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Problem 0.(The Rank Theorem.) Recall the following two important theorems
about morphisms of manifolds (true both in the setting of C∞ maps between smooth
manifolds and in the setting of holomorphic maps between complex manifolds).

Theorem 0.1 (Implicit Function Theorem). For every morphism of manifolds
f : M → N , for every point p of M such that the derivative map dpf is a surjective
morphism of vector spaces, there exists an open neighborhood V of f(p) in N , and
open neighborhood U of p in f−1(V ), an open neighborhood W of the origin in Ad for
some nonnegative integer d, and an isomorphism of manifolds g : U → V ×W such
that prV ◦ g equals the restriction of f to U . In particular, the fiber f−1(f(p)) ∩ U
is a closed embedded submanifold of U of dimension d.

(a) In the special case that dpf is an isomorphism of vector spaces, conclude that
there exists an open neighborhood of V of f(p) and an open neighborhood U of p
in f−1(V ) such that the restriction of f to U is an isomorphism of manifolds from
U to V . This is the Inverse Function Theorem.

(b) Next, assume the Inverse Function Theorem, and let f : M → N be a morphism
of manifolds such that the derivative map at a point, dpf , is a surjective morphism
of vector spaces. Deduce the Implicit Function Theorem as follows. Let TpM →
Ad be a surjective linear transformation that restricts on the kernel of dpf to an
isomorphism of vector spaces. Using coordinate charts, show that there exists an
open neighborhood of p in M and a morphism of manifolds from that neighborhood
to Ad such that the induced derivative map at p is the given surjective linear
transformation. Apply the Inverse Function Theorem to the product morphism
from the neighborhood of p in M to the product manifold N × Ad.

(c) Next, assume the Inverse Function Theorem / Implicit Function Theorem and
let f : M → N be a morphism of manifolds such that the derivative map at a point,
dpf , is an injective morphism of vector spaces. Let V be an open neighborhood
of f(p) in N that admits an isomorphism of manifolds, g : V → An, to an open
neighborhood of the origin in An. Let W ⊂ An be a vector subspace that is
complementary to the image of the derivative map dp(g ◦ f). Consider the induced
morphism h from f−1(V )×W → An given by h(q, w) = g(f(q)) + w. The inverse
image of g(V ) is an open neighborhood of (p, 0) in f−1(V )×W . Apply the Inverse
Function Theorem to the restriction of h to this open neighborhood to conclude
that, up to shrinking V , there exists an open neighborhood U of p in f−1(V ) and a
submersion to an open neighborhood of the origin in W , s : V → s(V ) ⊂ W , such
that s◦f is constant on U , and the induced morphism from U to the fiber of s over
p is an isomorphism from U to a closed submanifold of V (namely, the fiber of the
submersion, which is a closed submanifold using the Implicit Function Theorem).

(d) Finally, assume the Inverse Function Theorem / Implicit Function Theorem
and prove the (Constant) Rank Theorem. Let r be a nonnegative integer and let
f : M → N be a morphism of manifolds such that the rank of the derivative map
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equals r for every point p of M . Let V be an open neighborhood of f(p) in N
that is isomorphic to an open neighborhood of the origin in An. For an appropriate
surjective linear projection An → Ar, conclude that the induced morphism from
an open neighborhood of p in M to Ar is a submersion. Combine this with the
arguments above to conclude that, up to shrinking the neighborhood V of f(p),
there exists an open neighborhood of the origin in Ar, and an open neighborhood
U of p in the preimage in M such that the restriction of f to U factors as a
composition of a submersion from U to the open neighborhood in Ar followed by
a closed embedding of this open neighborhood as a closed submanifold of the open
neighborhood V of f(p) in N . This is the (Constant) Rank Theorem.

(e) In particular, let G be a connected Lie group, let M and N be manifolds with
specified actions of G on M and N . Let f : M → N be a morphism of manifolds
that is compatible with the G-actions, i.e., f is a G-equivariant morphism of
manifolds. If the action of G on M is transitive, conclude that f satisfies the
hypotheses of the (Constant) Rank Theorem. Hence, locally on M , the morphism
f factors as a composition of a submersion followed by an immersion.

(f) Also use the Implcit Function Theorem to prove “submersive descent” for mor-
phisms. Let M and N be manifolds, and let f : M → N be a function. Let
g : P → M be a surjective submersion of manifolds. Prove that f is a morphism
of manifolds if and only if the composite function f ◦ g : P → N is a morphism
of manifolds. (Hint: The Implict Function Theorem guarantees that locally on M
there exist morphisms M → P that are “sections” of g. Now compose f ◦ g with
these local sections.)

Problem 1. (Standard parabolics, partial flag manifolds, and Bruhat
decomposition for An−1-type.) In this problem, work through the various parts
for the simply connected, simple, complex Lie group SLn(C) for a representative
collection of pairs (n,Γ).

As in the previous problem set, let (SLn(C), T ′n, B
′
n) be the special linear complex

Lie group with its standard maximal torus and standard Borel. Thus, for the usual
direct sum decomposition into 1-dimensional subspaces,

V = Cn =

n⊕
i=1

C · ei =

n⊕
i=1

Li,

the torus T ′n is the subgroup of G = SLn(C) mapping every Li back to itself, and
B′n is the subgroup of SLn(C) that preserves every subspace in the standard flag,

{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fj ⊂ · · · ⊂ Fn−1 ⊂ Fn = V, Fj =

j⊕
i=1

Li.

Denote by Tn[2] the elementary Abelian 2-group of 2-torsion elements in Tn. One
lift Wn ⊂ NG(T ′n)/Tn[2] of the Weyl group NG(T ′n)/T ′n is determined by the stan-
dard pinning (e1, . . . , en), i.e., the ordered bases of the 1-dimensional subspaces
(L1, . . . , Ln) up to simultaneous (invertible) scalar. The inverse image of Wn in
NG(T ′n) consists of matrices A such that for every basis vector ei, the product A ·ei
equals ±ej for some basis vector ej . This group is generated by the positive simple
reflections {si : 1 ≤ i ≤ n − 1}, where si maps ei to ei+1 and maps ei+1 to −ei,
leaving fixed all other basis vectors.
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The set ∆ = ∆(SLn(C), T ′n, B
′
n) of positive simple roots is in natural bijection with

this set of positive simple reflections, namely {αi : 1 ≤ i ≤ n− 1},

αi = χn,i − χn,i+1, si(β) = β − 〈β, α∨i 〉αi, i ∈ {1, . . . , n− 1}.

For simplicity, identify ∆ with the set of integers {1, . . . , n − 1}. Nota bene.
Denote by w0 ∈Wn the unique element of maximal length, i.e., the unique element
with w0(ej) = en−j for every j ∈ ∆. The outer automorphism ι(g) = w0(g†)−1w−1

0

of SLn(C) preserves B′n and T ′n, yet permutes ∆ by the rule ι(j) = n − j. Thus,
this enumeration of the roots depends on an additional choice.

Let Γ be a subset of ∆ = {1, . . . , n− 1},

Γ ⊂ {1, . . . , n− 1}, Γ = {j1, . . . , jd}, 0 < j1 < · · · < jd < n.

By convention, set j0 = 0 and jd+1 = n. Denote by PΓ the subgroup of SLn(C)
that preserves every subspace Fj for j ∈ Γ.

(a) For the standard enumeration α = αi, i = 1, . . . , n− 1, of positive simple roots
in ∆(SLn(C), T ′n, B

′
n), check that the root group

U−α = fn,−α(U+) = sαUαs
−1
α ,

is contained in PΓ if and only if i is contained in Γ. Similarly, check that siPΓs
−1
i

equals PΓ if and only if i ∈ Γ. These reflections give generators for the subgroup
Wn,Γ ⊂ Wn of all elements w that preserve PΓ, i.e., wPΓw

−1 equals PΓ. Finally,
check that PΓ is generated as a closed Lie subgroup of SLn(C) by B′n and by the
root groups U−α for i ∈ Γ, and also it is generated by the conjugates siBs

−1
i for

i ∈ Γ.

Thus, for a general triple (G,T,B) of a connected, reductive, complex Lie group
G, a maximal torus T , and a Borel containing B, for every subset Γ of ∆(G,T,B),
we could define PΓ to be the closed Lie subgroup generated by B and the root
groups U−α for α ∈ Γ, and this also equals the closed Lie subgroup generated by all
conjugates sBs−1 for all positive simple reflections s ∈ W = NG(T )/T associated
to α ∈ Γ.

(b) For the standard transitive action of SLn(C) = SL(V ) on the following partial
flag manifold, check that the stabilizer of the partial flag (Fj)j∈Γ equals PΓ, and
thus the partial flag variety is SLn(C)-equivariantly biholomorphic to SLn(C)/PΓ,

Flag(Γ;V ) = {(Ej)j∈Γ ∈
∏
j∈Γ

GrassC(j, V ) : ∀(j, k) ∈ Γ× Γ s.t. j ≤ k, Ej ⊂ Ek}.

Also check that the complex dimension of the partial flag manifold equals

m =

d∑
e=1

(je+1 − je)je.

(c) For every w ∈ Wn, check that the double coset C(w) := PΓwPΓ in SLn(C)
depends only on the double coset [w] ∈ Wn,P \Wn/Wn,P . Check that the image
E(w) := C(w)/PΓ in the partial flag manifold SLn(C)/PΓ contains the following
flag,

(Fwj )j∈Γ, Fwj :=

j∑
i=1

Lw(i).
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Moreover, check that E(w) is the following subset of the partial flag manifold,

E(w) = {(Ej)j∈Γ ∈ Flag(Γ;V )|∀j ∈ Γ,∀i = 1, . . . , n, dim(Ej∩Fi) = dim(Fwj ∩Fi)}.

Check that the closure E(w) is the following (Zariski) closed subset of Flag(Γ;V ),

E(w) := {(Ej)j∈Γ ∈ Flag(Γ;V )|∀j ∈ Γ,∀i = 1, . . . , n, dim(Ej∩Fi) ≥ dim(Fwj ∩Fi)}.

Check that the relative complement E(w) \ E(w) is a (Zariski) closed subset of
E(w), so that E(w) is a (Zariski) open subset of E(w). Thus, altogether, E(w) is
a (Zariski) locally closed subset of Flag(Γ;V ). Finally, as a complex manifold with
an action of the root groups Uα ∼= C, check that E(w) is isomorphic to a product
of additive groups C × · · · × C = C`, for some integer ` = `Γ([w]) ≥ 0. Thus, the
collection of locally closed subsets (E(w))[w] give a partition of Flag(Γ;V ) into cells
of (real) dimension 2`Γ([w]) for the finitely many elements [w] ∈Wn,Γ\Wn/Wn,Γ.

(d) For a representative set of choices of (n,Γ), check for every [w] ∈Wn,Γ\Wn/Wn,Γ

that the nonnegative integer `Γ([w]) from the previous part equals the Coxeter
length `(w) of a double coset representative w having least length. As usual,
the Coxeter length is the least word length of a representation of w as a word
in the simple reflections (si)i=1,...,n−1 generating Wn. Also, determine the par-
tial order on double cosets determined by the inclusion partial order on closures,
E([w]) ⊂ E([w′]). This is the Bruhat order on Wn,Γ\Wn/Wn,Γ relative to ∆.

(e) Since the cells in the cellular decomposition all have even dimension, conclude
that the differentials in the cellular chain complex are all zero. Thus, the elements
[E(w)], as [w] ranges over Wn,Γ\Wn/Wn,Γ, give a Z-basis of the cellular homology
H∗(Flag(Γ;Cn);Z). Each basis element [E(w)] is homogeneous of degree 2`Γ([w]).
For a representative set of choices of (n,Γ), use this to compute the even Betti
numbers of Flag(Γ;Cn) (the odd Betti numbers are all zero). Check that the Betti
numbers are unimodular and symmetric, as implied by Poincaré duality for the
connected, closed, complex manifold Flag(Γ;Cn).

(f) For the Poincaré dual classes in cohomology,

PD[E(w)] ∈ H2m−2`(Flag(Γ;Cn)),

for every triple [w], [w′], [w′′] ∈Wn,Γ\Wn/Wn,Γ, the Littlewood-Richardson co-

efficient c
[w]
[w′],[w′′] is defined as the structure constants of the cup product pairing

in cohomology,

PD[E(w′)] ^ PD[E(w′′)] =
∑
[w]

c
[w]
[w′],[w′′]PD[E(w)].

For a few cases of (n,Γ), write out these structure constants.

Problem 2. (Borel’s Theorem on the cohomology ring of complete flag
manifolds.) The graded polynomial Z-algebra Z[x1, . . . , xn] on n homogeneous
variables xi of degree 1 is the graded symmetric algebra on its degree 1 part,

Z[x1, . . . , xn]1 = Xn = Z · x1 ⊕ · · · ⊕ Z · xn, Z[x1, . . . , xn] = Sym•Z(Xn).

Denote by X0
n ⊂ Xn the free Abelian subgroup of those linear combinations a1x1 +

· · · + anxn such that a1 + · · · + an equals 0. Denote by Z[x1, . . . , xn]0 the graded
4
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polynomial Z-subalgebra of Z[x1, . . . , xn] that is the symmetric algebra on X0
n. In

particular, the following composite Q-algebra homomorphism is an isomorphism,

Q[x1, . . . , xn]0 ↪→ Q[x1, . . . , xn] � Q[x1, . . . , xn]/〈σ1〉,
where for every r = 1, . . . , n, the rth symmetric polynomial is defined by

σr(x1, . . . , xn) =
∑

1≤i1<···<ir≤n

xi1 · · ·xir .

(a) Review the statement of the first fundamental theorem of Sn-invariants that for
the standard action of the symmetric group Sn on the graded polynomial Q-algebra
Q[x1, . . . , xn], the ring of Sn-invariants is the graded polynomial Q-subalgebra,

Q[x1, . . . , xn]Sn = Q[σ1, . . . , σn],

where each σi is homogeneous of degree i.

(b) Identifying Xn as the character lattice X∗(Tn) of the standard maximal torus
Tn in GLn(C), check that the induced map of symmetric Z-algebras,

Sym•ZX
∗(Tn)→ Sym•ZX

∗(T ′n)

is identified with the following homomorphism of graded Z-algebras, compatibly
with the natural action of Wn

∼= Sn,

Z[x1, . . . , xn]→ Z[x1, . . . , xn]/〈σ1〉.
Thus, up to tensoring with Q, identify the symmetric Q-algebra on X∗(Tn), resp. on
X∗(T ′n), with the graded polynomial Q-algebra Q[x1, . . . , xn], resp. with Q[x1, . . . , xn]0,
compatibly with the Wn-action.

(c) For every r = 1, . . . , n−1, show that there exists a unique homogeneous element

fr ∈ Sym•Q(X∗(T ′n))Wn ,

of degree 1+r corresponding to σ1+r in Q[x1, . . . , xn]/〈σ1〉. The elements f1, . . . , fn−1

are the fundamental invariants with degree deg(fi) = 1 + i.

(d) For a few small values of n, check that each Betti number b2e of the complete
flag variety SLn(C)/B′n equals the Betti number be of the graded Q-algebra,

Sym•Q(X∗(T ′n))/〈f1, . . . , fn−1〉 ∼= Q[x1, . . . , xn]/〈σ1, σ2, . . . , σ2〉.

Theorem 0.2 (Chevalley-Shephard-Todd). For every finite dimensional vector
space V over a characteristic 0 field k together with a k-linear action of a finite
group G, inside the graded k-algebra k[V ] of polynomial functions on V , the graded
k-subalgebra of G-invariant polynomials, k[V ]G, is regular if and only if the group
G is generated by elements g that act on V by quasi-reflections, i.e., the G-invariant
subspace of V has codimension ≤ 1. In this case, k[V ]G is a polynomial k-algebra
whose generators are homogeneous elements, and k[V ] is a finite, free module over
k[V ]G.

(e) By definition, every Weyl group is generated by reflections. Conclude that for
every triple (G,T,B) of a connected, semisimple complex Lie group G, a rank-r
maximal torus T , and a Borel subgroup B containing T , for the natural action of
the Weyl group W = NG(T )/T on the graded Q-algebra Sym•Q(X∗(T ) ⊗ Q), the
graded Q-subalgebra of W -invariants is itself a graded polynomial Q-algebra

Sym•Q(X∗(T )⊗Q)W ∼= Q[f1, . . . , fr]
5
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for homogeneous elements fi of degrees 1 + di, with 1 = d1 ≤ · · · ≤ dr. These are
the fundamental invariants. They will recur at the end of the semester when we
prove the Harish-Chandra isomorphism.

Theorem 0.3 (Borel’s Theorem). Let R be a commutative, unital ring such that
the graded R-algeba H∗(G;R) is a free exterior R-algebra. Associated to the natural
isomorphism X∗(T )→ H2(G/B;Z), the induced map of graded R-algebras,

Sym•R(X∗(T )⊗R)→ H∗(G/B;R) = H∗(G/T ;R),

is surjective with kernel ideal equal to the complete intersection ideal generated by
f1, . . . , fr. In particular, if G is simple, then the kernel of the following cup-product
map has Q-dimension 1 and is spanned by the W -invariant f1,

Sym2
Q(X∗(T )⊗Q)→ H4(G/B;Q).

In particular, the complex dimension of G/B equals d1+· · ·+dr, since that is the top
degree of a nonzero graded component modulo a complete intersection ideal with
generators of degrees (1+d1, . . . , 1+dr). Also, since the Bruhat cells indexed by the
Weyl group W also form a Z-module basis for H∗(G/B;Z), the order of W equals
(1+d1) · · · (1+dr). This also follows from the fact that the action of W on X∗(T )⊗R
is properly discontinuous and generically free, so that flatness implies that the
length, (1+d1) · · · (1+dr), of the fiber ring Sym•R(X∗(T )⊗R)G → Sym•R(X∗(T )⊗R)
over the origin equals the length of the generic fiber ring, namely #W .

Conclude that the Euler characteristic of G/T equals #W . Since the action of W
on G/T by w • (gT ) = (gw−1)T is well-defined and free, conclude that the quotient
space G/NG(T ) has Euler characteristic equal to 1.

(f) For two or three choices of n, check Borel’s theorem in An−1-type, and identify
each cohomology class PD[E(w)] as an element in the ring Q[x1, . . . , xn]/〈σ1, . . . , σn〉.
Problem 3. (Abelian fundamental groups of Lie groups and exponential

maps of Abelian Lie groups.) For every connected Lie group T̃ , for every
closed Lie subgroup N that is normal, but not necessarily connected, consider the

conjugation action of T̃ on the discrete group N/N0.

(a) Prove that the conjugation action of T̃ on N/N0 is trivial. In particular, if N0

equals {e}, so that N is a discrete, closed, normal subgroup of T̃ , prove that N is

contained in the center of T̃ .

(b) Next, when (T, e) is a connected Lie group, for the universal covering group,

φ : (T̃ , ẽ)→ (T, e),

apply the previous part to π1T := Ker(φ) to conclude that π1T is a subgroup of

the center of G̃. In particular, conclude that the fundamental group π1T of every
connected Lie group (T, e) is an Abelian group, i.e., the following Hurewicz map is
an isomorphism,

π1T → H1(T ;Z).

Theorem 0.4 (Hopf). Not only for connected Lie groups, but also for every path
connected, homotopy-associative H-space G, the fundamental group is Abelian.
Moreover, for every commutative, unital ring R such that every cohomology group
H∗(G;R) is a finitely generated, free R-module, the graded cohomology R-algebra
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H∗(G;R) is a graded commutative Hopf R-algebra. The dual Hopf R-algebra is the
Pontryagin algebra structure on the homology.

There is a classification of graded commutative Hopf algebras in characteristic 0
due to Hopf and Leray. The extension over perfect characteristic p fields is due to
Borel.

Theorem 0.5 (Hopf, Leray). For a characteristic 0 field k, every graded commu-
tative Hopf algebra with finite dimensional graded components and that is connected
(i.e., the negatively graded components are zero) is isomorphic to the tensor product
k-algebra of a symmetric k-algebra on finitely many generators in even degrees and
an exterior k-algebra on finitely many generators in odd degrees.

Corollary 0.6 (Hopf). For every connected Lie group G, the graded cohomology Q-
algebra H∗(G;Q) is isomorphic to an exterior algebra on finitely many generators
in odd degrees (2d1+1, . . . , 2dr+1), i.e., G is Q-cohomologically a product of spheres
of odd dimensions (2d1 + 1, . . . , 2dr + 1). In fact, there exists a finite set of “bad
primes” for each G such that this holds for an arbitrary coefficient ring in which
each bad prime is invertible.

As a particular instance of the corollary, if K is a connected Lie group that is
compact, so that Poincaré duality holds, then the real dimension of G equals r +
2(d1 + · · ·+dr), since that is the top degree such that the corresponding component
of the exterior algebra is nonzero. Also, the sum of the Betti numbers equals 2r. If
K is the compact real form of a simply connected, semisimple, complex Lie group
G, and if for a Borel subgroup B of G the intersection B ∩K is a rank-r maximal
torus in K, then the quotient K/(B∩K) equals G/B. Thus, the complex dimension
of G/B equals d1 + · · ·+ dr (for the second time).

The corollary follows from the two theorems: since H∗(G;Q) has nonzero graded
components for only finitely many degrees (all nonnegative), this is a connected,
graded commutative Q-Hopf algebra, and the symmetric Q-algebra factor must
equal Q (or else there would be nonzero components in infinitely many degrees).

Problem 4 (Exponential maps in the Abelian case.) Let T be a connected
Lie group that is Abelian. Denote the Lie algebra by h. Denote the universal
covering of T by

φ : (T̃ , ẽ)→ (T, e).

(a) Prove that the Lie group exponential map,

ExpT̃ : (h, 0)→ (T̃ , ẽ),

is an isomorphism. Conclude that there is a canonical isomorphism of the discrete
group H1(T ;Z) with a closed Abelian subgroup of the Lie algebra h.

(b) When T is a linear complex torus ∼= Gm(C)r, the canonical isomorphism above
defines an isomorphism of C-vector spaces,

Symd
C(t∨)→ Symd

Q(X∗(T )⊗Q)⊗Q C.

Check that all of the maps are compatible with the natural actions of the automor-
phism group of the Lie group, Aut(T, e). In particular, when a Weyl group W acts
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on (T, e) by conjugation, the isomorphism above is W -equivariant, hence defines
an isomorphism of C-algebras of W -invariants,

Sym•C(t∨)W → Symd
Q(X∗(T )⊗Q)W ⊗Q C.

This simplifies the computation of the fundamental invariants.

Problem 5 (Low homotopy groups of special linear groups.) Let V be a
real or complex vector space of dimension n + 1 ≥ 2. Let SL(V ) ∼= SLn+1 be
the corresponding real or complex Lie group, let v ∈ V \ {0} be an element, and
consider the induced standard left action,

Lv : SL(V )→ V \ {0}.

(a) Show that this action is surjective, i.e., the orbit of v equals all of V \{0}. Show
that the stabilizer subgroup H of v is isomorphic, as a Lie group, to a semidirect
product of a special linear group SL(W ) ∼= SLn with W ∼= V/span(v) and a
product of copies of the additive group (which are contractible). Thus, the long
exact sequence of homotopy groups is

· · · → πk+1(V \ {0})→ πk(SL(W ))→ πk(SL(V ))→ πk(V \ {0})→ . . .

→ π3(V \{0})→ π2(SL(W ))→ π2(SL(V ))→ π2(V \{0})→ π1(SL(W ))→ π1(SL(V ))→ π1(V \{0}).

(b) When the field is R, so that Rn \ {0} is homotopy equivalent to a sphere Sn−1,
use the long exact sequence of homotopy sequences of a fiber bundle to conclude
that for every k ≤ n − 2, the following induced map of homotopy groups is an
isomorphism,

πk(SLn(R))→ πk(SLn+1(R).

Thus, the relative homotopy group πk(SLn+1(R),SLn(R)) is zero for k ≤ n− 2. If
you know about relative homotopy groups, also conclude that the following induced
map of homotopy groups is surjective,

πn−1(SLn+1(R))→ πn−1(SLn+1(R),SLn(R)).

In fact, Bott periodicity states that in this “stable range”, the homotopy groups
πk(SL(R)) are periodic in k with period 8,

πk(SL(R)) =

 {0}, k ≡ 2, 4, 5, 6 ( mod 8),
Z/2Z, k ≡ 0, 1 ( mod 8),
Z, k ≡ 3, 7 ( mod 8)

(c) If you know the Hurewicz theorem, use the previous part to conclude that the
relative homology groups Hk(SLn+1(R),SLn(R);Z) are zero for k ≤ n− 2 and the
following map of homology groups is surjective,

Hn−1(SLn+1(R);Z)→ Hn−1(SLn+1(R),SLn(R);Z).

Use the long exact sequence of relative homology to conclude that the pushforward
maps

Hk(SLn(R);Z)→ Hk(SLn+1(R);Z)

are isomorphisms for every k ≤ n− 2.

(d) For n = 2, conclude that SL2(R) has the homotopy type of a circle. Thus,
π1SL2(R) equals Z, and all higher homotopy groups are zero. Similarly, when n = 3,
compute that π2(R3 \ {0})→ π1(SL2(R)) is nonzero. Conclude that π1(SL3(R)) is

8

http://www.math.stonybrook.edu/~jstarr/M552s22/index.html
mailto:jstarr@math.stonybrook.edu


MAT 552 Lie Groups and Lie Algebras
Stony Brook University
Problem Set 1

Jason Starr
Spring 2022

a finite cyclic group (possibly zero) and π2(SL3(R)) is zero. In fact, π1(SL3(R)) is
cyclic of order 2 (see the next problem).

(e) For every n ≥ 4, conclude that π2(SLn(R)) is zero and π1(SLn(R)) is cyclic

of order 2. For the universal cover S̃Ln(R), use the Hurewicz theorem to conclude
that the homology groups Hr vanish for r = 1 and r = 2. Conclude that the
following Hurewicz map is an isomorphism,

π3(SLn(R))→ H3(SLn(R);Z).

(f) Repeat these parts for the field C. Conclude that for every k ≤ 2n− 1, both of
the following pushforward maps are isomorphisms,

πk(SLn(C))→ πk(SLn+1(C)), Hk(SLn(C))→ Hk(SLn+1(C)).

In fact, by Bott periodicity, in this stable range the homotopy groups are periodic
in k ≥ 2 with period 2,

πk(SL(C)) =

{
{0}, k ≡ 0 ( mod 2),
Z, k ≡ 1 ( mod 2)

Explicitly compute that SL2(C) has the homotopy of the 3-sphere S3. For every
n ≥ 2, prove that π1(SLn(C)) and π2(SLn(C)) are zero and the following Hurewicz
map is an isomorphism,

π3(SLn(C))→ H3(SLn(C);Z).

(g) If you know about Leray spectral sequences, write the Leray spectral sequence
in homology or cohomology associated to the fibration SLn+1(C)→ Cn+1 \ {0} ∼
S2n+1. Since the homology of S2n+1 is concentrated in just 2 degrees, and since
the sum of the Betti numbers for SLn+1(C) equals 2n, which is 2 times the sum
for SLn(C), conclude that the spectral sequence degenerates (all differentials are
zero). Thus, there is an isomorphism,

H∗(SLn+1(C);Z) ∼= H∗(SLn(C);Z)⊗Z H
∗(S2n+1;Z).

By induction, conclude that

H∗(SLn+1(C);Z) ∼= H∗(S3;Z)⊗Z H
∗(S5;Z)⊗Z · · · ⊗Z H

∗(S2n+1;Z).

Thus, by Hopf’s theorem, the degrees 1 + di for the fundamental invariants of
SLn+1(C) are 2, 3, . . . , n, n+ 1, i.e., (d1, . . . , dn) = (1, 2, . . . , n− 1, n).

Problem 6 (Gram-Schmidt and retractions to maximal compact sub-
groups.) For a (positive definite) real inner product space (VR, 〈•, •〉R), resp. for a
(positive definite) complex Hermitian inner product space (VC, 〈•, •〉C), review the
statement of the Gram-Schmidt theorem.

(a) In the two respective cases, inside the Borel subgroup BR ⊂ GL(VR), resp.
inside the Borel subgroup BC ⊂ GL(VC), define B+ to be the closed real Lie
subgroup of upper triangular matrices that have only positive entries on the main
diagonal. Define SB+ to be the intersection of B+ with the special linear group,
i.e., the subset of B+ of elements with determinant equal to 1. In the respective
cases, interpret Gram-Schmidt as saying that the following multiplication map is a
diffeomorphism,

O(VR, 〈•, •〉R)×B+ → GL(VR),

SO(VR, 〈•, •〉R)× SB+ → SL(VR),
9
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U(VC, 〈•, •〉C)×B+ → GL(VC),

SU(VC, 〈•, •〉C)× SB+ → SL(VC).

(b) Show that B+ and SB+ are contractible. Conclude that the diffeomorphisms
above define retractions of GLn(R) to the (compact) orthogonal group O(n,R),
of SLn(R) to the (compact) special orthogonal group SO(n,R), of GLn(C) to the
(compact) unitary group U(n,R), and of SLn(C) to the (compact) special unitary
group SU(n,R). Combine this with the previous exercise to write down the low
degree homotopy groups and homology groups of SU(n,R).

(c) Finally, modify the argument from lecture to prove that the conjugation action
of PSU(2,R) = SU(2,R)/µ2 · Id2×2 on the Lie algebra su(2,R) with its (minus)
determinant inner product defines an isomorphism SU(2,R)/µ2 → SO(3,R). From
this, conclude that π1SO(3,R) is cyclic of order 2, and thus also π1SL2(R) is cyclic
of order 2. This completes the missing step of the previous exercise. Use this
to complete the computation of the low degree homotopy and homology groups
of the real Lie groups SLn(R). Via the Gram-Schmidt retractions, also complete
the computation of the low degree homotopy and homology groups of the real Lie
groups SO(n,R).

(d) Read through Exercises 2.14 – 2.16 from the textbook. This explains the
modifications of the above necessary to compute the low degree homotopy groups
and homology groups of the symplectic groups Sp2n(C) and their real compact
forms, Sp(2n,R). Show that all of these have vanishing π1, π2, H1 and H2. Thus,
the Hurewicz map from π3 to H3 is an isomorphism.

Problem 7 (Triviality of the second homotopy group of a connected Lie
group.) Read through the following, and work out the details for one or two
connected Lie groups. If you are not comfortable with higher homotopy groups,
consider only the case that G is simply connected. In this case, by the Hurewicz
theorem, π2 equals the homology group H2.

All of the connected Lie groups in the previous examples had vanishing π2. In
fact that is always true. One proof reduces to the case of a compact, connected
Lie group. Via the Abelianization homomorphism, every such Lie group surjects
onto a product of copies of the circle (which has vanishing π2), where the kernel
is a compact, connected Lie group with finite fundamental group. Using the long
exact sequence of a fibration, it suffices to prove the result for a compact, connected
Lie group with finite fundamental group. Up to passing to the (finite) universal
covering, it suffices to prove the result for compact, connected, simply connected
Lie groups.

The proof then uses the remarkable fact (proved by Borel) that every such Lie
group is the compact form of a connected, simply connected, semisimple, complex
Lie group G, which retracts onto the original Lie group. Thus the two Lie groups
are homotopy equivalent, and it suffices to prove that π2(G) is trivial.

For a Borel subgroup B of G (which Borel proved exists), the quotient complex
manifold G/B is a complex projective manifold as in the first problem. Since B is
homotopy equivalent to a product of circles, which has vanishing π2, the long exact
sequence gives

0→ π2(G)→ π2(G/B)→ π1(B).
10
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By the Hurewicz theorem, π2(G/B) equals H2(G/B), and this is a free Abelian
group by the Bruhat decomposition of the cellular homology of G/B.

Thus, the subgroup π2(G) of π2(G/B) is also a free Abelian group. By the Hurewicz
theorem again, also H2(G) equals π2(G), and this is a free Abelian group. The rank
of this group equals the Q-dimension of the Q-vector space H2(G;Q). By Hopf’s
theorem, the homologyH∗(G;Q) with its Pontryagin product is a connected, graded
commutative, Hopf Q-algebra that is isomorphic to a graded exterior algebra on
finitely many generators of odd degree. Since G is simply connected, H1(G;Q) is
zero. Thus, all generators are in odd degree ≥ 3. Therefore H2(G;Q) is zero.

Problem 8 (The third homotopy group of a connected, simply connected,
simple complex Lie group.) This exercise requires the use of spectral sequences.
Please read through this exercise, but only attempt if you are comfortable with
algebraic topology.

Let G be a connected, simply connected, simple complex Lie group. Let T ⊂ G be
a maximal torus. Let B ⊂ G be a Borel subgroup that contains T .

(a) Prove that the quotient holomorphic map

G/T → G/B

is a G-equivariant map of G-homogeneous complex manifolds. Conclude that the
map is a fiber bundle. Also, the fiber over the distinguished point B/B is the quo-
tient manifold B/T , which is isomorphic to a product of additive groups C. Thus,
the fibers are connected and contractible. Conclude that the quotient holomorphic
map is a homotopy equivalence. Thus, the homotopy, homology, and cohomology
of G/T equals the same for G/B. In particular, the Bruhat decomposition for G/B
describes the homology and cohomology of G/T .

(b) Since T has the homotopy type of a product of circles, all of its higher homotopy
groups are zero. Conclude that for every n ≥ 3, the following maps of homotopy
groups are isomorpisms,

πn(G)
∼=−→ πn(G/T ) = πn(G/B), n ≥ 3.

Of course we also have the sequence

0 = π2(G)→ π2(G/T )
∼=−→ π1(T )→ π1(G) = 0.

(c) Show that the conjugation action of the Weyl group W ⊂ NG(T ) on G sends
left T -cosets to left T -cosets. Conclude that there is an induced action of W on the
quotient manifold G/T such that the quotient map

q : G→ G/T

is W -equivariant. Thus, the induced maps of homotopy groups, homology groups,
and cohomology groups are W -equivariant. Moreover, the Leray spectral sequences
associated to q converging to the homology, resp. cohomology, of G are W -
equivariant.

(d) Since the conjugation action of W on G is the restriction of the conjugation
action of the entire group G on G, and since G is path connected, conclude that
every conjugation map of G to itself is homotopic to the identity map. Conclude
that the W -action on the homotopy groups, homology groups, and cohomology
groups of G are all trivial. Thus, the image of the homotopy groups, resp. homology
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groups, of G in the homotopy groups, resp. homology groups, of G/T are contained
in the W -invariant subgroup.

(e) Since T has the homotopy type of a product of circles, conclude that the
homology, resp. cohomology, of the linear complex torus T with its W -action is
an exterior algebra on its degree 1 part, which equals X∗(T ), resp. which equals
X∗(T ), with its natural W -action.

(f) Write down the low degree terms of the Leray spectral sequence associated
to q. Use the vanishing of H1(G;Z) and H2(G;Z) to conclude that the following
transgression map is a W -equivariant isomorphism,

H2(G/T ;Z)→ H1(T ;Z) = X∗(T ).

Using this, conclude that H3(G;Z) is the free Abelian group that is dual to the
kernel K of the cup product map

Sym2
ZX
∗(T )→ H4(G/T ;Z),

and K is W -invariant.

(g) From Borel’s theorem, conclude that K ⊗Q is the Q-span of the fundamental
invariant F1 of degree 2.

(h) If you know about Whitehead products, conclude that the pairing

[•, •] : π2(G/T )× π2(G/T )→ π3(G/T ) = π3(G)

equals the unique nonzero W -invariant symmetric, bilinear pairing on X∗(T ) =
π2(G), at least up to nonzero scaling. Since the Weyl group acts by isometries
of X∗(T ) ⊗ R with respect to this pairing that preserve all of the fundamental
invariants, conclude that we can recover the root system of (G,T ) from the data of
the cohomology algebra H∗(G/T ;Q). (If you know the Formality Theorem of
Deligne-Griffiths-Morgan-Sullivan, this gives a method for constructing the relevant
homotopy groups and Whitehead products directly from the cohomology algebra.)

Problem 9 (Lie algebra of SL2.) With the same notation as in Problem 4
of Problem Set 1, let h denote the derivative in h′2 at 1 of the cocharacter z 7→
ρ2,1(z) · (ρ2,2(z))−1. Compute explicitly the Lie brackets of the elements h, E1,2

and E2,1 in the Lie algebra sl2.

Problem 10(More about Borel’s theorem and Hopf’s theorem.) This prob-
lem is for those students who know about the Leray-Serre spectral sequence. Let G
be a connected Lie group and let R be a coefficient ring for cohomology such that
Hopf’s theorem holds, i.e., H∗(G;R) equals a free exterior algebra on generators
g1, . . . , gr in odd degrees 1 + 2d1 ≤ . . . 1 + 2dr. There is a CW complex BG (well
defined up to homotopy) and a principal G-bundle over BG,

πG : EG→ BG, µG : G× EG
∼=−→ EG×BG EG,

such that the total space EG of the principal G-bundle is a contractible CW com-
plex.

It follows from the long exact sequence thatBG is simply connected andH2(BG;Z) =
π2(BG) equals the Abelian group π1(G) = H1(G;Z). The Leray-Serre spectral se-
quence for πG is a second-page, cohomological spectral sequence,

Ep,q2 (πG) = Hp(BG;R)⊗R Hq(G;R)⇒ Hp+q(EG;R).
12
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This is a spectral sequence of graded H∗(BG;R)-algebras converging to the coho-
mology of the contractible space EG, i.e., converging to R concentrated in degree 0.

In particular, each element 1⊗ gi in E0,1+2di
2 must map to a nonzero divisor under

some differential of the spectral sequence. Chase through the spectral sequence to
conclude the following.

Theorem 0.7 (Borel). The differentials of the spectral sequence map 1 ⊗ gi to a

zero element until the differential d2+2di : E0,1+2di
2+2di

→ E2+2di,0
2+2di

, which maps to the

image of a nonzero element Fi⊗1 ∈ H2+2di(BG;R)⊗RR. The graded cohomology
R-algebra H∗(BG;R) is the free symmetric R-algebra on the elements F1, . . . , Fr
of degrees 2(1 + di), . . . , 2(1 + dr).

Now assume that G is a connected, simply connected, compact real Lie group,
and let T be a maximal torus isomorpic to a product of r copies of the circle
U(1). The inclusion iG,T : T ⊂ G induces a continuous map of CW complexes,
BiG,T : BT → BG, well-defined up to homotopy, such that the pullback G-bundle
BT ×BG EG is G-equivariantly homotopy equivalent to G/T ,

πG,T : BT ×BG EG→ BT.

The action of the finite Weyl group W on T by conjugation induces an action of
W BT , further inducing an action of W on the cohomology. The pullback map on
cohomology associated to BiG,T lands in the Weyl-invariant R-submodule.

Since BT is an Eilenberg-MacLane space K(π1(T ), 2), the cohomology H∗(BT ;Z)
is equal as a graded Z-algebra to the free polynomial Z-algebra,

H∗(BT ;Z) ∼= Sym•Z(H2(BT ;Z)) = Sym•Z(X∗(T )),

where X∗(T ) equals the finite free Z-module of Lie group morphisms from T to
U(1). In particular, the graded R-algebra H∗(BT ;R) equals the graded R-algebra
of R-valued polynomial functions on the Lie algebra t of T ,

H∗(BT ;R) ∼= Sym•R(t∨).

In his 1950 ICM address, S.-S. Chern used Chern-Weil theory for principal G-
bundles over a manifold to introduce a de Rham theory of differential forms on BG,
defining a ring homomorphism from Sym•R(g∨)AdG to the de Rham cohomology of
BG, which is isomorphic as a graded R-algebra to H∗(BG;R). Since the restriction
from G to T induces an isomorphism,

Sym•R(g∨)AdG
∼=−→ Sym•R(t∨)W ⊂ Sym•R(t∨),

conclude that the pullback map H∗(BG;Q) → H∗(BT ;Q)W is surjective. Thus,
the image ofH∗(BG;Q) inH∗(BT ;Q) equals the graded Q-subalgebraH∗(BT ;Q)W

of W -invariant elements.

Use Chevalley-Shepherd-Todd to conclude that this Q-subalgebra is a polynomial
Q-algebra. Use the Leray-Serre Spectral sequence for πG,T to conclude Borel’s
Theorem when R equals Q, i.e., there is an isomorphism,

Sym•Q(X∗(T )⊗Q)/Sym>0
Q (X∗(T )⊗Q)W

∼=−→ H∗(G/T ;Q),

and the invariant ideal is a complete intersection ideal generated by homogeneous
elements F1, . . . , Fr of degrees 1 + d1, . . . , 1 + dr. Moreover, as a W -representation,
this is isomorphic to the Q-group algebra of W .
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Since the fiber product BT×BGEG is G-equivariantly homotopic to G/T , conclude
that there is a Leray-Serre Spectral Sequence associated to the morphism BT →
BG,

Ep,q2 = Hp(BG;Q)⊗R Hq(G/T ;Q)⇒ Hp+q(BT ;Q).

Show that this is equivariant for the W -action on H∗(G/T ;Q) and the W -action on
H∗(BT ;Q). Thus, there is an induced spectral sequence ofW -invariantH∗(BG;Q)-
algebras. Since H∗(G/T ;Q) is isomorphic as a W -representation to the group Q-
algebra of W , the W -invariants is simply H0(G/T ;Q) = Q. Conclude that the
induced spectral sequence of W -invariants degenerates to an isomorphism,

H∗(BG;Q)→ H∗(BT ;Q)W .

In fact, Borel proves this without inverting all integers to get Q.

Corollary 0.8 (Borel). For a coefficient ring R such that H∗(G;R) is a free ex-
terior algebra, the pullback map H∗(BG;R)→ H∗(BT ;R)W is an isomorphism of
graded R-algebras.

In particular, when R equals R, the field of real numbers, this gives the following.

Corollary 0.9. In the special case of the coefficient ring R, there is a canonical
isomorphism of H∗(BG;R) with the R-subalgebra Sym•R(g∨)AdG of AdG-invariant
R-valued polynomials on the Lie algebra g, and the pullback map H∗(BG;R) →
H∗(BT ;R) is canonically the restriction map of polynomials,

Sym•R(g∨)AdG
∼=−→ Sym•R(t∨)W ⊂ Sym•R(t∨).

In his 1950 ICM address, S.-S. Chern gives an interpretation of this via Chern-Weil
theory, where he introduces an R-algebra map to the de Rham cohomology of BG,
essentially the inverse isomorphism of the map above,

Sym•R(g∨)AdG → H∗(BG;R).
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