Name: Problem 1: /25

Problem 1(45 points) Let v/5 be the positive, real root of 22 — 5. Let ¢ be the automorphism of

Q(\f ) sending /5 to —+/5. Let t be 5+ 2+/5 and let u := /5 4+ 2v/5 be the positive, real root of
2?2 — 1.

(a)(5 points) Prove that u is“ algebraic over Q and find its minimal polynomial m, g(z).
(b)(5 points) Compute te(t) as an element in Q.

(c)(10 points) Prove that Q(u) contains a root v of 22 — €(t).

(d)(5 points) Explain why Q(u) is the splitting field of m,, g(z).

(e)(10 points) Let o be the automorphism of Q(u) sending u to a root v of 22 — ¢(t). Compute
o(1/5) and use this to compute o(v).

(£)(10 points) Find the order of o and use this to ideﬁtify Aut(Q(u)/Q).
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Name: Problem 2: /25

Problem 2(25 points) Let F' be a field of characteristic 0 which contains a primitive n*® root of
unity, ¢,. Recall that every Galois extension E/F with order n cyclic Galois group, Aut(E/F) =
(o) 2 Z/nl, is of the form F(t) where ¢ in E is a root of an irreducible polynomial z" — a in E[z]
and satisfying o(t) = (,t.

Let u be a nonzero element of F such that b := %" is in F. Prove that there exists an integer
r = 0,...,n — 1 such that b/a” is an n** power in F, i.e., b/a” = c" for some nonzero c in F.
Conclude that ((F*)" N EX)/(E*)" is the cyclic subgroup generated by @. (This subgroup of
E*/(E*)™ characterizes the cyclic extension F//E up to isomorphism.)

Hint. What are generators of the eigenspaces of the F-linear transformation o of £7 What are
the Galois conjugates of u? What does this imply about o(u) and ¢"7
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Name: Problem 3: /30

Problem 3(30 points) Let F be a field and let f(z) be a monic polynomial in F[z] such that f(z)
factors into a product of monic linear polynomials in some finite, Galois extension K of F, i.e.,

n

f@) =[] - ).

=
The discriminant of f(z) is defined to be

Disc(f) := [] (s — ) = (=" ](0s — ).

1<i<j<n i#]

The element Disc(f) is invariant under Aut(K/F'), hence is an element of F. (Discriminants were .
discussed in Tuesday’s lecture, but the following problem requires none of the results proved in
that lecture.) '

(a)(10 points) If f(z) equals (z — 8)g(x), prove that Disc(f) equals (g(6))*Disc(g). Assuming f(z)
is separable, conclude that Disc(g) is a square if and only if Disc(f) is a square.

(b)(5 points) For quadratic polynomials, the explicit formula for the discriminant is
9(z) = 2* — a1z + az, Disc(g) = a? — 4da,.
Assuming char(F) is # 2, prove that a quadratic polynomial g(z) factors into linear polynomials

in F' if and only if Disc(g) is a square in F.

(c)(10 points) Finally, let £ be a field with char(F) # 2,3. Let f(z) be a monic, irreducible,
separable, cubic polynomial in Efz]. Let F' = E[t]/(f(t)) be a root field of f(z), and let 8 be a
root of f(z) in F so that f(z) = (z — 0)g(z) in F|z]. If Disc(f) is a square in E, prove that F' is a
splitting field for f(z).

(d)(5 points) Let f(z) and F/E be as above. When Disc(f) is a square in E, what is the Galois
group Aut(F/E)?
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Name: Problem 3 continued
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