible representations form
an orthonormal subset of the C-vector space of C-valued class functions with respect
to the Hermitian inner product defined above.
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(g) Finally, since the dimension of the space of class functions equals the dimen-
sion of Z(C[Γ]), and since this equals the number #I of isomorphism classes of
irreducible representations, conclude that the characters of irreducible representa-
tions form an orthonormal basis for the C-vector space of C-valued class functions
with respect to the Hermitian inner product defined above. Altogether this is the
Schur orthogonality relations.

(h) Deduce that for the irreducible representations (Vi, ρi) for i ∈ I with character
χi = χ(Vi,ρi), the corresponding central elements,

ei :=
χi(e)

#Γ

∑
g∈Γ

χi(g)bg−1 ,

are the primitive idempotents. (Hint. First use (e) and (f) to show that the
primitive idempotent is a scalar multiple of this sum. Then square the element and
examine the coefficient of be to conclude that the idempotent equals the sum.)

Combined with the previous problem, the data of the characters of the irreducible
representations as a subset of the C-vector space of C-valued class functions on Γ
is sufficient to reconstruct all irreducible, C-linear, (left) Γ-representations via the
corresponding isotypic factor of C[Γ].

Problem 8. For a finite Abelian group Γ, interpret the previous problems as
an eigendecomposition of the group C-algebra as a direct sum of 1-dimensional
subrepresentations indexed by the elements of the Pontrjagin dual group.

Problem 9. Also explicitly work out the decomposition of the group C-algebra
C[Γ] for the symmetric groups Γ = S3 and Γ = S4. In fact, there is a different
method for reconstructing the irreducible, C-linear, (left) Sn-representations of Sn

as left C[Sn]-submodules of C[Sn]. These submodules are cyclic submodules Vλ :=
C[Sn]cλ generated by the Young symmetrizer cλ associated to each partition λ
of n. There are combinatorial formulas for the character of Vλ, but often the Young
symmetrizer provides a more direct approach.
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