MAT 552 PROBLEM SET 1

Problem 0. (Lie groups are Hausdorff.) Let (G, e, m, i) be a topological group, i.e., a group object in the category of pointed topological spaces, (G, e). Recall that a topological space is T_{1} if every pair of distinct points have (respective) open neighborhoods that exclude the other point.
(a) Let g be an element of G different from the identity element e. Let U_{g} be an open neighborhood of e that does not contain g. The inverse image of U_{g} under the following continuous map,

$$
f: G \times G \rightarrow G, \quad f(g, h)=g h^{-1},
$$

is an open subset of $G \times G$ that contains (e, e). Show that there exists an open neighborhood V_{g} of e such that the product open neighborhood $V_{g} \times V_{g}$ of (e, e) in $G \times G$ is contained in $f^{-1}(U)$.
(b) Prove that V_{g} and $g V_{g}$ are open neighborhoods of e and g respectively that are disjoint.
(c) For a pair (h, k) of distinct elements of G such that $h k^{-1}$ equals g, prove that $h V_{g}$ and $k V_{g}$ are open neighborhoods of h and k respectively that are disjoint. Conclude that every T_{1} topological space is Hausdorff.
(d) Every manifold (whether or not it is Hausdorff) is locally Hausdorff, since it has a neighborhood basis of open subsets that are each homeomorphic to an open subset of Euclidean space (hence Hausdorff). Conclude that every manifold is a T_{1} topological space. In particular, conclude that every Lie group is Hausdorff.
Problem 1. (Complex Lie group representations of the complex multiplicative group.) Recall that the complex multiplicative group $\mathbb{G}_{m}(\mathbb{C})$ is $\mathbb{C}^{\times}=$ $\mathbb{C} \backslash\{0\}$ as a multiplicative group.
For every finite Abelian group A, the Pontrjagin dual of A is

$$
\widehat{A}:=\operatorname{Hom}_{\operatorname{Group}}\left(A, \mathbb{G}_{m}(\mathbb{C})\right) .
$$

This is the same as the set of 1 -dimensional \mathbb{C}-linear representations of A with a specified basis via the rule that associates to every $\chi \in \widehat{A}$ the 1-dimensional \mathbb{C}-vector space and action,

$$
\mathbb{C}_{\chi}:=\mathbb{C}, \quad \forall a \in A, \quad a \bullet z:=\chi(a) z .
$$

(a) Define the identity element of the Pontrjagin dual to be the constant group homomorphism with image $1 \in \mathbb{G}_{m}(\mathbb{C})$. Prove that this corresponds to the trivial 1dimensional \mathbb{C}-linear representation of A. Also, for every pair of elements, $\chi, \chi^{\prime} \in \widehat{A}$, define the product by

$$
\left(\chi \cdot \chi^{\prime}\right)(a)=\chi(a) \chi^{\prime}(a), \quad \forall a \in A .
$$

Prove that this product is an element of \widehat{A} and corresponds to the 1-dimensional \mathbb{C}-linear representation,

$$
\mathbb{C}_{\chi \cdot \chi^{\prime}}=\underset{1}{\mathbb{C}_{\chi}} \otimes_{\mathbb{C}} \mathbb{C}_{\chi^{\prime}} .
$$

With these operations, prove that \widehat{A} is a finite Abelian group that is (non-canonically) isomorphic to A. Also, show that for elements $\chi, \chi^{\prime} \in \widehat{A}$, the set of $\mathbb{C}[A]$-module homomorphisms (i.e., A-equivariant, \mathbb{C}-linear maps) from \mathbb{C}_{χ} to $\mathbb{C}_{\chi^{\prime}}$ is the 1dimensional \mathbb{C}-vector space $\mathbb{C} \cdot I d$ if χ equals χ^{\prime}, and otherwise it is the zero vector space.
(b) For every finite dimensional, \mathbb{C}-linear representation of A,

$$
\rho: A \rightarrow \mathbf{G L}(V),
$$

for every $\chi \in \widehat{A}$, define $V_{\rho, \chi}$ to be the following subset of V,

$$
V_{\rho, \chi}:=\{v \in V \mid \forall a \in A, \rho(a) \bullet v=\chi(a) v\} \cong \operatorname{Hom}_{\mathbb{C}[A]-\bmod }\left(\mathbb{C}_{\chi},(V, \rho)\right)
$$

Prove that $V_{\rho, \chi}$ is a $\mathbb{C}[A]$-submodule of V. Prove that the following natural map is an isomorphism of $\mathbb{C}[A]$-modules,

$$
\bigoplus_{\chi \in \widehat{A}} V_{\rho, \chi} \rightarrow V .
$$

For every pair (V, ρ) and (W, σ) of finite dimensional $\mathbb{C}[A]$-modules, prove that these direct sum decompositions define a direct sum decomposition of \mathbb{C}-vector spaces,

$$
\begin{gathered}
\operatorname{Hom}_{\mathbb{C}[A]-\bmod }((V, \rho),(W, \sigma))=\bigoplus_{\chi \in \widehat{A}} \operatorname{Hom}_{\mathbb{C}-\bmod }\left(V_{\rho, \chi}, W_{\sigma, \chi}\right), \\
\left(V \otimes_{\mathbb{C}} W\right)_{\rho \otimes \sigma, \chi}=\bigoplus_{(\zeta, \eta) \in \widehat{A} \times \widehat{A}, \zeta \cdot \eta=\chi} V_{\rho, \zeta} \otimes_{\mathbb{C}} W_{\sigma, \eta}
\end{gathered}
$$

(c) For every positive integer n, define $\mu_{n} \subset \mathbb{G}_{m}(\mathbb{C})$ to be the finite subgroup of $n^{\text {th }}$ roots of unity. Prove that the inclusion of μ_{n} in $\mathbb{G}_{m}(\mathbb{C})$ is a cyclic generator for $\widehat{\mu}_{n}$. Via this canonical generator, show that $\widehat{\mu}_{n}$ is canonically isomorphic to $\mathbb{Z} / n \mathbb{Z}$.
(d) Show that the inclusion partial order on subgroups of $\mathbb{G}_{m}(\mathbb{C})$ restricts on the set of subgroups $\left\{\mu_{n} \mid n \in \mathbb{Z}_{\geq 1}\right\}$ as the divisibility partial order on $\mathbb{Z}_{\geq 1}$. Prove that for every inclusion $\mu_{\ell} \subseteq \mu_{n}$, the restriction map $\widehat{\mu}_{n} \rightarrow \widehat{\mu}_{\ell}$ is just reduction modulo ℓ,

$$
\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / \ell \mathbb{Z}, \quad \bar{a} \mapsto \bar{a}
$$

(e) Define $\mu_{\infty} \subset \mathbb{G}_{m}(\mathbb{C})$ to be the union over all $n \in \mathbb{Z}_{\geq 1}$ of μ_{n} as a subgroup. Give μ_{∞} the subspace topology induced as a subset of $\mathbb{G}_{m}(\mathbb{C})$ (with its usual Euclidean metric topological structure). Show that the group operations on μ_{∞} are continuous with respect to this topological structure. Show that every subgroup μ_{n} is a closed subgroup of μ_{∞} that is even compact.
(f) By restricting to closed subgroups μ_{n}, conclude that the continuous group homomorphisms from μ_{∞} to $\mathbb{G}_{m}(\mathbb{C})$ are precisely of the form,

$$
\chi_{d}: \mu_{\infty} \rightarrow \mathbb{G}_{m}(\mathbb{C}), \quad \chi_{d}(z)=z^{d}
$$

for integers $d \in \mathbb{Z}$. Thus, the continuous Pontrjagin dual of μ_{∞} is canonically isomorphic to \mathbb{Z}. Finally, show that for every continuous group homomorphism to the group of \mathbb{C}-automorphisms of a finite dimensional \mathbb{C}-vector space,

$$
\rho: \mu_{\infty}^{\rightarrow} \underset{2}{\mathbf{G L}}(V),
$$

the following subspaces define a direct sum decomposition of V as a \mathbb{C}-vector space with a continuous \mathbb{C}-linear action of μ_{∞},

$$
V_{\rho, d}:=\left\{v \in V \mid \forall z \in \mu_{\infty}, \rho(z) \bullet v=z^{d} v\right\}
$$

(g) For every holomorphic group homomorphism,

$$
\rho: \mathbb{G}_{m}(\mathbb{C}) \rightarrow \mathbf{G} \mathbf{L}(V),
$$

by restricting to the topological subgroup μ_{∞}, prove that the following subspaces for all $d \in \mathbb{Z}$ define a direct sum decomposition of V as a finite dimensional \mathbb{C}-vector space with a holomorphic \mathbb{C}-linear action of $\mathbb{G}_{m}(\mathbb{C})$,

$$
V_{\rho, d}:=\left\{v \in V \mid \forall z \in \mathbb{G}_{m}(\mathbb{C}), \rho(z) \bullet v=z^{d} v\right\}
$$

(h) By contrast, show that the following representation of the additive group $(\mathbb{C},+)$ is not semisimple,

$$
\begin{gathered}
\rho:(\mathbb{C},+) \rightarrow \mathbf{G L}_{2}(\mathbb{C}), \\
a \mapsto\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right] .
\end{gathered}
$$

Problem 2. (Linear complex tori in a general linear group.) Recall that a complex Lie group T is a linear complex torus (as opposed to a compact complex torus) if it is isomorphic as a complex Lie group to the r-fold product $\mathbb{G}_{m}(\mathbb{C})^{r}$ for some nonnegative integer r.
(a) Use the previous exercise to prove that the following two sets are dual finitely generated free Abelian groups (under value-wise multiplication),

$$
\begin{aligned}
X^{*}(T) & :=\operatorname{Hom}_{\mathbb{C}-\text { Lie Group }}\left(T, \mathbb{G}_{m}(\mathbb{C})\right) \\
X_{*}(T) & :=\operatorname{Zom}_{\mathbb{C} \text {-Lie Group }}\left(\mathbb{G}_{m}(\mathbb{C}), T\right)
\end{aligned} \mathbb{Z}^{r} .
$$

The duality pairing is the natural composition pairing

$$
X^{*}(T) \times X_{*}(T) \rightarrow \operatorname{Hom}_{\mathbb{C}-\text { Lie Group }}\left(\mathbb{G}_{m}(\mathbb{C}), \mathbb{G}_{m}(\mathbb{C})\right)=\mathbb{Z}, \quad(\chi, \rho) \mapsto \chi \circ \rho
$$

The first free Abelian group is the character lattice of T, and the second is the cocharacter lattice of T. By convention, the group operations on each are written additively (even through the group operation is value-wise multiplication).
(b) Prove that for every morphism of complex Lie groups,

$$
\rho: T \rightarrow \mathbf{G} \mathbf{L}(V)
$$

the following subspaces for all $\chi \in X^{*}(T)$ define a direct sum decomposition of V as a finite dimensional \mathbb{C}-vector space with a holomorphic \mathbb{C}-linear action of T,

$$
V_{\rho, \chi}:=\{v \in V \mid \forall z \in T, \quad \rho(z) \bullet v=\chi(z) v\} .
$$

(c) For every (V, ρ), for the finite subset of $X^{*}(T)$,

$$
\operatorname{Supp}(V, \rho):=\left\{\chi \in X^{*}(T) \mid \operatorname{dim}_{\mathbb{C}}\left(V_{\rho, \chi}\right)>0\right\}
$$

prove that the Abelian subgroup $\langle\operatorname{Supp}(V, \rho)\rangle$ of $X^{*}(T)$ generated by $\operatorname{Supp}(V, \rho)$ is a finitely generated free Abelian group. For every choice of \mathbb{Z}-module basis $\left(\chi_{1}, \ldots, \chi_{s}\right)$ of $\langle\operatorname{Supp}(V, \rho)\rangle$, prove that ρ factors as the composition of a submersive morphism of complex Lie groups,

$$
\begin{gathered}
\left(\chi_{1}, \ldots, \chi_{s}\right): T \rightarrow \mathbb{G}_{m}(\mathbb{C})^{s}, \\
3
\end{gathered}
$$

and an injective morphism of complex Lie groups,

$$
\rho^{\prime}: \mathbb{G}_{m}(\mathbb{C})^{s} \rightarrow \mathbf{G L}(V) .
$$

In particular, conclude that ρ is injective if and only if $\langle\operatorname{Supp}(V, \rho)\rangle$ equals $X^{*}(T)$. (d) For fixed V of dimension n, show that n equals the maximum possible dimension of the image $\rho(T)$ of an injective complex Lie group morphisms ρ from a linear complex torus to $\mathbf{G L}(V)$. For a linear complex torus T of dimension n, show that a complex Lie group morphism ρ from T to $\mathbf{G L}(V)$ is injective if and only if the finite set $\operatorname{Supp}(V, \rho)$ is a basis for $X^{*}(T)$ as a free \mathbb{Z}-module. The image of any such ρ is called a maximal torus in $\mathbf{G L}(V)$.
(e) Conclude that the set of maximal tori $\rho(T)$ in V is in natural bijection with the set of (unordered) direct sum decompositions of V into 1-dimensional \mathbb{C}-linear subspaces $\left(V_{\rho, \chi}\right)_{\chi \in \operatorname{Supp}(V, \rho)}$. In particular, conclude that any two maximal tori are conjugate by an element of $\mathbf{G L}(V)$.
(f) Finally, show that the normalizer $N(T)$ in $\mathbf{G L}(V)$ contains T as a normal subgroup (by definition) and the quotient group $W(T)$ is canonically isomorphic to the group of permutations of the n-element set $\operatorname{Supp}(V, \rho)$. For each choice of lifting of the (unordered) direct sum decomposition to an (unordered) \mathbb{C}-basis for V, there is an associated finite subgroup $\widetilde{W(T)}$ of $N(T)$ that is an extension of $W(T)$ by the 2 -torsion subgroup $T[2]$ of T : the subgroup generated by "almost permutation" matrices that transpose two vectors of the basis up to scaling by ± 1 and fix all other vectors of the basis. The subgroup $\widetilde{W(T)}$ depends on the unordered basis only up to simultaneous nonzero scaling of all basis vectors (an unordered basis up to such scaling is equivalent to a pinning).
(g) Returning to the factorization of a general morphism of complex Lie groups,

$$
\rho: T \rightarrow \mathbf{G} \mathbf{L}(V)
$$

as a composition of $\left(\chi_{1}, \ldots, \chi_{s}\right)$ and ρ^{\prime}, conclude that every torus $\rho(T)=\rho^{\prime}\left(\mathbb{G}_{m}(\mathbb{C})^{s}\right)$ is contained in a maximal torus.
Problem 3. (General Linear Groups, Special Linear Groups, Maximal Tori, and Lie Algebras.) Let $n \geq 1$ be an integer. Let V be the n-dimensional \mathbb{C} vector space \mathbb{C}^{n} with its standard ordered basis $\left(e_{1}, \ldots, e_{n}\right)$. Denote by Mat ${ }_{n \times n}(\mathbb{C})$ the \mathbb{C}-algebra of \mathbb{C}-linear endomorphisms of \mathbb{C}^{n}. Denote the determinant holomorphic map by

$$
\operatorname{det}_{n}: \operatorname{Mat}_{n \times n}(\mathbb{C}) \rightarrow \mathbb{C}, \quad \operatorname{det}_{n}\left(\left[a_{i, j}\right]\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} a_{i, \sigma(i)}
$$

Let $\mathbf{G L}_{n}(\mathbb{C}) \subset \operatorname{Mat}_{n \times n}(\mathbb{C})$ denote the dense open subset where det_{n} is nonzero.
(a) Use the properties of the determinant to prove that $\mathbf{G} \mathbf{L}_{n}(\mathbb{C})$ is a complex Lie group with group operation given by matrix multiplication and with identity element $\mathrm{Id}_{n \times n}$. Also prove that the restriction of the determinant map is a submersive morphism of complex Lie groups,

$$
\operatorname{det}_{n}: \mathbf{G L}_{n}(\mathbb{C}) \rightarrow \mathbb{G}_{m}(\mathbb{C}) .
$$

Let T_{n} denote the linear complex torus

$$
T_{n}=\mathbb{G}_{m}(\mathbb{C})^{n}=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid z_{1}, \ldots, z_{n} \in \mathbb{G}_{m}(\mathbb{C})\right\}
$$

Let ρ_{n} denote the following morphism of complex Lie groups,

$$
\rho_{n}: T_{n} \rightarrow \mathbf{G L}_{n}(\mathbb{C}), \quad \rho_{n}\left(z_{1}, \ldots, z_{n}\right) \cdot e_{i}=z_{i} e_{i}, \forall i=1, \ldots, n
$$

For every $i=1, \ldots, n$, denote by $\rho_{n, i}$ the restriction of ρ_{n} to the $i^{\text {th }}$ factor of T_{n},

$$
\rho_{n, i}: \mathbb{G}_{m}(\mathbb{C}) \rightarrow \mathbf{G L}_{n}(\mathbb{C}), \quad \rho_{n, i}\left(z_{i}\right) \cdot e_{j}=z_{i}^{\delta_{i, j}} e_{j}
$$

where $\delta_{i, j}$ is the usual Kronecker delta function: equal to 1 if $i=j$ and equal to 0 otherwise. For every $i=1, \ldots, n$, denote by $\chi_{n, i}$ the morphism of complex Lie groups,

$$
\chi_{n, i}: T_{n} \rightarrow \mathbb{G}_{m}(\mathbb{C}), \chi_{n, i}\left(z_{1}, \ldots, z_{n}\right)=z_{i}
$$

(b) Check that $\left(\chi_{n, 1}, \ldots, \chi_{n, n}\right)$ and $\left(\rho_{n, 1}, \ldots, \rho_{n, n}\right)$ are dual ordered bases of $X^{*}\left(T_{n}\right)$ and $X_{*}\left(T_{n}\right)$. Following standard convention, we write elements of these lattices additively, i.e.,

$$
\begin{gathered}
d_{1} \rho_{n, 1}+\cdots+d_{n} \rho_{n, n}: \mathbb{G}_{m}(\mathbb{C}) \rightarrow T_{n}, \quad z \mapsto \rho\left(z^{d_{1}}, \ldots, z^{d_{n}}\right), \\
e_{1} \chi_{n, 1}+\cdots+e_{n} \chi_{n, n}: T_{n} \rightarrow \mathbb{G}_{m}(\mathbb{C}), \quad\left(z_{1}, \ldots, z_{n}\right) \mapsto z_{1}^{e_{1}} \cdots z_{n}^{e_{n}} .
\end{gathered}
$$

Denote by $\mathbf{S L}_{n}(\mathbb{C})$ the kernel of det_{n} on $\mathbf{G L} \mathbf{L}_{n}(\mathbb{C})$. By convention, $\mathbf{S L}_{1}(\mathbb{C})$ is the group with just one element.
(c) Check that the intersection $T_{n}^{\prime}:=T_{n} \cap \mathbf{S L}_{n}(\mathbb{C})$ is the subtorus of T_{n} whose cocharacter sublattice $X_{*}\left(T_{n}^{\prime}\right)$ in $X_{*}\left(T_{n}\right)$ equals the span of all cocharacters $\rho_{n, i}-$ $\rho_{n, j}$ for $1 \leq i<j \leq n$. Also check that the restriction map of character lattices,

$$
X^{*}\left(T_{n}\right) \rightarrow X^{*}\left(T_{n}^{\prime}\right)
$$

is surjective with kernel equal to the span of the character $\chi_{n, 1}+\cdots+\chi_{n, n}$ (this character is the restriction of det_{n} to T_{n}).
(d) For every \mathbb{C}-vector space W, for every $w \in W$, the following flow gives a tangent vector field τ_{w} on W,

$$
\phi_{w}: \mathbb{C} \times W \rightarrow W, \quad \phi_{w}(t, v)=v+t w .
$$

Prove that the tangent vector fields τ_{w} for $w \in W$ give a trivialization of the tangent bundle of W identifying the \mathbb{C}-vector space W with the \mathbb{C}-tangent space of W at each point. In particular, the \mathbb{C}-tangent space of $\operatorname{Mat}_{n \times n}(\mathbb{C})$ at every point is identified with the \mathbb{C}-vector space $\operatorname{Mat}_{n \times n}(\mathbb{C})$. Thus, also the \mathbb{C}-tangent space at $\mathrm{Id}_{n \times n}$ of the open subset $\mathbf{G} \mathbf{L}_{n}(\mathbb{C})$ equals

$$
\mathfrak{g l}_{n}(\mathbb{C}):=\operatorname{Mat}_{n \times n}(\mathbb{C})
$$

(e) Check that the derivative of $\operatorname{det}_{n}\left(\operatorname{Id}_{n \times n}+t M\right)$ at $t=0$ equals the trace $\operatorname{tr}(M)$. Conclude that the \mathbb{C}-tangent space at $\operatorname{Id}_{n \times n}$ of $\mathbf{S L}_{n}(\mathbb{C})$, as a \mathbb{C}-linear subspace of $\mathfrak{g l}_{n}(\mathbb{C})$, equals

$$
\mathfrak{s l}_{n}(\mathbb{C}):=\left\{M \in \operatorname{Mat}_{n \times n}(\mathbb{C}): \operatorname{tr}(M)=0\right\} .
$$

Similarly, the \mathbb{C}-tangent space at $\operatorname{Id}_{n \times n}$ of T_{n} equals the \mathbb{C}-subspace \mathfrak{h}_{n} of all diagonal matrices in $\mathfrak{g l}_{n}(\mathbb{C})$. Finally, the \mathbb{C}-tangent space $\operatorname{Id}_{n \times n}$ of T_{n}^{\prime} equals the \mathbb{C}-subspace $\mathfrak{h}_{n}^{\prime}=\mathfrak{h}_{n} \cap \mathfrak{s l}_{n}(\mathbb{C})$.
Problem 4 (Centralizers and Root Data) For every $1 \leq i, j \leq n$, denote by $E_{i, j} \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ the matrix

$$
E_{i, j} \cdot e_{\ell}=\delta_{j, \ell} e_{i}
$$

Thus $\left(E_{i, j}\right)_{1 \leq i, j \leq n}$ is a \mathbb{C}-basis for $\operatorname{Mat}_{n \times n}(\mathbb{C})$. The conjugation action on a complex Lie group G by a complex Lie subgroup H is defined by

$$
c_{h}: G \rightarrow G, \quad c_{h}(t)=h g h^{-1}
$$

for every h in H. In particular, the conjugation action of $\mathbf{G L} \mathbf{L}_{n}(\mathbb{C})$ on $\mathbf{G} \mathbf{L}_{n}(\mathbb{C})$ is the restriction to the open subset $\mathbf{G L}_{n}(\mathbb{C})$ of a \mathbb{C}-linear action of $\mathbf{G L} \mathbf{L}_{n}(\mathbb{C})$ on the \mathbb{C}-vector space $\operatorname{Mat}_{n \times n}(\mathbb{C})$. Since this is \mathbb{C}-linear, the induced action on the \mathbb{C}-tangent space $\mathfrak{g l}_{n}(\mathbb{C})$ at $\operatorname{Id}_{n \times n}$ is the same \mathbb{C}-linear action. This induced action is the adjoint action.
(a) Compute that the span of $E_{i, j}$ is a \mathbb{C}-eigenspace for the adjoint action of $\rho\left(z_{1}, \ldots, z_{n}\right)$ with corresponding eigenvalue $z_{j}^{-1} z_{i}$, i.e., with character $\chi_{i}-\chi_{j}$ (written additively). Conclude that there is a direct sum decomposition of $\mathfrak{g l}_{n}(\mathbb{C})$ as an adjoint representation of T_{n},

$$
\mathfrak{g l}_{n}(\mathbb{C})=\mathfrak{h}_{n} \oplus \bigoplus_{1 \leq i<j \leq n} \mathbb{C} \cdot E_{i, j} \oplus \bigoplus_{1 \leq j<i \leq n} \mathbb{C} \cdot E_{i, j} .
$$

There is a corresponding direct sum decomposition of $\mathfrak{s l}_{n}(\mathbb{C})$ as an adjoint representation of T_{n}^{\prime},

$$
\mathfrak{s l}_{n}(\mathbb{C})=\mathfrak{h}_{n}^{\prime} \oplus \bigoplus_{1 \leq i<j \leq n} \mathbb{C} \cdot E_{i, j} \oplus \bigoplus_{1 \leq j<i \leq n} \mathbb{C} \cdot E_{i, j} .
$$

Thus, the nonzero characters of T_{n} that occur in the adjoint action on $\mathfrak{g l}_{n}(\mathbb{C})$ are $\chi_{n, i}-\chi_{n, j}$ and $\chi_{n, j}-\chi_{n, i}$ for $1 \leq i<j \leq n$, and the associated root spaces are $\mathbb{C} \cdot E_{i, j}$ and $\mathbb{C} \cdot E_{j, i}$. Similarly, the nonzero characters of T_{n}^{\prime} that occur in the adjoint action of T_{n}^{\prime} on $\mathfrak{s l}_{n}(\mathbb{C})$ are $\bar{\chi}_{n, i}-\bar{\chi}_{n, j}$ and $\bar{\chi}_{n, j}-\bar{\chi}_{n, i}$ for $1 \leq i<j \leq n$.
(b) Check that the \mathbb{C}-subspace of $\operatorname{Mat}_{n \times n}(\mathbb{C})$ of elements centralized by $\rho\left(z_{1}, \ldots, z_{n}\right)$ is a direct sum of $\mathbb{C} \cdot E_{i, j}$ for every $1 \leq i, j \leq n$ such that z_{i} equals z_{j}. In particular, the center of $\mathbf{G L} \mathbf{L}_{n}(\mathbb{C})$ equals $\mathbb{G}_{m}(\mathbb{C}) \cdot \operatorname{Id}_{n \times n}$, i.e., the image of the cocharacter $\rho_{n, 1}+\cdots+\rho_{n, n}$. Also, the centralizer of $\rho\left(z_{1}, \ldots, z_{n}\right)$ always contains the subset of diagonal matrices.
(c) For a nonzero character α of T_{n}, for the kernel $T_{n, \alpha}:=\operatorname{Ker}(\alpha) \subset T_{n}$, check that the simultaneous centralizer of $T_{n, \alpha}$ in $\operatorname{Mat}_{n \times n}(\mathbb{C})$ is strictly larger than the subset of diagonal matrices if and only if α equals $\chi_{n, i}-\chi_{n, j}$ or $\chi_{n, j}-\chi_{n, i}$ for some $1 \leq i<j \leq n$. In this case, the intersection of the centralizer with $\mathbf{G L}_{n}(\mathbb{C})$ is denoted $\mathbf{G L}_{n}(\mathbb{C})_{\alpha}$. For the commutator subgroup \mathcal{D}_{α} of $\mathbf{G L}_{n}(\mathbb{C})_{\alpha}$, check that $\mathbf{G L}_{n}(\mathbb{C})_{\alpha}$ equals $T_{n, \alpha} \cdot \mathcal{D}_{\alpha}$. Also check that \mathcal{D}_{α} equals the image of a submersive morphism of complex Lie groups,

$$
f_{n, \alpha}: \mathbf{S L}_{2}(\mathbb{C}) \rightarrow \mathcal{D}_{\alpha},
$$

that is uniquely determined by the requirement that the composition $f_{n, \alpha} \circ\left(\rho_{2,1}-\right.$ $\rho_{2,2}$) is a cocharacter α^{\vee} of T_{n} with $\left\langle\alpha, \alpha^{\vee}\right\rangle$ positive. Check that the pairing $\left\langle\alpha, \alpha^{\vee}\right\rangle$ equals 2 .
A character $\alpha \in X^{*}\left(T_{n}\right)$ as above is a root of $\left(\mathbf{G L}_{n}(\mathbb{C}), T_{n}\right)$, the cocharacter $\alpha^{\vee} \in X_{*}\left(T_{n}\right)$ is a coroot of $\left(\mathbf{G L}_{n}(\mathbb{C}), T_{n}\right)$, and the root group of α is the image

$$
U_{\alpha}:=f_{n, \alpha}\left(U_{+}\right)
$$

where $U_{+} \subset \mathbf{S L}_{2}(\mathbb{C})$ is the unipotent complex Lie subgroup of upper triangular unipotent matrices whose Lie algebra in $\mathfrak{s l}_{2}(\mathbb{C})$ is the root space for the unique root
with positive pairing against $\rho_{2,1}-\rho_{2,2}$. The set of all roots of $\left(\mathbf{G} \mathbf{L}_{n}(\mathbb{C}), T_{n}\right)$ is denoted $\Phi\left(\mathbf{G L}_{n}(\mathbb{C}), T_{n}\right) \subset X^{*}\left(T_{n}\right)$. The set of all coroots of $\left(\mathbf{G} \mathbf{L}_{n}(\mathbb{C}), T_{n}\right)$ is denoted $\Phi^{\vee}\left(\mathbf{G} \mathbf{L}_{n}(\mathbb{C}), T_{n}\right) \subset X_{*}\left(T_{n}\right)$. There is a natural bijection from $\Phi\left(\mathbf{G} \mathbf{L}_{n}(\mathbb{C}), T_{n}\right)$ to $\Phi^{\vee}\left(\mathbf{G} \mathbf{L}_{n}(\mathbb{C}), T_{n}\right)$ sending each root α to the coroot α^{\vee}.

A root datum is a 4-tuple $\left(X, R, X^{\vee}, R^{\vee}\right)$ of finitely generated free Abelian groups X and X^{\vee} and a perfect \mathbb{Z}-bilinear pairing,

$$
\langle\bullet, \bullet\rangle: X \times X^{\vee} \rightarrow \mathbb{Z}
$$

together with finite subsets $R \subset X \backslash\{0\}$ and $R^{\vee} \subset X^{\vee} \backslash\{0\}$ for which there exists a bijection,

$$
R \leftrightarrow R^{\vee}, \alpha \leftrightarrow \alpha^{\vee}
$$

satisfying the axioms
(i) $\forall \alpha \in R, \quad\left\langle\alpha, \alpha^{\vee}\right\rangle=2$,
(ii) $\forall \alpha \in R, s_{\alpha, \alpha^{\vee}}(R)=R$ and $s_{\alpha^{\vee}, \alpha}\left(R^{\vee}\right)=R^{\vee}$,
where the \mathbb{Z}-linear involutions $s_{\alpha, \alpha^{\vee}}$ and $s_{\alpha^{\vee}, \alpha}$ are defined as follows,

$$
\begin{gathered}
s_{\alpha, \alpha^{\vee}}: X \rightarrow X, \quad s_{\alpha, \alpha^{\vee}}(\beta)=\beta-\left\langle\beta, \alpha^{\vee}\right\rangle \alpha, \\
s_{\alpha^{\vee}, \alpha}: X^{\vee} \rightarrow X^{\vee}, \quad s_{\alpha^{\vee}, \alpha}\left(\beta^{\vee}\right)=\beta^{\vee}-\left\langle\alpha, \beta^{\vee}\right\rangle \alpha^{\vee} .
\end{gathered}
$$

The root datum is reduced if for every root $\alpha \in R$, the only \mathbb{Q}-multiples that are in R are $\pm \alpha$.
(d) Check that for $X=X^{*}\left(T_{n}\right)$, for $X^{\vee}=X_{*}\left(T_{n}\right)$, for $R=\Phi\left(\mathbf{G} \mathbf{L}_{n}(\mathbb{C}), T_{n}\right)$, and for $R^{\vee}=\Phi^{\vee}\left(\mathbf{G} \mathbf{L}_{n}(\mathbb{C}), T_{n}\right)$, the 4-tuple $\left(X, R, X^{\vee}, R^{\vee}\right)$ is a reduced root datum. Check that the subgroup of $\operatorname{Hom}_{\mathbb{Z}}(X, X)$ generated by the involutions $s_{\alpha, \alpha^{\vee}}$ is precisely the isomorphic image of $W\left(T_{n}\right)=N\left(T_{n}\right) / T_{n}$ for its \mathbb{Z}-linear action on $X^{*}\left(T_{n}\right)$ induced by the conjugation action of $N\left(T_{n}\right)$ on T_{n}. Check that the simultaneous kernel $X_{0} \subset X$ of all coroots is the span of the weight $\chi_{n, 1}+\cdots+\chi_{n, n}$ of det_{n} restricted to T_{n}. Check that the \mathbb{Z}-span Q of R together with X_{0} give a direct sum decomposition of a sublattice of X whose quotient is a finite cyclic group of order n. Check that the Pontrjagin dual of this finite cyclic group inside T_{n} is precisely the center $\mu_{n} \cdot \mathrm{Id}_{n \times n}$ of the commutator subgroup $\mathcal{D}\left(\mathbf{G} \mathbf{L}_{n}(\mathbb{C})\right)=\mathbf{S L}(\mathbb{C})$. The finite index sublattice $X_{0} \oplus Q$ corresponds to the character lattice of the image maximal torus $\left(\operatorname{det}_{n}, q_{n}\right)\left(T_{n}\right)$ in the quotient group

$$
\left(\operatorname{det}_{n}, q_{n}\right): \mathbf{G} \mathbf{L}_{n}(\mathbb{C}) \rightarrow \mathbb{G}_{m}(\mathbb{C}) \times \mathbf{P G L}_{n}(\mathbb{C})
$$

having kernel $\mu_{n} \cdot \mathrm{Id}_{n \times n}$. The span Q of R is the root lattice. Inside the \mathbb{Q}-span of Q in $X \otimes \mathbb{Q}$, the weight lattice is the finitely generated free Abelian group of elements that have integer pairing with R^{\vee}.
(e) Repeat the previous parts for the pair $\left(\mathbf{S L}_{n}(\mathbb{C}), T_{n}^{\prime}\right)$ to explicitly find the root datum of this pair.
(f) Define $\mathbf{P G L}_{n}(\mathbb{C})$ to be the quotient complex Lie group

$$
\mathbf{P G L} \mathbf{L}_{n}(\mathbb{C}):=\mathbf{G} \mathbf{L}_{n}(\mathbb{C}) / \mathbb{G}_{m}(\mathbb{C}) \cdot \operatorname{Id}_{n \times n}=\mathbf{S L}_{n}(\mathbb{C}) / \mu_{n} \cdot \operatorname{Id}_{n \times n}
$$

Define \bar{T}_{n} to be the image of T_{n} in $\mathbf{P G L} \mathbf{L}_{n}(\mathbb{C})$. Repeat the previous parts for the pair $\left(\mathbf{P G L}{ }_{n}(\mathbb{C}), \bar{T}_{n}\right)$ to find the root datum of this pair.

Problem 5 (Borel Subgroups, Positive Roots and Root Systems) Denote by $B_{n} \subset \mathbf{G} \mathbf{L}_{n}(\mathbb{C})$ the complex Lie subgroup of all upper triangular matrices. Thus
B_{n} contains T_{n} as a complex Lie subgroup. Similarly, denote by B_{n}^{\prime} the intersection $B_{n} \cap \mathbf{S L}_{n}(\mathbb{C})$. Finally, denote by \bar{B}_{n} the image of B_{n} in the quotient group $\mathbf{P G L} \mathbf{L}_{n}(\mathbb{C})=\mathbf{G L}_{n}(\mathbb{C}) / \mathbb{G}_{m}(\mathbb{C}) \cdot \operatorname{Id}_{n \times n}$.
(a) Use the Jordan canonical form to prove that B_{n} is a maximal connected solvable subgroup of $\mathbf{G L}_{n}(\mathbb{C})$ containing T_{n}. Prove that every other maximal connected solvable subgroup of $\mathbf{G L}_{n}(\mathbb{C})$ containing T_{n} is of the form

$$
B_{n,[w]}:=w B_{n} w^{-1}
$$

for a unique element $[w] \in W\left(T_{n}\right)$. These are the Borel subgroups of $\mathbf{G} \mathbf{L}_{n}(\mathbb{C})$ that contain T_{n}.
(b) For a specified triple $\left(\mathbf{G L}_{n}(\mathbb{C}), T_{n}, B_{n}\right)$, a root α is positive if the root group U_{α} is contained in B_{n}. Check that the positive roots are the roots $\chi_{n, i}-\chi_{n, j}$ with $1 \leq i<j \leq n$. In particular, for every root α, precisely one of α and $-\alpha$ is a positive root. Denote the set of positive roots by $\Phi\left(\mathbf{G L}_{n}(\mathbb{C}), T_{n}, B_{n}\right)^{+} \subset \Phi\left(\mathbf{G L}_{n}(\mathbb{C}), T_{n}\right)$. Check that the root groups U_{α} of the positive roots cumulatively generate the subgroup $U_{n} \subset B_{n}$ of all upper triangular unipotent matrices. This is a maximal connected normal complex Lie subgroup of B_{n} that is unipotent, the unipotent radical. The maximal torus T_{n} maps isomorphically to the quotient complex Lie $\operatorname{group} B_{n} / U_{n}$, i.e., T_{n} is a Levi factor of B_{n}.
(c) A positive root is a positive simple root if it is not a sum of two or more positive roots. Check that the positive simple roots of $\left(\mathbf{G} \mathbf{L}_{n}(\mathbb{C}), T_{n}, B_{n}\right)$ are precisely the positive roots $\chi_{n, i}-\chi_{n, i+1}$ for $1 \leq i<n$. The set of positive simple roots is denoted $\Delta\left(\mathbf{G L}_{n}(\mathbb{C}), T_{n}, B_{n}\right) \subset \Phi\left(\mathbf{G L}_{n}(\mathbb{C}), T_{n}, B_{n}\right)^{+}$.
(d) Check that the following symmetric \mathbb{R}-bilinear form on the \mathbb{R}-vector space $V:=X \otimes \mathbb{R} / X_{0} \otimes \mathbb{R}$ is positive definite and invariant under the action of the Weyl group $W\left(T_{n}\right)$,

$$
B_{R}(\bullet, \bullet): V \times V \rightarrow \mathbb{R}, \quad B_{R}\left(\beta, \beta^{\prime}\right)=\sum_{\alpha \in R}\left\langle\beta, \alpha^{\vee}\right\rangle\left\langle\beta^{\prime}, \alpha^{\vee}\right\rangle
$$

Up to $\mathbb{R}_{>0}^{\times}$-scaling, such a bilinear form is unique. Conclude that also B_{R} is a scaling of the inner product on V induced by the standard Euclidean inner product on $X^{*}\left(T_{n}\right)=\mathbb{Z}^{n}$ with its usual ordered basis as orthogonal basis.
For the root system arising from $\left(\mathbf{G L}_{n}(\mathbb{C}), T_{n}, B_{n}\right)$, the standard normalization of B_{R} is the scaling so that every root in V has inner product 2. The pair $\left(\left(V, B_{R}\right), R\right)$ of a finite dimensional, positive definite, real inner product space (V, B_{R}) and a finite subset $R \subset V \backslash\{0\}$ is a root system. This satisfies the following axioms.
(i) The finite subset R spans V as an \mathbb{R}-vector space.
(iii) For every $\alpha \in R$, the finite set R is preserved by reflection σ_{α} through the orthogonal complement of $\mathbb{R} \cdot \alpha$,

$$
\sigma_{\alpha}(\beta):=\beta-\frac{2 B_{R}(\beta, \alpha)}{B_{R}(\alpha, \alpha)} \alpha .
$$

(iv) For every pair of roots $\alpha, \beta \in R$, the real number $2 B_{R}(\alpha, \beta) / B_{R}(\alpha, \alpha)$ is an integer.

The root system is reduced if for every root $\alpha \in R$, the only \mathbb{R}-multiples of α in R are α and $-\alpha$. The root system is reducible if it is isomorphic to an orthogonal direct sum of nonzero root systems; otherwise it is irreducible. The Weyl group of the root system is the finite subgroup of \mathbb{R}-linear isometries of $\left(V, B_{R}\right)$ generated by the reflections σ_{α}. A partition $R=R^{+} \sqcup R^{-}$by real half-spaces is a set of positive roots if for every root α, precisely one of α or $-\alpha$ is in R^{+}. For a set of positive roots, the positive simple roots are those positive roots that cannot be written as a sum of two positive roots. The set of positive simple roots is denoted Δ.
For a root system with a set of positive roots $\left(\left(V, B_{R}\right), R, R^{+}\right)$the associated Dynkin diagram is the graph with vertex set equal to Δ where a pair of positive simple roots (α, β) with $B_{R}(\alpha, \alpha) \leq B_{R}(\beta, \beta)$ has no edge if α and β are orthogonal, they have a single undirected edge if the angle between them is $2 \pi / 3$, they have a double edge, directed from β to α (directed toward the short root) if the angle equals $3 \pi / 4$, and they have a triple edge, directed toward the short root, if the angle equals $5 \pi / 6$ (these are the only possible angles). The Dynkin diagram is connected if and only if the root system is irreducible.
(e) The common root system arising from $\left(\mathbf{G} \mathbf{L}_{n}(\mathbb{C}), T_{n}, B_{n}\right)$, from $\left(\mathbf{S L}_{n}(\mathbb{C}), T_{n}^{\prime}, B_{n}^{\prime}\right)$ and from $\left(\mathbf{P G L} \mathbf{L}_{n}(\mathbb{C}), \bar{T}_{n}, \bar{B}_{n}\right)$ is called the A_{n-1} root system. Check that the Weyl group of this root system is $W\left(T_{n}\right)$, a symmetric group on n elements. Also check that the Dynkin diagram is the one drawn in lecture.

Problem 6(Coset spaces for closed Lie subgroups are Hausdorff manifolds). This exercise gives a different proof of the theorem from lecture that does not explicitly use left-invariant metrics. Let (G, e, m, i) be a Lie group, and let H be a closed Lie subgroup. For the coset space, $q: G \rightarrow G / H$, give G / H the quotient topology, i.e., a subset of G / H is open if and only if the inverse image under q is an open subset of G.
(a) Show that also the product topological space $(G / H) \times(G / H)$ has the quotient topology for the product map, $q \times q: G \times G \rightarrow(G / H) \times(G / H)$.
(b) Prove that the inverse image under $q \times q$ of the diagonal copy of (G / H) in $(G / H) \times(G / H)$ is the image of $H \times G$ under the following homeomorphism of $G \times G$,

$$
\left(m, \mathrm{pr}_{2}\right): H \times G \rightarrow G \times G
$$

(c) Since H is a closed subset of G, conclude that $H \times G$ is a closed subset of $G \times G$, and hence the diagonal in $(G / H) \times(G / H)$ is a closed subset. Therefore $(G / H) \times(G / H)$ is Hausdorff.
(d) Later we will show that the tangent spaces to the H-cosets in G define an involutive distribution in the tangent bundle of G. By the previous result and the Frobenius Integrability Theorem, it follows that G / H is the leaf space, and it is a Hausdorff manifold such that q is a submersive C^{∞} map of C^{∞} manifolds. If H is a closed complex Lie group of a complex Lie group, then this is a holomorphic distribution, hence G / H is a complex manifold and q is a holomorphic submersion.

