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Homework Policy. Please read through all the problems. Please solve 5 of the problems. I will
be happy to discuss the solutions during office hours.

Problems.

Problem 0.(Commutation of Cohomology with Filtered Colimits) Let B be a cocomplete Abelian
category satisfying Grothendieck’s condition (AB5). Let I be a small filtering category. Let C* :
I - Ch*(B) be a functor.

(a) For every n € Z, prove that the natural B-morphism,
cohjm H™(C*(i)) — H”(cqlilm C* (1)),

is an isomorphism. Prove that this extends to a natural isomorphism of cohomological J-functors.
This is “commutation of cohomology with filtered colimits”.

(b) Let A be an Abelian category with enough injective objects. Let F': I x A — B be a bifuncto
such that for every object 7 of I, the functor F; : A — B is additive and left-exact. Prove that
Fo(=) = colim; F;(-) also forms an additive functor that is left-exact. Also prove that the
natural map

cqliImR”(Fl-) - R"(F)
1€
is an isomorphism. This is “commutation of right derived functors with filtered colimits”.

Problem 1.(The Topological Space of a Presheaf and an Alternative Description of Sheafification
for Sets) Let (X, 7x) be a topological space. A space over X is a continuous map of topological
spaces, f:(Y,7y) - (X, 7x). For spaces over X, f:(Y,7v) > (X,7x) and ¢g: (Z,77) > (X, 7x), a
morphism of spaces over X from f to g is a continuous map u : (Y, 7y) — (Z,7x) such that gowu
equals f.

(a)(The Category of Spaces over X) For every space over X, f : (Y,7y) — (X, 7x), prove that
Idy : (Y,7y) — (Y,7y) is a morphism from f to f. For spaces over X, f: (YV,7y) - (X,7x),
g:(Z,77) > (X,7x) and h: (W,ny) - (X, 7x), for every morphism from f to g, u: (Y,7y) -
(Z,72), and for every morphism from g to h, v : (Z,77) - (W, mw), prove that the composition
vou: (Y, 7y) = (W, my) is a morphism from f to h. Conclude that these notions form a category,
denoted Top x .-
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(b)(The Sheaf of Sections) For every space over X, f: (Y, 7y) = (X, 7x), for every open U of 7y,
define Secy(U) to be the set of continuous functions s : (U,7y) - (Y,7y) such that f o s is the
inclusion morphism (U, 7y) - (X, 7x). For every inclusion of Tx-open subsets, U 2 V, for every s
in Secs(U), define s|y to be the restriction of s to the open subset V. Prove that s|y is an element
of Secs(V'). Prove that these rules define a functor

Secy : Tx — Sets.

Prove that this functor is a sheaf of sets on (X, 7x).

(c)(The Sections Functor) For spaces over X, f(Y,7y) - (X,7x) and ¢ : (Z,77) - (X,7x), for
every morphism from f to g, u: (Y,7y) = (Z,72), for every 7x-open set U, for every s in Secs(U),
prove that wo s is an element of Sec,(U). For every inclusion of 7x-open sets, U 2 V, prove that
uo (s|ly) equals (uos)|y. Conclude that these rules define a morphism of sheaves of sets,

Sec, : Secy — Secy.

Prove that Secq, is the identity morphism of Secy. For spaces over X, f: (Y, 7y) - (X, 7x), ¢
(Z,77) = (X,7x) and h: (W, 7w ) - (X, 7x), for every morphism from f to g, u: (Y, 7yv) = (Z,72),
and for every morphism from g to h, v : (Z,77) - (W, 7w ), prove that Sec,., equals Sec, o Sec,,.
Conclude that these rules define a functor,

Sec: Top(y ;) = Sets — Sh(x ).

(d)(The Espace Etalé) For every presheaf of sets over X, F, define Esp, to be the set of pairs
(z,¢,) of an element = of X and an element ¢, of the stalk F, = colim,y F(U); such an element
is called a germ of F at x. Denote by

77 Espy - X,

the set map sending (x, ¢, ) to z. For every open subset U of X and for every element ¢ of F(U),
define B(U, ¢) c Espz to be the image of the morphism,

¢:U > Espy, x> ¢,

Let (U,v) and (V,x) be two such pairs. Let (z,¢,) be an element of both B(U, 1) and B(V, ).
Prove that there exists an open subset W of UnV containing = such that |y equals x|y. Denote
this common restriction by ¢ € F(W). Conclude that (z,¢,) is contained in B(W,¢), and this
is contained in B(U,v) n B(V,x). Conclude that the collection of all subset B(U, ¢) of Espy is
a topological basis. Denote by 7x the associated topology on Esp,. Prove that 7 is the finest
topology on Esp such that for every 7x-open set U and for every ¢ € F(U), the set map 25 is a
continuous map (U, 7y) = (Espz, 7#). In particular, since every composition 71'}-0;5 is the continuous
inclusion of (U,7y) in (X,7x), conclude that every ¢ is continuous for the topology 7 (Tx) on
Espr. Since 7r refines this topology, prove that

mr: (Espg, 77) = (X, 7x)

2
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is a continuous map, i.e., T is a space over X.

(e)(The Espace Functor) For every morphism of presheaves of sets over X, a: F — G, for every
(z,¢,) in Espy, define Esp, (2, ¢,) to be (z,a,(¢,)), where o, : F,, - G, is the induced morphism
of stalks. For every Tx-open set U and every ¢ € F(U), prove tht the composition Esp,, o 5 equals
m as set maps U — Espg. By construction, m is continuous for the topology 75. Conclude
that ¢ is continuous for the topology (Esp,)~!(7g) on Esp. Conclude that 7 refines this topology,
and thus Esp,, is a continuous function,

Esp,, : (Espg, 77) = (Espg, 7g).

Prove that Espy, equals the identity map on Espz. For morphisms of presheaves of sets over X,
a:F —Gand §:G — H, prove that Espg,, equals Espg o Esp,. Conclude that these rules define
a functor,

Esp : Sets — Presh(x ) > Topx ;)

(f)(The Adjointness Natural Transformations) For every presheaf of sets over X, F, for every 7x-
open set U, for every ¢ € F(U), prove that ¢ is an element of Sec,,(U). For every 7x-open subset

U 2V, prove that $|V equals ¢|y. Conclude that ¢ — 5 is a morphism of presheaves of sets over
X

Y

Or : F — Sec o Esp(F).

For every morphism of presheaves of sets over X, o : F - G, for every 7x-open set U, for every
¢ € F(U), prove that Esp, o8z (¢) equals ay(¢), and this in turn equals g 7 o ay(¢). Conclude
that Sec o Esp(a) o 0 equals g o ar. Therefore 6 is a natural transformation of functors,

0 : IdSets—Presh(XJX) = Seco ESp.

(g) (Alternative Description of Sheafification) Since Seco Esp(F) is a sheaf, prove that there exists
a unique morphism

0 : Sh(F) — Sec o Esp(F)

factoring 0. For every element t € Sec o Esp(F)(U), a t-pair is a pair (Up, sg) of a Tx-open subset
U 2 Uy and an element sy € F(Up) such that t-1(B(Uy, sg)) equals Uy. Define i to be the set of
t-pairs, and define ¢ : 4 - 71y to be the set map (Up, so) = Uy. Prove that (U,.: 4 — 7y) is an
open covering. For every pair of t-pairs, (Up, sg) and (Ui, s1), for every = € Uy n Uy, prove that
there exists a 7x-open subset Uy, c Uy nU; containing x such that 30|Uo,1 equals 51|U0,1. Prove
that this data gives rise to a section s € Sh(F)(U) such that 6(s) equals t. Conclude that 8 is
an epimorphism. On the other hand, for every r,s € F(U), if 07 ,(r;) equals £ ,(s,), prove that
7(z) equals 3(z), i.e., 7, equals s,. Conclude that every morphism 6, is a monomorphism, and
hence § is a monomorphism of sheaves. Thus, finally prove that OF is an isomorphism of sheaves.
Conclude that § is a natural isomorphism of functors,

6 :Sh = Seco Esp.

3
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(h) For every space over X, f:(Y,7y) = (X,7x), for every 7x-open U, for every s € Secs(U), and
for every x € U, define a set map,

Npuz:Sec(U) =Y, s s(x).

Prove that for every 7x-open subset U 2 V' that contains x, nsv.(s|v) equals 17 y.(s). Conclude
that the morphisms 7y, factor through set maps,

Nt (Secy), =Y, s, s(x).
Define a set map,

T]f . ESpSeCf - Y7 ($7 SI) = nf,z(sx)

Prove that 7y o5 equals s as set maps U — Y. Since s is continuous for 7y, conclude that 3 is
continuous for the inverse image topology (n;)~'(7v) on Espg.,. Conclude that 7s, refines this
topology, and thus 7); is a continuous map,

Ny - (ESpSecfaTSeCf) e (Y7 TY)‘

Also prove that fon; equals mge.,. Conclude that 7y is a morphism of spaces over X. Finally, for
spaces over X, f:(Y,7yv) = (X,7x) and ¢: (Z,77) = (X, 7x), and for every morphism from f to
g, u: (Y, 7v) = (Z,72), prove that uons equals 7, o Esp o Sec(u). Conclude that f ~ 7, defines a
natural transformation of functors,

7 : Esp o Sec = IdTop(x,TXy

(1)(The Adjoint Pair) Prove that (Esp, Sec,6,n) is an adjoint pair of functors.

Problem 2.(Alternative Description of Inverse Image) Let f: (Y, 7y) - (X, 7x) be a continuous
function of topological spaces. Since the category of topological spaces is a Cartesian category (by
Problem 2(e) on Problem Set 8), for every space over X, g : (Z,77) - (X,7x), there is a fiber
product diagram in Top,

*f
(Z,72) %(xrp) (Yo7v) == (Z,77)
y lg
(Y7TY) T) (X’TX)

Denote the fiber product by f*(Z,1z).

(a) For spaces over X, g: (Z,77) - (X,7x) and h : (W, 1) - (X, 7x), for every morphism of
spaces over X, u: (Z,77) - (W, 7w ), prove that there is a unique morphism of topological spaces,

f*'Ll/ : f*(Z7TZ) - f*(W7TW)7

such that f*ho f*u equals f*g and h*f o f*u equals uwo g*f. Prove that f*Id; is the identity
morphism of f*(Z,7z). For spaces over X, g : (Z,77) - (X,7x), h : (W,m7w) - (X,7x) and

4
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i (M,7y) = (X,7x), for every morphism from g to h, u : (Z,77) - (W, 7w ), and for every
morphism from h to i, v: (W, ny) — (M, 1)), prove that f*(vowu) equals f*vo f*u. Conclude
that these rules define a functor,

fsp 1 ToP(x 7y = TOD(y 1, ).

Prove that this functor is contravariant in f. In particular, there is a composite functor,
Jsp o ESp(x +yy s Sets = Shx r) > Topy,,,.)-

(b) Consider the composite functor,
JeoSec(yry) : Topy,, ) = Sets - Sh(y,r,,) > Sets — Sh(x ).

Prove directly (without using the inverse image functor on sheaves) that ( Jép 0 ESP(x ry)s f4 ©
Sec(yy)) extends to an adjoint pair of functors. Use this to conclude that the composite Sec(y,r, o
fép © Esp(x ry) 18 naturally isomorphic to the inverse image functor on sheaves of sets.

Problem 3.(An Epimorphism of Sheaves that is not Epimorphic on Global Sections) Let R be
the usual real line with coordinate # and with the Euclidean topology and standard structure of
differentiable manifold. Prove that translations of R by elements of Z are diffeomorphisms, and
conclude that there is a unique structure of differentiable manifold on the quotient, S! = R/Z, such
that the quotient set map,

¢:R-S,

is a C map that is a local diffeomorphism. Let Agl be the presheaf of R-vector spaces that
associates to every open subset U the collection of all C'* functions f: U — R and with the usual
notion of restriction. Prove that Agl is a sheaf of R-vector spaces. Let Aél be the presheaf of
R-vector spaces that associates to every open subset U the collection of all C'* differential 1-forms
on U with the usual notion of restriction, i.e., locally these differential forms are isomorphic to
f(8)dd for a C> function f(6). Prove that Al is a sheaf of R-vector spaces. For every open set
U, for every C* function f: U — R, prove that the differential df is an element of A, (U). Prove
that
dy : AL (U) - AL (D),

is an R-linear transformation. For every open subset V c U, prove that dy (f|y) equals (dy(f))|v-
Conclude that these R-linear transformations define a morphism of sheaves of R-vector spaces,

d:Agl —>Aé1.

Let U be an open subset of S! such that there exists a s : U — R of g over U. Prove that dy is
surjective. Conclude that d is an epimorphism in the category of sheaves of R-vector spaces on S'.
Prove that the differential 1-form df on R is invariant under translations by Z. Conclude that
there exists a unique differential 1-form « in A, (S') such that ¢*a equals df. Prove that there
exists no f in A2, (S') such that a equals df. Hint. Prove that, up to constant, the coordinate

5
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function 6 is the unique C* function on R with df = ¢*«. If there were f with df = a, conclude
that foqg=60+C, and this is not invariant under translation by Z.

Problem 4.(Flasque Sheaves) Let (X,7x) be a topological space, and let C be a category. A
C-presheaf F' on (X, 7x) is flasque (or flabby) if for every inclusion of 7x-open sets, U 2 V, the
restriction morphism AY : A(U) - A(V) is an epimorphism.

(a) (Pushforward Preserves Flasque Sheaves) For every continuous function f: (X, 7x) - (Y, 7v),

for every flasque C-presheaf F' on (X, 7y), prove that f,F' is a flasque C-presheaf on (Y, 7y ).

(b)(Restriction to Opens Preserves Flasque Sheaves) For every Tx-open subset U, for the continuous
inclusion i : (U,1y) = (X, 7x), for every flasque C-presheaf F' on (X,7y), prove that i"'F is a
flasque C-presheaf. Also, for every C-sheaf F' on (X, 7y), prove that the presheaf inverse image
171 F' is already a sheaf, so that the sheaf inverse image agrees with the presheaf inverse image.

(c)(H!'-Acyclicity of Flasque Sheaves) Let A be an Abelian category realized as a full subcategory
of the category of left R-modules (via the embedding theorem). Let

0 — > A 2, 4 2, gr 0

be a short exact sequence of A-sheaves on (X, 7x). Let U be a 7x-open set. Let t: A”(U) - T be
a morphism in A such that ¢ o p(U) is the zero morphism. Assume that A’ is flasque. Prove that
t is the zero morphism as follows. Let a” € A”(U) be any element. Let S be the set of pairs (V,a)
of a Tx-open subset V ¢ U and an element a € A(V') such that p(V')(a) equals a”|y. For elements
(V,a) and (V,a) of S, define (V,a) < (V,@) if V ¢ V' and @]y equals a. Prove that this defines
a partial order on §. Use the sheaf axiom for A to prove that every totally ordered subset of &
has a least upper bound in §. Use Zorn’s Lemma to conclude that there exists a maximal element
(V,a) in §. For every z in U, since p is an epimorphism of sheaves, prove that there exists (W, b)
in § such that x € W. Conclude that on V n W, a|y~w — bly~w is in the kernel of p(V nW). Since
the sequence above is exact, prove that there exists unique a’ € A’(V nW) such that ¢(V nWW)(a’)
equals a|yaw — blyaw. Since A’ is flasque, prove that there exists aj, € A’(WW) such that afy|vaw
equals a’. Define ay = b+ q(W)(ay;, ). Prove that (W,aw) is in S and aly~w equals aw|vaw. Use
the sheaf axiom for A once more to prove that there exists unique (VnW,ay~w ) in S with ayaw|v
equals a and ayw|w equals ay . Since (V,a) is maximal, conclude that W c V', and thus x is in V.
Conclude that V' equals U. Thus, a” equals p(U)(a). Conclude that ¢(a”) equals 0, and thus ¢ is
the zero morphism. (For a real challenge, modify this argument to avoid any use of the embedding
theorem.)

(d)(H"-Acyclicity of Flasque Sheaves) Let C* = (C4,d{,) 0 be a complex of A-sheaves on (X, 7x).
Assume that every (1 is flasque. Let r > 0 be an integer, and assume that the cohomology sheaves
ha(C*) are zero for ¢ =0,...,7. Use (c) and induction on r to prove that for the associated complex
in C,

C*(U) = (C(U), dc(U) ) g0

also hi(C*(U)) is zero for ¢=0,...,r.
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Problem 5.(A - II-modules) Let (X, 7x) be a topological space. Let A and Il be presheaves of
associative, unital rings on (X, 7x). The most common case is to take both A and II to be the
constant presheaf with values Z. Assume, for simplicity, that A(@) and II(@) are the zero ring.
A presheaf of A —I1-bimodules on (X, 7x) is a presheaf M of Abelian groups on (X, 7x) together
with a structure of A(U) —II(U)-bimodule on every Abelian group M (U) such that for every open
subset U 2 V| relative to the restriction homomorphisms of associative, unital rings,

AV AU) - A(V), TIY - TI(U) - TI(V),
every restriction homomorphism of Abelian groups,
MY MU) - M(V),

is a homomorphism of A(U) - II(U)-bimodules. For presheaves of A — II-bimodules on (X, 7x),
M and N, a morphism of presheaves of A — Pi-bimodules is a morphism of presheaves of Abelian
groups «: M — N such that for every open U, the Abelian group homomorphism,

a(U): M(U) = N(U),

is a homomorphism of A(U) - II(U)-bimodules.

(a)(The Category of Presheaves of A — II-Bimodules) Prove that these notions form a category
A —1II - Presh(x ;). Prove that this is an Abelian category that satisfies Grothendieck’s axioms
(AB1), (AB2), (AB3), (AB3*), (AB4) and (AB5).

(b)(Discontinuous A —II-Bimodules) A discontinuous A —II-bimodule is a specification K for every
nonempty 7x-open U of a A(U)-II(U)-bimodule K (U), but without any specification of restriction
morphisms. For discontinuous A — II-bimodules K and L, a morphism of discontinuous A — II-
bimodules a: K — L is a specification for every nonempty 7x-open U of a homomorphism «a(U) :
K(U) - L(U) of A(U) - II(U)-bimodules. Prove that with these notions, there is a category
A —1II - Disc(x,ry) of discontinuous A - II-bimodules. Prove that this is an Abelian category that
satisfies Grothendieck’s axioms (AB1), (AB2), (AB3), (AB3*), (AB4), (AB4*) and (AB5).

(c)(The Presheaf Associated to a Discontinuous A - II-Bimodule) For every discontinuous A — II-
bimodule K, for every nonempty 7x-open subset U, define

KE@W)=T] KW)

wecU

as a A(U)-II(U)-bimodule, where the product is over nonempty open subsets W ¢ U (in particular
also W = U is allowed), together with its natural projections 74, : K(U) - K(W). Also define
K (@) to be a zero object. For every inclusion of 7x-open subsets U 2 V', define

KJ: 1 KW) - [T K(W),

weU wev
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to be the unique morphism of A(U) - II(U)-bimodules such that for every W c V, 7}, o [?g equals
75, Prove that K is a presheaf of A —II-bimodules. For discontinuous A - II-bimodules K and L,
for every morphism of discontinuous A — II-bimodules, o : K — L, for every 7x-open set U, define

aU): [T KW) > [] L(W)

wcU wcU

to be the unique morphism of A(U) - II(U)-bimodules such that for every W ¢ U, 7{;, o &(U)
equals W%’W. Prove that @ is a morphism of presheaves of A — II-bimodules. Prove that these
notions define a functor,

*: A-1II-Discix ) = A —II-Presh(x ).

Prove that this is an exact functor that preserves arbitrary limits and finite colimits.

(d)(The Cech Object of a Discontinuous A — II-Bimodule is Acyclic) For every open covering
(U,0: 84 > 117), define

ru= U Tuwyy = {W e |30 e LW < (Up)}.
Uoéu

For every discontinuous A — II-bimodule K, define

KW= ] K(W)

Wery
together with its projections my : K (8) - K(W). In particular, define
K (4) - K (L)
to be the unique A(U) — II(U)-morphism such that for every W e 7y, my o 7l equals my.
For every nonempty W € 7y, define
UV = {Uy e YW < 1(Up) }.
Prove that

Cr(Y, K) = I1 [T KW

-----

if (U, ..., U,) is empty, the corresponding factor is a zero object. For every integer r > 0, for every
1=0,...,7r+1, prove that the morphism

0i:C" (U, K) - C (U, K),

is the unique A(U)-II(U)-morphism such that for every nonempty W e 7y and for every (Uy,...,U,,U.1) €
(V)2 Ty U Unw © 0% equals Ty, v, ) Uiy, Unasw-  FOr every integer r > 0 and for every
1=0,...,r, prove that the morphism

011 CTH U K) —» C7(U, ),

8
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is the unique A(U)-II(U)-morphism such that for every nonempty W € 7 and for every (Uy, ..., U,) €

(MY g, vew © 0%y equals equals Ty, v, U, Ui Ui, Uniw - FOT every integer r > 0, prove

that the morphism B _
g K() > O7(8, )

is the unique A(U)-II(U)-morphism such that for every nonempty W € 7 and for every (U, ..., U,) €

WYL g oew © g7 equals .

CWRW= T KW,

(Uo,....Ur (AW )41

with its projections
vw  CT (U K)Y — KE(W).

.....

Define ) _ . _
o OT (U, K) - Cm (U, K)WY
to be the unique A(U)-II(U)-morphism such that for every (Uy, ..., U;) € (V)™ o jwor” .y,

equals 7y, . p,.w. For every integer r > 0 and for every ¢ = 0,...,r + 1, prove that there exists a
unique A(U) - II(U)-morphism

al:Cr (U, KYV - ¢, K)W,

such that 9; o 77y, equals 7r’°+1 o 9!, and prove that for every (Uy,...,U,,U.1) € (UW)r+2
T, Up Ursa [W © J! equals 7TU0,,..,UH,U,+1 ..... U,..iw- For every integer r > 0 and for every i = 0,...,r,
prove that there exists a unique A(U) — II(U)-morphism

Oh O UL KW > O (4, )Y

such that o}, o}, equals 77 ;007 ,,, and prove that for every (Uo,...,U,) € ({V)™* o wo
oy, equals equals U, Usr,UssUs UssrsUnra - FOI every integer 7 > 0, prove that there exists a
unique A(U) - II(U)-morphism

g K(W) - C'T(il, [?)W

such that 7" ,,, o g" equals g" o my, and prove that for every (Uy,...,U,) e (UWV)™* 7y vjwog”
equals Idg ). Conclude that

ma C* (8L I) — C* (81, KW

is a morphism of cosimplicial A(U)-II(U)-bimodules that is compatible with the coaugmentations
g*. Prove that these morphisms realize C*(4(, K) in the category S*A(U) - II(U) - Bimod as a
product,

C*(WK)= ] C(u4, )Y

Wery
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Using the Axiom of Choice, prove that there exists a set map
¢:my~{@} > U
such that for every nonempty W e 7y, ¢(W) is an element in 4. For every integer r > 0, define
Cr (o, )V : (U, K)V - K(W)

to be mywy,...s(wyw. Prove that for every integer r > 0 and for every i = 0,...,r+1, Cr+l(¢, K)W o0
equals C" (¢, }?lw Prove that for every integer 7 > 0 and for every i = 0,...,7, C"(¢, K)V o0’ ,
equals C™1 (¢, K)W. Conclude that

C”(gb, [?)W — const g (w)

is a morphism of cosimplicial A(U) - II(U)-bimodules. Prove that C*(¢, K)W o g* equals the
identity morphism of constg ). For every nonempty W e 7y, for every integer r > 0, for every
integer i =0,...,r, define

Gpir O WL E)Y > (U, )Y
to be the unique A(U)~II(U)-morphism such that for every (Uy, ..., U,) € (V)™ 7y, v qwody .
equals 7y, v,.6(w),..s(w)w- Prove the following identities (cosimplicial homotopy identities),

gg,T%—l ° 879 = g’f' °© CYT(¢7 [?)WJ g(;,?"-%—l ° a:+1 = Idcr(ﬂj{)wv

811;1 9%_,"17 0<i<j<r,
Thri1©0r =1 9G1°05 O<i=j<r,
Oitogl,, 1<j+l<i<r+l,

iooltL < 5 _
A 010 Gyry 0Si<y<r—1,
s i1 ] .
: O O Gy 0<g<e<r.

Conclude that ¢* and C*(¢, K)" are homotopy equivalences between C*(4, K)" and const K(W)-
Conclude that C* (4, K ) is homotopy equivalent to const Rw): In particular, prove that the associ-

ated cochain complex of C*(4, K)W is acyclic with HO(U, K)W equal to K(W). Similarly, prove
that the associated cochain complex of C*(4, K) is acyclic with HO(4, K) equal to K ().

(e)(The Forgetful Functor to Discontinuous A - II-Bimodules; Preservation of Injectives) For every
presheaf M of A —II-bimodules on (X, 7x), define ®(M) to be the discontinuous A — II-bimodule
U~ M(U). For presheaves of A —II-bimodules, M and N, for every morphism of presheaves of
A —TI-bimodules, a: M - N, define ®(«) : (M) - ®(N) to be the assignment U —~ «(U). Prove
that these rules define a functor

®: A -1II - Presh(x ) = A~ Il - Disc(x ry)-

10
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Prove that this is a faithful exact functor that preserves arbitrary limits and finite colimits. For
every presheaf M of A —II-bimodules, for every 7x-open U, define

weU
to be the unique homomorphism of A(U) — II(U)-bimodules such that for every 7x-open subset
W c U, 14,00 equals MY,. Prove that U ~ 6y is a morphism of presheaves of A-II-bimodules,

Oy : M — &(M).

For every morphism of presheaves of A —II-bimodules, a: M — N, for every 7x-open set U, prove
that ®(«) o 0y equals 0y o a. Conclude that 6 is a natural transformation of functors,

0: IdA—H—Presh(Xﬂ.X) = %0,
For every discontinuous A — II-bimodule K, for every 7x-open U, define

nxv: [T K(W) - K(U)
WeU
to be wlf,. Prove that U ~ 1k is a morphism of discontinuous A — II-bimodules. For every pair
of discontinuous A —II-bimodules, K and L, for every morphism of discontinuous A — II-bimodules,
g : K - L, prove that n o (ID(E) equals 8 ony. Conclude that 7 is a natural transformation of
functors,
nN:Po¥ = IdA—H—Disc(X,TX)-

Prove that (®,%,6,7n) is an adjoint pair of functors. Since ® preserves monomorphisms, use
Problem 3(d), Problem Set 5 to prove that ¥ sends injective objects to injective objects. Since
the forgetful morphism from sheaves to presheaves preserves monomorphisms, prove that the
sheafification functor Sh sends injective objects to injective objects. Conclude that Sh o % sends
injective objects to injective objects.

(f)(Enough Injectives) Recall from Problems 3 and 4 of Problem Set 5 that for every 7x-open
set U, there are enough injective A(U) - II(U)-bimodules. Using the Axiom of Choice, conclude
that A —II - Disc(x ) has enough injective objects. In particular, for every presheaf M of A —1II-
bimodules, for every open set U, let there be given a monomorphism of A(U) - II(U)-bimodules,

EUM(U)—>](U),

with I(U) an injective A(U) - II(U)-bimodule. Conclude that I is an injective presheaf of A — II-
bimodules, and the composition
M2 SN ST

is a monomorphism of presheaves of A — II-bimodules. If M is a sheaf, conclude that Sh([7) is an
injective sheaf of A —II-bimodules. Also, use (d) to prove that the composition

M 25 &) S T sw(T)

11
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is a monomorphism of sheaves of A —II-bimodules. (Hint: Since o, ¢ is a filtering small category,
use Problem 0 to reduce to the statement that for every open covering (U,4l), the morphism
M(U) - M(4) is a monomorphism. Realize this a part of the Sheaf Axiom for M.) Conclude that
both the category A-II-Presh(x ;) and A~II-Shx ;) have enough injective objects. In particular,
for an additive, left-exact functor F', resp. G, on the category of presheaves of A — II-bimodules,
resp. the category of sheaves of A —II-bimodules, there are right derived functors ((R"F),, (6"),),
resp. ((R"G)y, (0™),). Finally, since ¥ is exact and sends injective objects to injective objects, use
the Grothendieck Spectral Sequence (or universality of the cohomological d-functor) to prove that
(R*"F)o%is R (F o).

(g)(Enough Flasque Sheaves; Injectives are Flasque) Let K be a discontinuous A —II-bimodule on
X. For every Tx-open set U, prove that K(U) - Sh(K)(U) is the colimit over all open coverings
il c 7y (ordered by refinement as usual) of the morphism

7 K(U) - K(4).

In particular, since every morphism K (U) - K (4) is surjective (by the Axiom of Choice), conclude
that also _ B
sh(U) : K(U) - Sh(K)(U)

is surjective. Use this to prove that Sh(K) is a flasque sheaf.

For every injective A —II-sheaf I, for the monomorphism 6; : I - Sh(®(I)), there exists a retraction
p:Sh(®(I)) — I. Also Sh(®(I)) is flasque. Use this to prove that also I is flasque.

(h)(Sheaf Cohomology; Flasque Sheaves are Acyclic) For every Tx-open set U, prove that the
functor
I'(U,-): A =11 -Presh(x,,) > A(U) - II(U) - Bimod, M ~ M(U)

is an exact functor. Also prove that the functor
T'(U,-): A =T - Sh(x,y) = AU) - TI(U) - Bimod

is an additive, left-exact functor. Use (g) to conclude that every sheaf M of A —II-modules admits
a resolution, € : M — I* by injective sheaves of A — II-modules that are also flasque. Conclude
that T'(U, -) extends to a universal cohomological -functor formed by the right derived functors,
((H™(U,=))n, (0"),). Finally, assume that M is flasque. Use Problem 4(d) to prove that /*(U) is
an acyclic complex of A(U) - II(U)-bimodules. Conclude that for every flasque sheaf M of A - II-
bimodules, for every n > 0, H*(U, M) is zero, i.e., flasque sheaves of A — II-bimodules are acyclic
for the right derived functors of I'(U, -).

(i) (Computation of Sheaf Cohomology via Flasque Resolutions; Canonical Resolutions; Indepen-
dence of A —1II) Use (h) and the hypercohomlogy spectral sequence to prove that for every sheaf
M of A - II-bimodules, for every acyclic resolution €; : M — M®* of M by sheaves of A —II-
bimodules that are flasque, for every integer n > 0, there is a canonical isomorphism of H"(U, M)

12
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with h*(M*(U)). In particular, the functor T= Sho ¥ o &, the natural transformation 6 : Id =T,
and the natural transformation
Sho*onod:TT=T,

form a triple on the category A —II-Sh(x ). There is an associated cosimplicial functor,
LT A-11- Sh(X,TX) - S°A-1II- Sh(X,-rX)

and a functorial coaugmentation,
O : consty, — L3 (M).

The associated (unnormalized) cochain complex of this cosimplicial object is an acyclic resolution
of M by flasque sheaves of A—II-bimodules, and it is canonical, depending on no choices of injective
resolutions.

Finally, let A > A and II - II be morphisms of presheaves of associative, unital rings. This induces

a functor, L
A-TI-Shxrc) > A-II-Shx ).

For every sheaf M of A —II-bimodules, and for every acyclic resolution € : M — M* of M by flasque
sheaves of A — II-bimodules, this is also an acyclic, flasque resolution of M with the associated
structure of sheaves of A - II-bimodules. For the natural map of cohomological d-functors from the
derived functors of I'(U, -) on A-II-Sh(x ;) to the derived functors of I'(U, -) on K—ﬁ—Sh(X,TX),
prove that this natural map is a natural isomorphism of cohomological §-functors. This justifies
the notation H"(U,-) that makes no reference to the underlying presheaves A and II, and yet is
naturally a functor to A(U) - II(U) - Bimod whenever M is a sheaf of A — II-bimodules.

Problem 6.(Flasque Sheaves are Cech-Acyclic) Let (X,7x) be a topological space. Let M be a
presheaf of A —II-bimodules on (X, 7x). Let U be a 7x-open set. Let (U,¢: 4 - 77) be an open
covering. For every Tx-open subset V', define (V¢ : 44 - 7/) to be the open covering ¢ (Up) =
V nu(Uy). For simplicity, denote this by (V,4y). For every integer r > 0, define C" (4, M) (V) to
be the A(V) - II(V)-bimodule C (8, M). Moreover, define

O C (W MY(V) > C W MY(V), 0ty : (8, M) (V) = O (8, MY(V),

to be the face and degeneracy maps on C*(Ly, M). Finally, let 7}, : M(V) - C" (84, M)(V) be the
coadjunction of sections from Problem 5(e), Problem Set 8. For every inclusion of Tx-open subsets
W nV nU, the identity map Idy is a refinement of open coverings,

Al (Voo s U= 7v) > (W, : 8> ).

By Problem 5(f) from Problem Set 8, C"(¢V,, M) is an associated morphism of A(V') - II(V)-
bimodules, denoted ) ) )
C (W M)}y : C (8 MY(V) > C (8, M)().

13
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(a)(The Presheaf of Cech Objects) Prove that the rules V v C" (4, M)(V) and C" (81, M)}, define
a presheaf C" (4, M) of II - A-bimodules on U. Moreover, prove that the rules V — Y., Tesp.
V= oy, V =y, define morphisms of presheaves of A - II-bimodules,

8t (U, M) — " (U, M), O WU M) = CT (LMD, g My~ CT (U, M).

Use Problem 5(f) from Problem Set 8 again to prove that these morphisms define a functor,

C*ioxA-TI- Presh(x ) = S*A -1l - Presh(y -,

compatible with cosimplicial homotopies for pairs of refinements and together with a natural trans-
formation of cosimplicial objects,

n® :consty, — C* (U, M).

(b)(The Cech Resolution Preserves Sheaves and Flasques) For every (Uy, ..., U,) in 4+, denote by
ivo,...v, * (LU, ..., Up), Tyws,...0,)) = (U, 7) the continuous inclusion map. Prove that C" (U, M)
is isomorphic as a presheaf of A —TI-bimodules to

Use Problem 4(a) and (b) to prove that C' (i, M) is a sheaf whenever M is a sheaf, and it is
flasque whenever M is flasque.

(c)(Localy Acyeclicity of the Cech Resolution) Assume now that M is a sheaf. For every Tx-open
subset V' c U such that there exists * € 4 with V' c ¢(*), conclude that (V, ) refines to (V,{V'}).
Using Problem 5(h), Problem Set 8, prove that

ny :consty gy = C* (U, M)Y(V)

is a homotopy equivalence. Conclude that for the cochain differential associated to this cosimplicial

object,
= Z(_l)lafw
i=0
the coaugmentation )
nv: MV) - C (M) (V)

is an acyclic resolution. Conclude that the coaugmentation of complexes of sheaves of II — A-

bimodules, §
n:M|U_>Q (uaM)

is an acyclic resolution.

14
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Now assume that M is flasque. Prove that 7 is a flasque resolution of the flasque sheaf M|;. Using
Problem 5(i), prove that the cohomology of the complex of A(U) —II(U)-bimodules,

H™(4, M) := h(C*(4, M), d*)

equals H*(U, M). Using Problem 5(h), prove that H°(U, M) equals M (U) and H*(U, M) is zero
for every integer n > 0. Conclude that for every flasque sheaf M of A — II-bimodules, for every
open covering (U, 1), M(U) - HO(4, M) is an isomorphism and H™(, M) is zero for every integer
n > 0.

Problem 7.(Cech Cohomology is a Derived Functor on Presheaves) Let (X, 7x) be a topological
space. Let U be a Tx-open set. Let (U,.: i - 7y) be an open covering. For every presheaf
A of A - II-bimodules, denote by C*(4, A) the object in Ch**(A - II - Bimod) associated to the

cosimplicial object.

(a) (Exactness of the Functor of Cech Complexes; The d-Functor of Cech Cohomologies) Use Prob-
lem 5 of Problem Set 8 to prove that this is an additive functor

C*(4,-) : A = I - Presh(x ry > Ch**(A - II - Bimod).

Prove that for every short exact sequence of presheaves of A — II-bimodules,

0 A2 A L oA 0
the associated sequence of cochain complexes,

0 —— Con Ay T8 ey 4y S e 4y g

is a short exact sequence. Use this to prove that the Cech cohomology functor HO(4, A) =
hO(C* (4, A)) is an additive, left-exact functor, and the sequence of Cech cohomologies,

HT (84, A) = " (C*(4, A)),

extend to a cohomological é-functor from A —II - Presh(x ;) to A(U) - II(U) — Bimod.

(b) (Effaceability of Cech Cohomology) For every presheaf A of A —TII-bimodules, use Problem 5(e)
and 5(f) to prove that 4 : A > ®(A) is a natural monomorphism of presheaves of A-II-bimodules.

Use Problem 5(d) to prove that for every r > 0, H7(4, ®(A)) is zero. Conclude that H" (4, -) is
effaceable. Prove that the cohomological d-functor ((H7 (4, A)),, (67),) is universal. Conclude that
the natural transformation of cohomological d-functors from the right derived functor of HO(4l, -)
to the Cech cohomology d-functor is a natural isomorphism of cohomological J-functors.

(c)(Hypotheses of the Grothendieck Spectral Sequence) Denote by

U:A-II- Sh(X,TX) - A-1I- PreSh(X,TX)a

15
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the additive, fully faithful embedding (since we are already using ® for the forgetful morphism to
discontinuous A — II-bimodules). Recall from Problem 6(c) on Problem Set 8 that this extends
to an adjoint pair of functors (Sh,®). Recall the construction of Sh as a filtering colimit of
Cech cohomologies HO(8,—). Since HO(4,-) is left-exact, and since A — IT — Presh(x ., satisfies
Grothendieck’s condition (AB5), prove that Sh is left-exact. Use Problem 3(d), Problem Set 5
to prove that ¥ sends injective objects to injective objects. Use Problem 5(g) to prove that
every injective sheaf I of A —II-bimodules is flasque. Use Problem 6(c) to prove that W(I) is
acyclic for H*(4l, -). Prove that the pair of functors ¥ and H°(4, -) satisfy the hypotheses for the
Grothendieck Spectral Sequence. Conclude that there is a convergent, first quadrant cohomological
spectral sequence,
IEpt = AP(U, RIU(A)) = HP*(U, A).

(d)(The Derived Functors of U are the Presheaves of Sheaf Cohomologies) For every sheaf A of
A - II-bimodules, for every integer r > 0, for every 7x-open set U, denote H"(A)(U) the additive
functor H"(U, A). In particular, H°(A)(U) is canonically isomorphic to A(U). Thus, for all 7x-
open sets, V c U, there is a natural transformation

*|v s HO(=)(U) = HO (=) (V).
Use universality to prove that this uniquely extends to a morphism of cohomological )-functors,

#0 (K () U))r, (07)r) = (H(=)(V))r, (7).

Prove that for all 7x-open sets, W c V c U, both the composite morphism of cohomological
d-functors,

*y 0 %[V (K ()0 (87)2) = (H(=)(V))r, (87)r) = (" (=) (W), (67)),

and the morphism of cohomological d-functors,

>("II/JV : ((%T(_)(U))ra ((sr)r) - ((HT(_)(W))M (5T)r):

extend the functor *|};, o #[{ = %Y, from HO(-)(U) to H°(-)(W). Use the uniqueness in the uni-
versality to conclude that these two morphisms of cohomological d-functors are equal. Prove that
((H"(=))r, (67),) is a cohomological d-functor from A —II - Sh(x ;) to A —1II - Presh(x ). Use
Problem 5(h) to prove that every flasque sheaf is acyclic for this cohomological d-functor. Com-
bined with Problem 5(i), prove that the higher functors are effaceable, and thus this cohomological
o-functor is universal. Conclude that this the canonical morphism of cohomological §-functors from
the right derived functors of ¥ to this cohomological d-functor is a natural isomorphism of cohomo-
logical d-functors. In particular, combined with the last part, this gives a convergent, first quadrant

spectral sequence, )
TEPY = HP(U, HI(A)) = HPM(U, A).

This is the Cech-to-Sheaf Cohomology Spectral Sequence. In particular, conclude the existence of
monomorphic abutment maps, §
H" (M A) > H (U, A).

16
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as well as abutment maps,
H™(U,A) - H(U4, H"(A)).

(e)(The Colimit of Cech Cohomology with Respect to Refinement) Since Cech complexes are
compatible with refinement, and the refinement maps are well-defined up to cosimplicial homotopy,
the induced refinement maps on Cech cohomology are independent of the choice of refinement. Use
this to define a directed system of Cech cohomologies. Denote the colimit of this direct system as

follows, . .
H*(U,-) = golimH’(il, -).

60‘17(]

Prove that this extends uniquely to a cohomological d-functor such that for every open covering
(U, L), the induced sequence of natural transformations,

>e|iliJ : ((HT(LL _))m (5T)T) - ((ﬁT(U? _))m (6r)r)a

is a natural transformation of cohomological d-functors. Repeat the steps above to deduce the
existence of a unique convergent, first quadrant spectral sequence,

TEY = HY(U,H(A)) = HP (U, A),
such that for every open covering (U, 4l), the natural maps
*[is - HP (U, HI(A)) > HP(U, HA(A))

extend uniquely to a morphism of spectral sequences. In particular, conclude the existence of
monomorphic abutment maps

H"(U,A) - H"(U,A)

as well as abutment maps )
HP (U, A) > HO(U, 1 (A)),

Use the first abutment maps to define subpresheaves #7(A) of H"(A) by V = H"(V, A).

(f)(Reduction of the Spectral Sequence; H'(U, A) equals H!(U, A)) For every r > 0, prove that the
associated sheaf of H"(A) is a zero sheaf. (Hint. Prove the stalks are zero by using commutation of
sheaf cohomology with filtered colimits combined with exactness of the stalks functor.) Conclude
that HO(U,H"(A)) is zero. In particular, conclude that the natural abutment map,

HY(U,A) - HY(U,A)

is an isomorphism. Thus, also H1(A) - H1(A) is an isomorphism. Use this to produce a “long
exact sequence of low degree terms” of the spectral sequence,

0 H(U, A) - H*(U, A) - H' (U, H'(A)) > H3(U, A).

(g)(Sheaves that Are Cech-Acyclic for “Enough” Covers are Acyclic for Sheaf Cohomology) Let
B c 7x be a basis that is stable for finite intersection. For every open U in B, let Covy be a
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collection of open coverings of U by sets in B such that Covy is cofinal with respect to refinement
in 0, . Let A be such that for every U in B, for every (U,4) in Covy, for every r >0, H"(4, A) is
zero. Prove that H"(U, A) is zero. Use the spectral sequence to inductively prove that for every
r >0, H'(A)(U) is zero, H"(U, A) is zero and H"(A)(U) is zero. Conclude that for every open
covering (X, : 0 - B), the Cech-to-Sheaf Cohomology Spectral Sequence relative to 2 degenerates
to isomorphisms

H(0,A) - H"(X, A).

If you are an algebraic geometer, let (X, Ox) be a separated scheme, let A =11 = Oy, let B be the
basis of open affine subsets, let Covy be the collection of basic open affine coverings, and let A be
a quasi-coherent sheaf. Read the proof that for every basic open affine covering (U, 1) of an affine
scheme, for every quasi-coherent sheaf A, H" (4, A) is zero for all 7 >0 (this is essentially exactness
of the Koszul cochain complex for a regular sequence, combined with commutation with colimits).
Use this to conclude that quasi-coherent sheaves are acyclic for sheaf cohomology on any affine
scheme. Conclude that, on a separated scheme, for every quasi-coherent sheaf, sheaf cohomology
is computed as Cech cohomology of any open affine covering.

Problem 8.(The de Rham, Dolbeault and Hodge Theorems) Read about soft and fine sheaves.
In particular, read the proof that soft sheaves are acyclic on paracompact, Hausdorff topological
spaces. Read about partitions of unity. For every paracompact, Hausdorff, C*> analytic space X,
let A =1II equals &, resp. &2, the sheaf of C> functions to R, resp. C, with its standard real
analytic structure. Prove that this has partitions of unity, and hence is fine. Conclude that every
sheaf M of £%-modules is also fine.

(a)(de Rham’s Theorem) Let X be a C'* manifold that is paracompact and Hausdorff (some authors
include paracompact and Hausdorff in the definition of manifold). For every integer n > 0, define &7,
resp. £Z, to be the sheaf of £)-modules, resp. £2-modules, whose sections on any open are the C'*
differential n-forms on that open set that are R-valued, resp. C-valued. Let d" : E® — £™*! be the
morphism of exterior differentiation. Prove that this defines a complex &3 in Ch**(R - Sh(x,ry));
the de Rham complez, and likewise for £%. The de Rham cohomology of X is defined to be the
cohomology of the associated complex of global sections,

Hiu(X,R) = W (E3(X),d*), resp. Hip(X,C) = h"(E2(X),d").

Let € : Ry — &, resp. €: Cy — &2 be the inclusion of the locally constant functions. Read the proof
of the Poincaré Lemma. Prove that € : R, — & is an acyclic resolution of Ry by sheaves that
are acyclic for sheaf cohomology, and similarly for e: Cy — £2. Prove that the hypercohomology
spectral sequence degenerates to isomorphisms,

Hz (X,R) - H"(X,Ry), resp. Hiz(X,C) - H"(X,C,).

This is the sheaf cohomology version of de Rham’s theorem.

(b)(The Dolbeault Theorem) Now let X be a paracompact, Hausdorff, complex manifold, and
let Ox be the sheaf of holomorphic functions to C with its standard complex analytic structure.
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This is not a fine sheaf, but the sheaf associated to the underlying C* manifold structure, &2,
is fine. Now denote &2 by £%0. For every pair of integers, p,q > 0, define P4 to be the sheaf
of £%0-modules whose sections on each open are the C'°, C-valued differential forms that can
locally on opens U of an open covering be expressed as £%9-linear combinations of differential
forms dzy A--- Adz, AdZpq Ao AdZpg, for a local holomorphic coordinate chart,

(Zl,...,Zn)IUﬁBl(O) cC™.

Let 8 : €4 — EPa+1 be the usual Dolbeault differential. Prove that this defines a complex
Epre in Ch*°(C - Sh(x,ry)), the Dolbeault complex. The Dolbeault cohomology is defined to be the
cohomology of the associated complex of global sections,

Hpg(X) = hq(gp’.75p7.)-

For every p > 0, define 7 : Q% | . — £PO to be the sheaf of Ox-modules whose sections on an open are
the p-forms that are locally O x-linear combinations of differentials of the form dz; A---Adz,. These
are the holomorphic p-forms. Read the proof of the 9-Poincaré Lemma. Prove that e? : O o = EP°
is an acyclic resolution of Qg(’hol by sheaves that are acyclic for sheaf cohomology. Prove that the
hypercohomology spectral sequence degenerates to isomorphisms,

Hggl(X) - Hq(Xv QI))(,hol)'
This is the Dolbeault theorem.

(c)(The Frolicher Spectral Sequence) Continuing the previous part, prove that the exterior differ-
ential,

v : EP0 — g8
restricts on Q% , | to a differential

D . OP p+1
dv: QX,hol - QX,hol-

Prove that this defines a complex Q% | in ChZO(C—Sh(X’TX)), the holomorphic de Rham complez.
Prove that the coaugmentation € : C, — £%0 factors through Qg(’hol = Ox. Read the proof of the
holomorphic Poincaré Lemma. Prove that e : Cy — Q% , is an acyclic resolution. Prove that
this induces an isomorphism of hypercohomology groups (Written in the inverse direction),

H" (X, Q% pot) = H"(X,C ).

The corresponding hypercohomology spectral sequence is the Frolicher spectral sequence or Hodge-
to-de Rham spectral sequence,

BB = HI(X, D ) = HP (X, Cy).

In those cases that the dimensions h"(X,Cy) of H"(X,Cy) and hr?(X) of HI(X, Q%) are
finite, and also
hn(X’QX) = Z hp7q(X)’
p+g=n
conclude that this spectral sequence degenerates. In particular, read the proof of the Hodge theorem
for compact Kéahler manifolds.
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