MAT 536 Problem Set 6

Homework Policy. Please read through all the problems. Please solve 5 of the problems. I will be happy to discuss the solutions during office hours.

Problems.

Problem 1. (Effaceable monomorphisms). Let \mathcal{A} and \mathcal{B} be Abelian categories. Let

$$R = ((R^n : \mathcal{A} \to \mathcal{B})_{n \in \mathbb{Z}}, (\delta_{R,\Sigma}^n)_{n \in \mathbb{Z}}),$$

be a cohomological δ -functor (typically we assume that the functors are zero for n < 0). Recall that a monomorphism in \mathcal{A} ,

 $u: A \hookrightarrow I,$

is *R*-effaceable in degree n if the associated morphism in \mathcal{B} ,

$$R^n(u): R^n(A) \to R^n(I),$$

is the zero morphism.

(a) For objects A, I and J of \mathcal{A} , for monomorphism,

$$u: A \hookrightarrow I, \quad v: A \hookrightarrow J,$$

prove that the associated monomorphism,

$$(u,v): A \hookrightarrow I \oplus J$$

is *R*-effaceable in degree n if and only if both u and v are *R*-effaceable in degree n.

(b) For objects A, I and J of \mathcal{A} , for every pair of monomorphisms,

$$u: A \hookrightarrow I, \quad v: A \hookrightarrow J,$$

that are both R-effaceable in degree n, prove that there are commutative diagrams of short exact sequences whose rows are quotients of monomorphisms that are R-effaceable in degree n,

(c) For a cohomological δ -functor,

$$G = ((G^n : \mathcal{A} \to \mathcal{B})_{n \in \mathbb{Z}}, (\delta^n_{G, \Sigma})_{n \in \mathbb{Z}}),$$

 let

$$(\gamma^m : R^m \Rightarrow G^m)_{m < n}$$

be a sequence of natural transformations that commute with the morphisms $(\delta_{R,\Sigma}^m)_{m < n-1}$ and $(\delta_{G,\Sigma}^m)_{m < n-1}$ in the usual way. For every short exact sequence in \mathcal{A} ,

 $\Sigma: 0 \longrightarrow A \xrightarrow{u} I \xrightarrow{\overline{u}} C \longrightarrow 0,$

such that u is R-effaceable in degree n, define

$$\gamma_{\Sigma}^{n}(A): R^{n}(A) \to G^{n}(A),$$

to be the unique morphism such that the following diagram commutes,

For every commutative diagram of short exact sequences in \mathcal{A} ,

$$\begin{split} \Sigma: \ 0 & \longrightarrow A \xrightarrow{u} I \xrightarrow{\overline{u}} C \longrightarrow 0, \\ u \downarrow & u_A \downarrow & \downarrow u_I & \downarrow u_C \\ \widetilde{\Sigma}: \ 0 & \longrightarrow \widetilde{A} \xrightarrow{\widetilde{u}} \widetilde{I} \xrightarrow{\widetilde{u}} \widetilde{C} \longrightarrow 0, \end{split}$$

such that both u and \tilde{u} are R-effaceable in degree n, carefully chase through the "commuting cube" argument from lecture to prove that the following diagram commutes,

$$\begin{array}{cccc}
R^{n}(A) & \xrightarrow{R^{n}(u_{A})} & R^{n}(\widetilde{A}) \\
\gamma^{n}_{\Sigma}(A) \downarrow & & \downarrow \gamma^{n}_{\overline{\Sigma}}(\widetilde{A}) \\
G^{n}(A) & \xrightarrow{G^{n}(u_{A})} & G^{n}(\widetilde{A})
\end{array}$$

(d) Now, applying (c) to the two commutative diagrams from (b), prove that the morphisms $\gamma_{\Sigma}^{n}(A)$ and $\gamma_{T}^{n}(A)$ are equal.

(e) Finally, for every short exact sequence in \mathcal{A} ,

$$\Pi: 0 \longrightarrow K \xrightarrow{q} A \xrightarrow{p} Q \longrightarrow 0,$$

prove that also the following composite monomorphism is R-effaceable in degree n,

$$K \xrightarrow{q} A \xrightarrow{u} I.$$

Thus, there is a commutative diagram of short exact sequences in \mathcal{A} ,

$$\begin{aligned} \Pi : \ 0 & \longrightarrow K \xrightarrow{q} A \xrightarrow{p} Q & \longrightarrow 0, \\ w \downarrow & \operatorname{Id}_{K} \downarrow & \downarrow^{u} & \downarrow^{w} & . \\ \widetilde{\Pi} : \ 0 & \longrightarrow K \xrightarrow{u \circ q} I \xrightarrow{p} \operatorname{Coker}(u \circ q) \longrightarrow 0 \end{aligned}$$

Mimic the "commuting cube" argument for the cube associated to this diagram to conclude that the following diagram commutes,

(f) Assume that for every object A of \mathcal{A} there exists a monomorphism,

$$u: A \hookrightarrow I,$$

that is *R*-effaceable in degree *n*. Conclude that there exists a unique extension of $(\gamma^m)_{m < n}$ to a sequence of natural transformations,

$$(\gamma^m : R^m \Rightarrow G^m)_{m \le n},$$

that commutes with the morphisms $(\delta_{R,\Sigma}^m)_{m < n}$ and $(\delta_{G,\Sigma}^m)_{m < n}$ in the usual way. Assuming that for every integer $r \ge n$, for every object A of \mathcal{A} there exists a monomorphism,

$$u: A \hookrightarrow I,$$

that is *R*-effaceable in degree *n*. Conclude that there exists a unique exterior of $(\gamma^m)_{m < n}$ to a natural transformation of cohomological δ -functors,

$$\gamma = (\gamma^m : R^m \Rightarrow G^m)_{m \in \mathbb{Z}}.$$

Finally, if also R is concentrated in degrees $\geq m$, conclude that $R^m \to R$ is initial among all natural transformations from R^m to a cohomological δ -functor concentrated in degrees $\geq m$.

Problem 2. For a right-exact additive functor $F : \mathcal{A} \to \mathcal{B}$, for a homological δ -functor

$$L = ((L_m : \mathcal{A} \to \mathcal{B})_{m \ge 0}, (\delta_m^{L, \Sigma})_{m \ge 1}),$$

that is coeffaceable in degrees ≥ 0 , for a natural equivalence of functors $\alpha : L_0 \to F$, prove *carefully* that α is final among all natural transformations $\beta : G_0 \to F$ from a homological δ -functor concentrated in degrees ≥ 0 ,

$$G = ((G_m : \mathcal{A} \to \mathcal{B})_{m \ge 0}, (\delta_m^{G, \Sigma})_{m \ge 1}).$$

It is a good idea to use opposite categories to guide you, but please check the details carefully. Conclude that if \mathcal{A} has enough projective objects, then every right-exact additive functor F has an extension to a universal homological δ -functor (that is essentially unique).

Problem 3. (Balancing derived bifunctors.) Let \mathcal{A}, \mathcal{B} and \mathcal{C} be Abelian categories. Let

$$T: \mathcal{A} \times \mathcal{B} \to \mathcal{C}$$

be a bifunctor, i.e., an assignment to every objects A of \mathcal{A} and to every object B of \mathcal{B} of an object T(A, B) of \mathcal{C} , an assignment to every object A of \mathcal{A} and all objects B, \tilde{B} of \mathcal{B} of set maps,

$$T_{A,-}: \operatorname{Hom}_{\mathcal{B}}(B,B) \to \operatorname{Hom}_{\mathcal{C}}(T(A,B),T(A,B)),$$

and an assignment to every object B of \mathcal{B} and all objects A, \widetilde{A} of \mathcal{A} of set maps,

$$T_{-,B}: \operatorname{Hom}_{\mathcal{A}}(A, \widetilde{A}) \to \operatorname{Hom}_{\mathcal{C}}(T(A, B), T(\widetilde{A}, B))$$

making all assignments,

$$T_{A,-}: \mathcal{B} \to \mathcal{C}, \ T_{-,B}: \mathcal{B} \to \mathcal{C},$$

functors, and such that for every morphism in \mathcal{A} ,

$$a: A \to \widetilde{A},$$

and for every morphism in \mathcal{B} ,

$$b: B \to \widetilde{B},$$

the following diagram in \mathcal{C} commutes,

(a) For every morphism $a : A \to \widetilde{A}$, prove that the assignment to every object B of \mathcal{B} of the morphism,

$$T_{-,B}(a): T_{A,-}(B) \to T_{\widetilde{A},-}(B)$$

is a natural transformation of functors,

$$T_{a,-}: T_{A,-} \Rightarrow T_{\widetilde{A},-}.$$

Prove that $T_{\mathrm{Id}_{A,-}}$ is the identity natural transformation, and prove that $a \mapsto T_{a,-}$ is compatible with composition. Similarly, for every morphism $b: B \to \widetilde{B}$, prove that the assignment to every object A of \mathcal{A} of the morphism,

$$T_{A,-}(b): T_{-,B}(A) \to T_{-,\widetilde{B}}(A)$$

is a natural transformation of functors,

$$T_{-,b}:T_{-,B}\Rightarrow T_{-,\widetilde{B}}.$$

Prove that the rule $b \mapsto T_{-,b}$ is also compatible with identity and composition.

(b) Now assume, further, that all $T_{A,-}$ and $T_{-,B}$ are right-exact additive functors. For every object A of \mathcal{A} , let

$$LT_{A,-} = ((L_n T_{A,-} : \mathcal{B} \to \mathcal{C})_{n \ge 0}, (\delta_n^{LT_{A,-},\Sigma})_{n > 0}),$$

be a coeffaceable homological δ -functor extending $T_{A,-}$. For every morphism $a: A \to \widetilde{A}$ in \mathcal{A} , prove that the natural transformations $T_{a,-}$ uniquely extend to natural transformations of homological δ -functors,

$$(L_n T_{a,-}: L_n T_{A,-} \Rightarrow L_n T_{\widetilde{A},-})_{n\geq 0}.$$

(c) Assume the following strong hypotheses.

- (H1) The category \mathcal{A} has enough projective objects.
- (H2) For every projective object P of \mathcal{A} , the corresponding functor $T_{P,-}$ is exact.

Thus, for every object B of \mathcal{B} , there exists a left derived functor

$$LT_{-,B} = ((L_n T_{-,B} : \mathcal{A} \to \mathcal{C})_{n \ge 0}, (\delta_n^{LT_{-,B},T})_{n > 0}),$$

extending $T_{-,B}$. Also, since $T_{P,-}$ is an exact functor, every $L_n T_{P,-}$ is zero for all n > 0. For an object A of \mathcal{A} , let Σ be a short exact sequence in \mathcal{A} ,

 $T: \ 0 \ \longrightarrow \ K \ \overset{u}{\longrightarrow} \ P \ \overset{v}{\longrightarrow} \ A \ \longrightarrow \ 0,$

such that P is a projective object. Denote $T_{A,-}$ by $\widehat{L}^0 T_{T,-}$. Prove that the maps $\delta_1^{LT_{-,B},T}$ assemble to give a natural equivalence of functors $\mathcal{B} \to \mathcal{C}$,

$$\delta_1^{LT_{-,B},T}: L_1T_{-,B}(A) \Rightarrow \operatorname{Ker}(T_{a,-}:T_{K,-}(B) \to T_{P,-}(B)).$$

Denote this common functor by $\widehat{L}_1 T_{T,-}(B)$. Prove that this is an additive functor in B. (d) Next, for every short exact sequence in \mathcal{B} ,

 $\Sigma: \ 0 \longrightarrow B' \xrightarrow{q} B \xrightarrow{p} B'' \longrightarrow 0,$

use exactness of $T_{P,-}$ to deduce that the following is a commutative diagram in C with exact rows,

$$T_{K,-}(\Sigma): \qquad T_{K,-}(B') \xrightarrow{T_{K,-}(q)} T_{K,-}(B) \xrightarrow{T_{K,-}(p)} T_{K,-}(B'') \longrightarrow 0,$$

$$T_{v,-}(\Sigma) \downarrow \qquad T_{v,-}(B') \downarrow \qquad \qquad \downarrow T_{v,-}(B) \qquad \downarrow T_{v,-}(B'') \qquad .$$

$$T_{P,-}(\Sigma): 0 \longrightarrow T_{P,-}(B') \xrightarrow{T_{P,-}(q)} T_{P,-}(B) \xrightarrow{T_{P,-}(p)} T_{P,-}(B'') \longrightarrow 0,$$

Apply the Snake Lemma to this commutative diagram to prove that $\hat{L}_1 T_{T,-}$ is half-exact and to construct morphisms in \mathcal{C}

$$\delta_1^{\widehat{L}T_{T,-},\Sigma}:\widehat{L}_1T_{T,-}(B'')\to T_{A,-}(B),$$

that are functorial in Σ and such that the following sequence in \mathcal{C} is exact,

$$\widehat{L}_1 T_{T,-}(B) \xrightarrow{\widehat{L}_1 T_{T,-}(q)} \widehat{L}_1 T_{T,-}(B'') \xrightarrow{\delta_1^{\widehat{L}T_{T,-},\Sigma}} T_{A,-}(B') \xrightarrow{T_{A,-}(q)} T_{A,-}(B)$$

Moreover, from commutativity of the following square,

and the fact that $L_1T_{P,-}$ is the zero functor, conclude the existence of a unique factorization

$$\delta_2^{\widehat{L}T_{T,-},\Sigma}: L_1T_{K,-}(B'') \to \widehat{L}T_{T,-}(B'),$$

of $\delta_1^{LT_{K,-},\Sigma}$, and conclude that the following sequence in \mathcal{C} is exact,

$$L_1T_{K,-}(B) \xrightarrow{L_1T_{K,-}(v)} L_1T_{K,-}(B'') \xrightarrow{\delta_2^{\widehat{L}T_{T,-},\Sigma}} \widehat{L}_1T_{T,-}(B') \xrightarrow{\widehat{L}_1T_{T,-}(u)} \widehat{L}_1T_{T,-}(B)$$

For every $n \geq 2$, define

$$\widehat{L}_n T_{T,-} = L_{n-1} T_{K,-}, \quad \delta_{n+1}^{\widehat{L}T_{T,-},\Sigma} = \delta_n^{LT_{K,-},\Sigma}.$$

Prove that the induced sequence,

$$\widehat{L}T_{T,-} = ((\widehat{L}_n T_{T,-})_{n \ge 0}, (\delta_n^{\widehat{L}T_{T,-},\Sigma})_{n \ge 1}),$$

is a homological δ -functor extending $T_{A,-}$.

(e) Using (d) and the universality of $LT_{A,-}$, conclude that there exists a unique natural transformation of homological δ -functors,

$$(\theta_{T,n}: \widehat{L}_n T_{T,-} \Rightarrow L_n T_{A,-})_{n \ge 0}.$$

In particular, for n = 1, this gives morphisms in C,

$$\theta_{T,n}: L_1T_{-,B}(A) \to L_1T_{A,-}(B).$$

(f) Finally, assume Hypotheses (H1) and (H2) also apply to \mathcal{B} and the functors $T_{-,Q}$ for projective objects Q of \mathcal{B} . For every object B of \mathcal{B} and for every projective resolution in \mathcal{B} ,

 $\Pi: \ 0 \longrightarrow H \longrightarrow Q \longrightarrow B \longrightarrow 0,$

repeat the arguments above to conclude the existence of a homological δ -functor $\hat{L}T_{-,\Pi}$ and a unique natural transformation of homological δ -functors

$$(\eta_{\Pi,n}:\widehat{L}_nT_{-,\Pi}\Rightarrow L_nT_{-,B})_{n\geq 0}$$

In particular, for n = 1, this gives morphisms in C,

$$\eta_{\Pi,1}: L_1T_{A,-}(B) \to L_1T_{-,B}(A).$$

Use the proof of uniqueness of natural transformations to left-derived functors to conclude that $\theta_{T,1}$ and $\eta_{\Pi,1}$ are inverse isomorphisms. In particular, use this to conclude that the morphisms $\theta_{T,1}$ and $\eta_{\Pi,1}$ are independent of the choices of projective resolutions T and Π . Finally, applying $\theta_{T,n}$ to the short exact sequence Π and use induction on n to conclude that every morphism,

$$\theta_{T,-}(B): L_n T_{K,-}(B) \to L_{n+1} T_{A,-}(B),$$

is an isomorphism. From this conclude the existence of a binatural isomorphism,

$$L_2T_{A,-}(B) \cong L_1T_{K,-}(B) \cong L_1T_{B,-}(K) \cong L_2T_{B,-}(A).$$

Iterating this argument, prove by induction that for every integer $n \ge 1$ there is a binatural isomorphism,

$$L_n T_{A,-}(B) \cong L_n T_{-,B}(A).$$

(g) Let R be an associative, unital ring. Let \mathcal{A} be the category or right R-modules. Let \mathcal{B} be the category of left R-modules. Let \mathcal{C} be the category of Abelian groups. Let T(A, B) be the tensor product $A \otimes_R B$. Prove that $(\mathcal{A}, \mathcal{B}, T)$ satisfies the hypotheses above. Thus there are canonical isomorphisms,

$$L_n(A \otimes_R -)(B) \cong L_n(- \otimes_R B)(A).$$

These common Abelian groups are denote by $\operatorname{Tor}_n^R(A, B)$, the Tor groups.

(h) Similarly, let \mathcal{A} be the category of left R-modules, let \mathcal{B} be the opposite category of the category of left R-modules, and let \mathcal{C} be the opposite category of the category of Abelian groups. Now let T(A, B) be $\operatorname{Hom}_{R-\operatorname{mod}}(A, B)$ (it takes some time to unwind all the opposite categories!). Prove that this datum also satisfies the hypotheses above. The common Abelian groups are denoted by $\operatorname{Ext}_{R}^{n}(A, B)$, the Ext groups.

Problem 4. Let R be \mathbb{Z} . Let A and B be \mathbb{Z} -modules. Recall that there is a short exact sequence of Abelian groups,

$$T: \quad 0 \to A_{\rm tor} \to A \to A_{\rm free} \to 0,$$

where A_{tor} is the subgroup of all finite order elements of A, where the quotient group A_{free} is torsion-free.

(a) Review the theorem of finitely generated Abelian groups. In particular, note that the short exact sequence T is (non-canonically) split. For every integer $n \ge 0$, conclude the existence of short exact sequences that are (non-canonically) split,

$$\operatorname{Tor}_{n}^{\mathbb{Z}}(\Sigma, B): 0 \to \operatorname{Tor}_{n}^{\mathbb{Z}}(A_{\operatorname{tor}}, B) \to \operatorname{Tor}_{n}^{\mathbb{Z}}(A, B) \to \operatorname{Tor}_{n}^{\mathbb{Z}}(A_{\operatorname{free}}, B) \to 0.$$

In particular, for n = 0, there is a short sequence,

$$T \otimes_{\mathbb{Z}} \mathrm{Id}_B : 0 \to A_{\mathrm{tor}} \otimes_{\mathbb{Z}} B \to A \otimes_{\mathbb{Z}} B \to A_{\mathrm{free}} \otimes_{\mathbb{Z}} B \to 0.$$

(b) Recall from the structure theorem that every finitely generated, torsion-free Abelian group is free of finite rank. Conclude that for all n > 0, $\operatorname{Tor}_{n}^{\mathbb{Z}}(A_{\operatorname{free}}, B)$ is a zero group (thus canonically isomorphic to "the" zero group). Thus, for every n > 0, there is a canonical isomorphism,

$$\operatorname{Tor}_{n}^{\mathbb{Z}}(A_{\operatorname{tor}}, B) \xrightarrow{\cong} \operatorname{Tor}_{n}^{\mathbb{Z}}(A, B).$$

Also, conclude that there is a canonical short exact sequence,

$$0 \to A_{\mathrm{tor}} \otimes_{\mathbb{Z}} B \to (A \otimes_{\mathbb{Z}} B)_{\mathrm{tor}} \to A_{\mathrm{free}} \otimes_{\mathbb{Z}} B_{\mathrm{tor}} \to 0,$$

as well as a canonical isomorphism,

$$A_{\text{free}} \otimes_{\mathbb{Z}} B_{\text{free}} \to (A \otimes_{\mathbb{Z}} B)_{\text{free}}$$

(c) Recall from the structure theorem that for every finitely generated, torsion Abelian group A_{tor} there is an increasing sequence of nonnegative integers $\underline{e} = (e_0, \ldots, e_m)$ with

$$1 < e_0, e_0 | e_1, \dots, e_k | e_{k+1}, \dots, e_{m-1} | e_m$$

and a sequence of positive integers (r_0, \ldots, r_m) such that there is an isomorphism,

$$A_{\mathrm{tor}} \cong (\mathbb{Z}/e_0\mathbb{Z})^{\oplus r_0} \oplus \cdots \oplus (\mathbb{Z}/e_m\mathbb{Z})^{\oplus r_m}.$$

The isomorphism is not canonical. However, this isomorphism does reduce the computation of the *isomorphism class* of $\operatorname{Tor}_{n}^{\mathbb{Z}}(A_{\operatorname{tor}}, B)$ as a \mathbb{Z} -module to the computation of every isomorphism class of the \mathbb{Z} -module,

$$\operatorname{Tor}_{n}^{\mathbb{Z}}(\mathbb{Z}/e\mathbb{Z},B).$$

Use the free resolution,

 $0 \to \mathbb{Z} \xrightarrow{e} \mathbb{Z} \to \mathbb{Z}/e\mathbb{Z} \to 0,$

to prove that there is an isomorphism of Abelian groups,

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}/e\mathbb{Z},B) \cong B_{e} := \{ b \in B | e \cdot b = 0 \},\$$

and for every n > 1, $\operatorname{Tor}_{n}^{\mathbb{Z}}(\mathbb{Z}/e\mathbb{Z}, B)$ is a zero group.

(d) For those who know about colimits, prove that every \mathbb{Z} -module A is a filtering colimit of finitely generated \mathbb{Z} -modules. Since tensor product commutes with filtering colimits, conclude that all of the functors Tor_n commute with filtering colimits. In particular, conclude that for every \mathbb{Z} -module A, finitely generated or not, for every integer $n \geq 2$, $\operatorname{Tor}_n^{\mathbb{Z}}(A, B)$ is a zero group.

Problem 5. Repeat the steps of the previous problem to compute the Ext groups $\operatorname{Ext}_{\mathbb{Z}}^{n}(A, B)$ when A is a finitely generated \mathbb{Z} -module. In particular, conclude that for every $n \geq 1$, $\operatorname{Ext}_{\mathbb{Z}}^{n}(A_{\operatorname{free}}, B)$ is zero, there is an isomorphism of \mathbb{Z} -modules,

$$\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/e\mathbb{Z},B) \cong B/eB,$$

and for every $n \geq 2$, $\operatorname{Ext}_{\mathbb{Z}}^{n}(\mathbb{Z}/e\mathbb{Z}, B)$ is a zero group. Again use commutation of the functor $\operatorname{Hom}_{\mathbb{Z}}(-, B)$ with filtering colimits to conclude that for every \mathbb{Z} -module A, for every $n \geq 2$, $\operatorname{Ext}_{\mathbb{Z}}^{n}(A, B)$ is a zero group. This property is denoted by saying that \mathbb{Z} has global homological dimension 1. Note that this equals the Krull dimension of \mathbb{Z} .

Problem 6. Let k be a field and let R be k[x], the polynomial ring in one variable x with coefficients in k. Use the structure theorem for finitely generated k[x]-modules to prove all of the following.

(a) For every k[x]-module A, defining A_{tor} to be the submodule of all elements that are annihilated by some nonzero element of k[x], there is a short exact sequence of k[x]-modules,

$$T: 0 \to A_{\text{tor}} \to A \to A_{\text{free}} \to 0,$$

such that A_{free} is torsion-free. If A is finitely generated, then this short exact sequence is (noncanonically) split. In that case, for every integer $n \ge 0$ there are short exact sequences that are (non-canonically) split,

$$0 \to \operatorname{Tor}_{n}^{k[x]}(A_{\operatorname{tor}}, B) \to \operatorname{Tor}_{n}^{k[x]}(A, B) \to \operatorname{Tor}_{n}^{k[x]}(A_{\operatorname{free}}, B) \to 0,$$

$$0 \to \operatorname{Ext}_{k[x]}^{n}(A_{\operatorname{free}}, B) \to \operatorname{Ext}_{k[x]}^{n}(A, B) \to \operatorname{Ext}_{k[x]}^{n}(A_{\operatorname{tor}}, B) \to 0.$$

(b) Every finitely generated, torsion-free k[x]-module A_{free} is a finitely generated, free k[x]-module. In this case, conclude for every $n \ge 1$ that both $\operatorname{Tor}_{n}^{k[x]}(A_{\text{free}}, B)$ and $\operatorname{Ext}_{k[x]}^{n}(A_{\text{free}}, B)$ are zero groups. (c) Every finitely generated, torsion k[x]-module A_{tor} is (non-canonically) isomorphic to a direct sum of k[x]-modules of the form k[x]/e(x)k[x] for noninvertible, nonzerodivisors $e(x) \in k[x]$. If we choose each e(x) to be monic, then the sequence of distinct elementary divisors $(e_0(x), \ldots, e_m(x))$ with $e_0|e_1, \ldots, e_{m-1}|e_m$, and the sequence of multiplicities (r_0, \ldots, r_m) as in the previous problem is unique. Reduce the computation of the isomorphism type of $\operatorname{Tor}_n^{k[x]}(A_{tor}, B)$ and $\operatorname{Ext}_{k[x]}^n(A_{tor}, B)$ to the computation of the groups $\operatorname{Tor}_n^{k[x]}(k[x]/e(x)k[x], B)$ and $\operatorname{Ext}_{k[x]}^n(k[x]/ek[x], B)$.

(d) Prove that there are isomorphisms,

$$\operatorname{Tor}_{1}^{k[x]}(k[x]/e(x)k[x], B) \cong B_{e(x)} := \{ b \in B | e(x) \cdot b = 0 \},$$
$$\operatorname{Ext}_{k[x]}^{1}(k[x]/e(x)k[x], B) \cong B/e(x)B.$$

Also prove that for every $n \ge 2$, both $\operatorname{Tor}_n^{k[x]}(k[x]/e(x)k[x], B)$ and $\operatorname{Ext}_{k[x]}^n(k[x]/e(x)k[x], B)$ are zero groups.

(e) Again use filtering colimits to conclude that for every k[x]-module A, for every $n \ge 2$, both $\operatorname{Tor}_{n}^{k[x]}(A, B)$ and $\operatorname{Ext}_{k[x]}^{n}(A, B)$ are zero groups. Thus k[x] has global homological dimension 1, which also equals the Krull dimension of k[x].

Problem 7. Read the definition of Noetherian ring R, and in particular the proof that every finitely generated R-module A is finitely presented, and every R-submodule A' of a finitely generated R-module A is again a finitely generated R-module. Use this to prove that every finitely generated R-module A has a projective resolution,

$$P_{\bullet} \to A[0],$$

such that for every $n \ge 0$, P_n is a finitely generated, free *R*-module. Conclude that for every finitely generated *R*-module *B*, for every integer $n \ge 0$, both $\operatorname{Tor}_n^R(A, B)$ and $\operatorname{Ext}_R^n(A, B)$ is a finitely generated *R*-module.

Problem 8. Let p be a prime integer, and let R be the ring $\mathbb{Z}/p^2\mathbb{Z}$. Let A be the R-module $A = R/pR \cong \mathbb{Z}/p\mathbb{Z}$. For every integer $n \ge 0$, define $P_n = R = \mathbb{Z}/p^2\mathbb{Z}$. For every integer $n \ge 1$, define

$$d_n: P_n \to P_{n-1}, \quad \mathbb{Z}/p^2\mathbb{Z} \xrightarrow{p} \mathbb{Z}/p^2\mathbb{Z}.$$

Define $\epsilon : P_0 \to A$ to be the quotient map $\mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$. Prove that $P_{\bullet} \to A[0]$ is a projective resolution. Compute that for every $n \ge 0$, $\operatorname{Tor}_n^R(A, A)$ and $\operatorname{Ext}_R^n(A, A)$ are both isomorphic to A. Conclude that $R = \mathbb{Z}/p^2\mathbb{Z}$ does not have finite global homological dimension.

Problem 9. Repeat Problem 8 for the ring $R = k[x]/x^2k[x]$.

Problem 10. Let R be a commutative, unital ring. An associative, unital, graded commutative R-algebra (with homological indexing) is a triple

$$A_{\bullet} = ((A_n)_{n \in \mathbb{Z}}, (m_{p,q} : A_p \times A_q \to A_{p+q})_{p,q \in \mathbb{Z}}, (\epsilon : R \to A_0))$$

of a sequence $(A_n)_{n \in \mathbb{Z}}$ of *R*-modules, of a sequence $(m_{p,q})_{p,q \in \mathbb{Z}}$ of *R*-bilinear maps, and an *R*-module morphism ϵ such that the following hold.

- (i) For the associated *R*-module $A = \bigoplus_{n \in \mathbb{Z}} A_n$ and the induced morphism $m : A \times A \to A$ whose restriction to each $A_p \times A_q$ equals $m_{p,q}$, $(A, m, \epsilon(1))$ is an associative, unital, *R*-algebra.
- (ii) For every $p, q \in \mathbb{Z}$, for every $a_p \in A_p$ and for every $a_q \in A_q$, $m_{q,p}(a_q, a_p)$ equals $(-1)^{pq} m_{p,q}(a_p, a_q)$.

(a) Prove that the *R*-submodules of *A*,

$$A_{\geq 0} = \bigoplus_{n \geq 0} A_n, \quad A_{\leq 0} = \bigoplus_{n \leq 0} A_n,$$

are both associative, unital *R*-subalgebras. Moreover, prove that the *R*-submodule,

$$A_{>0} = \bigoplus_{n>0} A_n, \text{ resp. } A_{<0} = \bigoplus_{n<0} A_n,$$

is a left-right ideal in $A_{\geq 0}$, resp. in $A_{\leq 0}$.

(b) For associative, unital, graded commutative *R*-algebras A_{\bullet} and B_{\bullet} , a graded homomorphism of *R*-algebras is a collection

$$f_{\bullet} = (f_n : A_n \to B_n)_{n \ge 0}$$

such that for the unique R-module homomorphism $f : A \to B$ whose restriction to every A_n equals f_n , f is an R-algebra homomorphism. Prove that such f_{\bullet} is uniquely reconstructed from the homomorphism f. Prove that Id_A comes from a unique graded homomorphism $\mathrm{Id}_{A_{\bullet}}$. Prove that for a graded homomorphism of R-algebras, $g_{\bullet} : B_{\bullet} \to C_{\bullet}$, the composition $g \circ f$ arises from a unique graded homomorphism of R-algebras, $A_{\bullet} \to C_{\bullet}$. Using this to define composition of homomorphisms of graded R-algebras, prove that composition is associative and the identity morphisms abe are left-right identities for composition. Conclude that these notions form a category $R - \operatorname{GrComm}$ of associative, unital, graded commutative R-algebras. Prove that the rule $A_{\bullet} \mapsto A$, $f_{\bullet} \mapsto f$ defines a faithful functor

$$R - \text{GrComm} \rightarrow R - \text{Algebra}.$$

Give an example showing that this functor is not typically full.

(c) Let A_{\bullet} be an associative, unital, graded commutative R-algebra. Prove that R is commutative (in the usual sense) if and only if A_n is a zero module for every even integer n. Denote by R-Comm the category of associative, unital R-algebras S that are commutative. Denote by $\mathbb{Z} - R$ - Comm the faithful (but not full) subcategory whose objects are triples,

$$S_{\bullet} = ((S_n)_{n \in \mathbb{Z}}, (m_{p,q} : S_p \times S_q \to S_{p+q})_{p,q \in \mathbb{Z}}, (\epsilon : R \to S_0))$$

as above, but such that the multiplication is commutative rather than graded commutative, i.e., $m_{q,p}(s_q, s_p) = m_{p,q}(s_p, s_q)$. Prove that there is a functor,

$$v_{\text{even}}: R - \text{GrComm} \to \mathbb{Z} - R - \text{Comm},$$

 $((A_n)_{n\in\mathbb{Z}}, (m_{p,q}: A_p \times A_q \to A_{p+q})_{p,q\in\mathbb{Z}}, (\epsilon: R \to A_0)) \mapsto ((A_{2n})_{n\in\mathbb{Z}}, (m_{2p,2q}: A_{2p} \times A_{2q} \to A_{2(p+q)})_{p,q\in\mathbb{Z}}, (\epsilon: R \to A_0))$ and $f_{\bullet}: A_{\bullet} \to B_{\bullet}$ maps to $v_{\text{ev}}(f) = (f_{2n})_{n\in\mathbb{Z}}$. Also prove that there is a left adjoint to v_{even} ,

 $w_{\text{even}} : \mathbb{Z} - R - \text{Comm} \to R - \text{GrComm},$

where $w_{\text{even}}(S_{\bullet})_{2n}$ equals S_n , where $w_{\text{even}}(S_{\bullet})_p$ is the zero module for every odd p, where

$$A_{2p} \times A_{2q} \to A_{2(p+q)}$$

is $m_{p,q}$ for S_{\bullet} , and where $R \to A_0$ is $\epsilon : R \to S_0$. For a morphism $f_{\bullet} : S_{\bullet} \to T_{\bullet}$ in $\mathbb{Z} - R - \text{Comm}$, $w_{\text{even}}(f_{\bullet})$ is the unique morphism whose component in degree 2n equals f_n for every $n \in \mathbb{Z}$.

(d) Let *e* be an odd integer. For every associative, unital, graded commutative *R*-algebra A_{\bullet} define $v_e(A_{\bullet})$ to be the collection

$$((A_{ne})_{n\in\mathbb{Z}}, (m_{pe,qe}: A_{pe} \times A_{qe} \to A_{(p+q)e})_{p,q\in\mathbb{Z}}, \epsilon: R \to A_0 = A_{0e}).$$

Prove that $v_e(A_{\bullet})$ is again an associative, unital, graded commutative *R*-algebra. For every morphism of associative, unital, graded commutative *R*-algebras, $f_{\bullet} : A_{\bullet} \to B_{\bullet}$, the collection $v_e(f_{\bullet}) = (f_{ne})_{n \in \mathbb{Z}}$ is a morphism of associative, unival, graded commutative *R*-algebras, $v_e(A_{\bullet}) \to v_e(B_{\bullet})$. Prove that this defines a functor,

$$v_e: R - \text{GrComm} \to R - \text{GrComm}.$$

This is sometimes called the Veronese functor (it is closely related to the Veronese morphism of projective spaces). If e is positive, prove that the induced morphism $v_e(A_{\geq 0}) \rightarrow v_e(A_{\bullet})$, resp. $v_e(A_{\leq 0}) \rightarrow v_e(A_{\bullet})$, is an isomorphism to $(v_e(A_{\bullet}))_{\geq 0}$, resp. to $(v_e(A_{\bullet}))_{\leq 0}$. Similarly, if e is negative (e.g., if e equals -1), this defines an isomorphism to $(v_e(A_{\bullet}))_{\leq 0}$, resp. to $(v_e(A_{\bullet}))_{\geq 0}$. Prove that v_1 is the identity functor. For odd integers d and e, construct a natural isomorphism of functors,

$$v_{d,e}: v_d \circ v_e \Rightarrow v_{de},$$

prove that $v_{d,1}$ and $v_{1,e}$ are identity natural transformations, and prove that these natural isomorphisms are associative: $v_{de,f} \circ (v_{d,e} \circ v_f)$ equals $v_{d,ef} \circ (v_d \circ v_{e,f})$ for all odd integers d, e and f.

(e) For every associative, unital, graded commutative R-algebra A_{\bullet} , for every odd integer e, define

$$w_e: R - \text{GrComm} \to R - \text{GrComm},$$

where $w_e(A_{\bullet})_{ne}$ equals A_n for every integer n, and where $w_e(A_{\bullet})_m$ is a zero module if e does not m. For every morphism $f_{\bullet}: A_{\bullet} \to B_{\bullet}$, define $w_e(f_{\bullet})$ to the be the unique morphism whose component in degree en equals f_n for every $n \in \mathbb{Z}$. Prove that w_e is a functor. For the natural isomorphism,

$$\theta_e(A_{\bullet}): A_{\bullet} \to v_e(w_e(A_{\bullet})), (A_n \xrightarrow{=} A_n)_{n \in \mathbb{Z}}$$

and the natural monomorphisms

$$\eta_e(B_{\bullet}): w_e(v_e(B_{\bullet})) \to B_{\bullet}, (B_{ne} \xrightarrow{=} B_{ne})_{n \in \mathbb{Z}},$$

prove that $(w_e, v_e, \theta_e, \eta_e)$ is an adjoint pair.

(f) For every integer $n \ge 0$, recall from Problem 5(iv) of Problem Set 1, that there is a functor,

$$\bigwedge_{R}^{n} : R - \text{mod} \to R - \text{mod}, \ M \mapsto \bigwedge_{R}^{n} (M).$$

In particular, there is a natural isomorphism

$$\epsilon(M): R \to \bigwedge_{R}^{0}(M),$$

and there is a natural isomorphism,

$$\theta(M): M \to \bigwedge_R^1(M).$$

By convention, for every integer n < 0, define $\bigwedge_{R}^{n}(M)$ to be the zero module. For every pair of integers $q, r \ge 0$, prove that the natural *R*-bilinear map

$$\otimes: M^{\otimes q} \times M^{\otimes r} \to M^{\otimes (q+r)}, \ ((m_1 \otimes \cdots \otimes m_q), (m'_1 \otimes \cdots \otimes m'_r)) \mapsto m_1 \otimes \ldots m_q \otimes m'_1 \otimes \cdots \otimes m'_r,$$

factors uniquely through an *R*-bilinear map,

$$\wedge: \bigwedge_{R}^{q}(M) \times \bigwedge_{R}^{r}(M) \to \bigwedge_{R}^{q+r}(M).$$

Prove that $\bigwedge_{R}^{\bullet}(M)$ is an associative, unital, graded commutative *R*-algebra. For every *R*-module homomorphism $\phi: M \to N$, prove that the associated *R*-module homomorphisms,

$$\bigwedge_{R}^{n}(\phi): \bigwedge_{R}^{n}(M) \to \bigwedge_{R}^{n}(N),$$

define a morphism of associative, unital, graded commutative *R*-algebras,

$$\bigwedge_{R}^{\bullet}(\phi): \bigwedge_{R}^{\bullet}(M) \to \bigwedge_{R}^{\bullet}(N).$$

Prove that for every *R*-module homomorphism $\psi : N \to P$, $\bigwedge_R^{\bullet}(\psi \circ \phi)$ equals $\bigwedge_R^{\bullet}(\psi) \circ \bigwedge_R^{\bullet}(\phi)$. Also prove that $\bigwedge_R^{\bullet}(\mathrm{Id}_M)$ is the identity morphism of $\bigwedge_R^{\bullet}(M)$.

(g) An associative, unital, graded commutative *R*-algebra A_{\bullet} is (strictly) 0-connected, resp. weakly 0-connected, if the inclusion $A_{\geq 0} \to A$ is an isomorphism and the *R*-module homorphism ϵ is an isomorphism, resp. an epimorphism. If *R* is a field, prove that every weakly 0-connected algebra is strictly 0-connected. Denote by

 $R - \operatorname{GrComm}_{\geq 0}$, resp. $R - \operatorname{GrComm}'_{\geq 0}$

the full subcategory of R – GrComm whose objects are the 0-connected algebras, resp. the weakly 0-connected algebras. Prove that v_{even} restricts to a functor,

$$R - \operatorname{GrComm}_{>0} \to \mathbb{Z}_+ - R - \operatorname{Comm}_{>0},$$

where $\mathbb{Z}_+ - R - \text{Comm}$ is the full subcategory of $\mathbb{Z} - R - \text{Comm}$ of algebras graded in nonnegative degrees such that $R \to S_0$ is an isomorphism. For e an odd positive integer, prove that v_e and w_e restrict to an adjoint pair of functors,

$$v_e: R - \operatorname{GrComm}_{\geq 0} \to R - \operatorname{GrComm}_{\geq 0},$$

 $w_e: R - \operatorname{GrComm}_{\geq 0} \to R - \operatorname{GrComm}_{\geq 0}.$

For every odd positive integer e, define a functor

$$\Phi_e: R - \operatorname{GrComm}_{>0} \to R - \operatorname{mod},$$

that sends A_{\bullet} to A_e and sends f_{\bullet} to f_e . Of course, for every odd positive integer d, $\Phi_e \circ v_d$ is naturally isomorphic to Φ_{de} and $\Phi_{de} \circ w_d$ is Φ_e . By the previous part, there is a functor

$$\bigwedge_{R}^{\bullet}: R - \mathrm{mod} \to R - \mathrm{GrComm}_{\geq 0}$$

that sends every module M to the 0-connected, associative, unital, graded commutative R-algebra $(\bigwedge_{R}^{n}(M))_{n\geq 0}$. Moreover, there is a natural transformation,

$$\theta : \mathrm{Id}_{R-\mathrm{mod}} \Rightarrow \Phi_1 \circ \bigwedge_R^{\bullet}.$$

Prove that this extends uniquely to an adjoint pair of functors

$$(\bigwedge_R^{\bullet}, \Phi_1, \theta, \eta).$$

Using the natural isomorphisms $\Phi_e \circ v_d = \Phi_{de}$ and $\Phi_{de} \circ w_d = \Phi_e$, prove that there is also an adjoint pair of functors

$$(w_e \circ \bigwedge_R, \Phi_e, \theta, \eta_e).$$

Problem 11. Let R be a commutative, unital ring. A (homological, unital, associative, graded commutative) differential graded R-algebra is a pair

$$((C_n)_{n\in\mathbb{Z}}, (\wedge: C_p \times C_q \to C_{p+q})_{p,q\in\mathbb{Z}}, (\epsilon: R \to C_0), (d_n: C_n \to C_{n-1})_{n\in\mathbb{Z}}),$$

of an associative, unital, graded commutative *R*-algebra C_{\bullet} together with *R*-linear morphisms $(d_n)_{n \in \mathbb{Z}}$ such that $d_{n-1} \circ d_n$ equals 0 for every $n \in \mathbb{Z}$, and that satisfies the graded Leibniz identity,

$$d_{p+q}(c_p \wedge c_q) = d_p(c_p) \wedge c_q + (-1)^p c_p \wedge d_q(c_q),$$

for every $p, q \in \mathbb{Z}$, for every $c_p \in C_p$, and for every $c_q \in C_q$. A morphism of differential graded *R*-algebras,

$$\phi_{\bullet}: C_{\bullet} \to A_{\bullet}$$

is a morphism $\phi_{\bullet} = (\phi_n)_{n \in \mathbb{Z}}$ that is simultaneously a morphism of chain complexes of *R*-modules and a morphism of associative, unital, graded commutative *R*-algebras.

(a) For morphisms of differential graded *R*-algebras, $\phi_{\bullet} : C_{\bullet} \to A_{\bullet}, \psi_{\bullet} : D_{\bullet} \to C_{\bullet}$, prove that the composition of $\psi_{\bullet} \circ \phi_{\bullet}$ of graded *R*-modules is both a morphism of chain complexes of *R*-modules and a morphism of associative, unital, graded commutative *R*-algebras. Thus, it is a composition of morphisms of differential graded *R*-algebras. With this composition, prove that this defines a category R - CDGA of differential graded *R*-algebras.

(b) For every associative, unital, graded commutative *R*-algebra A_{\bullet} , for every integer *n*, define $d_{E(A),n}: A_n \to A_{n-1}$ to be the zero morphism. Prove that this gives a differential graded *R*-algebra, denoted $E(A_{\bullet})$. For every morphism $f_{\bullet}: A_{\bullet} \to B_{\bullet}$ of associative, unital, graded commutative *R*-algebras, prove that $f_{\bullet}: E(A_{\bullet}) \to E(B_{\bullet})$ is a morphism of differential graded *R*-algebras, denoted $E(f_{\bullet})$. Prove that this defines a functor

$$E: R - \text{GrComm} \to R - \text{CDGA}.$$

For every differential graded *R*-algebra C_{\bullet} , prove that the subcomplex $Z_{\bullet}(C_{\bullet})$ is a differential graded *R*-subalgebra with zero differential, and the inclusion,

$$\eta(C_{\bullet}): E(Z_{\bullet}(C_{\bullet})) \to C_{\bullet},$$

is a morphism of differential graded *R*-algebras. Also, for every morphism $\phi_{\bullet} : C_{\bullet} \to D_{\bullet}$ of differential graded *R*-algebras, prove that the induced morphism $Z_{\bullet}(f_{\bullet}) : Z_{\bullet}(C_{\bullet}) \to Z_{\bullet}(D_{\bullet})$ is a morphism of associative, unital, graded commutative *R*-algebras. Prove that this defines a functor

$$Z_{\bullet}: R - CDGA \rightarrow R - GrComm.$$

For every associative, unital, graded commutative *R*-algebra A_{\bullet} , the inclusion $Z_{\bullet}(E(A_{\bullet})) \to E(A_{\bullet})$ is just the identity map, whose inverse,

$$\theta(A_{\bullet}): A_{\bullet} \to Z_{\bullet}(E(A_{\bullet})),$$

is an isomorphism. Prove that $(E, Z_{\bullet}, \theta, \eta)$ is an adjoint pair of functors. Finally, prove that the subcomplex $B_{\bullet}(C_{\bullet}) \subset Z_{\bullet}(C_{\bullet})$ is a left-right ideal in the associative, unital, graded commutative R-algebra $Z_{\bullet}(C_{\bullet})$. Conclude that there is a unique structure of associative, unital, graded commutative R-algebra on the cokernel $H_{\bullet}(C_{\bullet})$ such that the quotient morphism $Z_{\bullet}(C_{\bullet}) \to H_{\bullet}(C_{\bullet})$ is a morphism of differential graded R-algebras. Prove that altogether this defines a functor,

 $H: R - CDGA \rightarrow R - GrComm.$

(c) A differential graded *R*-algebra C_{\bullet} is (strictly) 0-connected, resp. weakly 0-connected, if the underlying associative, unital, graded commutative *R*-algebra is 0-connected, resp. weakly 0-connected. Denote by $R - \text{CDGA}_{\geq 0}$, resp. $R - \text{CDGA}'_{\geq 0}$, the full subcategory of R - CDGA whose objects are the 0-connected differential graded *R*-algebras, resp. those that are weakly 0-connected. Prove that the functors above restrict to functors,

 $E: R - \operatorname{GrComm}_{\geq 0} \to R - \operatorname{CDGA}_{\geq 0},$ $Z_{\bullet}: R - \operatorname{CDGA}_{>0} \to R - \operatorname{GrComm}_{>0},$

such that (E, Z, θ, η) is still an adjoint pair. Similarly, show that H restricts to a functor

$$H: R - CDGA_{\geq 0} \rightarrow R - GrComm'_{\geq 0}.$$

(d) Denote by $R - \text{CDGA}_{[0,1]}$ the full subcategory of $R - \text{CDGA}_{\geq 0}$ whose objects are 0-connected differential graded R-algebras C_{\bullet} such that C_n is a zero object for n > 1. Prove that every such object is uniquely determined by the data of an R-module C_1 and an R-module homomorphism $d_{C,1}: C_1 \to C_0 = R$, and conversely such data uniquely determine an object of $R - \text{CDGA}_{[0,1]}$. Prove that for such algebras C_{\bullet} and D_{\bullet} , every morphism $\phi_{\bullet}: C_{\bullet} \to D_{\bullet}$ of differential graded Ralgebras is uniquely determined by an R-module homomorphism $\phi_1: C_1 \to D_1$ such that $d_{D,1} \circ \phi_1$ equals $d_{C,1}$, and conversely, such an R-module homomorphism uniquely determines a morphism of differential graded R-algebras. Conclude that there is a functor

$$\sigma_{[0,1]}: R - CDGA_{>0} \to R - CDGA_{[0,1]},$$

that associates to every 0-connected differential graded *R*-algebra C_{\bullet} the algebra $\sigma_{[0,1]}(C_{\bullet})$ uniquely determined by the *R*-module homomorphism $d_{C,1}: C_1 \to C_0 = R$ and that associates to every morphism $\phi_{\bullet}: C_{\bullet} \to D_{\bullet}$ of 0-connected differential graded *R*-algebras the morphism,

$$\sigma_{[0,1]}(\phi_{\bullet}):\sigma_{[0,1]}(C_{\bullet})\to\sigma_{[0,1]}(D_{\bullet}),$$

uniquely determined by the morphism $\phi_1: C_1 \to D_1$.

(e) For every *R*-module *M* and for every *R*-module homomorphism $\phi : M \to R$, prove that there exists a unique sequence of *R*-module homomorphisms,

$$(d_{M,\phi,n}: \bigwedge_{R}^{n}(M) \to \bigwedge_{R}^{n-1}(M))_{n>0},$$

such that d_1 equals ϕ and such that $(\bigwedge_R^{\bullet}(M), d_{M,\phi})$ is a 0-connected differential graded *R*-algebra. It may be convenient to begin with the case of a free *R*-module *P* and a morphism $\psi : P \to R$, in which case every $\bigwedge_R^n(P)$ is also free and the *R*-module homomorphisms d_n is uniquely determined by its restriction to a convenient basis. Given a presentation M = P/K such that ψ factors uniquely through $\phi : M \to R$, prove that the associative, unital, graded commutative *R*-algebra $\bigwedge_R^{\bullet}(M)$ is the quotient of $\bigwedge_R^{\bullet}(P)$ by the left-right ideal generated by $K \subset P = \bigwedge_R^1(P)$. Also prove that $d_{P,\psi}$ maps this ideal to itself, i.e., the ideal is differentially-closed. Conclude that there is a unique structure of differential graded algebra on the quotient $\bigwedge_R^{\bullet}(M)$ such that the quotient map is a morphism of differential graded *R*-algebras.

(f) Prove that the construction of the previous part defines a functor,

$$\bigwedge_{R}^{\bullet} : R - \mathrm{CDGA}_{[0,1]} \to R - \mathrm{CDGA}_{\geq 0}.$$

Prove that for every object $(\phi: M \to R)$ of $R - CDGA_{[0,1]}$, the morphism

$$\theta(M,\phi): M \xrightarrow{=} \bigwedge_{R}^{1} (M)$$

is a natural isomorphism

$$\theta: \mathrm{Id}_{R-\mathrm{CDGA}_{[0,1]}} \Rightarrow \sigma_{[0,1]} \circ \bigwedge_{R}.$$

Similarly, for every object 0-connected differential graded *R*-algebra C_{\bullet} , prove that the natural transformation from Problem 10(g),

$$\eta(C_{\bullet}): \bigwedge_{R}^{\bullet}(C_{1}) \to C_{\bullet},$$

is compatible with the differential on $\bigwedge_{R}^{\bullet}(C_1)$ induced by $d_{C,1}: C_1 \to C_0 = R$, i.e., $\eta(C_{\bullet})$ is a natural transformation,

$$\eta: \bigwedge_R \circ \sigma_{[0,1]} \to \mathrm{Id}_{R-\mathrm{CDGA}_{\geq 0}}.$$

Conclude that $(\bigwedge_{R}^{\bullet}, \sigma_{[0,1]}, \theta, \eta)$ is an adjoint pair of functors. For every $\phi : M \to R$ in $R-\text{CDGA}_{[0,1]}$, the associated 0-complete differential graded *R*-algebra structure on $\bigwedge_{R}^{\bullet}(M)$ is called the *Koszul* algebra of $\phi : M \to R$ and denoted $K_{\bullet}(M, \phi)$.

(g) For every *R*-module *M*, and for every *R*-submodule *M'* of *M*, denote by $F^1 \subset \bigwedge_R^{\bullet}(M)$ the left-right ideal generated by $M' \subset M = \bigwedge_R^1(M)$. For every integer $n \leq 0$, denote by $F^n \subset \bigwedge_R^{\bullet}(M)$ the entire algebra. For every integer $n \geq 1$, denote by F^n the left-right ideal of $\bigwedge_R^{\bullet}(M)$ generated

by the *n*-fold self-product $F^1 \cdots F^1$. For every pair of nonnegative integers p, q, prove that the ideal $F^p \cdot F^q$ equals F^{p+q} . In particular, prove that there is a natural epimorphism,

$$\bigwedge_{R}^{p}(F_{1}^{1}) \otimes_{R} \bigwedge_{R}^{q}(M) \to F_{p+q}^{p}.$$

Denote the quotient M/M' by M'', and denote by Σ the short exact sequence,

$$\Sigma: \ 0 \ \longrightarrow \ M' \ \overset{u}{\longrightarrow} \ M \ \overset{v}{\longrightarrow} \ M'' \ \longrightarrow \ 0.$$

For every nonnegative integer q, prove that the R-module morphism,

$$\bigwedge_R^q(v): \bigwedge_R^q(M) \to \bigwedge_R^q(M''),$$

is an epimorphism whose kernel equals F_q^1 . Conclude that the composite epimorphism

$$\bigwedge_{R}^{p}(M') \otimes_{R} \bigwedge_{R}^{q}(M) \to F_{p+q}^{p} \to F_{p+q}^{p}/F_{p+q}^{p+1}$$

factors uniquely through an R-module epimorphism

$$c_{\Sigma,p,q}: \bigwedge_{R}^{p}(M') \otimes_{R} \bigwedge_{R}^{q}(M'') \to F_{p+q}^{p}/F_{p+q}^{p+1}.$$

In case there exists a splitting of Σ , prove that every epimorphism $c_{\Sigma,p,q}$ is an isomorphism. On the other hand, find an example where Σ is not split and some morphism $c_{\Sigma,p,q}$ is not a monomorphism (there exist such examples for $R = \mathbb{C}[x, y]$).

(h) Continuing the previous problem, assume that M'' is isomorphic to R as an R-module (or, more generally, projective of constant rank 1), so that Σ is split. For every nonnegative integer p, conclude that there exists a short exact sequence,

$$\Sigma_{p,1}: 0 \longrightarrow \bigwedge_{R}^{p+1}(M') \xrightarrow{\bigwedge_{R}^{p+1}(u)} \bigwedge_{R}^{p+1}(M) \xrightarrow{c_{\Sigma,p,1}^{-1}} \bigwedge_{R}^{p}(M') \otimes_{R} M'' \longrightarrow 0,$$

that is split. Check that this is compatible with the product structure and, thus, defines a short exact sequence of graded (left) $\bigwedge_{R}^{\bullet}(M)$ -modules,

$$\bigwedge_{R}^{\bullet}(\Sigma): 0 \longrightarrow \bigwedge_{R}^{\bullet}(M') \xrightarrow{\bigwedge_{R}^{\bullet}(u)} \bigwedge_{R}^{\bullet}(M) \xrightarrow{c_{\Sigma}^{-1}} \bigwedge_{R}^{\bullet}(M') \otimes_{R} M''[+1] \longrightarrow 0.$$

(i) Now, let $\phi : M \to R$ be an *R*-module homomorphism. Denote by $\phi' : M' \to R$ the restriction $\phi \circ u$. These morphisms define structures of differential graded *R*-algebra, $K_{\bullet}(M, \phi)$ on $\bigwedge_{R}^{\bullet}(M)$,

and $K_{\bullet}(M', \phi')$ on $\bigwedge_{R}^{\bullet}(M')$. Moreover, the morphism $\bigwedge_{R}^{\bullet}(u)$ above is a morphism of differential graded *R*-modules,

$$K(u): K_{\bullet}(M', \phi') \to K_{\bullet}(M, \phi).$$

Prove that the induced morphism

$$c_{\Sigma}^{-1}: K_{\bullet}(M, \phi) \to K_{\bullet}(M', \phi') \otimes_R M''[+1]$$

is a morphism of cochain complexes. Moreover, for a choice of splitting $s: M'' \to M$, for the induced morphism $\phi'': M'' \to R$, $\phi'' = \phi \circ s$, for the induced morphism of cochain complexes,

$$\mathrm{Id}_{K_{\bullet}(M',\phi')} \otimes \phi'' : K_{\bullet}(M',\phi') \otimes_{R} M'' \to K_{\bullet}(M',\phi'),$$

prove that there is a unique commutative diagram of short exact sequences,

(j) With the same hypotheses as above, conclude that there is an exact sequence of homology (remember the shift [+1] above is cohomological),

$$H_0(K_{\bullet}(M',\phi')) \otimes_R M'' \xrightarrow{\operatorname{Id}\otimes\phi''} H_0(K_{\bullet}(M',\phi')) \xrightarrow{K_0(u)} H_0(K_{\bullet}(M,\phi)) \to 0,$$

i.e., $H_0(K_{\bullet}(M, \phi)) \cong H_0(K_{\bullet}(M, \phi))/\phi(M'') \cdot H_0(K_{\bullet}(M, \phi))$ as a quotient algebra of R. Also, for every n > 0, conclude the existence of a short exact sequence of Koszul homologies,

$$0 \to K_n(M',\phi') \otimes_R R/\operatorname{Im}(\phi'') \xrightarrow{\psi''} K_n(M,\phi) \to K_{n-1}(M',\phi';M'')_{\operatorname{Im}(\phi'')} \to 0$$

where for every *R*-module *N*, $N_{\text{Im}(\phi'')}$ denotes the submodule of elements that are annihilated by the ideal $\text{Im}(\phi'') \subset R$. As graded modules over the associative, unital, graded commutative *R*-algebra $K_*(M', \phi') = H_*(K_{\bullet}(M', \phi'))$, this is a short exact sequence,

$$0 \to K_*(M',\phi') \otimes_R R/\operatorname{Im}(\phi'') \xrightarrow{\psi''} K_*(M,\phi) \to K_{*-1}(M',\phi';M'')_{\operatorname{Im}(\phi'')} \to 0,$$

As a special case, if $K_{\bullet}(M', \phi')$ is acyclic, and if the morphism

$$H_0(K_{\bullet}(M',\phi')) \otimes_R M'' \xrightarrow{\operatorname{Id}\otimes\phi''} H_0(K_{\bullet}(M',\phi'))$$

is injective, conclude that also $K_{\bullet}(M, \phi)$ is acyclic.

(k) Repeat this exercise for the cohomological Koszul complexes $K^{\bullet}(M, \phi)$.

Problem 12. Let R be the ring $k[x_1, \ldots, x_m]$. For the sequence of elements $\underline{x} = (x_1, \ldots, x_m)$, check that this is a regular sequence for the R-module R, itself. For the quotient R-module $A = R/\langle x_1, dots, x_m \rangle$, use the Koszul resolution in the previous problem to prove that for every R-module B, for every integer n > m, both $\operatorname{Tor}_n^R(A, B)$ and $\operatorname{Ext}_R^n(A, B)$ are zero. Moreover, check that there is an isomorphism $\operatorname{Ext}_R^n(A, B) \cong \operatorname{Tor}_{m-n}^R(A, B)$ for every $n = 0, \ldots, m$. When B is A, compute the associative, unital graded R-algebras (homological, resp. cohomological) given by $\operatorname{Tor}_{\bullet}^R(A, A)$, resp. $\operatorname{Ext}_R^{\bullet}(A, A)$.