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MAT 536 Problem Set 9

Homework Policy. Please read through all the problems. Please solve 5 of the problems. I will
be happy to discuss the solutions during office hours.

Problems.

Problem 0.(Commutation of Cohomology with Filtered Colimits) Let B be a cocomplete Abelian
category satisfying Grothendieck’s condition (AB5). Let I be a small filtering category. Let C● ∶
I → Ch●(B) be a functor.

(a) For every n ∈ Z, prove that the natural B-morphism,

colim
i∈I

Hn(C●(i))→Hn(colim
i∈I

C●(i)),

is an isomorphism. Prove that this extends to a natural isomorphism of cohomological δ-functors.
This is “commutation of cohomology with filtered colimits”.

(b) Let A be an Abelian category with enough injective objects. Let F ∶ I ×A → B be a bifuncto
such that for every object i of I, the functor Fi ∶ A → B is additive and left-exact. Prove that
F∞(−) ∶= colimi∈I Fi(−) also forms an additive functor that is left-exact. Also prove that the
natural map

colim
i∈I

Rn(Fi)→ Rn(F∞)

is an isomorphism. This is “commutation of right derived functors with filtered colimits”.

Problem 1.(The Topological Space of a Presheaf and an Alternative Description of Sheafification
for Sets) Let (X,τX) be a topological space. A space over X is a continuous map of topological
spaces, f ∶ (Y, τY ) → (X,τX). For spaces over X, f ∶ (Y, τY ) → (X,τX) and g ∶ (Z, τZ) → (X,τX), a
morphism of spaces over X from f to g is a continuous map u ∶ (Y, τY ) → (Z, τX) such that g ○ u
equals f .

(a)(The Category of Spaces over X) For every space over X, f ∶ (Y, τY ) → (X,τX), prove that
IdY ∶ (Y, τY ) → (Y, τY ) is a morphism from f to f . For spaces over X, f ∶ (Y, τY ) → (X,τX),
g ∶ (Z, τZ) → (X,τX) and h ∶ (W,τW ) → (X,τX), for every morphism from f to g, u ∶ (Y, τY ) →
(Z, τZ), and for every morphism from g to h, v ∶ (Z, τZ) → (W,τW ), prove that the composition
v ○ u ∶ (Y, τY )→ (W,τW ) is a morphism from f to h. Conclude that these notions form a category,
denoted Top(X,τX).
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(b)(The Sheaf of Sections) For every space over X, f ∶ (Y, τY ) → (X,τX), for every open U of τX ,
define Secf(U) to be the set of continuous functions s ∶ (U, τU) → (Y, τY ) such that f ○ s is the
inclusion morphism (U, τY ) → (X,τX). For every inclusion of τX-open subsets, U ⊇ V , for every s
in Secf(U), define s∣V to be the restriction of s to the open subset V . Prove that s∣V is an element
of Secf(V ). Prove that these rules define a functor

Secf ∶ τX → Sets.

Prove that this functor is a sheaf of sets on (X,τX).
(c)(The Sections Functor) For spaces over X, f(Y, τY ) → (X,τX) and g ∶ (Z, τZ) → (X,τX), for
every morphism from f to g, u ∶ (Y, τY )→ (Z, τZ), for every τX-open set U , for every s in Secf(U),
prove that u ○ s is an element of Secg(U). For every inclusion of τX-open sets, U ⊇ V , prove that
u ○ (s∣V ) equals (u ○ s)∣V . Conclude that these rules define a morphism of sheaves of sets,

Secu ∶ Secf → Secg.

Prove that SecIdY is the identity morphism of Secf . For spaces over X, f ∶ (Y, τY ) → (X,τX), g ∶
(Z, τZ)→ (X,τX) and h ∶ (W,τW )→ (X,τX), for every morphism from f to g, u ∶ (Y, τY )→ (Z, τZ),
and for every morphism from g to h, v ∶ (Z, τZ) → (W,τW ), prove that Secv○u equals Secv ○ Secu.
Conclude that these rules define a functor,

Sec ∶ Top(X,τX) → Sets − Sh(X,τX).

(d)(The Éspace Étalè) For every presheaf of sets over X, F , define EspF to be the set of pairs
(x,φx) of an element x of X and an element φx of the stalk Fx = colimx∈U F(U); such an element
is called a germ of F at x. Denote by

πF ∶ EspF →X,

the set map sending (x,φx) to x. For every open subset U of X and for every element φ of F(U),
define B(U,φ) ⊂ EspF to be the image of the morphism,

φ̃ ∶ U → EspF , x↦ φx.

Let (U,ψ) and (V,χ) be two such pairs. Let (x,φx) be an element of both B(U,ψ) and B(V,χ).
Prove that there exists an open subset W of U ∩V containing x such that ψ∣W equals χ∣W . Denote
this common restriction by φ ∈ F(W ). Conclude that (x,φx) is contained in B(W,φ), and this
is contained in B(U,ψ) ∩ B(V,χ). Conclude that the collection of all subset B(U,φ) of EspF is
a topological basis. Denote by τF the associated topology on EspF . Prove that τF is the finest
topology on EspF such that for every τX-open set U and for every φ ∈ F(U), the set map φ̃ is a
continuous map (U, τU)→ (EspF , τF). In particular, since every composition πF ○φ̃ is the continuous
inclusion of (U, τU) in (X,τX), conclude that every φ̃ is continuous for the topology π−1

F
(τX) on

EspF . Since τF refines this topology, prove that

πF ∶ (EspF , τF)→ (X,τX)
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is a continuous map, i.e., πF is a space over X.

(e)(The Éspace Functor) For every morphism of presheaves of sets over X, α ∶ F → G, for every
(x,φx) in EspF , define Espα(x,φx) to be (x,αx(φx)), where αx ∶ Fx → Gx is the induced morphism
of stalks. For every τX-open set U and every φ ∈ F(U), prove tht the composition Espα ○ φ̃ equals

α̃U(φ) as set maps U → EspG. By construction, α̃U(φ) is continuous for the topology τG. Conclude

that φ̃ is continuous for the topology (Espα)−1(τG) on EspF . Conclude that τF refines this topology,
and thus Espα is a continuous function,

Espα ∶ (EspF , τF)→ (EspG, τG).

Prove that EspIdF
equals the identity map on EspF . For morphisms of presheaves of sets over X,

α ∶ F → G and β ∶ G → H, prove that Espβ○α equals Espβ ○Espα. Conclude that these rules define
a functor,

Esp ∶ Sets −Presh(X,τX) → Top(X,τX).

(f)(The Adjointness Natural Transformations) For every presheaf of sets over X, F , for every τX-
open set U , for every φ ∈ F(U), prove that φ̃ is an element of SecπF (U). For every τX-open subset

U ⊇ V , prove that φ̃∣V equals φ̃∣V . Conclude that φ ↦ φ̃ is a morphism of presheaves of sets over
X,

θF ∶ F → Sec ○Esp(F).
For every morphism of presheaves of sets over X, α ∶ F → G, for every τX-open set U , for every
φ ∈ F(U), prove that Espα ○ θF ,U(φ) equals α̃U(φ), and this in turn equals θG,U ○αU(φ). Conclude
that Sec ○Esp(α) ○ θF equals θG ○ α. Therefore θ is a natural transformation of functors,

θ ∶ IdSets−Presh
(X,τX )

⇒ Sec ○Esp.

(g)(Alternative Description of Sheafification) Since Sec○Esp(F) is a sheaf, prove that there exists
a unique morphism

θ̃F ∶ Sh(F)→ Sec ○Esp(F)
factoring θF . For every element t ∈ Sec ○Esp(F)(U), a t-pair is a pair (U0, s0) of a τX-open subset
U ⊇ U0 and an element s0 ∈ F(U0) such that t−1(B(U0, s0)) equals U0. Define U to be the set of
t-pairs, and define ι ∶ U → τU to be the set map (U0, s0) ↦ U0. Prove that (U, ι ∶ U → τU) is an
open covering. For every pair of t-pairs, (U0, s0) and (U1, s1), for every x ∈ U0 ∩ U1, prove that
there exists a τX-open subset U0,1 ⊂ U0 ∩ U1 containing x such that s0∣U0,1 equals s1∣U0,1 . Prove

that this data gives rise to a section s ∈ Sh(F)(U) such that θ̃F(s) equals t. Conclude that θ̃ is
an epimorphism. On the other hand, for every r, s ∈ F(U), if θF ,x(rx) equals θF ,x(sx), prove that

r̃(x) equals s̃(x), i.e., rx equals sx. Conclude that every morphism θ̃x is a monomorphism, and
hence θ̃ is a monomorphism of sheaves. Thus, finally prove that θ̃F is an isomorphism of sheaves.
Conclude that θ̃ is a natural isomorphism of functors,

θ̃ ∶ Sh⇒ Sec ○Esp.
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(h) For every space over X, f ∶ (Y, τY )→ (X,τX), for every τX-open U , for every s ∈ Secf(U), and
for every x ∈ U , define a set map,

ηf,U,x ∶ Secf(U)→ Y, s↦ s(x).

Prove that for every τX-open subset U ⊇ V that contains x, ηf,V,x(s∣V ) equals ηf,U,x(s). Conclude
that the morphisms ηf,U,x factor through set maps,

ηf,x ∶ (Secf)x → Y, sx ↦ s(x).

Define a set map,
ηf ∶ EspSecf

→ Y, (x, sx)↦ ηf,x(sx).
Prove that ηf ○ s̃ equals s as set maps U → Y . Since s is continuous for τY , conclude that s̃ is
continuous for the inverse image topology (ηf)−1(τY ) on EspSecf

. Conclude that τSecf refines this
topology, and thus ηf is a continuous map,

ηf ∶ (EspSecf
, τSecf )→ (Y, τY ).

Also prove that f ○ ηf equals πSecf . Conclude that ηf is a morphism of spaces over X. Finally, for
spaces over X, f ∶ (Y, τY ) → (X,τX) and g ∶ (Z, τZ) → (X,τX), and for every morphism from f to
g, u ∶ (Y, τY )→ (Z, τZ), prove that u ○ ηf equals ηg ○Esp ○ Sec(u). Conclude that f ↦ ηf defines a
natural transformation of functors,

η ∶ Esp ○ Sec⇒ IdTop
(X,τX )

.

(i)(The Adjoint Pair) Prove that (Esp,Sec, θ, η) is an adjoint pair of functors.

Problem 2.(Alternative Description of Inverse Image) Let f ∶ (Y, τY ) → (X,τX) be a continuous
function of topological spaces. Since the category of topological spaces is a Cartesian category (by
Problem 2(e) on Problem Set 8), for every space over X, g ∶ (Z, τZ) → (X,τX), there is a fiber
product diagram in Top,

(Z, τZ) ×(X,τX) (Y, τY )
g∗fÐÐÐ→ (Z, τZ)

f∗g
×××Ö

×××Ö
g

(Y, τY ) ÐÐÐ→
f
(X,τX)

.

Denote the fiber product by f∗(Z, τZ).
(a) For spaces over X, g ∶ (Z, τZ) → (X,τX) and h ∶ (W,τW ) → (X,τX), for every morphism of
spaces over X, u ∶ (Z, τZ)→ (W,τW ), prove that there is a unique morphism of topological spaces,

f∗u ∶ f∗(Z, τZ)→ f∗(W,τW ),

such that f∗h ○ f∗u equals f∗g and h∗f ○ f∗u equals u ○ g∗f . Prove that f∗IdZ is the identity
morphism of f∗(Z, τZ). For spaces over X, g ∶ (Z, τZ) → (X,τX), h ∶ (W,τW ) → (X,τX) and
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i ∶ (M,τM) → (X,τX), for every morphism from g to h, u ∶ (Z, τZ) → (W,τW ), and for every
morphism from h to i, v ∶ (W,τW ) → (M,τM), prove that f∗(v ○ u) equals f∗v ○ f∗u. Conclude
that these rules define a functor,

f∗Sp ∶ Top(X,τX) → Top(Y,τY ).

Prove that this functor is contravariant in f . In particular, there is a composite functor,

f∗Sp ○Esp(X,τX) ∶ Sets − Sh(X,τX) → Top(Y,τY ).

(b) Consider the composite functor,

f∗ ○ Sec(Y,τY ) ∶ Top(Y,τY ) → Sets − Sh(Y,τY ) → Sets − Sh(X,τX).

Prove directly (without using the inverse image functor on sheaves) that (f∗Sp ○ Esp(X,τX), f∗ ○
Sec(Y,τY )) extends to an adjoint pair of functors. Use this to conclude that the composite Sec(Y,τY ) ○
f∗Sp ○Esp(X,τX) is naturally isomorphic to the inverse image functor on sheaves of sets.

Problem 3.(An Epimorphism of Sheaves that is not Epimorphic on Global Sections) Let R be
the usual real line with coordinate θ and with the Euclidean topology and standard structure of
differentiable manifold. Prove that translations of R by elements of Z are diffeomorphisms, and
conclude that there is a unique structure of differentiable manifold on the quotient, S1 = R/Z, such
that the quotient set map,

q ∶ R→ S1,

is a C∞ map that is a local diffeomorphism. Let A0
S1 be the presheaf of R-vector spaces that

associates to every open subset U the collection of all C∞ functions f ∶ U → R and with the usual
notion of restriction. Prove that A0

S1 is a sheaf of R-vector spaces. Let A1
S1 be the presheaf of

R-vector spaces that associates to every open subset U the collection of all C∞ differential 1-forms
on U with the usual notion of restriction, i.e., locally these differential forms are isomorphic to
f(θ)dθ for a C∞ function f(θ). Prove that A1

S1 is a sheaf of R-vector spaces. For every open set
U , for every C∞ function f ∶ U → R, prove that the differential df is an element of A1

S1(U). Prove
that

dU ∶ A0
S1(U)→ A1

S1(U),
is an R-linear transformation. For every open subset V ⊂ U , prove that dV (f ∣V ) equals (dU(f))∣V .
Conclude that these R-linear transformations define a morphism of sheaves of R-vector spaces,

d ∶ A0
S1 → A1

S1 .

Let U be an open subset of S1 such that there exists a s ∶ U → R of q over U . Prove that dU is
surjective. Conclude that d is an epimorphism in the category of sheaves of R-vector spaces on S1.
Prove that the differential 1-form dθ on R is invariant under translations by Z. Conclude that
there exists a unique differential 1-form α in A1

S1(S1) such that q∗α equals dθ. Prove that there
exists no f in A0

S1(S1) such that α equals df . Hint. Prove that, up to constant, the coordinate
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function θ is the unique C∞ function on R with dθ = q∗α. If there were f with df = α, conclude
that f ○ q = θ +C, and this is not invariant under translation by Z.

Problem 4.(Flasque Sheaves) Let (X,τX) be a topological space, and let C be a category. A
C-presheaf F on (X,τX) is flasque (or flabby) if for every inclusion of τX-open sets, U ⊇ V , the
restriction morphism AUV ∶ A(U)→ A(V ) is an epimorphism.

(a)(Pushforward Preserves Flasque Sheaves) For every continuous function f ∶ (X,τX) → (Y, τY ),
for every flasque C-presheaf F on (X,τX), prove that f∗F is a flasque C-presheaf on (Y, τY ).
(b)(Restriction to Opens Preserves Flasque Sheaves) For every τX-open subset U , for the continuous
inclusion i ∶ (U, τU) → (X,τX), for every flasque C-presheaf F on (X,τX), prove that i−1F is a
flasque C-presheaf. Also, for every C-sheaf F on (X,τX), prove that the presheaf inverse image
i−1F is already a sheaf, so that the sheaf inverse image agrees with the presheaf inverse image.

(c)(H1-Acyclicity of Flasque Sheaves) Let A be an Abelian category realized as a full subcategory
of the category of left R-modules (via the embedding theorem). Let

0 ÐÐÐ→ A′
qÐÐÐ→ A

pÐÐÐ→ A′′ ÐÐÐ→ 0

be a short exact sequence of A-sheaves on (X,τX). Let U be a τX-open set. Let t ∶ A′′(U)→ T be
a morphism in A such that t ○ p(U) is the zero morphism. Assume that A′ is flasque. Prove that
t is the zero morphism as follows. Let a′′ ∈ A′′(U) be any element. Let S be the set of pairs (V, a)
of a τX-open subset V ⊆ U and an element a ∈ A(V ) such that p(V )(a) equals a′′∣V . For elements
(V, a) and (Ṽ , ã) of S, define (V, a) ⪯ (Ṽ , ã) if V ⊆ V ′ and ã∣V equals a. Prove that this defines
a partial order on S. Use the sheaf axiom for A to prove that every totally ordered subset of S
has a least upper bound in S. Use Zorn’s Lemma to conclude that there exists a maximal element
(V, a) in S. For every x in U , since p is an epimorphism of sheaves, prove that there exists (W,b)
in S such that x ∈W . Conclude that on V ∩W , a∣V ∩W − b∣V ∩W is in the kernel of p(V ∩W ). Since
the sequence above is exact, prove that there exists unique a′ ∈ A′(V ∩W ) such that q(V ∩W )(a′)
equals a∣V ∩W − b∣V ∩W . Since A′ is flasque, prove that there exists a′W ∈ A′(W ) such that a′W ∣V ∩W
equals a′. Define aW = b + q(W )(a′W ). Prove that (W,aW ) is in S and a∣V ∩W equals aW ∣V ∩W . Use
the sheaf axiom for A once more to prove that there exists unique (V ∩W,aV ∩W ) in S with aV ∩W ∣V
equals a and aV ∩W ∣W equals aW . Since (V, a) is maximal, conclude that W ⊂ V , and thus x is in V .
Conclude that V equals U . Thus, a′′ equals p(U)(a). Conclude that t(a′′) equals 0, and thus t is
the zero morphism. (For a real challenge, modify this argument to avoid any use of the embedding
theorem.)

(d)(Hr-Acyclicity of Flasque Sheaves) Let C● = (Cq, dqC)q≥0 be a complex of A-sheaves on (X,τX).
Assume that every Cq is flasque. Let r ≥ 0 be an integer, and assume that the cohomology sheaves
hq(C●) are zero for q = 0, . . . , r. Use (c) and induction on r to prove that for the associated complex
in C,

C●(U) = (Cq(U), dqC(U))q≥0

also hq(C●(U)) is zero for q = 0, . . . , r.
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Problem 5.(Λ − Π-modules) Let (X,τX) be a topological space. Let Λ and Π be presheaves of
associative, unital rings on (X,τX). The most common case is to take both Λ and Π to be the
constant presheaf with values Z. Assume, for simplicity, that Λ(∅) and Π(∅) are the zero ring.
A presheaf of Λ −Π-bimodules on (X,τX) is a presheaf M of Abelian groups on (X,τX) together
with a structure of Λ(U)−Π(U)-bimodule on every Abelian group M(U) such that for every open
subset U ⊇ V , relative to the restriction homomorphisms of associative, unital rings,

ΛU
V ∶ Λ(U)→ Λ(V ), ΠU

V ∶ Π(U)→ Π(V ),

every restriction homomorphism of Abelian groups,

MU
V ∶M(U)→M(V ),

is a homomorphism of Λ(U) − Π(U)-bimodules. For presheaves of Λ − Π-bimodules on (X,τX),
M and N , a morphism of presheaves of Λ − Pi-bimodules is a morphism of presheaves of Abelian
groups α ∶M → N such that for every open U , the Abelian group homomorphism,

α(U) ∶M(U)→ N(U),

is a homomorphism of Λ(U) −Π(U)-bimodules.

(a)(The Category of Presheaves of Λ − Π-Bimodules) Prove that these notions form a category
Λ − Π − Presh(X,τX). Prove that this is an Abelian category that satisfies Grothendieck’s axioms
(AB1), (AB2), (AB3), (AB3*), (AB4) and (AB5).

(b)(Discontinuous Λ−Π-Bimodules) A discontinuous Λ−Π-bimodule is a specification K for every
nonempty τX-open U of a Λ(U)−Π(U)-bimodule K(U), but without any specification of restriction
morphisms. For discontinuous Λ − Π-bimodules K and L, a morphism of discontinuous Λ − Π-
bimodules α ∶ K → L is a specification for every nonempty τX-open U of a homomorphism α(U) ∶
K(U) → L(U) of Λ(U) − Π(U)-bimodules. Prove that with these notions, there is a category
Λ − Π − Disc(X,τX) of discontinuous Λ − Π-bimodules. Prove that this is an Abelian category that
satisfies Grothendieck’s axioms (AB1), (AB2), (AB3), (AB3*), (AB4), (AB4*) and (AB5).

(c)(The Presheaf Associated to a Discontinuous Λ −Π-Bimodule) For every discontinuous Λ −Π-
bimodule K, for every nonempty τX-open subset U , define

K̃(U) = ∏
W⊆U

K(W )

as a Λ(U)−Π(U)-bimodule, where the product is over nonempty open subsets W ⊆ U (in particular
also W = U is allowed), together with its natural projections πUW ∶ K̃(U) → K(W ). Also define

K̃(∅) to be a zero object. For every inclusion of τX-open subsets U ⊇ V , define

K̃U
V ∶ ∏

W⊆U

K(W )→ ∏
W⊆V

K(W ),
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to be the unique morphism of Λ(U)−Π(U)-bimodules such that for every W ⊂ V , πVW ○ K̃U
V equals

πUW . Prove that K̃ is a presheaf of Λ−Π-bimodules. For discontinuous Λ−Π-bimodules K and L,
for every morphism of discontinuous Λ −Π-bimodules, α ∶K → L, for every τX-open set U , define

α̃(U) ∶ ∏
W⊆U

K(W )→ ∏
W⊆U

L(W )

to be the unique morphism of Λ(U) − Π(U)-bimodules such that for every W ⊆ U , πUL,W ○ α̃(U)
equals πUK,W . Prove that α̃ is a morphism of presheaves of Λ − Π-bimodules. Prove that these
notions define a functor,

∗̃ ∶ Λ −Π −Disc(X,τX) → Λ −Π −Presh(X,τX).

Prove that this is an exact functor that preserves arbitrary limits and finite colimits.

(d)(The Čech Object of a Discontinuous Λ − Π-Bimodule is Acyclic) For every open covering
(U, ι ∶ U→ τU), define

τU = ⋃
U0∈U

τι(U0) = {W ∈ τU ∣∃U0 ∈ U,W ⊂ ι(U0)}.

For every discontinuous Λ −Π-bimodule K, define

K̃(U) ∶= ∏
W ∈τU

K(W )

together with its projections πW ∶ K̃(U)→K(W ). In particular, define

πUU ∶ K̃(U)→ K̃(U)

to be the unique Λ(U) −Π(U)-morphism such that for every W ∈ τU, πW ○ πUU equals πW .

For every nonempty W ∈ τU, define

UW ∶= {U0 ∈ U∣W ⊂ ι(U0)}.

Prove that
Čr(U, K̃) = ∏

(U0,...,Ur)∈Ur+1
∏

W⊆ι(U0,...,Ur)

K(W )

together with its projection π(U0,...,Ur;W ) ∶ Čr(U, K̃)→K(W ) for every nonempty W ⊂ ι(U0, . . . , Ur);
if ι(U0, . . . , Ur) is empty, the corresponding factor is a zero object. For every integer r ≥ 0, for every
i = 0, . . . , r + 1, prove that the morphism

∂ir ∶ Čr(U, K̃)→ Čr+1(U, K̃),

is the unique Λ(U)−Π(U)-morphism such that for every nonemptyW ∈ τU and for every (U0, . . . , Ur, Ur+1) ∈
(UW )r+2, πU0,...,Ur,Ur+1;W ○ ∂ir equals πU0,...,Ui−1,Ui+1,...,Ur+1;W . For every integer r ≥ 0 and for every
i = 0, . . . , r, prove that the morphism

σir+1 ∶ Čr+1(U, K̃)→ Čr(U, K̃),
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is the unique Λ(U)−Π(U)-morphism such that for every nonemptyW ∈ τU and for every (U0, . . . , Ur) ∈
(UW )r+1, πU0,...,Ur;W ○ σir+1 equals equals πU0,...,Ui−1,Ui,Ui,Ui+1,...,Ur+1;W . For every integer r ≥ 0, prove
that the morphism

gr
K̃,U

∶ K̃(U)→ Čr(U, K̃)

is the unique Λ(U)−Π(U)-morphism such that for every nonemptyW ∈ τU and for every (U0, . . . , Ur) ∈
(UW )r+1, πU0,...,Ur;W ○ gr equals πW .

For every nonempty W ∈ τU, for every r ≥ 0, define

Čr(U, K̃)W ∶= ∏
(U0,...,Ur)∈(UW )r+1

K(W ),

with its projections
πU0,...,Ur ∣W ∶ Čr(U, K̃)W →K(W ).

Define
πr−;W ∶ Čr(U, K̃)→ Čr(U, K̃)W

to be the unique Λ(U)−Π(U)-morphism such that for every (U0, . . . , Ur) ∈ (UW )r+1, πU0,...,Ur ∣W ○πr
−;W

equals πU0,...,Ur;W . For every integer r ≥ 0 and for every i = 0, . . . , r + 1, prove that there exists a
unique Λ(U) −Π(U)-morphism

∂ir ∶ Čr(U, K̃)W → Čr+1(U, K̃)W ,

such that ∂ir ○ πr−;W equals πr+1
−;W ○ ∂ir, and prove that for every (U0, . . . , Ur, Ur+1) ∈ (UW )r+2,

πU0,...,Ur,Ur+1∣W ○ ∂ir equals πU0,...,Ui−1,Ui+1,...,Ur+1∣W . For every integer r ≥ 0 and for every i = 0, . . . , r,
prove that there exists a unique Λ(U) −Π(U)-morphism

σir+1 ∶ Čr+1(U, K̃)W → Čr(U, K̃)W ,

such that σir+1○πr+1
−;W equals πr

−;W ○σir+1, and prove that for every (U0, . . . , Ur) ∈ (UW )r+1, πU0,...,Ur ∣W ○
σir+1 equals equals πU0,...,Ui−1,Ui,Ui,Ui+1,...,Ur+1∣W . For every integer r ≥ 0, prove that there exists a
unique Λ(U) −Π(U)-morphism

gr ∶K(W )→ Čr(U, K̃)W

such that πr
−;W ○ gr equals gr ○ πW , and prove that for every (U0, . . . , Ur) ∈ (UW )r+1, πU0,...,Ur ∣W ○ gr

equals IdK(W ). Conclude that

π●−;W ∶ Č●(U, K̃)→ Č●(U, K̃)W

is a morphism of cosimplicial Λ(U)−Π(U)-bimodules that is compatible with the coaugmentations
g●. Prove that these morphisms realize Č●(U, K̃) in the category S●Λ(U) − Π(U) − Bimod as a
product,

Č●(U, K̃) = ∏
W ∈τU

Č●(U, K̃)W .

9
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Using the Axiom of Choice, prove that there exists a set map

φ ∶ τU ∖ {∅}→ U

such that for every nonempty W ∈ τU, φ(W ) is an element in UW . For every integer r ≥ 0, define

Čr(φ, K̃)W ∶ Čr(U, K̃)W →K(W )

to be πφ(W ),...,φ(W )∣W . Prove that for every integer r ≥ 0 and for every i = 0, . . . , r+1, Čr+1(φ, K̃)W ○∂ir
equals Čr(φ, K̃)W . Prove that for every integer r ≥ 0 and for every i = 0, . . . , r, Čr(φ, K̃)W ○ σir+1

equals Čr+1(φ, K̃)W . Conclude that

Č●(φ, K̃)W → constK(W )

is a morphism of cosimplicial Λ(U) − Π(U)-bimodules. Prove that Č●(φ, K̃)W ○ g● equals the
identity morphism of constK(W ). For every nonempty W ∈ τU, for every integer r ≥ 0, for every
integer i = 0, . . . , r, define

giφ,r+1 ∶ Čr+1(U, K̃)W → Čr(U, K̃)W

to be the unique Λ(U)−Π(U)-morphism such that for every (U0, . . . , Ur) ∈ (UW )r+1, πU0,...,Ur ∣W ○giφ,r+1

equals πU0,...,Ui,φ(W ),...,φ(W )∣W . Prove the following identities (cosimplicial homotopy identities),

g0
φ,r+1 ○ ∂0

r = gr ○ Čr(φ, K̃)W , grφ,r+1 ○ ∂r+1
r = IdČr(U,K̃)W ,

gjφ,r+1 ○ ∂ir =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂ir−1 ○ g
j−1
φ,r , 0 ≤ i < j ≤ r,

gi−1
φ,r+1 ○ ∂ir, 0 < i = j ≤ r,
∂i−1
r−1 ○ g

j
φ,r, 1 ≤ j + 1 < i ≤ r + 1.

gjφ,r ○ σir+1 = {
σir ○ gj+1

φ,r+1, 0 ≤ i ≤ j ≤ r − 1,

σi−1
r ○ gjφ,r+1, 0 ≤ j < i ≤ r.

Conclude that g● and Č●(φ, K̃)W are homotopy equivalences between Č●(U, K̃)W and constK(W ).

Conclude that Č●(U, K̃) is homotopy equivalent to constK̃(U). In particular, prove that the associ-

ated cochain complex of Č●(U, K̃)W is acyclic with Ȟ0(U, K̃)W equal to K(W ). Similarly, prove
that the associated cochain complex of Č●(U, K̃) is acyclic with Ȟ0(U, K̃) equal to K(U).
(e)(The Forgetful Functor to Discontinuous Λ−Π-Bimodules; Preservation of Injectives) For every
presheaf M of Λ −Π-bimodules on (X,τX), define Φ(M) to be the discontinuous Λ −Π-bimodule
U ↦ M(U). For presheaves of Λ − Π-bimodules, M and N , for every morphism of presheaves of
Λ−Π-bimodules, α ∶M → N , define Φ(α) ∶ Φ(M)→ Φ(N) to be the assignment U ↦ α(U). Prove
that these rules define a functor

Φ ∶ Λ −Π −Presh(X,τX) → Λ −Π −Disc(X,τX).
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Prove that this is a faithful exact functor that preserves arbitrary limits and finite colimits. For
every presheaf M of Λ −Π-bimodules, for every τX-open U , define

θM,U ∶M(U)→ ∏
W⊆U

M(W )

to be the unique homomorphism of Λ(U) − Π(U)-bimodules such that for every τX-open subset
W ⊂ U , πUW ○θM,U equals MU

W . Prove that U ↦ θM,U is a morphism of presheaves of Λ−Π-bimodules,

θM ∶M → Φ̃(M).

For every morphism of presheaves of Λ−Π-bimodules, α ∶M → N , for every τX-open set U , prove
that Φ̃(α) ○ θM equals θN ○ α. Conclude that θ is a natural transformation of functors,

θ ∶ IdΛ−Π−Presh
(X,τX )

⇒ ∗̃ ○Φ.

For every discontinuous Λ −Π-bimodule K, for every τX-open U , define

ηK,U ∶ ∏
W⊆U

K(W )→K(U)

to be πUW . Prove that U ↦ ηK,U is a morphism of discontinuous Λ −Π-bimodules. For every pair
of discontinuous Λ−Π-bimodules, K and L, for every morphism of discontinuous Λ−Π-bimodules,
β ∶ K → L, prove that ηL ○ Φ(β̃) equals β ○ ηL. Conclude that η is a natural transformation of
functors,

η ∶ Φ ○ ∗̃⇒ IdΛ−Π−Disc
(X,τX )

.

Prove that (Φ, ∗̃, θ, η) is an adjoint pair of functors. Since Φ preserves monomorphisms, use
Problem 3(d), Problem Set 5 to prove that ∗̃ sends injective objects to injective objects. Since
the forgetful morphism from sheaves to presheaves preserves monomorphisms, prove that the
sheafification functor Sh sends injective objects to injective objects. Conclude that Sh ○ ∗̃ sends
injective objects to injective objects.

(f)(Enough Injectives) Recall from Problems 3 and 4 of Problem Set 5 that for every τX-open
set U , there are enough injective Λ(U) − Π(U)-bimodules. Using the Axiom of Choice, conclude
that Λ −Π −Disc(X,τX) has enough injective objects. In particular, for every presheaf M of Λ −Π-
bimodules, for every open set U , let there be given a monomorphism of Λ(U) −Π(U)-bimodules,

εU ∶M(U)→ I(U),

with I(U) an injective Λ(U) −Π(U)-bimodule. Conclude that Ĩ is an injective presheaf of Λ −Π-
bimodules, and the composition

M
θMÐ→ Φ̃(M) ε̃Ð→ Ĩ

is a monomorphism of presheaves of Λ −Π-bimodules. If M is a sheaf, conclude that Sh(Ĩ) is an
injective sheaf of Λ −Π-bimodules. Also, use (d) to prove that the composition

M
θMÐ→ Φ̃(M) ε̃Ð→ Ĩ

shÐ→ Sh(Ĩ)
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is a monomorphism of sheaves of Λ −Π-bimodules. (Hint: Since σx,U is a filtering small category,
use Problem 0 to reduce to the statement that for every open covering (U,U), the morphism
M(U)→ M̃(U) is a monomorphism. Realize this a part of the Sheaf Axiom for M .) Conclude that
both the category Λ−Π−Presh(X,τX) and Λ−Π−Sh(X,τX) have enough injective objects. In particular,
for an additive, left-exact functor F , resp. G, on the category of presheaves of Λ − Π-bimodules,
resp. the category of sheaves of Λ−Π-bimodules, there are right derived functors ((RnF )n, (δn)n),
resp. ((RnG)n, (δn)n). Finally, since ∗̃ is exact and sends injective objects to injective objects, use
the Grothendieck Spectral Sequence (or universality of the cohomological δ-functor) to prove that
(RnF ) ○ ∗̃ is Rn(F ○ ∗̃).
(g)(Enough Flasque Sheaves; Injectives are Flasque) Let K be a discontinuous Λ−Π-bimodule on
X. For every τX-open set U , prove that K̃(U)→ Sh(K̃)(U) is the colimit over all open coverings
U ⊂ τU (ordered by refinement as usual) of the morphism

πUU ∶ K̃(U)→ K̃(U).

In particular, since every morphism K̃(U)→ K̃(U) is surjective (by the Axiom of Choice), conclude
that also

sh(U) ∶ K̃(U)→ Sh(K̃)(U)
is surjective. Use this to prove that Sh(K̃) is a flasque sheaf.

For every injective Λ−Π-sheaf I, for the monomorphism θI ∶ I → Sh(Φ̃(I)), there exists a retraction

ρ ∶ Sh(Φ̃(I))→ I. Also Sh(Φ̃(I)) is flasque. Use this to prove that also I is flasque.

(h)(Sheaf Cohomology; Flasque Sheaves are Acyclic) For every τX-open set U , prove that the
functor

Γ(U,−) ∶ Λ −Π −Presh(X,τX) → Λ(U) −Π(U) −Bimod, M ↦M(U)
is an exact functor. Also prove that the functor

Γ(U,−) ∶ Λ −Π − Sh(X,τX) → Λ(U) −Π(U) −Bimod

is an additive, left-exact functor. Use (g) to conclude that every sheaf M of Λ−Π-modules admits
a resolution, ε ∶ M → I● by injective sheaves of Λ − Π-modules that are also flasque. Conclude
that Γ(U,−) extends to a universal cohomological δ-functor formed by the right derived functors,
((Hn(U,−))n, (δn)n). Finally, assume that M is flasque. Use Problem 4(d) to prove that I●(U) is
an acyclic complex of Λ(U) −Π(U)-bimodules. Conclude that for every flasque sheaf M of Λ −Π-
bimodules, for every n ≥ 0, Hn(U,M) is zero, i.e., flasque sheaves of Λ − Π-bimodules are acyclic
for the right derived functors of Γ(U,−).
(i)(Computation of Sheaf Cohomology via Flasque Resolutions; Canonical Resolutions; Indepen-
dence of Λ −Π) Use (h) and the hypercohomlogy spectral sequence to prove that for every sheaf
M of Λ − Π-bimodules, for every acyclic resolution εM ∶ M → M ● of M by sheaves of Λ − Π-
bimodules that are flasque, for every integer n ≥ 0, there is a canonical isomorphism of Hn(U,M)
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with hn(M ●(U)). In particular, the functor ⊤= Sh ○ ∗̃ ○ Φ, the natural transformation θ ∶ Id ⇒⊤,
and the natural transformation

Sh ○ ∗̃ ○ η ○Φ ∶⊤⊤⇒⊤,
form a triple on the category Λ −Π − Sh(X,τX). There is an associated cosimplicial functor,

L⊤ ∶ Λ −Π − Sh(X,τX) → S●Λ −Π − Sh(X,τX)

and a functorial coaugmentation,
θM ∶ const●M → L●⊤(M).

The associated (unnormalized) cochain complex of this cosimplicial object is an acyclic resolution
of M by flasque sheaves of Λ−Π-bimodules, and it is canonical, depending on no choices of injective
resolutions.

Finally, let Λ̂→ Λ and Π̂→ Π be morphisms of presheaves of associative, unital rings. This induces
a functor,

Λ −Π − Sh(X,τX) → Λ̂ − Π̂ − Sh(X,τX).

For every sheaf M of Λ−Π-bimodules, and for every acyclic resolution ε ∶M →M ● of M by flasque
sheaves of Λ − Π-bimodules, this is also an acyclic, flasque resolution of M with the associated
structure of sheaves of Λ̂− Π̂-bimodules. For the natural map of cohomological δ-functors from the
derived functors of Γ(U,−) on Λ−Π−Sh(X,τX) to the derived functors of Γ(U,−) on Λ̂−Π̂−Sh(X,τX),
prove that this natural map is a natural isomorphism of cohomological δ-functors. This justifies
the notation Hn(U,−) that makes no reference to the underlying presheaves Λ and Π, and yet is
naturally a functor to Λ(U) −Π(U) −Bimod whenever M is a sheaf of Λ −Π-bimodules.

Problem 6.(Flasque Sheaves are Čech-Acyclic) Let (X,τX) be a topological space. Let M be a
presheaf of Λ −Π-bimodules on (X,τX). Let U be a τX-open set. Let (U, ι ∶ U → τU) be an open
covering. For every τX-open subset V , define (V, ιV ∶ U → τV ) to be the open covering ιV (U0) =
V ∩ ι(U0). For simplicity, denote this by (V,UV ). For every integer r ≥ 0, define Č

r(U,M)(V ) to
be the Λ(V ) −Π(V )-bimodule Čr(UV ,M). Moreover, define

∂iV,r ∶ Č
r(U,M)(V )→ Č

r+1(U,M)(V ), σiV,r+1 ∶ Č
r+1(U,M)(V )→ Č

r(U,M)(V ),

to be the face and degeneracy maps on Č●(UV ,M). Finally, let ηrV ∶M(V )→ Č
r(U,M)(V ) be the

coadjunction of sections from Problem 5(e), Problem Set 8. For every inclusion of τX-open subsets
W ∩ V ∩U , the identity map IdU is a refinement of open coverings,

φVW ∶ (V, ιV ∶ U→ τV )→ (W, ιW ∶ U→ τW ).

By Problem 5(f) from Problem Set 8, Čr(φVW ,M) is an associated morphism of Λ(V ) − Π(V )-
bimodules, denoted

Č
r(U,M)VW ∶ Čr(U,M)(V )→ Č

r(U,M)(W ).
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(a)(The Presheaf of Čech Objects) Prove that the rules V ↦ Č
r(U,M)(V ) and Č

r(U,M)VW define

a presheaf Č
r(U,M) of Π − Λ-bimodules on U . Moreover, prove that the rules V ↦ ∂iV,r, resp.

V ↦ σiV,r+1, V ↦ ηrV , define morphisms of presheaves of Λ −Π-bimodules,

∂ir ∶ Č
r(U,M)→ Č

r+1(U,M), σir+1 ∶ Č
r+1(U,M)→ Č

r(U,M), ηr ∶M ∣U → Č
r(U,M).

Use Problem 5(f) from Problem Set 8 again to prove that these morphisms define a functor,

Č
● ∶ σ ×Λ −Π −Presh(X,τX) → S●Λ −Π −Presh(U,τU ),

compatible with cosimplicial homotopies for pairs of refinements and together with a natural trans-
formation of cosimplicial objects,

η● ∶ const●M ∣U → Č
●(U,M).

(b)(The Čech Resolution Preserves Sheaves and Flasques) For every (U0, . . . , Ur) in Ur+1, denote by
iU0,...,Ur ∶ (ι(U0, . . . , Ur), τι(U0,...,Ur)) → (U, τU) the continuous inclusion map. Prove that Č

r(U,M)
is isomorphic as a presheaf of Λ −Π-bimodules to

∏
(U0,...,Ur)

(ιU0,...,Ur)∗ι−1
U0,...,Ur

M.

Use Problem 4(a) and (b) to prove that Č
r(U,M) is a sheaf whenever M is a sheaf, and it is

flasque whenever M is flasque.

(c)(Localy Acyclicity of the Čech Resolution) Assume now that M is a sheaf. For every τX-open
subset V ⊂ U such that there exists ∗ ∈ U with V ⊂ ι(∗), conclude that (V,UV ) refines to (V,{V }).
Using Problem 5(h), Problem Set 8, prove that

η●V ∶ const●M(V ) → Č
●(U,M)(V )

is a homotopy equivalence. Conclude that for the cochain differential associated to this cosimplicial
object,

dr =
r

∑
i=0

(−1)i∂ir,

the coaugmentation
ηV ∶M(V )→ Č

●(U,M)(V )
is an acyclic resolution. Conclude that the coaugmentation of complexes of sheaves of Π − Λ-
bimodules,

η ∶M ∣U → Č
●(U,M)

is an acyclic resolution.
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Now assume that M is flasque. Prove that η is a flasque resolution of the flasque sheaf M ∣U . Using
Problem 5(i), prove that the cohomology of the complex of Λ(U) −Π(U)-bimodules,

Ȟn(U,M) ∶= hn(Č●(U,M), d●)

equals H●(U,M). Using Problem 5(h), prove that H0(U,M) equals M(U) and Hn(U,M) is zero
for every integer n > 0. Conclude that for every flasque sheaf M of Λ − Π-bimodules, for every
open covering (U,U), M(U)→ Ȟ0(U,M) is an isomorphism and Ȟn(U,M) is zero for every integer
n > 0.

Problem 7.(Čech Cohomology is a Derived Functor on Presheaves) Let (X,τX) be a topological
space. Let U be a τX-open set. Let (U, ι ∶ U → τU) be an open covering. For every presheaf
A of Λ − Π-bimodules, denote by Č●(U,A) the object in Ch≥0(Λ − Π − Bimod) associated to the
cosimplicial object.

(a)(Exactness of the Functor of Čech Complexes; The δ-Functor of Čech Cohomologies) Use Prob-
lem 5 of Problem Set 8 to prove that this is an additive functor

Č●(U,−) ∶ Λ −Π −Presh(X,τX) → Ch≥0(Λ −Π −Bimod).

Prove that for every short exact sequence of presheaves of Λ −Π-bimodules,

0 ÐÐÐ→ A′
qÐÐÐ→ A

pÐÐÐ→ A′′ ÐÐÐ→ 0,

the associated sequence of cochain complexes,

0 ÐÐÐ→ Č●(U,A′) Č●(U,q)ÐÐÐÐ→ Č●(U,A) Č●(U,p)ÐÐÐÐ→ Č●(U,A′′) ÐÐÐ→ 0,

is a short exact sequence. Use this to prove that the Čech cohomology functor Ȟ0(U,A) =
h0(Č●(U,A)) is an additive, left-exact functor, and the sequence of Čech cohomologies,

Ȟr(U,A) = hr(Č●(U,A)),

extend to a cohomological δ-functor from Λ −Π −Presh(X,τX) to Λ(U) −Π(U) −Bimod.

(b)(Effaceability of Čech Cohomology) For every presheaf A of Λ−Π-bimodules, use Problem 5(e)

and 5(f) to prove that θA ∶ A→ Φ̃(A) is a natural monomorphism of presheaves of Λ−Π-bimodules.

Use Problem 5(d) to prove that for every r ≥ 0, Ȟr(U, Φ̃(A)) is zero. Conclude that Ȟr(U,−) is
effaceable. Prove that the cohomological δ-functor ((Ȟr(U,A))r, (δr)r) is universal. Conclude that
the natural transformation of cohomological δ-functors from the right derived functor of Ȟ0(U,−)
to the Čech cohomology δ-functor is a natural isomorphism of cohomological δ-functors.

(c)(Hypotheses of the Grothendieck Spectral Sequence) Denote by

Ψ ∶ Λ −Π − Sh(X,τX) → Λ −Π −Presh(X,τX),
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the additive, fully faithful embedding (since we are already using Φ for the forgetful morphism to
discontinuous Λ − Π-bimodules). Recall from Problem 6(c) on Problem Set 8 that this extends
to an adjoint pair of functors (Sh,Φ). Recall the construction of Sh as a filtering colimit of
Čech cohomologies Ȟ0(U,−). Since Ȟ0(U,−) is left-exact, and since Λ − Π − Presh(X,τX) satisfies
Grothendieck’s condition (AB5), prove that Sh is left-exact. Use Problem 3(d), Problem Set 5
to prove that Ψ sends injective objects to injective objects. Use Problem 5(g) to prove that
every injective sheaf I of Λ − Π-bimodules is flasque. Use Problem 6(c) to prove that Ψ(I) is
acyclic for Ȟ●(U,−). Prove that the pair of functors Ψ and Ȟ0(U,−) satisfy the hypotheses for the
Grothendieck Spectral Sequence. Conclude that there is a convergent, first quadrant cohomological
spectral sequence,

IEp,q
2 = Ȟp(U,RqΨ(A))⇒Hp+q(U,A).

(d)(The Derived Functors of Ψ are the Presheaves of Sheaf Cohomologies) For every sheaf A of
Λ − Π-bimodules, for every integer r ≥ 0, for every τX-open set U , denote Hr(A)(U) the additive
functor Hr(U,A). In particular, H0(A)(U) is canonically isomorphic to A(U). Thus, for all τX-
open sets, V ⊂ U , there is a natural transformation

∗∣UV ∶ H0(−)(U)→ H0(−)(V ).

Use universality to prove that this uniquely extends to a morphism of cohomological δ-functors,

∗∣UV ∶ ((Hr(−)(U))r, (δr)r)→ ((Hr(−)(V ))r, (δr)r).

Prove that for all τX-open sets, W ⊂ V ⊂ U , both the composite morphism of cohomological
δ-functors,

∗∣VW ○ ∗∣UV ∶ ((Hr(−)(U))r, (δr)r)→ ((Hr(−)(V ))r, (δr)r)→ ((Hr(−)(W ))r, (δr)r),

and the morphism of cohomological δ-functors,

∗∣UW ∶ ((Hr(−)(U))r, (δr)r)→ ((Hr(−)(W ))r, (δr)r),

extend the functor ∗∣VW ○ ∗∣UV = ∗∣UW from H0(−)(U) to H0(−)(W ). Use the uniqueness in the uni-
versality to conclude that these two morphisms of cohomological δ-functors are equal. Prove that
((Hr(−))r, (δr)r) is a cohomological δ-functor from Λ − Π − Sh(X,τX) to Λ − Π − Presh(X,τX). Use
Problem 5(h) to prove that every flasque sheaf is acyclic for this cohomological δ-functor. Com-
bined with Problem 5(i), prove that the higher functors are effaceable, and thus this cohomological
δ-functor is universal. Conclude that this the canonical morphism of cohomological δ-functors from
the right derived functors of Ψ to this cohomological δ-functor is a natural isomorphism of cohomo-
logical δ-functors. In particular, combined with the last part, this gives a convergent, first quadrant
spectral sequence,

IEp,q
2 = Ȟp(U,Hq(A))⇒Hp+q(U,A).

This is the Čech-to-Sheaf Cohomology Spectral Sequence. In particular, conclude the existence of
monomorphic abutment maps,

Ȟr(U,A)→Hr(U,A).
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as well as abutment maps,
Hr(U,A)→H0(U,Hr(A)).

(e)(The Colimit of Čech Cohomology with Respect to Refinement) Since Čech complexes are
compatible with refinement, and the refinement maps are well-defined up to cosimplicial homotopy,
the induced refinement maps on Čech cohomology are independent of the choice of refinement. Use
this to define a directed system of Čech cohomologies. Denote the colimit of this direct system as
follows,

Ȟ●(U,−) = colim
U∈σx,U

Ȟ●(U,−).

Prove that this extends uniquely to a cohomological δ-functor such that for every open covering
(U,U), the induced sequence of natural transformations,

∗∣UU ∶ ((Ȟr(U,−))r, (δr)r)→ ((Ȟr(U,−))r, (δr)r),

is a natural transformation of cohomological δ-functors. Repeat the steps above to deduce the
existence of a unique convergent, first quadrant spectral sequence,

IEp,q
2 = Ȟp(U,Hq(A))⇒Hp+q(U,A),

such that for every open covering (U,U), the natural maps

∗∣UU ∶ Ȟp(U,Hq(A))→ Ȟp(U,Hq(A))

extend uniquely to a morphism of spectral sequences. In particular, conclude the existence of
monomorphic abutment maps

Ȟr(U,A)→Hr(U,A)
as well as abutment maps

Hr(U,A)→ Ȟ0(U,Hr(A)).
Use the first abutment maps to define subpresheaves Ȟr(A) of Hr(A) by V ↦ Ȟr(V,A).
(f)(Reduction of the Spectral Sequence; Ȟ1(U,A) equals H1(U,A)) For every r > 0, prove that the
associated sheaf of Hr(A) is a zero sheaf. (Hint. Prove the stalks are zero by using commutation of
sheaf cohomology with filtered colimits combined with exactness of the stalks functor.) Conclude
that Ȟ0(U,Hr(A)) is zero. In particular, conclude that the natural abutment map,

Ȟ1(U,A)→H1(U,A)

is an isomorphism. Thus, also Ȟ1(A) → H1(A) is an isomorphism. Use this to produce a “long
exact sequence of low degree terms” of the spectral sequence,

0→ Ȟ2(U,A)→H2(U,A)→ Ȟ1(U, Ȟ1(A)) δÐ→ Ȟ3(U,A).

(g)(Sheaves that Are Čech-Acyclic for “Enough” Covers are Acyclic for Sheaf Cohomology) Let
B ⊂ τX be a basis that is stable for finite intersection. For every open U in B, let CovU be a
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collection of open coverings of U by sets in B such that CovU is cofinal with respect to refinement
in σx,U . Let A be such that for every U in B, for every (U,U) in CovU , for every r ≥ 0, Ȟr(U,A) is
zero. Prove that Hr(U,A) is zero. Use the spectral sequence to inductively prove that for every
r ≥ 0, Hr(A)(U) is zero, Hr(U,A) is zero and Hr(A)(U) is zero. Conclude that for every open
covering (X, ι ∶V→ B), the Čech-to-Sheaf Cohomology Spectral Sequence relative to V degenerates
to isomorphisms

Ȟr(V,A)→Hr(X,A).

If you are an algebraic geometer, let (X,OX) be a separated scheme, let Λ = Π = OX , let B be the
basis of open affine subsets, let CovU be the collection of basic open affine coverings, and let A be
a quasi-coherent sheaf. Read the proof that for every basic open affine covering (U,U) of an affine
scheme, for every quasi-coherent sheaf A, Ȟr(U,A) is zero for all r ≥ 0 (this is essentially exactness
of the Koszul cochain complex for a regular sequence, combined with commutation with colimits).
Use this to conclude that quasi-coherent sheaves are acyclic for sheaf cohomology on any affine
scheme. Conclude that, on a separated scheme, for every quasi-coherent sheaf, sheaf cohomology
is computed as Čech cohomology of any open affine covering.

Problem 8.(The de Rham, Dolbeault and Hodge Theorems) Read about soft and fine sheaves.
In particular, read the proof that soft sheaves are acyclic on paracompact, Hausdorff topological
spaces. Read about partitions of unity. For every paracompact, Hausdorff, C∞ analytic space X,
let Λ = Π equals E0

R, resp. E0
C, the sheaf of C∞ functions to R, resp. C, with its standard real

analytic structure. Prove that this has partitions of unity, and hence is fine. Conclude that every
sheaf M of E0-modules is also fine.

(a)(de Rham’s Theorem) LetX be a C∞ manifold that is paracompact and Hausdorff (some authors
include paracompact and Hausdorff in the definition of manifold). For every integer n ≥ 0, define EnR,
resp. EnC, to be the sheaf of E0

R-modules, resp. E0
C-modules, whose sections on any open are the C∞

differential n-forms on that open set that are R-valued, resp. C-valued. Let dn ∶ En → En+1 be the
morphism of exterior differentiation. Prove that this defines a complex E●R in Ch≥0(R − Sh(X,τX)),
the de Rham complex, and likewise for E●C. The de Rham cohomology of X is defined to be the
cohomology of the associated complex of global sections,

Hn
dR(X,R) = hn(E●R(X), d●), resp. Hn

dR(X,C) = hn(E●C(X), d●).

Let ε ∶ RX → E0
R, resp. ε ∶ CX → E0

C be the inclusion of the locally constant functions. Read the proof
of the Poincaré Lemma. Prove that ε ∶ RX → E●R is an acyclic resolution of RX by sheaves that
are acyclic for sheaf cohomology, and similarly for ε ∶ CX → E●C. Prove that the hypercohomology
spectral sequence degenerates to isomorphisms,

Hn
dR(X,R)→Hn(X,RX), resp. Hn

dR(X,C)→Hn(X,CX).

This is the sheaf cohomology version of de Rham’s theorem.

(b)(The Dolbeault Theorem) Now let X be a paracompact, Hausdorff, complex manifold, and
let OX be the sheaf of holomorphic functions to C with its standard complex analytic structure.
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This is not a fine sheaf, but the sheaf associated to the underlying C∞ manifold structure, E0
C,

is fine. Now denote E0
C by E0,0. For every pair of integers, p, q ≥ 0, define Ep,q to be the sheaf

of E0,0-modules whose sections on each open are the C∞, C-valued differential forms that can
locally on opens U of an open covering be expressed as E0,0-linear combinations of differential
forms dz1 ∧ ⋅ ⋅ ⋅ ∧ dzp ∧ dzp+1 ∧ ⋅ ⋅ ⋅ ∧ dzp+q, for a local holomorphic coordinate chart,

(z1, . . . , zn) ∶ U → B1(0) ⊂ Cn.

Let ∂
p,q ∶ Ep,q → Ep,q+1 be the usual Dolbeault differential. Prove that this defines a complex

Ep,● in Ch≥0(C − Sh(X,τX)), the Dolbeault complex. The Dolbeault cohomology is defined to be the
cohomology of the associated complex of global sections,

Hp,q
Dol(X) ∶= hq(Ep,●, ∂

p,●).
For every p ≥ 0, define εp ∶ Ωp

X,hol → Ep,0 to be the sheaf of OX-modules whose sections on an open are
the p-forms that are locally OX-linear combinations of differentials of the form dz1∧⋅ ⋅ ⋅∧dzp. These
are the holomorphic p-forms. Read the proof of the ∂-Poincaré Lemma. Prove that εp ∶ Ωp

X,hol → Ep,●
is an acyclic resolution of Ωp

X,hol by sheaves that are acyclic for sheaf cohomology. Prove that the
hypercohomology spectral sequence degenerates to isomorphisms,

Hp,q
Dol(X)→Hq(X,Ωp

X,hol).
This is the Dolbeault theorem.

(c)(The Frölicher Spectral Sequence) Continuing the previous part, prove that the exterior differ-
ential,

dp ∶ Ep,0 → Ep+1
C ,

restricts on Ωp
X,hol to a differential

dp ∶ Ωp
X,hol → Ωp+1

X,hol.

Prove that this defines a complex Ω●
X,hol in Ch≥0(C−Sh(X,τX)), the holomorphic de Rham complex.

Prove that the coaugmentation ε0 ∶ CX → E0,0 factors through Ω0
X,hol = OX . Read the proof of the

holomorphic Poincaré Lemma. Prove that ε ∶ CX → Ω●
X,hol is an acyclic resolution. Prove that

this induces an isomorphism of hypercohomology groups (written in the inverse direction),

Hn(X,Ω●
X,hol)→Hn(X,CX).

The corresponding hypercohomology spectral sequence is the Frölicher spectral sequence or Hodge-
to-de Rham spectral sequence,

Ep,q
2 =Hq(X,Ωp

X,hol)⇒Hp+q(X,CX).
In those cases that the dimensions hn(X,CX) of Hn(X,CX) and hp,q(X) of Hq(X,Ωp

X,hol) are
finite, and also

hn(X,CX) = ∑
p+q=n

hp,q(X),

conclude that this spectral sequence degenerates. In particular, read the proof of the Hodge theorem
for compact Kähler manifolds.
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