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MAT 552 PROBLEM SET 3

Problem 1. For a Lie group (G,m, e) denote by g the (abstract) Lie algebra of
TeG together with the bracket defined in class, which equals

[X,Y ]g :=
1

2

(
d

ds

d

dt
ExpG(sX) · ExpG(tY ) · ExpG(−sX) · ExpG(−tY )

∣∣∣∣
s=t=0

.

For a vector field A on a manifold M , recall that the associated flow is defined on
all sufficiently small neighborhoods of the zero section in the trivial rank 1 bundle
over M ,

ΦA : A1 ×M ⊇ U →M, (t, p) 7→ ΦtA(p),

satisfying the axioms that ΦtA(ΦsA(p)) = Φs+tA (p) and (d/dt)ΦtA(p)|t=0 equals the
tangent vector Ap of A at p for all p in M and for all s and t such that (−|s| −
|t|, |s| + |t|) × {p} is contained in U . For vector fields A and B on M the “vector
field Lie bracket” is defined by,

[A,B]M :=
1

2

(
d

ds

d

dt
ΦB−s ◦ ΦA−t ◦ ΦBs ◦ ΦAt

∣∣∣∣
s=t=0

.

For X ∈ g with its G-left invariant exponential flow,

ΦXG,t : G→ G, g 7→ g · ExpG(tX),

check that the two sign conventions agree after multiplying by −1 (so they do not
agree “on the nose”, but do agree after correcting the sign).

Problem 2. For a finite dimensional Lie algebra (g, [•, •]g), define Aut(g, [•, •]g)
to be the subgroup of the Lie group GL(g) of all linear automorphisms Λ : g → g
such that for every X,Y ∈ g,

[Λ(X),Λ(Y )]g = [X,Y ]g.

Similarly, define Der(g, [•, •]g) to be the linear subspace of the Lie algebra gl(g) of
all linear endomorphisms λ : g→ g such that for every X,Y ∈ g,

λ([X,Y ]g) = [λ(X), Y ]g + [X,λ(Y )]g.

(a) Check that Aut(g, [•, •]g) is a closed Lie subgroup of the Lie group GL(g). Find
an example where this is not a normal subgroup.

(b) Check that Der(g, [•, •]g) is a Lie subalgebra of the Lie algebra gl(g). Find an
example where this is not a Lie ideal.

(c) Inside the Lie algebra gl(g) of the Lie group GL(g), check that the Lie subal-
gebra associated to the closed Lie subgroup Aut(g, [•, •]g) equals Der(g, [•, •]g).

(d) For every X ∈ g and for every λ ∈ Der(g, [•, •]g), check that

[λ, adg
X ]gl(g) = adg

λ(X).

(e) Conclude that the adjoint morphism of Lie algebras,

adg : g→ gl(g),
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factors through the Lie subalgebra of derivations. Find examples when the image
of the adjoint representation equals the Lie subalgebra of derivations, and find
examples where the image is a proper Lie subalgebra of the Lie subalgebra of
derivations.

Problem 3. This exercise is for those readers that know about affine algebraic
groups G over C with the corresponding finitely generated, commutative, unital
C-algebra C[G] of polynomial maps from G to C and its comultiplication,

m∗ : C[G]→ C[G]⊗C C[G].

(Please note: even though the notation appears similar, typically this is not the
C-group algebra of G, which is typically a noncommutative C-algebra.)

For a C-vector space V , a C-linear coaction of G on V is a C-linear map,

φ : V → V ⊗C C[G],

such that the composition with evaluation at e,

IdV ⊗ eve : V ⊗C C[G]→ V ⊗C C = V

is the identity map on V , and such that the composition of φ with the following
two C-linear maps are equal,

φ⊗ IdC[G] : V ⊗C C[G]→ (V ⊗C C[G])⊗C C[G],

IdV ⊗m∗ : V ⊗C C[G]→ V ⊗C (C[G]⊗C C[G]) .

(a) For every C-vector space V , for every C-linear coaction φ, and for every C-
subspace W of V , prove that there exists a unique minimal C-vector subspace
W ′ ⊂ V such that the image φ(W ) is contained in the subspace W ′ ⊗C C[G].

(b) Use the axioms of a coaction to prove that (W ′)′ equals W ′. Thus, the restric-
tion of φ to W ′ defines a C-linear coaction of G on W ′.

(c) If W is a finite dimensional C-vector space, prove that also W ′ is finite dimen-
sional. Conclude that V is an increasing union of finite dimensional C-subspaces
on which φ restricts to a coaction.

(d) In particular, setting V equal to the C-vector space C[G] with the coaction
m∗, for every finite subset S ⊂ C[G] of C-algebra generators, conclude that there
is a finite dimensional C-vector subspace W ′ ⊂ C[G] containing S and such that φ
restricts to a coaction on W ′.

(e) For every finite dimensional C-vector space V with a C-linear coaction φ, define
the following map,

ρ : G→ GL(V ), g 7→ (v 7→ (IdV ⊗ evg)(φ(v))).

Prove that this is a C-linear action of G on V . These are precisely the “algebraic
representations” of the algebraic group G.

(f) For every finite dimensional C-vector subspace W ′ of C[G] that contains a set
of C-algebra generators of C[G], prove that the corresponding C-linear action of G
on W ′ is faithful. Thus, every affine algebraic group is a closed algebraic subgroup
of GL(W ′) for some finite dimensional C-vector space W ′. This is an explicit form
of Lie’s Third Theorem for affine algebraic groups.
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Problem 4. Let (G,m, e) be a Lie group. For every integer n, denote byOG,e/mn+1

the finite dimensional vector space of germs of analytic functions on G at e up to
order n. For every g ∈ G, denote by AdG,n,g the induced linear map

OG,e/mn+1 → OG,e/mn+1,

induced by the conjugation map near the fixed point e,

Innerg : G→ G, h 7→ ghg−1, e 7→ e.

(a) Prove that this gives a Lie group morphism

AdG,n : G→ GLC(OG,e/mn+1),

such that AdG,1 is the dual linear representation of the usual adjoint (linear) rep-
resentation AdG of G on TeG.

(b) When G is a complex Lie group, prove that AdG,n is a morphism of complex
Lie groups (you can do this in coordinates, or you can use a similar diagram-chasing
argument to that in lecture for AdG, where now we restrict the bundle isomorphism
to the product in G×G of G times the “nth infinitesimal neighborhood of e in G”).

(c) When G is a compact, complex Lie group, what does the maximum modulus
principle imply about holomorphic maps fromG to the affine C-space MatC(OG,e/mn+1)?

(d) Conclude that every connected, compact, complex Lie group G is commuta-
tive. These are usually called “compact complex tori”. Use the same argument to
prove that every C-linear representation on a finite dimensional C-vector space by
a compact complex torus is a direct sum of subrepresentations, each of which is
isomorphic to the trivial one-dimensional representation (so the finite dimensional
linear representations are semisimple, but for trivial reasons).

Problem 5. For SLn(C) with its standard maximal torus T , standard Borel,
standard pinning, etc., use the derivatives of the standard basis T of cocharacters
to write an explicit basis of the “Cartan subalgebra” h = Lie(T ) inside sln(C).
Also use the pinning to write out a C-basis for each root space of sln(C). Combine
these to form a vector space basis for the Lie algebra sln(C). For each pair of basis
vectors, explicitly compute the Lie bracket of those two elements of sln(C) as a
linear combination of the basis vectors. Write this out explicitly when n = 2 and
n = 3. Are the coefficients contained in the subfield R of C? Are they contained in
Q? Are they contained in Z? What does this suggest to you about the possibility
of extending Lie theory to affine algebraic groups over a more general field than R
and C?

Problem 6. Use the previous problem to prove that the real Lie algebra of SLn(R)
is a real form of the complex Lie algebra of SLn(C). Also repeat the problem for the
subgroup SU(n,R) of SLn(C). Use this to check that su(n,R) is also a real form
of sln(C). Finally, explicitly check that there is an isomorphism from su(2,R) to
so3(R) that complexifies to the isomorphism of complex Lie algebras associated to
the isomorphism of complex Lie groups PGL2(C)→ SO3(C) discussed in lecture.
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