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MAT 552 PROBLEM SET 4

Problem 0. For the complex Lie group GL,,(C), and for the closed complex Lie
subgroups SL, (C), B, and U, from Problem 5 on Problem Set 1, compute the
derived series and the lower central series of each associated Lie algebra.

Problem 1. There is a close relation between Lie algebras over a field F and
associative F-algebras. Recall that for the field F equal to R or C, an associative
F-algebra is a pair (A4, ) of an F-vector space A and a F-bilinear map,

tAXA—= A (a,b)—a-b,
that is associative: for every a,b,c € A, the following equality holds,
a-(b-c)=(a-b)-c

The operation (a,b) — a - b is called the multiplication operation. We do not
assume that there exists a multiplicative identity; when a multiplicative identity
exists, the algebra is called unital. Also, we do not assume that multiplication is
commutative; when mutiplication is commutative, the algebra is called a commu-
tative algebra (some authors use this term only when multiplication is commu-
tative and there exists a multiplicative identity).

Recall that the Lie bracket operation on A associated to - is defined to be the
commutator,
[0,0]4: AXA— A, (a,b)—~a-b—10-a.

(a) Please quickly check that the Lie bracket operation is F-bilinear, that it is skew-
symmetric, and that the Jacobi identity holds. Thus, the Lie bracket operation
defines a Lie algebra structure. This is called the associated Lie algebra of
(A7 )
(b) Recall that for every F-Lie algebra (g, [e, ®]4), the center of the Lie algebra is
defined to be

3(g) ={Y eglvX € g, [X,Y]; =0}
Recall that the center of an associative algebra (A, -) is defined to be

Z(A):={be ANVa € A, ab=ba}.

For every associative F-algebra (A, ), check that the center of the associative alge-
bra equals the center of the associated Lie algebra.

(c) Check that the center of the (associative) matrix algebra Mat, x,(F) equals
the F-span of the identity matrix. In particular, it is 1-dimensional as an §-vector
space.

(d) For all F-associative algebras (A, -) and (B, -), for every F-algebra morphism,
¢:B— A, VbV eB, ¢b-b)= ) o),

check that also ¢ is also a morphism of F-Lie algebra. Also, the F-Lie algebra mor-

phism associated to an identity F-associative algebra morphism equals the identity

morphism of the associated F-Lie algebra morphism. Finally, the F-Lie algebra
1


http://www.math.stonybrook.edu/~jstarr/M552s22/index.html
mailto:jstarr@math.stonybrook.edu

MAT 552 Lie Groups and Lie Algebras Jason Starr
Stony Brook University Spring 2022
Problem Set 3

morphism of a composition of F-associative algebra morphisms equals the compo-
sition of the associated F-Lie algebra morphisms.

Altogether, this defines a covariant functor from the category of F-associative alge-
bras to the category of F-Lie algebras. This functor sends products of F-associative
algebras to products of the associated F-Lie algebras (more generally, the functor
preserves all categorical limits).

(e) In particular, conclude that for every F-associative subalgebra B of (A4, ), also
B is an F-Lie subalgebra of the associated F-Lie subalgebra (A, [e, e] 4). Since every
1-dimensional F-subspace of every F-Lie algebra is an F-Lie subalgebra, prove that
there exists an F-associative algebra (4,-) and a F-Lie subalgebra of (A4, [e,e]4)
that is not an F-associative subalgebra of (A, -).

(f) For an associative F-algebra (A, -) an F-subspace I is a left ideal, resp. right
ideal, two-sided ideal, if for every b € I and for every a € A, also a - b is in [,
resp. also b-aisin I, also a-b and b-a are in I. Check that every two-sided ideal I
is also a F-Lie ideal in the associated F-Lie algebra (A, [e,e]4). In particular, the
kernel of every F-algebra homomorphism between F-associative algebras is a F-Lie
ideal. On the other hand, since the center of Mat,, «,(F) is not a two-sided ideal
for n > 2, conclude that there exists an F-associative algebra (A, -) such that the
F-Lie ideal 3(A) in the associated Lie algebra (A, [e, e]4) is not a two-sided ideal in
(A’ )

Problem 2. Part of this problem is covered in Dummit and Foote. Please only do
those parts of this problem that are new to you.

For a group T, the F-group algebra is defined to be the free F-vector space F[[]
with free basis (b,)ycr. For every element a of F[I'], the support of a, supp(a),
is defined to be the finite subset of I' of all elements v such that the coefficient of
b, in a is nonzero.

The multiplication operation on F[I'] is defined to be the unique F-bilinear map
that acts as follows on basis elements,

«:F[T] x F[T] = F[T], (by,bs) > by.s.

(a) Check that the multiplication operation is associative, and thus (F[I'], %) is an
F-associative algebra. Moreover, for the identity element e of the group I', check
that b, is a multiplicative identity in F[I'].

(b) Check that the center of F[I'] is the F-vector subspace Class(I', F) of all ele-
ments a whose support is a union of conjugacy classes in I and such that for every
6 € supp(a), for every v € I, the coefficients of bs and b.,.5.,-1 are equal. Said
differently, the coefficients of a define a function from I' to F whose support is finite
and that is constant on every conjugacy class. In particular, the F-dimension of
the center equals the number of finite conjugacy classes in I'. (If T" is a finite group,
this equals the number of all conjugacy classes in I', e.g., the partition number of
n if I' equals the symmetric group on n letters.)

(c) Prove that for every v € T', the element b, is a (left-right) multiplicatively
invertible element of F[I'], i.e., an element of the multiplicative group F[I']* of
(left-right) multiplicatively invertible elements. Check that the induced set map,

b':T — F[]*, v+~ b,
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is a morphism of groups.
(d) Conversely, for every F-associative algebra (A, -), for every morphism of groups
to the multiplicative group A* of (4, "),
p:T — AX,
prove that there is a unique morphism of F-associative unital algebras,
ﬁ: (F[FL*) - (A7')7
such that po bl equals p.
(e) Now give T the discrete topology, and consider this discrete topological space as
a Lie group in which every connected component is a singleton set, i.e., a connected,
0-dimensional manifold. For every finite dimensional F-vector space V and every
representation,
p:I'—- GL(V,F),
conclude that there exists a unique morphism of F-associative unital algebras,
/5: (F[F]v *) - (Mat(v; F)ﬂ ')7
such that pob! equals p. Conclude that finite dimensional F-linear I'-representations
are equivalent to left F[I']-modules having finite dimension as an F-vector space.
(f) For every morphism of groups,
YT = A,
prove that there exists a unique morphism of F-associative unital algebras,
Fly] : F[I] - FA],

such that F[¢] o bl equals b2 o). Thus, the rule ¢ — F[¢] sends compositions to
compositions and identity morphisms to identity morphisms. Also, the composition
of F[¢)] with each F-linear representation,

o:A— GL(V,F),
is a F-linear representation of T,
co:I' - GL(V,F),

sometimes called the restriction representation (typically only when v is injec-
tive).

Altogether, this defines a covariant functor from the category of groups to the
category of F-associative unital algebras sending every group I' to the F-associative
unital algebra F[I'] and sending every morphism of groups ¥ to the morphism of
F-associative unital algebras F[¢].

Later in the course, as a consequence of Schur’s Lemma, Maschke’s Theorem,
and Wedderburn’s Theorem, we will prove that for every finite group I', the C-
associative unital algebra C[I'] is isomorphic to a product of matrix algebras,

C[I'] & Maty, xn, (C) x -+ - X Maty,, xn,.(C).

From the above, the integer r equals the number of conjugacy classes in I'. Also, for
every i = 1,...,r, the unique nonzero, simple, left Mat,,, x, (C)-module of C-vector
space dimension n; is an irreducible C-linear I'-representation V; of C-vector space
dimension n;, the irreducible C-linear I'-representations V7, ..., V,. are pairwise non-
isomorphic, and every irreducible C-linear ['-representation is isomorphic to one of
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these. In particular, the C-vector space dimension #I' of C[I'] equals the sum n? +
-+ -+n?2 of the squares of the dimensions of the irreducible representations. Together
with the Frobenius orthogonality relations, this greatly simplifies the problem of
classifying the finitely many irreducible C-linear I'-representations.

Problem 3. For every pair of R-Lie groups, resp. C-Lie groups,
(G,e,m:GxG—=G), (Heu:HxH—H),
the product Lie group is defined to be the product manifold G x H with the
product binary operation,
mx p:(Gx H)x(GxH)—=GxH, ((g,h),(g",h)) = (m(g.g'), n(h, I)).

(a) Check that this binary operation is a morphism of Lie groups.

(b) check that this is the unique structure of Lie group on the product manifold
G x H such that both of the following projections are morphisms of Lie groups,
pr; :Gx H—= G, (g9,h) =g,
pry: Gx H— H, (g,h)— h.
Also check that this is the unique structure of Lie group on the product manifold

G x H such that both of the following maps are morphisms of Lie groups whose
images commute through each other,

¢ :G—>GxH, g~ (g,¢),
g2 H—GxH, h— (e h),
Vg e G,Vhe H, q(g9)g2(h) = g2(h)q1(9g)-
(c) Check the pair of morphisms of Lie groups (pr; : GX H — G,pry : GX H — H)
is final among all pairs of morphisms of Lie groups to G and H. Precisely, for every

Lie group K and for every pair of morphisms of Lie groups (p; : K — G,p2 : K —
H), prove that there exists a unique morphism of Lie groups,

p: K —GxH,

such that p; equals pr; op for ¢ = 1 and ¢ = 2. Thus, this structure of Lie group on
G x H forms a categorical product in the category of Lie groups.

(d) Similarly, check that the pair of morphisms of Lie groups (¢1 : G — G X H, ¢ :
H — G x H) is initial among all pairs of morphisms from G and H to a Lie group
whose images commute through each other. Precisely, for every Lie group L and
for every pair of morphisms of Lie groups (r; : G — L,r9 : H — L) such that
Vg € G,Vh € H, ri(g)ra(h) =r2(h)ri(g),
prove that there exists a unique morphism of Lie groups,
r:Gx H— L,

such that r; equals r o ¢; for i =1 and i = 2.

(e) In particular, for F equal to R, resp. to C, when L is GL(V,F) for a finite
dimensional F-vector space, conclude that a F-linear representation of the product
Lie group G x H is equivalent to a pair (o, p) of F-linear representations,

o:G — GL(V,F),
p: H— GL(V,F),
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such that
Vg € G,Yh € H, o(g)-p(h) = p(h)-o(g).

In particular, the morphism o factors through the closed Lie subgroup,
Tsompps (V. ), (V) C GL(V.F),

and similarly p factors through the closed Lie subgroup,
Isomgeyr (V. 0), (V,0)) C GL(V,F).

(f) Use Schur’s Lemma to prove that the irreducible F-linear representations of
G x H are precisely the representations of the form (U ®@r W, (¢/ @ Idw ), (Idy ® p’)
for irreducible F-linear representations,

o :G— GL(U,F),
o'+ H— GL(W,F).

(g) In particular, let (V,0) and (V,p) be representations that are completely re-
ducible. Denote the isotypic components by

(V,0) = PWior), (Vi) = P Vs,
icl jeJ

where I, resp. J, denotes the set of isomorphism classes of irreducible F-linear
H-representations U;, resp. irreducible F-linear G-representations W;, that appear
as subrepresentations of (V, o), resp. of (V,p). Prove that each V; is preserved
by p, and prove that each V; is preserved by o. Since every subrepresentation of
a completely reducible representation is also completely reducible, conclude that
there is a simultaneous decomposition,

V= D Vi
(i,9)eIxJ
where V; ; is simultaneously a direct sum of irreducible G-representations of type
1 and a direct sum of irreducible H-representations of type j. Finally, use Schur’s
Lemma to conclude that V; ; is a direct sum of copies of the irreducible F-linear
G x-representation U; @r W;.

Problem 4 Repeat the previous exercise for Lie algebras in place of Lie groups.
Problem 5 Recall from lecture that the adjoint representation,

Ad : SLy — gl(slz) = gl
factors through the orthogonal subgroup of gl(sls) associated to the quadratic form

q = —deta|sr,, and this factorization contains the center of SLy in its kernel. Thus,
there is an induced morphism of split Lie groups,

¢ :PGL,; — SO(E[Q,Q),

and this is an isomorphism of Lie groups. Thus, there is an induced isomorphism
of the simply connected forms. In this sense, “B; equals A;”.

(a) Use this to prove that the F-linear representations of SO (sls, q) are precisely
the representations of SLs on which the center acts trivially. Check that for the
standard 2-dimensional F-representation V' of SLy, the symmetric product repre-
sentation SymdF(V) is trivial on the center of SLo if and only if the nonnegative
integer d is even.
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(b) Find a “compact form” of this isomorphism, i.e., prove that there exists a
positive definite inner product B on the Lie algebra su(2,R) of the compact Lie
group SU(2,R) (this is just the Killing form) such that the adjoint representation
preserves B and such that the induced morphism of Lie groups,

SU(2,R) — SO(su(2,R), B),
is surjective with kernel equal to the center Z.

(c) With respect to the isomorphism of SU(2,R)/Z and the compact Lie group
SO(su(2,R), B) from (b), repeat part (a) characterizing those representations of
SU(2,R) that factor through representations of SO (su(2,R), q).

Problem 6. On the 4-dimensional vector space Matsy o, the quadratic —dets comes
from a nondegenerate, symmetric, bilinear pairing that is indefinite. The associated
orthogonal group SO (Matayo, —dets) is a split special orthogonal group.

(a) For each (g,h) € SLy X SLo, prove that the following F-linear map of Matgxo
is an isometry with respect to —dets,

0(g,h) : Matoyo — Matoyo, X +— gXh™ '

Also check that p(gg’, hh') equals p(g,h)o p(g’, k). Conclude that p is a morphism
of Lie groups,
p: SL2 X SL2 — SO(MatQXQ, —detz).

(b) If p(g, h) is the identity on Mata s, use the special choice X = hor X = g~! to
conclude that g equals h. Conversely, for g equal to h, conclude that p(g,g) is the
identity if and only if g is in the center Z of SLy. Thus, the kernel of p equals the
diagonally embedded copy of the center, A(Z). Conclude that p factors through
an injective morphism of Lie groups,

¢ : (SLQ X SLQ)/A(Z) — SO(Matgxg, 7det2).

(c) The induced morphism of Lie algebras,
Lle(¢) : 5[2 X 5[2 — 50 (Matgxg, 7det2),

is an injective F-linear map. Compute that both the domain vector space and the
target vector space have dimension 6. Use the Rank-Nullity Theorem to conclude
that Lie(¢) is an isomorphism of F-Lie algebras. Since SO (Matax2, —detz) is con-
nected, also conclude that ¢ is surjective, hence an isomorphism of Lie groups.
Thus, there is an induced isomorphism of simply connected forms. In this sense,
“Dy equals A1 x A1”.

(d) Repeat part (b) of the previous exercise to determine which pairs (U, W) of
irreducible representations of SLy give an irreducible representation U Q@ V' of
SL; x SLy that factors through a representation of SO (Matgyo, —dets).

(e) What happens when you try to find a “compact form” of the isomorphism ¢?
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