Name:	
+ ····································	

Problem 1:

Problem 1(45 points) Let $\sqrt{5}$ be the positive, real root of $x^2 - 5$. Let ϵ be the automorphism of $\mathbb{Q}(\sqrt{5})$ sending $\sqrt{5}$ to $-\sqrt{5}$. Let t be $5+2\sqrt{5}$ and let $u:=\sqrt{5+2\sqrt{5}}$ be the positive, real root of

(a) (5 points) Prove that u is algebraic over \mathbb{Q} and find its minimal polynomial $m_{u,\mathbb{Q}}(x)$.

(b)(5 points) Compute $t\epsilon(t)$ as an element in \mathbb{Q} .

(c)(10 points) Prove that $\mathbb{Q}(u)$ contains a root v of $x^2 - \epsilon(t)$.

(d)(5 points) Explain why $\mathbb{Q}(u)$ is the splitting field of $m_{u,\mathbb{Q}}(x)$.

(e)(10 points) Let σ be the automorphism of $\mathbb{Q}(u)$ sending u to a root v of $x^2 - \epsilon(t)$. Compute $\sigma(\sqrt{5})$ and use this to compute $\sigma(v)$.

(f)(10 points) Find the order of σ and use this to identify Aut($\mathbb{Q}(u)/\mathbb{Q}$).

(a)
$$u^2-5=2\sqrt{5}$$
, $(u^2-5)^2=20$, $u^4-10u^2+5=0$. So u is algebraic. By Eisenstein, $m_{u,\alpha}(x)=x^4-10x^2+5$ is irreducible, thus the minimal polynomial of u.

(b)
$$t = 5 + 2\sqrt{5}$$
, $\epsilon(t) = 5 - 2\sqrt{5}$, $t \cdot \epsilon(t) = (5 + 2\sqrt{5})(5 - 2\sqrt{5}) = 5^{2} - (2\sqrt{5})^{2} = 25 - 20 = |5|$

(b)
$$t = 5 + 2\sqrt{5}$$
, $\varepsilon(t) = 5 - 2\sqrt{5}$, $t \cdot \varepsilon(t) = (5 + 2\sqrt{5})(5 - 2\sqrt{5}) = 5 - (2\sqrt{5})^2 = 25 - 20 = [5]$

(c) $\varepsilon(t) = \frac{5}{t} = \frac{(\sqrt{5})^2}{u^2} = (\frac{\sqrt{5}}{u})^2$. So $v = \frac{\sqrt{5}}{u}$ is one root of $x^2 - \varepsilon(t)$ (& -v is the 2^{nd} root).

Q(u) contains
$$\sqrt{5}$$
 since $\sqrt{5} = \frac{u^2-5}{Z}$. So Q(u) contains $v = \frac{\sqrt{5}}{u}$.
(d) Q(u) contains the four roots u , $-u$, $v = \frac{\sqrt{5}}{u} = \frac{u}{z} - \frac{5}{zu} \ell - V$.

(d) Q(u) contains the four roots
$$u, -u, v = \frac{vs}{u} = \frac{u}{z} - \frac{s}{zu} & -v$$

(e)
$$\sigma(u) = v = \frac{\sqrt{s}}{u}$$
, $\sqrt{s} = \frac{u^2 - s}{2} \Rightarrow \sigma(\sqrt{s}) = \sigma(u)^2 - s = \frac{v^2 - s}{2}$
 $= \varepsilon(t) - s = (s - 2\sqrt{s}) - s = [-\sqrt{s}]$, $s_0 = \sigma(v) = \frac{\sigma(\sqrt{s})}{\sigma(u)} = \frac{-\sqrt{s}}{\sqrt{s}/u} = [-u]$.

$$(f) = \begin{cases} \begin{array}{c} 0 \rightarrow V \\ -u \rightarrow -V \\ V \rightarrow -u \end{array} \\ \begin{array}{c} (1324) \text{ has order } [4] \\ -v \rightarrow u \end{array} \\ = deg \ m_{u,Q}(x) = 4. \\ \begin{array}{c} (So \ Adt (Q|u)/Q) \cong \overline{Z}/4\overline{Z}. \\ \end{array}$$

Problem 2(25 points) Let F be a field of characteristic 0 which contains a primitive n^{th} root of unity, ζ_n . Recall that every Galois extension E/F with order n cyclic Galois group, $\operatorname{Aut}(E/F) = \langle \sigma \rangle \cong \mathbb{Z}/n\mathbb{Z}$, is of the form F(t) where t in E is a root of an irreducible polynomial $x^n - a$ in E[x] and satisfying $\sigma(t) = \zeta_n t$.

Let u be a nonzero element of E such that $b:=u^n$ is in F. Prove that there exists an integer $r=0,\ldots,n-1$ such that b/a^r is an n^{th} power in F, i.e., $b/a^r=c^n$ for some nonzero c in F. Conclude that $((F^\times)^n\cap E^\times)/(E^\times)^n$ is the cyclic subgroup generated by \overline{a} . (This subgroup of $E^\times/(E^\times)^n$ characterizes the cyclic extension F/E up to isomorphism.)

Hint. What are generators of the eigenspaces of the F-linear transformation σ of E? What are the Galois conjugates of u? What does this imply about $\sigma(u)$ and t^r ?

One eigenvector is t with eigenvalue S_n ; $\sigma(t) = S_n(t)$. Since E is a field, each power t', r = 0, ..., n - 1, is nonzero. Since σ is a field homomorphism, $\sigma(t') = \sigma(t)'' = (S_n t)'' = S_n t''$. Hence t' is an eigenvector with t' eigenvalue S_n' . Since S_n is a primitive n^{th} root of $1, 1, S_n, S_n^{t}, ..., S_n^{t'}$ are all distinct. $S_n = S_n = S_n$

Every Galois conjugate of u is a root of x^n-b .

The roots of x^n-b are precisely the n distinct elements $S_n^n u$ (note, I do not claim these are all Galois conjugate). So $\sigma(u)$ is of the form $S_n^n u$ for some $r=0,\dots,n-b$.

But t' spans the S_n^n -eigenspace. Hence $u=c \cdot t'$ for $c \in F'$.

Thus $b=u^n=(c \cdot t')^n=c^n a^n$, i.e., $b/a=c^n$.

Therefore $(F^x)^n \cap F^x$ equals $\{I,\overline{a},\dots,\overline{a}^n\}=(\overline{a})$.

Name:	
vaine.	

Problem 3: _____ /

Problem 3(30 points) Let F be a field and let f(x) be a monic polynomial in F[x] such that f(x) factors into a product of monic linear polynomials in some finite, Galois extension K of F, i.e.,

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i).$$

The discriminant of f(x) is defined to be

$$\operatorname{Disc}(f) := \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2 = (-1)^{n(n-1)/2} \prod_{i \ne j} (\alpha_i - \alpha_j).$$

The element $\operatorname{Disc}(f)$ is invariant under $\operatorname{Aut}(K/F)$, hence is an element of F. (Discriminants were discussed in Tuesday's lecture, but the following problem requires none of the results proved in that lecture.)

(a)(10 points) If f(x) equals $(x - \theta)g(x)$, prove that $\operatorname{Disc}(f)$ equals $(g(\theta))^2\operatorname{Disc}(g)$. Assuming f(x) is separable, conclude that $\operatorname{Disc}(g)$ is a square if and only if $\operatorname{Disc}(f)$ is a square.

(b)(5 points) For quadratic polynomials, the explicit formula for the discriminant is

$$g(x) = x^2 - a_1 x + a_2$$
, $\operatorname{Disc}(g) = a_1^2 - 4a_2$.

Assuming char(F) is $\neq 2$, prove that a quadratic polynomial g(x) factors into linear polynomials in F if and only if $\operatorname{Disc}(g)$ is a square in F.

(c)(10 points) Finally, let E be a field with $\operatorname{char}(E) \neq 2,3$. Let f(x) be a monic, irreducible, separable, cubic polynomial in E[x]. Let $F = E[t]/\langle f(t) \rangle$ be a root field of f(x), and let θ be a root of f(x) in F so that $f(x) = (x - \theta)g(x)$ in F[x]. If $\operatorname{Disc}(f)$ is a square in E, prove that F is a splitting field for f(x).

(d)(5 points) Let f(x) and F/E be as above. When Disc(f) is a square in E, what is the Galois group Aut(F/E)?

group Aut(F/E)?

(a)
$$g(x)$$
 factors as $f(x)$ ($x-\alpha_0$). So $f(x)$ factors as

 $f(x-\theta)$ ($x-\alpha_1$). $f(x-\alpha_0)$. So $f(x)$ factors as

 $f(x-\theta)$ ($x-\alpha_1$). $f(x-\alpha_0)$. So $f(x)$ factors as

 $f(x-\theta)$ ($x-\alpha_1$). $f(x-\alpha_0)$ for $f(x)$ f

Name:

Problem 3 continued

(b) $\chi^2-a_1\chi+a_2=(\chi-\frac{a_1}{2})^2-\frac{Disc(g)}{2^2}$. If there exists a root e, then $Disc(g)=(2e-a_1)^2$ is a square. And if Disc(g) is a square, \mathcal{S}^2 , then $\Theta_1=\frac{a_1}{2}+\frac{d}{2}$, $\Theta_2=\frac{a_1}{2}-\frac{d}{2}$ are roots of g(x). (Note this fails if char(F)=Z? $\chi^2+\chi+1$ is irreducible over F_2 but $Disc=1=1^2$.)

(c) If Discif) is a square in E, then it is a square in F. Then by (a), Discif) is a square in F. So by (b), g(x) factors in F. Hence fix) factors into linear polynomials in F, i.e., F is a splitting field. (I guess char(E) +3 was annecessary.)

(d) Since [FiE]= deg(f) equals 3, # Aut(FE) equals 3. Thus Aut(FE) = Z/3Z.