MAT 552 PROBLEM SET 5

Problems. This problem set completes the analytic proof of the Peter-Weyl Theorem. It is intended for those students with some background in Hilbert spaces and functional analysis.
Here is a quick reminder of the basics of complex Hilbert spaces including the statement of the spectral theorem. A complex Hilbert space is a Hermitian inner product space (V, β) whose associated metric space is complete (all Cauchy sequences converge). For Hermitian inner product spaces (V, β) and (W, γ), a bounded linear transformation (resp. a compact linear transformation) is a \mathbb{C}-linear transformation,

$$
T: V \rightarrow W,
$$

sending closed balls in (V, β) to bounded (resp. compact) subsets of W. The operator norm, $\|T\|_{\text {op }}$, of T is the supremum of the γ-lengths of all elements in the T-image of the closed unit ball of (V, β).
If the domain and target are complex Hilbert spaces, then the Closed Graph Theorem implies that T is bounded if and only if the graph of T is closed. In this case, there exists a unique bounded linear transformation,

$$
T^{*}:(W, \gamma) \rightarrow(V, \beta),
$$

such that for every $v \in V$ and for every $w \in W$,

$$
\gamma(w, T(v))=\beta\left(T^{*}(w), v\right) .
$$

This is the adjoint of T. Note that $\left\|T^{*}\right\|_{\text {op }}$ equals $\|T\|_{\text {op }}$.
The operation of adjoint makes $B((V, \beta),(V, \beta))$ and $B((W, \gamma),(W, \gamma))$ into (unital) C^{*}-algebras. Together with the operations sending T to $T^{*} \circ T \in B((V, \beta),(V, \beta))$, resp. to $T \circ T^{*} \in B((W, \gamma),(W, \gamma))$, also $B((V, \beta),(W, \gamma))$ is a right Hilbert C^{*} module, resp. left Hilbert C^{*}-module, for these respective C^{*}-algebras. An operator $T \in B((V, \beta),(V, \beta))$ is normal, resp. self-adjoint, if T commutes with T^{*}, resp. if T equals T^{*}.
By the Open Mapping Theorem, if V and W are complete, then every surjective bounded linear transformation is an open mapping. If T is also injective, then T is a homeomorphism whose inverse is also a bounded operator. Denote by $\operatorname{Inv}((V, \beta),(W, \gamma))$ the set of all bounded linear operators from V to W having a two-sided inverse that is also a bounded linear operator. Denote $\operatorname{Inv}((V, \beta),(V, \beta))$ by $\mathbf{G L}_{\mathbb{C}}(V, \beta)$; this is the group (and open subset) of invertible elements in the C^{*}-algebra $B((V, \beta),(V, \beta))$.
For every nonzero Hilbert space (V, β) and for every bounded operator T from (V, β) to itself, the spectrum of T is

$$
\operatorname{spec}(T):=\left\{\lambda \in \mathbb{C} \mid \lambda \operatorname{Id}_{V}-T \notin \mathbf{G L}_{\mathbb{C}}(V, \beta)\right\} .
$$

This is a compact subset of \mathbb{C}. The resolvent function,

$$
R(z ; T): \mathbb{C} \backslash \operatorname{spec}(T) \rightarrow \mathbf{G} \mathbf{L}_{\mathbb{C}}(V, \beta), \quad R(z ; T)=\left(T-z \operatorname{Id}_{V}\right)^{-1},
$$

is a holomorphic map to $B((V, \beta),(V, \beta))$. By Liouville's theorem, the spectrum is nonempty.
For every polynomial function in one variable z,

$$
f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{d} z^{d}
$$

the associated bounded operator $f(T)$ is defined by,

$$
f(T)=a_{0} \operatorname{Id}_{V}+a_{1} T+a_{2} T \circ T+\cdots+a_{d}(T \circ \cdots \circ T) .
$$

Every bounded continuous function f on $\operatorname{spec}(T)$ is a uniform limit of a sequence of polynomial functions f_{n}. The operators $f_{n}(T)$ converge to a bounded operator $f(T)$ independent of the choice of convergent sequence of polynomials $\left(f_{n}\right)$. Denote $C^{o}(\operatorname{spec}(T), \mathbb{C})$ the \mathbb{C}-vector space of bounded continuous functions on $\operatorname{spec}(T)$. There is a well-defined \mathbb{C}-linear map,

$$
\operatorname{subs}_{T}: C^{0}(\operatorname{spec}(T), \mathbb{C}) \rightarrow B((V, \beta),(V, \beta))
$$

For every $f(z) \in C^{0}(\operatorname{spec}(T), \mathbb{C})$, denote by $E_{T, f}$ the kernel of $f(T)$ as a closed \mathbb{C}-linear subspace of V. For every closed subset $\Sigma \subset \operatorname{spec}(T)$, denote by $E_{T, \Sigma}$ the intersection of $E_{T, f}$ over all $f(z)$ that vanish on Σ.

Hypothesis 0.1. The operator $T \in B((V, \beta),(V, \beta))$ is self-adjoint.
Then the \mathbb{C}-linear map subs_{T} is a homomorphism of commutative, unital C^{*} algebras, i.e., it sends function multiplication to composition, and it sends complex conjugation of functions to the adjoint operator.

Lemma 0.2 (Real spectrum, orthogonal eigenspaces). The spectrum of every selfadjoint operator T is real. If $\Sigma, \Theta \subset \operatorname{spec}(T)$ are disjoint closed subsets, then $E_{T, \Sigma}$ and $E_{T, \Theta}$ are pairwise orthogonal closed subspaces.
Proof. For the polynomial $p_{\lambda}(z)=z-\lambda$ and associated norm-squared polynomial $\|p\|^{2}(z):=p_{\lambda}(z) \cdot \overline{p_{\lambda}(\bar{z})}$, observe

$$
p_{\lambda}(z) \cdot \overline{p_{\lambda}(\bar{z})}=\operatorname{Im}(\lambda)^{2}+(z-\operatorname{Re}(\lambda))^{2}
$$

Thus, for a self-adjoint operator T,

$$
\left(T-\lambda \operatorname{Id}_{V}\right) \circ\left(T-\lambda \operatorname{Id}_{V}\right)^{*}=\operatorname{Im}(\lambda)^{2} \operatorname{Id}_{V}+\left(T-\operatorname{Re}(\lambda) \operatorname{Id}_{V}\right)^{2} \geq \operatorname{Im}(\lambda)^{2} \operatorname{Id}_{V}
$$

Combined with the open mapping theorem, this implies that $T-\lambda \mathrm{Id}_{V}$ is invertible whenever $\operatorname{Im}(\lambda)$ is nonzero.

Next, by Urysohn's Lemma, there exist bounded, continuous, nonnegative realvalued functions $f(z)$ and $g(z)$ such that f vanishes on Σ, such that g vanishes on Θ, and such that $f+g$ equals 1 . Thus, for every $v \in E_{T, \Sigma}$ and for every $w \in E_{T, \Theta}$,

$$
\begin{gathered}
\langle v, w\rangle=\langle(f(T)+g(T)) v, w\rangle=\langle f(T) v, w\rangle+\langle g(T) v, w\rangle= \\
\langle f(T) v, w\rangle+\langle v, g(T) w\rangle=\langle 0, w\rangle+\langle v, 0\rangle=0 .
\end{gathered}
$$

For every $v \in V$, denote by $\operatorname{subs}_{T, v}$ the following \mathbb{C}-linear map,

$$
\operatorname{subs}_{T, v}: C^{0}(\operatorname{spec}(T), \mathbb{C}) \rightarrow V, \quad f(z) \mapsto f(T) v
$$

The linear functional,

$$
\int_{\operatorname{spec}(T)}(-) d \pi_{T, v}: C^{0}(\operatorname{spec}(T), \mathbb{C}) \rightarrow \mathbb{C}, \quad f(z) \mapsto\left\langle\operatorname{subs}_{T, v}(f), v\right\rangle=\langle f(T) v, v\rangle
$$

defines a positive Borel measure $d \pi_{T, v}$ on $\operatorname{spec}(T)$ that is even a Radon measure. Denote by $L^{2}\left(\operatorname{spec}(T), d \pi_{T, v}\right)$ the corresponding Lebesgue space of square-integrable functions on $\operatorname{spec}(T)$ with respect to $d \pi_{T, v}$.

Theorem 0.3 (Spectral Theorem for Self-Adjoint Operators). For every nonzero complex Hilbert space (V, β), for every bounded, self-adjoint operator T on (V, β), for every $v \in V$, the \mathbb{C}-linear map subs $s_{T, v}$ extends to an isometric embedding of Hilbert spaces,

$$
\operatorname{subs}_{T, v}: L^{2}\left(\operatorname{spec}(T), d \pi_{T, v}\right) \rightarrow V,
$$

whose image is the smallest closed, T-stable subspace of V containing v.
Theorem 0.4 (Spectral Theorem for Self-Adjoint Compact Operators). Further, T is compact if and only if $\operatorname{spec}(T) \backslash\{0\}$ contains no accumulation points, if the eigenspace of each $\lambda \in \operatorname{spec}(T) \backslash\{0\}$ has finite dimension, and, together with $\operatorname{Ker}(T)$, these eigenspaces span a dense subspace of V.
Corollary 0.5. A bounded, self-adjoint operator on a nonzero complex Hilbert space is a scalar multiple of the identity if and only if the spectrum is a singleton set.

Proof. If T equals $\lambda \operatorname{Id}_{V}$ for a real number λ, then $\operatorname{spec}(T)$ equals $\{\lambda\}$. Conversely, assume that $\operatorname{spec}(T)$ equals $\{\lambda\}$. For every nonzero vector $v \in V$, since $\lambda-z$ restricts to zero on $\operatorname{spec}(T)=\{\lambda\}$, the restriction of this polynomial in $L^{2}\left(\operatorname{spec}(T), d \pi_{T, v}\right)$ is zero. Thus, $\lambda \operatorname{Id}_{V}-T$ acts as the zero operator on v, i.e., $T(v)=\lambda v$. Since this holds for every $v \in V$, the operator T equals $\lambda \operatorname{Id}_{V}$.

Problem 1. (Schur's Lemma, Part 1.) For a Lie group G, a unitary representation in a complex Hilbert space (V, β) is a continuous group homomorphism to the group of unitary (i.e., norm-preserving) \mathbb{C}-linear automorphisms of (V, β) with its norm topology,

$$
\rho: G \rightarrow U(V, \beta) .
$$

This representation is irreducible if the only closed, $\rho(G)$-invariant subspaces of V are V and $\{0\}$.
(a) For unitary G-representations (V, β, ρ) and (W, γ, σ), for every bounded morphism of G-representations,

$$
S: V \rightarrow W, \quad S \circ \rho_{g}=\sigma_{g} \circ S, \forall g \in G
$$

prove that also the adjoint S^{*} is a bounded morphism of G-representations.
(b) Also prove that the kernel of S and the kernel of S^{*} are closed subrepresentations. Similarly, the orthogonal complements of $\operatorname{Ker}\left(S^{*}\right)$ and $\operatorname{Ker}(S)$ are closed subrepresentations. These orthogonal complements equal the closures of the images of S and S^{*}.
(c) Check that $T:=S^{*} \circ S$ is a bounded, self-adjoint operator on (V, β) that is a morphism of G-representations.
(d) Now assume that (V, β, ρ) and (W, γ, σ) are both irreducible unitary representations. If T is surjective, conclude that S^{*} is an isomorphism, and thus also the
adjoint $S=\left(S^{*}\right)^{*}$ is an isomorphism. Thus, to prove Schur's Lemma for unitary representations, it suffices to prove that every bounded, self-adjoint morphism from an irreducible unitary representation (V, ρ) to itself equals a multiple of the identity operator.

Problem 2. (Schur's Lemma, Part 2.) Let (V, β, ρ) be an irreducible unitary G-representation. Let T be a bounded, self-adjoint operator of (V, β) that is a morphism of G-representations.
(a) Prove that every element of $\operatorname{subs}_{T}\left(C^{0}(\operatorname{spec}(T), \mathbb{C})\right)$ is a bounded operator on (V, β) that is a self-morphism of unitary G-representations.
(b) For a nonzero vector $v \in V$, assume by way of contradiction that the measure space $\left(\operatorname{spec}(T), d \pi_{T, v}\right)$ is not a singular measure supported at a single point. Use Urysohn's Lemma to find continuous functions $f(z), g(z) \in C^{0}(\operatorname{spec}(T), \mathbb{C})$ with $f(z) \cdot g(z)=0$ and with images in $L^{2}\left(\operatorname{spec}(T), d \pi_{T, v}\right)$ that are each nonzero. Since $f(T) \circ g(T)$ and $g(T) \circ f(T)$ equal 0 , conclude that at least one of $f(T)$ or $g(T)$ has nonzero kernel, say $f(T)$. On the other hand, since $f(T) v$ is nonzero by the spectral theorem, conclude a contradiction. Altogether, conclude that for every nonzero vector $v \in V$, the measure space $\left(\operatorname{spec}(T), d \pi_{T, v}\right)$ is a singular metric supported at a single point λ_{v}. Repeat the proof of the corollary to conclude that $T(v)$ equals $\lambda_{v} \cdot v$.
(c) For a \mathbb{C}-linear operator on a \mathbb{C}-vector space V, if every vector is an eigenvector for some eigenvalue, conclude that the operator is a scalar multiple of the identity. Thus, for T as above, conclude that there exists $\lambda \in \mathbb{R}$ with $T=\lambda \operatorname{Id}_{V}$.
Problem 3. (Eigenspaces of convolution operators.) Assume now that G is a compact (real) Lie group with normalized Haar measure $d \mathrm{vol}_{G}$. For every $g \in G$, define

$$
\begin{aligned}
& \lambda_{g}: L^{2}\left(G, d \operatorname{vol}_{G}\right) \rightarrow L^{2}\left(G, d \mathrm{vol}_{G}\right), \quad\left(\lambda_{g} u\right)(h):=u\left(g^{-1} h\right), \\
& \rho_{g}: L^{2}\left(G, d \operatorname{vol}_{G}\right) \rightarrow L^{2}\left(G, d \mathrm{vol}_{G}\right), \quad\left(\lambda_{g} u\right)(h):=u\left(h g^{-1}\right),
\end{aligned}
$$

For all continuous functions $u, v \in C^{0}(G, \mathbb{C})$, define the convolution function $u * v$ on G by

$$
u * v(h)=\int_{g \in G} u(g)\left(\lambda_{g} v\right)(h) d \operatorname{vol}_{G}(g)=\int_{g \in G}\left(\rho_{g} u\right)(h) v(g) d \operatorname{vol}_{G}(g) .
$$

(a) Prove that λ_{g} and ρ_{g} are isometries. Prove that these define left, resp. right, unitary representations $\lambda: G \rightarrow U\left(L^{2}\left(G, d \mathrm{vol}_{G}\right)\right)$ and $\rho: G^{\mathrm{opp}} \rightarrow U\left(L^{2}\left(G, d \mathrm{vol}_{G}\right)\right)$. Prove that these commute with one another, $\lambda_{g}\left(\rho_{h} u\right)=\rho_{h}\left(\lambda_{g} u\right)$.
(b) Prove that the L^{∞} norm of $u * v$ is bounded above by $\|u\|_{2} \cdot\|v\|_{2}$. (Hint. Use that the group inversion preserves the Haar measure. Thus the L^{2}-norm of $g \mapsto \lambda_{g} v(h)$ equals the L^{2}-norm of v.)
(c) Since G is a finite measure space, L^{∞} is a subspace of L^{2}. Conclude that convolution extends to a continuous \mathbb{C}-bilinear operation,
$*: L^{2}\left(G, d \mathrm{vol}_{G}\right) \times L^{2}\left(G, d \mathrm{vol}_{G}\right) \rightarrow L^{2}\left(G, d \mathrm{vol}_{G}\right),\|u * v\|_{2} \leq\|u * v\|_{\infty} \leq\|u\|_{2} \cdot\|v\|_{2}$.
In particular, for every $w \in L^{2}\left(G, d \mathrm{vol}_{G}\right)$, deduce that the following operators are bounded operators,

$$
\lambda_{w}: L^{2}\left(G, d \mathrm{vol}_{G}\right) \rightarrow \underset{4}{L^{2}\left(G, d \operatorname{vol}_{G}\right), \quad v \mapsto w * v,}
$$

$$
\rho_{w}: L^{2}\left(G, d \operatorname{vol}_{G}\right) \rightarrow L^{2}\left(G, d \operatorname{vol}_{G}\right), \quad u \mapsto u * w
$$

For the "heuristic" Dirac delta function δ_{g} of $g \in G$, this gives identities,

$$
\lambda_{g}(v)=\lambda_{\delta_{g}}(v), \quad \rho_{g}(u)=\rho_{\delta_{g}}(u)
$$

(d) For every $u, v, w \in L^{2}\left(G, d \operatorname{vol}_{G}\right)$ and every $g \in G$, check the following identities,

$$
\begin{aligned}
u * 1_{G}= & 1_{G} * u=\left(\int_{g \in G} u(g) d \operatorname{vol}_{G}(g)\right) 1_{G}, \\
& (u * v) * w=u *(v * w) \\
\lambda_{g}(v * w)= & \left(\lambda_{g}(v)\right) * w, \quad \rho_{g}(u * v)=u *\left(\rho_{g}(v)\right), \\
\lambda_{u}(v * w)= & \left(\lambda_{u}(v)\right) * w, \quad \rho_{w}(u * v)=u *\left(\rho_{w}(v)\right) .
\end{aligned}
$$

(e) For every $w \in L^{2}\left(G, d \operatorname{vol}_{G}\right)$, define $\widetilde{w} \in L^{2}\left(G, d \operatorname{vol}_{G}\right)$ by

$$
\widetilde{w}(g)=\overline{w\left(g^{-1}\right)}
$$

so that

$$
u * \widetilde{w}(h)=\left\langle u, \lambda_{h} w\right\rangle_{G} .
$$

Prove that the adjoint of λ_{w} equals $\lambda_{\widetilde{w}}$, and prove that the adjoint of ρ_{w} equals $\rho_{\widetilde{w}}$. In particular, conclude that λ_{w}, resp. ρ_{w}, is self-adjoint if and only if \widetilde{w} equals w, e.g., ρ_{χ} is self-adjoint for the (trace) character χ of every finite-dimensional \mathbb{C}-linear representation of G.
(f) Read about Hilbert-Schmidt operators. Conclude that λ_{w} and ρ_{w} are HilbertSchmidt operator, thus they are compact. When \widetilde{w} equals w, conclude that these are compact self-adjoint operators. Since $\lambda_{u}\left(\rho_{w}(v)\right)$ equals $\rho_{w}\left(\lambda_{u}(v)\right)$, conclude that the eigenspaces of ρ_{w}, resp. of λ_{w}, are left G-subrepresentations of $L^{2}\left(G, d \mathrm{vol}_{G}\right)$, resp. right G-subrepresentations of $L^{2}\left(G, d \mathrm{vol}_{G}\right)$. Since the eigenspaces of a compact operator for nonzero eigenvalues have finite dimension, conclude that these eigenspaces for ρ_{w}, resp. for λ_{w}, are direct sums of finitely many irreducible left, resp. right, G-subrepresentations that have finite dimension.
(g) A sequence $\left(w_{n}\right)_{n \geq 0}$ of continuous, nonnegative real-valued functions on G is a balanced Dirac sequence if each $\widetilde{w_{n}}$ equals w_{n}, if each $\int_{g} w_{n}(g) d \operatorname{vol}_{G}(g)$ equals 1 , and if for every $\epsilon>0$ and every open neighborhood of $e \in G$, for all $n \gg 0$, we have $\left|w_{n}(g)\right|<\epsilon$ for all g outside the open neighborhood. Prove that there exists a balanced Dirac sequence.
(h) For every $v \in C^{0}(G, \mathbb{C})$, prove that $\rho_{w_{n}}(v)$ converges uniformly to v on G, and thus converges to v in $L^{2}\left(G, d \mathrm{vol}_{G}\right)$. For every $u \in L^{2}\left(G, d \mathrm{vol}_{G}\right)$, use selfadjointness of $\rho_{w_{n}}$ to prove that

$$
\lim _{n \rightarrow \infty}\left\langle\rho_{w_{n}}(u), v\right\rangle_{L^{2}}=\langle u, v\rangle
$$

Since the continuous functions are dense in $L^{2}\left(G, d \mathrm{vol}_{G}\right)$, prove that this holds for every $v \in L^{2}\left(G, d \operatorname{vol}_{G}\right)$, i.e., $\rho_{w_{n}}(u)$ converges weakly to u. In particular, if $\rho_{w_{n}}(u)$ equals 0 for all $n \gg 0$, conclude that also u equals 0 .
(i) Conclude that for every nonzero $u \in L^{2}\left(G, d \operatorname{vol}_{G}\right)$, for all $n \gg 0$, the element u is not in $\operatorname{Ker}\left(\rho_{w_{n}}\right)$. Thus, u has nonzero orthogonal projection to at least one of the eigenspaces of $\rho_{w_{n}}$ with nonzero eigenvalue. Since this is a direct sum of finitely many irreducible (left) G-subrepresentations, conclude that u has nonzero projection to at least one irreducible (left) G-subrepresentation of finite dimension.

Thus, the sum in $L^{2}\left(G, d \mathrm{vol}_{G}\right)$ of all irreducible (left) G-subrepresentations of finite dimension is dense in $L^{2}\left(G, d \mathrm{vol}_{G}\right)$. This completes the proof of surjectivity in the Peter-Weyl Theorem.

Problem 4. (Irreducible unitary representations of compact groups have finite dimension.) Let G be a compact (real) Lie group. Let (V, β) be a nonzero complex Hilbert space, and let $\rho: G \rightarrow U(V, \beta)$ be a unitary representation that is irreducible. For any nonzero vector $v \in V$, and for the orthogonal projection to the span of v,

$$
\operatorname{proj}_{v}: V \rightarrow \operatorname{span}(v) \subseteq V,
$$

consider the \mathbb{C}-linear operator on V,

$$
T=\int_{g \in G} \rho_{g} \circ \operatorname{proj}_{v} \circ \rho_{g}^{-1} d \operatorname{vol}_{G}(g)
$$

(a) Prove that T is a bounded linear operator that is a morphism of G-representations. By Schur's Lemma, conclude that T equals $\lambda \operatorname{Id}_{V}$ for some real number λ.
(b) Compute that

$$
\begin{gathered}
\langle T(v), v\rangle=\int_{g \in G}\left\langle\operatorname{proj}_{v} \circ \rho_{g}^{-1}(v), \rho_{g}^{-1}(v)\right\rangle d \operatorname{vol}_{G}(g)= \\
\int_{g \in G}\left\langle\operatorname{proj}_{v} \circ \rho_{g}^{-1}(v), \operatorname{proj}_{v} \circ \rho_{g}^{-1}(v)\right\rangle d \operatorname{vol}_{G}(t) .
\end{gathered}
$$

Prove that the function $g \mapsto\left\langle\operatorname{proj}_{v} \circ \rho_{g}^{-1}(v), \operatorname{proj}_{v} \circ \rho_{g}^{-1}(f)\right\rangle$ is continuous and nonzero at $g=e$. Conclude that the integral is a positive real number, and thus also λ is positive.
(c) Since T is defined as a limit of Riemann sums, prove that T is in the closure of the finite-rank operators, i.e., T is a compact operator. Thus the identity operator on V is a compact operator. Conclude that V has finite dimension. Thus, every irreducible (left) unitary G-representation has finite dimension, and hence occurs in the Peter-Weyl Theorem.
Problem 5. (Compact Lie groups have faithful representations of finite dimension.) Let G be a compact (real) Lie group. Let $W \subset L^{2}\left(G, d \mathrm{vol}_{G}\right)$ be a finite dimensional subspace containing a system of coordinate functions of G relative to an embedding of G as a submanifold of the real manifold \mathbb{C}^{n}. Use the previous problems to prove that there exists a unitary representation (V, β, ρ) that is a finite direct sum of irreducible unitary representations such that W is contained in the image of $V^{\vee} \otimes_{\mathbb{C}} V$. Since the span of the matrix entries of ρ contain coordinate functions, conclude that ρ is injective. Thus, every compact (real) Lie group has a faithful (unitary) representation of finite dimension.

