MAT 552 PROBLEM SET 4

Problem 0. For the complex Lie group $\mathbf{G} \mathbf{L}_{n}(\mathbb{C})$, and for the closed complex Lie subgroups $\mathbf{S L}_{n}(\mathbb{C}), B_{n}$ and U_{n} from Problem 5 on Problem Set 1, compute the derived series and the lower central series of each associated Lie algebra.

Problem 1. There is a close relation between Lie algebras over a field \mathbf{F} and associative \mathbf{F}-algebras. Recall that for the field \mathbf{F} equal to \mathbb{R} or \mathbb{C}, an associative \mathbf{F}-algebra is a pair (A, \cdot) of an \mathbf{F}-vector space A and a \mathbf{F}-bilinear map,

$$
\cdot: A \times A \rightarrow A, \quad(a, b) \mapsto a \cdot b
$$

that is associative: for every $a, b, c \in A$, the following equality holds,

$$
a \cdot(b \cdot c)=(a \cdot b) \cdot c
$$

The operation $(a, b) \mapsto a \cdot b$ is called the multiplication operation. We do not assume that there exists a multiplicative identity; when a multiplicative identity exists, the algebra is called unital. Also, we do not assume that multiplication is commutative; when mutiplication is commutative, the algebra is called a commutative algebra (some authors use this term only when multiplication is commutative and there exists a multiplicative identity).
Recall that the Lie bracket operation on A associated to \cdot is defined to be the commutator,

$$
[\bullet, \bullet]_{A}: A \times A \rightarrow A, \quad(a, b) \mapsto a \cdot b-b \cdot a
$$

(a) Please quickly check that the Lie bracket operation is \mathbf{F}-bilinear, that it is skewsymmetric, and that the Jacobi identity holds. Thus, the Lie bracket operation defines a Lie algebra structure. This is called the associated Lie algebra of (A, \cdot).
(b) Recall that for every \mathbf{F}-Lie algebra $\left(\mathfrak{g},[\bullet, \bullet]_{\mathfrak{g}}\right)$, the center of the Lie algebra is defined to be

$$
\mathfrak{z}(\mathfrak{g}):=\left\{Y \in \mathfrak{g} \mid \forall X \in \mathfrak{g},[X, Y]_{\mathfrak{g}}=0\right\} .
$$

Recall that the center of an associative algebra (A, \cdot) is defined to be

$$
Z(A):=\{b \in A \mid \forall a \in A, a b=b a\} .
$$

For every associative \mathbf{F}-algebra (A, \cdot), check that the center of the associative algebra equals the center of the associated Lie algebra.
(c) Check that the center of the (associative) matrix algebra $\operatorname{Mat}_{n \times n}(\mathbf{F})$ equals the \mathbf{F}-span of the identity matrix. In particular, it is 1-dimensional as an \mathfrak{F}-vector space.
(d) For all \mathbf{F}-associative algebras (A, \cdot) and (B, \cdot), for every \mathbf{F}-algebra morphism,

$$
\phi: B \rightarrow A, \quad \forall b, b^{\prime} \in B, \quad \phi\left(b \cdot b^{\prime}\right)=\phi(b) \cdot \phi\left(b^{\prime}\right),
$$

check that also ϕ is also a morphism of \mathbf{F}-Lie algebra. Also, the \mathbf{F}-Lie algebra morphism associated to an identity \mathbf{F}-associative algebra morphism equals the identity morphism of the associated F-Lie algebra morphism. Finally, the F-Lie algebra
morphism of a composition of \mathbf{F}-associative algebra morphisms equals the composition of the associated \mathbf{F}-Lie algebra morphisms.
Altogether, this defines a covariant functor from the category of \mathbf{F}-associative algebras to the category of \mathbf{F}-Lie algebras. This functor sends products of \mathbf{F}-associative algebras to products of the associated F-Lie algebras (more generally, the functor preserves all categorical limits).
(e) In particular, conclude that for every \mathbf{F}-associative subalgebra B of (A, \cdot), also B is an \mathbf{F}-Lie subalgebra of the associated \mathbf{F}-Lie subalgebra $\left(A,[\bullet, \bullet]_{A}\right)$. Since every 1-dimensional \mathbf{F}-subspace of every \mathbf{F}-Lie algebra is an \mathbf{F}-Lie subalgebra, prove that there exists an \mathbf{F}-associative algebra (A, \cdot) and a \mathbf{F}-Lie subalgebra of $\left(A,[\bullet, \bullet]_{A}\right)$ that is not an \mathbf{F}-associative subalgebra of (A, \cdot).
(f) For an associative \mathbf{F}-algebra (A, \cdot) an \mathbf{F}-subspace I is a left ideal, resp. right ideal, two-sided ideal, if for every $b \in I$ and for every $a \in A$, also $a \cdot b$ is in I, resp. also $b \cdot a$ is in I, also $a \cdot b$ and $b \cdot a$ are in I. Check that every two-sided ideal I is also a \mathbf{F}-Lie ideal in the associated \mathbf{F}-Lie algebra $\left(A,[\bullet \bullet \bullet]_{A}\right)$. In particular, the kernel of every \mathbf{F}-algebra homomorphism between \mathbf{F}-associative algebras is a \mathbf{F}-Lie ideal. On the other hand, since the center of $\operatorname{Mat}_{n \times n}(\mathbf{F})$ is not a two-sided ideal for $n \geq 2$, conclude that there exists an \mathbf{F}-associative algebra (A, \cdot) such that the F-Lie ideal $\mathfrak{z}(A)$ in the associated Lie algebra $\left(A,[\bullet \bullet \bullet]_{A}\right)$ is not a two-sided ideal in (A, \cdot).

Problem 2. Part of this problem is covered in Dummit and Foote. Please only do those parts of this problem that are new to you.
For a group Γ, the \mathbf{F}-group algebra is defined to be the free \mathbf{F}-vector space $\mathbf{F}[\Gamma]$ with free basis $\left(\mathbf{b}_{\gamma}\right)_{\gamma \in \Gamma}$. For every element a of $\mathbf{F}[\Gamma]$, the support of $a, \operatorname{supp}(a)$, is defined to be the finite subset of Γ of all elements γ such that the coefficient of \mathbf{b}_{γ} in a is nonzero.

The multiplication operation on $\mathbf{F}[\Gamma]$ is defined to be the unique \mathbf{F}-bilinear map that acts as follows on basis elements,

$$
*: \mathbf{F}[\Gamma] \times \mathbf{F}[\Gamma] \rightarrow \mathbf{F}[\Gamma], \quad\left(b_{\gamma}, b_{\delta}\right) \mapsto b_{\gamma} \cdot \delta .
$$

(a) Check that the multiplication operation is associative, and thus $(\mathbf{F}[\Gamma], *)$ is an \mathbf{F}-associative algebra. Moreover, for the identity element e of the group Γ, check that \mathbf{b}_{e} is a multiplicative identity in $\mathbf{F}[\Gamma]$.
(b) Check that the center of $\mathbf{F}[\Gamma]$ is the \mathbf{F}-vector subspace $\operatorname{Class}(\Gamma, \mathbf{F})$ of all elements a whose support is a union of conjugacy classes in Γ and such that for every $\delta \in \operatorname{supp}(a)$, for every $\gamma \in \Gamma$, the coefficients of \mathbf{b}_{δ} and $\mathbf{b}_{\gamma \cdot \delta \cdot \gamma^{-1}}$ are equal. Said differently, the coefficients of a define a function from Γ to \mathbf{F} whose support is finite and that is constant on every conjugacy class. In particular, the F-dimension of the center equals the number of finite conjugacy classes in Γ. (If Γ is a finite group, this equals the number of all conjugacy classes in Γ, e.g., the partition number of n if Γ equals the symmetric group on n letters.)
(c) Prove that for every $\gamma \in \Gamma$, the element \mathbf{b}_{γ} is a (left-right) multiplicatively invertible element of $\mathbf{F}[\Gamma]$, i.e., an element of the multiplicative group $\mathbf{F}[\Gamma]^{\star}$ of (left-right) multiplicatively invertible elements. Check that the induced set map,

$$
\mathbf{b}^{\Gamma}: \Gamma \rightarrow \underset{2}{\mathbf{F}[\Gamma]^{\times}}, \quad \gamma \mapsto \mathbf{b}_{\gamma},
$$

is a morphism of groups.
(d) Conversely, for every \mathbf{F}-associative algebra (A, \cdot), for every morphism of groups to the multiplicative group A^{\times}of (A, \cdot),

$$
\rho: \Gamma \rightarrow A^{\times},
$$

prove that there is a unique morphism of \mathbf{F}-associative unital algebras,

$$
\tilde{\rho}:(\mathbf{F}[\Gamma], *) \rightarrow(A, \cdot),
$$

such that $\widetilde{\rho} \circ \mathbf{b}^{\Gamma}$ equals ρ.
(e) Now give Γ the discrete topology, and consider this discrete topological space as a Lie group in which every connected component is a singleton set, i.e., a connected, 0 -dimensional manifold. For every finite dimensional \mathbf{F}-vector space V and every representation,

$$
\rho: \Gamma \rightarrow \mathbf{G L}(V, \mathbf{F}),
$$

conclude that there exists a unique morphism of \mathbf{F}-associative unital algebras,

$$
\tilde{\rho}:(\mathbf{F}[\Gamma], *) \rightarrow(\operatorname{Mat}(V, \mathbf{F}), \cdot \cdot),
$$

such that $\widetilde{\rho}$ o \mathbf{b}^{Γ} equals ρ. Conclude that finite dimensional \mathbf{F}-linear Γ-representations are equivalent to left $\mathbf{F}[\Gamma]$-modules having finite dimension as an \mathbf{F}-vector space.
(f) For every morphism of groups,

$$
\psi: \Gamma \rightarrow \Delta,
$$

prove that there exists a unique morphism of \mathbf{F}-associative unital algebras,

$$
\mathbf{F}[\psi]: \mathbf{F}[\Gamma] \rightarrow \mathbf{F}[\Delta],
$$

such that $\mathbf{F}[\psi] \circ \mathbf{b}^{\Gamma}$ equals $\mathbf{b}^{\Delta} \circ \psi$. Thus, the rule $\psi \mapsto \mathbf{F}[\psi]$ sends compositions to compositions and identity morphisms to identity morphisms. Also, the composition of $\mathbf{F}[\psi]$ with each \mathbf{F}-linear representation,

$$
\sigma: \Delta \rightarrow \mathbf{G L}(V, \mathbf{F}),
$$

is a \mathbf{F}-linear representation of Γ,

$$
\sigma \circ \psi: \Gamma \rightarrow \mathbf{G L}(V, \mathbf{F}),
$$

sometimes called the restriction representation (typically only when ψ is injective).
Altogether, this defines a covariant functor from the category of groups to the category of \mathbf{F}-associative unital algebras sending every group Γ to the \mathbf{F}-associative unital algebra $\mathbf{F}[\Gamma]$ and sending every morphism of groups ψ to the morphism of \mathbf{F}-associative unital algebras $\mathbf{F}[\psi]$.
Later in the course, as a consequence of Schur's Lemma, Maschke's Theorem, and Wedderburn's Theorem, we will prove that for every finite group Γ, the \mathbb{C} associative unital algebra $\mathbb{C}[\Gamma]$ is isomorphic to a product of matrix algebras,

$$
\mathbb{C}[\Gamma] \cong \operatorname{Mat}_{n_{1} \times n_{1}}(\mathbb{C}) \times \cdots \times \operatorname{Mat}_{n_{r} \times n_{r}}(\mathbb{C}) .
$$

From the above, the integer r equals the number of conjugacy classes in Γ. Also, for every $i=1, \ldots, r$, the unique nonzero, simple, left $\operatorname{Mat}_{n_{1} \times n_{1}}(\mathbb{C})$-module of \mathbb{C}-vector space dimension n_{i} is an irreducible \mathbb{C}-linear Γ-representation V_{i} of \mathbb{C}-vector space dimension n_{i}, the irreducible \mathbb{C}-linear Γ-representations V_{1}, \ldots, V_{r} are pairwise nonisomorphic, and every irreducible \mathbb{C}-linear Γ-representation is isomorphic to one of
these. In particular, the \mathbb{C}-vector space dimension $\# \Gamma$ of $\mathbb{C}[\Gamma]$ equals the sum $n_{1}^{2}+$ $\cdots+n_{r}^{2}$ of the squares of the dimensions of the irreducible representations. Together with the Frobenius orthogonality relations, this greatly simplifies the problem of classifying the finitely many irreducible \mathbb{C}-linear Γ-representations.

Problem 3. For every pair of \mathbb{R}-Lie groups, resp. \mathbb{C}-Lie groups,

$$
(G, e, m: G \times G \rightarrow G), \quad(H, \epsilon, \mu: H \times H \rightarrow H)
$$

the product Lie group is defined to be the product manifold $G \times H$ with the product binary operation,

$$
m \times \mu:(G \times H) \times(G \times H) \rightarrow G \times H, \quad\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right) \mapsto\left(m\left(g, g^{\prime}\right), \mu\left(h, h^{\prime}\right)\right) .
$$

(a) Check that this binary operation is a morphism of Lie groups.
(b) check that this is the unique structure of Lie group on the product manifold $G \times H$ such that both of the following projections are morphisms of Lie groups,

$$
\begin{array}{ll}
\operatorname{pr}_{1}: G \times H \rightarrow G, & (g, h) \mapsto g, \\
\operatorname{pr}_{2}: G \times H \rightarrow H, & (g, h) \mapsto h .
\end{array}
$$

Also check that this is the unique structure of Lie group on the product manifold $G \times H$ such that both of the following maps are morphisms of Lie groups whose images commute through each other,

$$
\begin{gathered}
q_{1}: G \rightarrow G \times H, \quad g \mapsto(g, \epsilon), \\
q_{2}: H \rightarrow G \times H, \quad h \mapsto(e, h), \\
\forall g \in G, \forall h \in H, \quad q_{1}(g) q_{2}(h)=q_{2}(h) q_{1}(g) .
\end{gathered}
$$

(c) Check the pair of morphisms of Lie groups ($\mathrm{pr}_{1}: G \times H \rightarrow G, \mathrm{pr}_{2}: G \times H \rightarrow H$) is final among all pairs of morphisms of Lie groups to G and H. Precisely, for every Lie group K and for every pair of morphisms of Lie groups $\left(p_{1}: K \rightarrow G, p_{2}: K \rightarrow\right.$ $H)$, prove that there exists a unique morphism of Lie groups,

$$
p: K \rightarrow G \times H,
$$

such that p_{i} equals $\mathrm{pr}_{i} \circ p$ for $i=1$ and $i=2$. Thus, this structure of Lie group on $G \times H$ forms a categorical product in the category of Lie groups.
(d) Similarly, check that the pair of morphisms of Lie groups ($q_{1}: G \rightarrow G \times H, q_{2}$: $H \rightarrow G \times H$) is initial among all pairs of morphisms from G and H to a Lie group whose images commute through each other. Precisely, for every Lie group L and for every pair of morphisms of Lie groups $\left(r_{1}: G \rightarrow L, r_{2}: H \rightarrow L\right)$ such that

$$
\forall g \in G, \forall h \in H, \quad r_{1}(g) r_{2}(h)=r_{2}(h) r_{1}(g),
$$

prove that there exists a unique morphism of Lie groups,

$$
r: G \times H \rightarrow L
$$

such that r_{i} equals $r \circ q_{i}$ for $i=1$ and $i=2$.
(e) In particular, for \mathbf{F} equal to \mathbb{R}, resp. to \mathbb{C}, when L is $\mathbf{G L}(V, \mathbf{F})$ for a finite dimensional \mathbf{F}-vector space, conclude that a \mathbf{F}-linear representation of the product Lie group $G \times H$ is equivalent to a pair (σ, ρ) of \mathbf{F}-linear representations,

$$
\begin{gathered}
\sigma: G \rightarrow \mathbf{G L}(V, \mathbf{F}), \\
\rho: H \rightarrow \mathbf{G} \mathbf{~}(V, \mathbf{F}),
\end{gathered}
$$

such that

$$
\forall g \in G, \forall h \in H, \quad \sigma(g) \cdot \rho(h)=\rho(h) \cdot \sigma(g) .
$$

In particular, the morphism σ factors through the closed Lie subgroup,

$$
\operatorname{Isom}_{\operatorname{Rep}_{H}^{\mathrm{F}}}((V, \rho),(V, \rho)) \subset \mathbf{G L}(V, \mathbf{F}),
$$

and similarly ρ factors through the closed Lie subgroup,

$$
\operatorname{Isom}_{\operatorname{Rep} \mathrm{P}_{G}^{\mathrm{F}}}((V, \sigma),(V, \sigma)) \subset \mathbf{G L}(V, \mathbf{F}) .
$$

(f) Use Schur's Lemma to prove that the irreducible \mathbf{F}-linear representations of $G \times H$ are precisely the representations of the form $\left(U \otimes_{\mathbf{F}} W,\left(\sigma^{\prime} \otimes \operatorname{Id}_{W}\right),\left(\mathrm{Id}_{U} \otimes \rho^{\prime}\right)\right.$ for irreducible \mathbf{F}-linear representations,

$$
\begin{aligned}
\sigma^{\prime}: G & \rightarrow \mathbf{G L}(U, \mathbf{F}), \\
\rho^{\prime}: H & \rightarrow \mathbf{G L}(W, \mathbf{F}) .
\end{aligned}
$$

(g) In particular, let (V, σ) and (V, ρ) be representations that are completely reducible. Denote the isotypic components by

$$
(V, \sigma)=\bigoplus_{i \in I}\left(V_{i}, \sigma_{i}\right), \quad(V, \rho)=\bigoplus_{j \in J}\left(V_{j}, \rho_{j}\right),
$$

where I, resp. J, denotes the set of isomorphism classes of irreducible \mathbf{F}-linear H-representations U_{i}, resp. irreducible \mathbf{F}-linear G-representations W_{j}, that appear as subrepresentations of (V, σ), resp. of (V, ρ). Prove that each V_{i} is preserved by ρ, and prove that each V_{j} is preserved by σ. Since every subrepresentation of a completely reducible representation is also completely reducible, conclude that there is a simultaneous decomposition,

$$
V=\bigoplus_{(i, j) \in I \times J} V_{i, j},
$$

where $V_{i, j}$ is simultaneously a direct sum of irreducible G-representations of type i and a direct sum of irreducible H-representations of type j. Finally, use Schur's Lemma to conclude that $V_{i, j}$ is a direct sum of copies of the irreducible \mathbf{F}-linear $G \times$-representation $U_{i} \otimes_{\mathbf{F}} W_{j}$.
Problem 4 Repeat the previous exercise for Lie algebras in place of Lie groups.
Problem 5 Recall from lecture that the adjoint representation,

$$
\mathrm{Ad}: \mathrm{SL}_{2} \rightarrow \mathfrak{g l}\left(\mathfrak{s l}_{2}\right) \cong \mathfrak{g l}_{3}
$$

factors through the orthogonal subgroup of $\mathfrak{g l}\left(\mathfrak{s l}_{2}\right)$ associated to the quadratic form $q=-\left.\operatorname{det}_{2}\right|_{\mathfrak{s}_{2}}$, and this factorization contains the center of $\mathbf{S L}_{2}$ in its kernel. Thus, there is an induced morphism of split Lie groups,

$$
\phi: \mathbf{P G L}_{2} \rightarrow \mathbf{S O}\left(\mathfrak{s l}_{2}, q\right),
$$

and this is an isomorphism of Lie groups. Thus, there is an induced isomorphism of the simply connected forms. In this sense, " B_{1} equals A_{1} ".
(a) Use this to prove that the \mathbf{F}-linear representations of $\mathbf{S O}\left(\mathfrak{s l}_{2}, q\right)$ are precisely the representations of $\mathbf{S L}_{2}$ on which the center acts trivially. Check that for the standard 2-dimensional \mathbf{F}-representation V of $\mathbf{S L}_{2}$, the symmetric product representation $\operatorname{Sym}_{\mathbf{F}}^{d}(V)$ is trivial on the center of $\mathbf{S L}_{2}$ if and only if the nonnegative integer d is even.
(b) Find a "compact form" of this isomorphism, i.e., prove that there exists a positive definite inner product B on the Lie algebra $\mathfrak{s u}(2, \mathbb{R})$ of the compact Lie group $\mathbf{S U}(2, \mathbb{R})$ (this is just the Killing form) such that the adjoint representation preserves B and such that the induced morphism of Lie groups,

$$
\mathbf{S U}(2, \mathbb{R}) \rightarrow \mathbf{S O}(\mathfrak{s u}(2, \mathbb{R}), B)
$$

is surjective with kernel equal to the center Z.
(c) With respect to the isomorphism of $\mathbf{S U}(2, \mathbb{R}) / Z$ and the compact Lie group $\mathbf{S O}(\mathfrak{s u}(2, \mathbb{R}), B)$ from (b), repeat part (a) characterizing those representations of $\mathbf{S U}(2, \mathbb{R})$ that factor through representations of $\mathbf{S O}(\mathfrak{s u}(2, \mathbb{R}), q)$.
Problem 6. On the 4 -dimensional vector space $\mathrm{Mat}_{2 \times 2}$, the quadratic - det_{2} comes from a nondegenerate, symmetric, bilinear pairing that is indefinite. The associated orthogonal group $\mathbf{S O}\left(\right.$ Mat $_{2 \times 2},-$ det $\left._{2}\right)$ is a split special orthogonal group.
(a) For each $(g, h) \in \mathbf{S L}_{2} \times \mathbf{S L}_{2}$, prove that the following \mathbf{F}-linear map of $\mathrm{Mat}_{2 \times 2}$ is an isometry with respect to $-\operatorname{det}_{2}$,

$$
\rho(g, h): \operatorname{Mat}_{2 \times 2} \rightarrow \operatorname{Mat}_{2 \times 2}, \quad X \mapsto g X h^{-1} .
$$

Also check that $\rho\left(g g^{\prime}, h h^{\prime}\right)$ equals $\rho(g, h) \circ \rho\left(g^{\prime}, h^{\prime}\right)$. Conclude that ρ is a morphism of Lie groups,

$$
\rho: \mathbf{S L}_{2} \times \mathbf{S L}_{2} \rightarrow \mathbf{S O}\left(\text { Mat }_{2 \times 2},-\operatorname{det}_{2}\right)
$$

(b) If $\rho(g, h)$ is the identity on Mat $_{2 \times 2}$, use the special choice $X=h$ or $X=g^{-1}$ to conclude that g equals h. Conversely, for g equal to h, conclude that $\rho(g, g)$ is the identity if and only if g is in the center Z of $\mathbf{S L}_{2}$. Thus, the kernel of ρ equals the diagonally embedded copy of the center, $\Delta(Z)$. Conclude that ρ factors through an injective morphism of Lie groups,

$$
\phi:\left(\mathbf{S L}_{2} \times \mathbf{S L}_{2}\right) / \Delta(Z) \rightarrow \mathbf{S O}\left(\mathrm{Mat}_{2 \times 2},-\operatorname{det}_{2}\right)
$$

(c) The induced morphism of Lie algebras,

$$
\operatorname{Lie}(\phi): \mathfrak{s l}_{2} \times \mathfrak{s l}_{2} \rightarrow \mathfrak{s o}\left(\mathrm{Mat}_{2 \times 2},-\operatorname{det}_{2}\right),
$$

is an injective F-linear map. Compute that both the domain vector space and the target vector space have dimension 6. Use the Rank-Nullity Theorem to conclude that $\operatorname{Lie}(\phi)$ is an isomorphism of \mathbf{F}-Lie algebras. Since $\mathbf{S O}\left(\mathrm{Mat}_{2 \times 2},-\operatorname{det}_{2}\right)$ is connected, also conclude that ϕ is surjective, hence an isomorphism of Lie groups. Thus, there is an induced isomorphism of simply connected forms. In this sense, " D_{2} equals $A_{1} \times A_{1}$ ".
(d) Repeat part (b) of the previous exercise to determine which pairs (U, W) of irreducible representations of $\mathbf{S L}_{2}$ give an irreducible representation $U \otimes_{\mathbf{F}} V$ of $\mathbf{S L}_{2} \times \mathbf{S L}_{2}$ that factors through a representation of $\mathbf{S O}\left(\mathrm{Mat}_{2 \times 2},-\operatorname{det}_{2}\right)$.
(e) What happens when you try to find a "compact form" of the isomorphism ϕ ?

