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MAT 312 Burnside’s Lemma and Other
Supplementary Topics

1 Group Actions

Let (G, ∗) be a group with identity element e and with group inverse operation g 7→ g−1. Let X
be a set. A left action of G on X is a function

λ : G×X → X,

such that (i) for every x ∈ X, λ(e, x) equals x, and (ii) for every g, h ∈ G and for every x ∈ X,
λ(g, λ(h, x)) equals λ(g ∗ h, x). Similarly, a right action of G on X is a function

ρ : X ×G→ X,

such that (i) for every x ∈ X, ρ(x, e) equals x, and (ii) for every g, h ∈ G and for every x ∈ X,
ρ(ρ(x, h), g) equals ρ(x, h ∗ g).

For a left action λ of G on X, for every x ∈ X, the λ-orbit of x is the following subset of X,

G · x := {y ∈ X | ∃g ∈ G, y = λ(g, x)} = {λ(g, x)| g ∈ G}.

The λ-stabilizer of x is the subset of G,

Stabλ(x) := {g ∈ G | λ(g, x) = x},

and every g ∈ Stabλ(x) is said to stabilize x. Similarly, for every g ∈ G, the λ-fixed locus of g
is the subset of X,

Xg := {x ∈ X | λ(g, x) = x},

and every x ∈ Xg is said to be fixed by g. The action λ is transitive if X equals an orbit G · x
for some x ∈ X, and hence for every x ∈ X. The action λ is faithful if the only element g ∈ G
that fixes every element of X is the identity element e.

Similarly for a right action ρ of G on X, for every x ∈ X, the ρ-orbit of x is the following subset
of X,

x ·G := {y ∈ X | ∃g ∈ G, y = ρ(x, g)} = {ρ(x, g)| g ∈ G}.
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The ρ-stabilizer of x is the subset of G,

Stabρ(x) := {g ∈ G | ρ(x, g) = x}.

Similarly, for every g ∈ G, the ρ-fixed locus of g is the subset of X,

Xg := {x ∈ X | ρ(x, g) = x}.

Lemma 1.1. For every x ∈ X, Stabλ(x) is a subgroup of G. Similarly, Stabρ(x) is a subgroup of
G.

Proof. By the first axiom of an action, λ(e, x) equals x, so e is contained in Stabλ(x). For every
pair g, h ∈ Stabλ(x), by the second axiom,

λ(g ∗ h, x) = λ(g, λ(h, x)) = λ(g, x) = x.

Thus, g ∗ h is in Stabλ(x). Finally, for every g ∈ Stabλ(x),

λ(g−1, x) = λ(g−1, λ(g, x)) = λ(g−1 ∗ g, x) = λ(e, x) = x.

Thus g−1 is in Stabλ(x). Therefore Stabλ(x) is a subgroup of G. A similar argument proves that
Stabρ(x) is a subgroup of G.

For a left action λ of G on X, for elements x, y ∈ X, we define x to be λ-equivalent to y, x
λ∼ y,

if y is an element of the λ-orbit of x, G · x, i.e., if there exists g ∈ G with y = λ(g, x). Similarly,

for a right action ρ of G on X, for elements x, y ∈ X, we define x to be ρ-equivalent to y, x
ρ∼ y,

if y is an element of the ρ-orbit of x, x ·G, i.e., if there exists g ∈ G with y = ρ(x, g).

Lemma 1.2. For every x, y, z ∈ X, (i) x
λ∼ x, (ii) if both x

λ∼ y and y
λ∼ z, then x

λ∼ z, and (iii)

if x
λ∼ y, then y

λ∼ x. The same holds for ρ-equivalence.

Proof. By the definition of a group action, λ(e, x) = x, thus x
λ∼ x. If there exist g, h ∈ G with

y = λ(h, x) and z = λ(g, y), then z equals λ(g, λ(h, x)). By the definition of a group action, this

equals λ(g ∗ h, x). Thus x
λ∼ z. Finally, if there exists h ∈ G with y = λ(h, x), then

λ(h−1, y) = λ(h−1, λ(h, y)) = λ(h−1 ∗ h, y) = λ(e, y) = y.

Thus, if x
λ∼ y, then also y

λ∼ x.

A reformulation of the lemma is that the λ-orbits G · x and G · y intersect if and only if they are
equal. Similarly, ρ-orbits that intersect are equal. The λ-orbit space, denoted G\X, is defined
to be the set of all λ-orbits, resp. the ρ-orbit space, denoted X/G, is defined to be the set of all
ρ-orbits. The λ-quotient function is defined to be the set function,

qλ : X → G\X, qλ(x) = G · x.
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Similarly, the ρ-quotient function is defined to be the set function,

qρ : X → X/G, qρ(x) = x ·G.

By construction, each of these maps is onto. One more reformulation is that x
λ∼ y if and only if

qλ(x) = qλ(y), respectively, x
ρ∼ y if and only if qρ(x) = qρ(y).

A subset Y ⊂ X is λ-preserved if for every y ∈ Y and for every z ∈ X with y
λ∼ z, then also

z ∈ Y . Similarly, Y ⊂ X is ρ-preserved if for every y ∈ Y and for every z ∈ X with y
ρ∼ z, then

also z ∈ Y .

Lemma 1.3. A subset Y ⊂ X is λ-preserved if and only if Y contains every λ-orbit that intersects
Y . Similarly, Y is λ-preserved if and only if there exists a subset Z ⊂ G\X whose preimage qpreλ (Z)
equals Y , in which case Z equals qλ(Y ). The same holds for ρ-preserved subsets.

Proof. First assume that Y is λ-preserved. Let G·x be an orbit that intersects Y , say y ∈ Y ∩(G·x).

Since x
λ∼ y, G · x equals G · y. For every z ∈ G · y, i.e., y

λ∼ z, also z ∈ Y . Thus Y contains G · y,
i.e., Y contains G · x. Define Z = qλ(Y ) = {qλ(y)|y ∈ Y }. Since qλ(Y ) is contained in Z (in fact,
equals Z), Y is contained in the preimage qpreλ (Z) of Z. For every y ∈ Y , i.e., for every qλ(y) ∈ Z,
Y contains G · y, i.e., Y contains qpreλ ({qλ(y)}). Since this holds for every qλ(y), Y contains qpreλ (Z).
Thus Y equals qpreλ (Z).

Conversely, assume that Y contains every λ-orbit that it intersects. For every y ∈ Y , Y intersects

G · y. Thus Y contains G · y. Therefore, for every z ∈ X with y
λ∼ z, i.e., with z ∈ G · y, then

z ∈ Y . Thus Y is λ-preserved.

Finally, assume that Y equals qpreλ (Z) for a subset Z of G\X. Since qλ is onto, qλ(Y ) equals Z.

For every y ∈ Y , for every z ∈ X with y
λ∼ z, then qλ(z) = qλ(y). Since qλ(y) is in qλ(Y ) = Z, and

since z is in qpreλ (Z), also z ∈ Y . Thus Y is λ-preserved.

For every subset W of X, the λ-preserved subset of X generated by W , denoted G · W , is
defined to be the preimage qpreλ (V ) of the image V = qλ(Z). By the previous lemma, this is the
λ-preserved subset that contains W and that is minimal with respect to set inclusion. It equals
{λ(g, w)|g ∈ G,w ∈ W}. There is a similar notion for ρ.

For every left action λ of a group (G, ∗) on a set X, for every group homomorphism f : (H, •) →
(G, ∗), the f -pullback of λ to H, λf , is the composition of λ with the set map f × IdX : H ×X →
G×X,

λf : H ×X → X, λf (h, x) = λ(f(h), x)

Similarly, for every right action ρ of a group (G, ∗) on a set X, for every subgroup H of G, the
f -pullback of ρ to H, ρf , is the composition of ρ with the set map IdX × f : X ×H → X ×G,

ρf : X ×H → X, ρf (x, h) = ρ(x, f(h)).
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Lemma 1.4. The function λf is a left action of H on X. For every x ∈ X, Stabλf (x) is the
preimage fpre(Stabλ(x)). For every h ∈ H, the λf -fixed locus of h equals the λ-fixed locus of f(h).
Similarly, the function ρf is a right action of H on X, Stabρf (x) = fpre(Stabρ(x)), and the ρf -fixed
locus of h equals the ρ-fixed locus of f(h).

Proof. The homomorphism f maps the identity ε of H to the identity e of G. Thus, by the first
axiom of a group action for λ,

λf (ε, x) = λ(f(ε), x) = λ(e, x) = x.

Thus λf satisfies the first axiom of a left group action. Similarly, for every h, k ∈ H,

λf (h, λf (k, x)) = λ(f(h), λ(f(k), x)) = λ(f(h) ∗ f(k), x) = λ(f(h • k), x) = λf (h • k, x).

Thus λf satisfies the second axiom of a left group action. Thus λf is a left group action.

By definition, λf (h, x) equals λ(f(h), x). Thus, h ∈ Stabλf (x) if and only if f(h) ∈ Stabλ(x).
Therefore Stabλf (x) equals fpre(Stabλ(x)). Similarly, the λ-fixed locus of f(h) equals the λf -fixed
locus of h.

Similarly, for every left action λ of (G, ∗) on a set X, for every λ-preserved subset Y of X, λ(G×Y )
is contained in Y . Thus, there is a unique set map,

λ−,Y : G× Y → Y,

such that for every g ∈ G and for every y ∈ Y , λ−,Y (g, y) equals λ(g, y). Simiarly, for every right
action ρ of (G, ∗) on X and for every ρ-preserved subset Y , there is a unique set map,

ρY,− : Y ×G→ Y,

such that for every g ∈ G and for every y ∈ Y , ρY,−(g, y) equals ρ(g, y).

Lemma 1.5. For every λ-preserved subset Y of X, λ−,Y is a left action of G on Y . Similarly, for
every ρ-preserved subset Y of X, ρY,− is a right action of G on Y .

Proof. Since for every g ∈ G and for every y ∈ Y , λ−,Y (g, y) equals λ(g, y), the axioms for λ imply
the axioms for λ−,Y , and similarly for ρ.

Recall that for every g ∈ G, there is a set function,

cg : G→ G, cg(h) = g ∗ h ∗ g−1.

Lemma 1.6. For every left action λ of G on X, for every g, k ∈ G and for every x ∈ X,
λ(k, λ(g, x)) equals λ(ck(g), λ(k, x). Also, Stabλ(λ(k, x)) equals ck(Stabλ(x)), and λ(k,Xg) equals
Xck(g). Similarly, for every right action ρ of G on X, ρ(ρ(x, g), k) = ρ(ρ(x, k), ck−1(g)), Stabρ(ρ(x, k)) =
ck−1(Stabρ(x)), and ρ(Xg, k) = Xck−1 (g).
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Proof. Indeed, by the associativity, inverse, and identity axioms for a group,

ck(g) ∗ k = (k ∗ g ∗ k−1) ∗ k = (k ∗ g) ∗ (k−1 ∗ k) = (k ∗ g) ∗ e = k ∗ g.

Thus,
λ(ck(g), λ(k, x)) = λ(ck(g) ∗ k, x) = λ(k ∗ g, x) = λ(k, λ(g, x)).

Thus, λ(g, x) equals x if and only if λ(k, λ(g, x)) equals λ(k, x). Also, λ(k, λ(g, x)) equals λ(ck(g), λ(k, x)).
Thus g stabilizes x if and only if ck(g) stabilizes λ(k, x), i.e., ck(Stabλ(x)) equals Stabλ(λ(k, x)).
Also, x is fixed by g if and only if λ(k, x) is fixed by ck(g), i.e., λ(k,Xg) equals Xck(g).

2 Examples of Group Actions

For every group (G, ∗), the left regular action of G on itself is the function,

λG,G : G×G→ G, (g, x) 7→ g ∗ x.

Note, e ∗ x equals x for every x ∈ G by the identity axiom. Also g ∗ (h ∗ x) equals (g ∗ h) ∗ x by the
associativity axiom. Thus, λG,G is a left action of G on itself. Similarly, for every group (G, ∗), the
right regular action of G on itself is the function,

ρG,G : G×G→ G, (g, x) 7→ g ∗ x.

Note, x ∗ e equals x for every x ∈ G by the identity axiom. Also (x ∗ h) ∗ g equals x ∗ (h ∗ g) by the
associativity axiom. Thus, ρG,G is a right action of G on itself. Moreover, the left and right actions
are compatible in the following sense,

λG,G(g, ρG,G(x, h)) = g ∗ (x ∗ h) = (g ∗ x) ∗ h = ρG,G(λG,G(g, x), h).

For every x ∈ G, the λG,G-orbit of x is all of G. Each of these actions is transitive, i.e., every orbit
equals all of G. Thus the orbit space is a singleton set, and the quotient function is a constant
function to this singleton set. Also, each of these actions is faithful. In fact, for every x ∈ G, the
stabilizer of x is the trivial subgroup {e}.
For every group homomorphism f : (H, •)→ (G, ∗), the f -pullback of the left regular action, resp.,
the right regular action, is a left action of H on G, resp. a right action of H on G,

λf,G : H ×G→ G, λf,G(h, x) = f(h) ∗ x,

ρG,f : G×H → G, ρG,f (x, h) = x ∗ f(h).

For every x ∈ G, the stabilizer subgroup of x in H equals the kernel of f , i.e., the preimage
subgroup fpre({e}) = {h ∈ H|f(h) = e}. In particular, since the stabilizer of λf,G(k, x) equals the
stabilizer of x, the kernel of f is mapped to itself under the conjugation by k, ck(Ker(f)) = Ker(f).
This is another proof (really the same proof) that the kernel of f is a normal subgroup. In particular,
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the action λf,G is transitive, resp. faithful, if and only if the function f is onto, resp. one-to-one,
and the same holds for the action ρG,f .

Now consider the special case that H ⊂ G is a subgroup and f : H → G is the inclusion set
function. In this case, we denote the pullback actions by λH,G, resp. ρG,H . Since the inclusion is
one-to-one, the action is faithful. However, the action is transitive if and only if H equals G, so
the action is typically not transitive. The ρG,H-orbits, xH, are the left H-cosets. Similarly, the
λH,G-orbits, Hx, are the right H-cosets. Thus the ρG,H-orbit space and quotient function is the
set of left H-cosets and the quotient function,

q : G→ G/H, q(x) = xH.

A similar result holds for the right H-cosets and the λH,G-orbits. Because the left and right actions
of G on itself are compatible, there is still a well-defined left G-action on G/H,

λG,G/H : G× (G/H)→ G/H, λG,G/H(g, xH) = (g ∗ x)H.

Similarly, there is a well-defined right G-action on H\G,

ρH\G,G : (H\G)×G→ H G, ρH\G,G(Hx, g) = H(x ∗ g).

Each of these actions is transitive, and the stabilizer of the “neutral” coset H is simply the subgroup
H ⊂ G.

For any group homomorphism f : (L, •) → (G, ∗), denoting the image subgroup f(L) by H, the
ρG,f -orbits, x · L, are precisely the left H-cosets. Similarly, the λf,G-orbits, L · x are precisely the
right H-cosets. Thus the ρG,f -orbit space and quotient function is precisely the set of left H-cosets
and the quotient function q : G → G/H. A similar result holds for the right H-cosets and the
λf,G-orbits.

For every set T , recall that the symmetric group of T is the set S(T ) of all invertible functions
σ : T → T . The group operation on this group is composition, i.e., for invertible functions,
σ : T → T and τ : T → T , σ ◦ τ : T → T is (σ ◦ τ)(t) = σ(τ(t)). The inverse of σ ◦ τ is
(σ ◦ τ)−1 = τ−1 ◦ σ−1, and the identity element for the symmetric group is the identity function
IdT : T → T , IdT (t) = t.

The standard left action of S(T ) on T is the function

λT : S(T )× T → T, λT (σ, t) = σ(t).

Lemma 2.1. The standard left action of the symmetric group S(T ) on T is a left action.

Proof. Observe that λT (IdT , t) = IdT (t) = t for every t ∈ T . Also, for every σ, τ ∈ S(T ) and for
every t ∈ T ,

λT (σ, λT (τ, t)) = λT (σ, τ(t)) = σ(τ(t)) = (σ ◦ τ)(t) = λT (σ ◦ τ, t).

Thus, λT is a left action of S(T ) on T .
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For every t ∈ T , denote by Tt the subset T \ {t}. For every invertible function σ : T → T that
stabilizes t, since σ is one-to-one and onto, σ(Tt) = σ(T ) \ σ({t}) = T \ {t} = Tt. Thus the
restriction σ|Tt defines an element in S(Tt). For τ, σ ∈ StabλT (t), (τ ◦ σ)|Tt equals τ |Tt ◦ σ|Tt . Thus,
restriction defines a homomorphism StabλT (t)→ S(Tt).

Lemma 2.2. For every nonempty set T , the standard left action of S(T ) on T is transitive. For
every t ∈ T , restriction is an isomorphism from StabλT (t) to S(Tt). For every σ ∈ S(T ), the
λT -fixed locus of σ equals T σ = {t ∈ T |σ(t) = t}.
Proof. Let t, t′ ∈ T be distinct elements of T . Then the 2-cycle σ = (t, t′) is the invertible function
permuting t and t′ and fixing every element of T different from t and t′. Since σ(t) = t′, t′ is in the
λT -orbit of t. Since this holds for every t, t′, there is a unique λT -orbit.

For every σ ∈ StabλT (t), σ is uniquely recovered from its restriction σ|Tt . Thus, the restriction
homomorphism is an isomorphism from StabλT (t) to S(Tt).

For every group (G, ∗) and for every left action

λ : G× T → T,

for every g ∈ G, define λ̃g : T → T by λ̃g(t) = λ(g, t).

Lemma 2.3. For the group identity e, λ̃e equals IdT . For every pair of elements g, h ∈ G, λ̃g ◦ λ̃h =

λ̃g∗h.

Proof. By the first axiom for a left action λ̃e(t) = λ(e, t) = t, so λ̃e is the identity function IdT . By
the second axiom for a left action, for every t ∈ T ,

(λ̃g ◦ λ̃h)(t) = λ̃g(λ̃h(t)) = λ(g, λ(h, t)) = λ(g ∗ h, t) = λ̃g∗h(t).

Thus, λ̃g ◦ λ̃h equals λ̃g∗h.

Lemma 2.4. For every g ∈ G, λ̃g is an element of S(T ). The function λ̃ : G → S(T ) by g 7→ λ̃g
is a group homomorphism. This is the unique group homomorphism such that the pullback of λT
equals λ.

Proof. Since λ̃e equals IdT , also,

λ̃g ◦ λ̃g−1 = IdT = λ̃g−1 ◦ λ̃g.

Thus, λ̃g is an invertible function with inverse λ̃g−1 . Since λ̃g ◦ λ̃h equals λ̃g∗h, the function λ̃ is a

group homomorphism. Finally, for the group homomorphism f = λ̃g,

λfT (g, t) = λT (f(g), t) = λT (λ̃g, t) = λ̃g(t) = λ(g, t).

Thus λfT equals λ. For any group homomorphism with λfT = λ, for every g ∈ G, for every t ∈ T ,

f(g)(t) = λT (f(g), t) = λfT (g, t) = λ(g, t) = λ̃g(t).

Thus f(g) equals λ̃g, so that f equals λ̃.
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In this sense, left actions λ of G on T are equivalent to group homomorphisms λ̃ from G to S(T ).

In particular, the action λ is faithful if and only if the group homomorphism λ̃ is one-to-one.

For every group (G, ∗), for every set X, and for every left action of G on X,

λ : G×X → X,

there is an associated right action of G on X defined by

λ† : X ×G→ X, λ†(x, g) = λ(g−1, x).

Similarly, for every right action of G on X,

ρ : X ×G→ X,

there is an associated left action of G on X defined by

ρ† : G×X → X, ρ†(g, x) = ρ(x, g−1).

Lemma 2.5. For every left action λ of (G, ∗) on X, also λ† is a right action of (G, ∗) on X.
Similarly, for every right action ρ of (G, ∗) on X, ρ† is a left action of (G, ∗) on X. Finally, (λ†)†

equals λ and (ρ†)† equals ρ.

Proof. Note first that e−1 = e, so that λ†(x, e) = λ(e, x) = x. This is the first axiom for a right
action. Note second that (h ∗ g)−1 = g−1 ∗ h−1, so that

λ†(λ†(x, h), g) = λ(g−1, λ(h−1, x)) = λ(g−1 ∗ h−1, x) = λ((h ∗ g)−1, x) = λ†(x, h ∗ g).

Thus, λ† satisfies the second axiom for a right action. Thus λ† is a right action of G on X. By a
similar argument, ρ† is a left action of G on X. Finally, since (g−1)−1 equals g, note that

(λ†)†(g, x) = λ†(x, g−1) = λ((g−1)−1, x) = λ(g, x).

Thus (λ†)† equals λ. Similarly, (ρ†)† equals ρ.

Therefore the operation of passing from a left action to the associated right action, and vice versa,
are inverse operations. In this sense, right actions are equivalent to left actions. In particular, the
orbits of λ† equal the orbits of λ, each stabilizer subgroup Stabλ(x) equals the stabilizer subgroup
Stabλ†(x), and the λ†-fixed locus of g equals the λ-fixed locus of g−1.

For every group (G, ∗), denote by Aut(G) ⊂ S(G) the subset of all invertible functions σ : G→ G
that happen to be group homomorphisms, i.e., for every g, h ∈ G, σ(g∗h) equals σ(g)∗σ(h). These
are automorphisms of G.

Lemma 2.6. The subset Aut(G) ⊂ S(G) is a subgroup of the symmetric group S(G).
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Proof. The identity function IdG : G → G is a group homomorphism, IdG(g ∗ h) = g ∗ h =
IdG(g) ∗ IdG(h). Thus IdG is an element of Aut(G). The composition of invertible function is
an invertible function, and the composition of group homomorphisms is a group homomorphism.
Thus the composition of automorphisms is an automorphism. Finally, for every automorphism
σ : G→ G, for every g, h ∈ G, there exist elements s = σ−1(g) and t = σ−1(h) such that g = σ(s)
and h = σ(t). Since σ is a group homomorphism, σ(s ∗ t) equals σ(s) ∗ σ(t) = g ∗ h. Since σ(s ∗ t)
equals g ∗ h, also s ∗ t equals σ−1(g ∗ h). In other words, for every g, h ∈ G,

σ−1(g ∗ h) = s ∗ t = σ−1(g) ∗ σ−1(h).

Therefore the inverse function σ−1 is an automorphism. Thus, Aut(G) is a subgroup of S(G).

The induced left action,

λAut(G),G : Aut(G)×G→ G, (σ, g) 7→ σ(g),

is the automorphism action. By definition, this action is faithful. Please note, the orbit of this
action on e is precisely {e}. So, unlessG is a trivial group, the automorphism action is not transitive.
Similarly, the stabilizer subgroup of e equals all of Aut(G), whereas the stabilizer subgroups of some
other elements of G might be proper subgroups of Aut(G). For every automorphism σ : G → G,
the fixed locus of σ is a subgroup of G.

For every group (L, •), for every group (G, ∗), a left action of L on G,

λ : L×G→ G,

is a action by automorphisms if for every s ∈ L, for every g, h ∈ G, λ(s, g ∗h) = λ(s, g)∗λ(s, h).

Lemma 2.7. A left action λ of (L, •) on the group (G, ∗) is an action by automorphisms if and

only if the associated group homomorphism λ̃ : (L, •) → (S(G), ◦) factors through the subgroup
Aut(G) ⊂ S(G).

Proof. The image of λ̃(L) is contained in Aut(G) ⊂ S(G) if and only if for every s ∈ L, the induced
invertible set function,

λ̃s : G→ G,

is a group homomorphism, i.e., λ̃s(g ∗ h) equals λ̃s(g) ∗ λ̃s(h). Expanding, this holds if and only if
λ is an action by automorphisms.

For every group (G, ∗), the conjugation action of (G, ∗) on (G, ∗) by automorphisms is defined
to be

c : G×G→ G, (g, x) 7→ g ∗ x ∗ g−1.

Denote cg(x) = c(g, x) = g ∗ x ∗ g−1.

Lemma 2.8. The conjugation action is a left action of (G, ∗) on (G, ∗) by automorphisms.
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Proof. Please note that for every x, y ∈ G,

cg(x)∗cg(y) = (g∗x∗g−1)∗(g∗y∗g−1) = (g∗x)∗(g∗g−1)∗(y∗g−1) = (g∗x)∗e∗(y∗g−1) = g∗(x∗y)∗g−1 = cg(x∗y).

Thus, cg is a group homomorphism. Moreover, for every g, h ∈ G, and for every x ∈ G,

(cg◦ch)(x) = cg(ch(x)) = cg(h∗x∗h−1) = g∗(h∗x∗h−1)∗g−1 = (g∗h)∗x∗(h−1∗g−1) = (g∗h)∗x∗(g∗h)−1 = cg∗h(x).

Thus, cg ◦ ch equals cg∗h. In particular, since ce equals IdG, also,

cg ◦ cg−1 = IdG = cg−1 ◦ cg.

Thus, cg is an invertible function with inverse cg−1 . Therefore, cg is an automorphism of G. There-
fore, there is a function

c̃ : G→ Aut(G), g 7→ cg.

Since cg◦ch equals cg∗h, the function c̃ is a group homomorphism. The pullback of the automorphism
action by the group homomorphism c̃ is a left action of G on G by automorphisms of G, and by
computation it is the conjugation action,

c : G×G→ G, (g, x) 7→ g ∗ x ∗ g−1.

For every x ∈ G, the orbit of x under the conjugation action is called the conjugacy class
of x in G. For every x ∈ G, the stabilizer subgroup Stabc(x) is called the centralizer of g,
Stabc(x) = {g ∈ G|g ∗ x = x ∗ g}. Similarly, for every g ∈ G, the c-fixed locus of g in G also equals
the centralizer Stabc(g).

For every field (F, 0, 1,+, ·) and for every F -vector space (V, 0,+, ·), the general linear group
of (V, 0,+, ·) is the subset GL(V ) ⊂ S(V ) of all F -linear transformations T : V → V that are
invertible.

Lemma 2.9. The general linear group GL(V ) is a subgroup of S(V ).

Proof. The identity function IdV : V → V is a linear transformation. The composition of two
linear transformations is a linear transformation. Finally, the inverse function of an invertible
linear transformation is a linear transformation.

The restriction to GL(V ) of the standard action λV is the standard action of GL(V ) on V ,

λGL(V ) : GL(V )× V → V, (T, v) 7→ T (v).

A left action λ of a group (G, ∗) on V is a linear representation of (G, ∗) on (V, 0,+, ·) if every

λ̃g : V → V is a linear transformation. By definition of GL(V ), λ is a linear representation if and

only if λ̃ factors through the subgroup GL(V ) ⊂ S(V ).
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3 Lagrange’s Theorem

Let (H, ∗) be a group, let X be a set, and let

ρ : X ×H → X

be a right action of H on X. Let x ∈ X be an element, and denote by x · H the ρ-orbit of x.
Denote by Hx ⊂ H the stabilizer subgroup Stabρ(x). Denote by

q : H → Hx\H

the quotient map to the set of right Hx-cosets in H. This is an onto function by definition. Recall
that there is a right H-action on the coset space Hx\H,

ρHx\H,H : (Hx\H)×H → HX\H, ρ(Hxg, h) = Hx(g ∗ h).

Denote by ρx the set function

ρx : H → H · x, ρx(h) = x · h.

This is an onto function by definition.

Lemma 3.1. For every h, h′ ∈ H, ρx(h) equals ρx(h′) if and only if q(h) equals q(h′), i.e., if and
only if Hxh equals Hxh

′. There is a unique bijection r̃x : HX\H → H · x such that rx equals r̃x ◦ q.
This is right H-equivariant: r̃x(ρHx\H,H(Hxg, h)) = ρ(r̃x(Hxg), h) for every Hxg ∈ Hx\H and for
every h ∈ H. The analogous result also holds for left actions.

Proof. Since ρ is a right action, ρ(x, h) equals ρ(x, h′) if and only if ρ(x, h′ ∗ h−1) equals ρ(x), i.e.,
if and only if h′ ∗ h−1 ∈ Hx. Thus ρ(x, h) equals ρ(x, h′) if and only if Hx ∗ h′ equals Hx ∗ h.
So ρx(h) equals ρx(h′) if and only if q(h) equals q(h′). Since both ρx and q are onto, there is a
unique bijection r̃x : Hx → H such that rx equals r̃x ◦ q. Since q(g ∗ h) = ρHx\H,H(q(g), h) and
rx(g ∗ h) = ρ(rx(g), h), it follows that r̃x is right H-equivariant.

This lemma says that every orbit H · x of ρ is equivalent, as a set with a right H-action, to one
of the “model” right H-actions of H on a coset space Hx\H. In particular, the cardinality of the
orbit x ·H equals the cardinality of Hx\H. The most important special case is when X is a group
(G, ∗), H is a subgroup of G, and ρ is the right regular action of H on G. Then the ρ-orbits are
the same as left H-cosets. The stabilizer group Hx is the trivial group. Thus the lemma proves
that all left H-cosets are in bijection with H itself.

For every group (H, ∗) and for every subgroup K, the index of K in H, denoted [H : K], is the
cardinality of the coset space H/K. This is infinite if the coset space H/K is infinite, and it is
the number of elements of H/K if H/K is finite. Recall that because left and right actions are
equivalent, the left coset space H/K is in bijection with the right coset space K\H. By the lemma,
the cardinality of x ·H equals the index [H : Hx].
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Theorem 3.2 (Lagrange’s Theorem). Let ρ be a right action of (H, ∗) on a set X. If any ρ-orbit
is infinite, or if the orbit space X/H is infinite, then X is infinite. If both X/H is finite, and if
every orbit xḢ ∈ X/H is finite, then X is finite. In that case,

#X =
∑

x·H∈X/H

#(x ·H) =
∑

x·H∈X/H

[H : Hx].

In particular, if the stabilizer of every x ∈ X is the trivial subgroup, Hx = {e}, then

#X = #(X/H) ·#H.

Proof. Every orbit is a subset of X. Thus, if any orbit is infinite, then X is infinite. The quotient
function qρ : X → X/H is onto. Thus, if X/H is infinite, then X is finite. Therefore assume that
both X/H is finite and every orbit is finite. A union of finitely many finite sets is finite. Thus, also
X is finite. Since X is the disjoint union of the subsets qpreρ ({x ·H}) = x ·H over the finitely many
distinct elements x · H in X/H, the cardinality of X equals the sum of the cardinalities of these
disjoint subsets,

#X =
∑

x·H∈X/H

#(x ·H).

By the lemma, #(x ·H) equals [H : Hx]. Thus,

#X =
∑

x·H∈X/H

[H : Hx].

If every Hx is trivial, then every [H : Hx] equals #H. So, in that case,

#X =
∑

x·H∈X/H

#H = #(X/H) ·#H.

The most important special case is when X is a group (G, ∗), H is a subgroup of G, and ρ is the
right regular action of H on G. Then the stabilizer of every element is the trivial group. So, in this
case, the lemma gives

#G = [G : H]#H.

This is the case proved in the textbook.

4 Burnside’s Lemma and the Cauchy-Frobenius Theorem

Let (G, ∗) be a group, and let H be a subgroup. Denote the quotient map to the set of left H-cosets
as usual,

qG,G/H : G→ G/H, k 7→ kH.
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The inertia subset of G×G is defined to be

IG,H = {(g, k) ∈ G×G|(g ∗ k)H = kH}.

Equivalently, (g, k) is contained in IG,H if and only if g is in the stabilizer subgroup StabλG,G/H
(kH).

Since the stabilizer of the neutral coset H equals the subgroup H, then the stabilizer of the coset
kH is ck(StabλG,G/H

(H)) = ck(H). Therefore, there is a bijection,

Ψ : H ×G→ IG,H , (h, k) 7→ (ck(h), k) = (k ∗ h ∗ k−1, k).

In particular, if G is finite, then this gives an equality,

#H ·#G = #IG,H .

For every g ∈ G, denote by Ig,H the unique subset of G such that {g}× Ig,H equals the intersection
of IG,H with the subset {g} ×G. Thus, k is in Ig,H if and only if kH is in the fixed locus (G/H)g

of g. For the right regular action of H on G, Ig,H is an H-preserved set. Since the stabilizers are
trivial for the right regular action, Lagrange’s theorem gives,

#Ig,H = #(G/H)g ·#H.

Of course IG,H is the disjoint union of the subsets {g} × Ig,H as g varies among the elements of G.
In particular, if G is finite, this gives an equality,

#IG,H =
∑
g∈G

#Ig,H =
∑
g∈G

#(G/H)g ·#H = #H ·
∑
g∈G

#(G/H)g.

Combined with the previous identity, this gives the basic Burnside identity,

#G =
∑
g∈G

#(G/H)g.

Now consider the apparently more general case that Y is a nonempty set and λ is a left action of
G on Y that is transitive, i.e., Y = G · y for some y in Y . Denote by H the stabilizer subgroup
Stabλ(y). Then there is a left G-equivariant bijection of Y with G/H. For every g ∈ G, this
G-equivariant bijection identifies the fixed locus of g in Y with the fixed locus of g in G/H. Thus,
if G is finite, the basic Burnside identity gives,

#G =
∑
g∈G

#Y g.

Finally, consider the general case that X is a nonempty set and λ is a left action of G on X. Then G
is partitioned by the λ-orbits Y . In particular, for every g ∈ G, the g-fixed locus Xg is partitioned
by the g-fixed locus Y g of each λ-orbit Y . In particular, if G and X/G are finite, then also X is
finite and we have the Burnside identity,

#G ·#(X/G) =
∑

Y ∈X/G

#G =
∑

Y ∈X/G

∑
g∈G

#Y g =
∑
g∈G

∑
Y ∈X/G

#Y g =
∑
g∈G

#Xg.

This proves the following.
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Lemma 4.1 (Burnside’s Lemma). Let (G, ∗) be a finite group, let X be a nonempty set, and let λ
be a left action of G on X. If the orbit space X/G or any g-fixed locus Xg is infinite, then X is
infinite. If the orbit space X/G and every g-fixed locus is finite, then

#G ·#(X/G) =
∑
g∈G

#Xg.

This has many applications among counting arguments. The original application is to group theory,
and it predates Burnside’s formulation of the lemma. Let (K, ∗) be a finite group, and let p be a
prime integer that divides n = #K. Let G denote a cyclic subgroup 〈σ〉 of order p in Sp generated
by a p-cycle σ, say σ = (1, 2, . . . , p − 1, p). There is a left action of the group G on the set Kp of
ordered p-tuples of elements of K in the natural way,

λ(σ, (k1, k2, . . . , kp−1, kp)) = (k2, k3, . . . , kp, k1).

Let X denote the following subset of Kp,

X = {(k1, k2, . . . , kp−1, kp) ∈ Kp|k1 ∗ k2 ∗ · · · ∗ kp−1 ∗ kp = e}.

Consider what happens to both sides of the equation under conjugation by k−11 ,

e = ck−1
1

(e) = ck−1
1

(k1 ∗k2 ∗· · ·∗kp−1 ∗kp) = k−11 ∗k1 ∗k2 ∗· · ·∗ · · ·∗kp−1 ∗kp ∗k1 = k2 ∗k3 ∗· · ·∗kp ∗k1.

Thus, the subset X is λ-preserved. So there is a restriction action of G on X.

For the identity element (1) ∈ G, the fixed locus is all of X. Note that X has cardinality
np−1. Indeed, for every (k1, . . . , kp−1) ∈ Kp−1, there is a unique choice of kp ∈ K such that
(k1, . . . , kp−1, kp) ∈ X, namely

kp = (k1 ∗ k2 ∗ · · · ∗ kp−1)−1.

Thus, X is in bijection with Kp−1 so that #X = #(Kp−1) = np−1.

On the other hand, for every a ∈ Z that is prime to p, there exists b such that ab ∼= 1 (mod p). Thus,
σ = (σa)b. Therefore, every element of X that is fixed by σa is fixed also by σ = (σa)b = σa◦· · ·◦σa.
Conversely, every element of X that is fixed by σ is fixed by σa = σ ◦ · · · ◦ σ. Therefore, for the
p−1 elements σa ∈ G\{(1)}, the fixed locus of σa equals the fixed locus of σ. Therefore Burnside’s
Lemma gives,

p#(X/G) = #G ·#(X/G) =
∑
g∈G

#Xg = #X + (p− 1)#Xσ.

The first summand comes from the fixed locus of the identity element (1) ∈ G, and the p − 1
remaining terms come from the elements σa ∈ G \ {(1)}. In particular, since #X = np−1 is
divisible by n1, which in turn is divisible by p, this gives

(p− 1)#Xσ ∼= 0 (mod p).
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Since p− 1 is relatively prime to p, it follows that p divides #Xσ.

The elements of Kp that are fixed by σ are precisely the elements of the form

(k1, k2, . . . , kp−1, kp) = (k, k, . . . , k, k),

for some element k ∈ K. The condition on such an element that it be contained in X, and hence
be a σ-fixed element of K, is precisely that

kp = e.

Thus, Xσ is bijective to the subset {k ∈ K|kp = e}.

Theorem 4.2 (Cauchy-Frobenius Theorem). For every finite group (K, ∗) whose order is divisible
by a prime integer p, the subset {k ∈ K|kp = e} has cardinality divisible by p. In particular, e is
not the only element in this subset, so there exists an element of K of order precisely p.

The identity element e is in the subset, so the size of the subset is ≥ 1. Since it is divisible by p, it
contains at least 2 elements. Thus there exists k ∈ K such that kp = e and such that k 6= e. Since
kp = e, the order of k divides p. Since k 6= e, the order of k does not equal 1. Thus, the order of k
equals precisely 1.

The Cauchy-Frobenius Theorem is a first step in the proof the Sylow Theorems, one of the key
tools in the further study of finite groups.

5 Normal Subgroups and the Isomorphism Theorem

Among all subgroups of a given group (G, ∗), the normal subgroups are characterized as those that
occur as the kernel subgroup of a group homomorphism with domain equal to (G, ∗). The relation
between subgroups of (G, ∗) and subgroups of the homomorphism image are called isomorphism
theorems. The approach here is via left group actions. None of the material in this section is
required later in the course; it is included for completeness.

For a group (G, ∗), recall that a subgroup N is normal if for every g ∈ G, cg(N) equals N . For
instance, if G is Abelian, then every subgroup of G is normal. As another example, in S(3) the
subgroup A(3) = {(1), (123), (132)} is normal, yet the subgroups 〈(12)〉, 〈(13)〉, and 〈(23)〉 are not
normal.

Lemma 5.1. For a group (G, ∗) and a subgroup H, for every g ∈ G, cg(H) equals H as subgroups
of G if and only if both cg(H) ⊆ H and cg−1(H) ⊆ H. In particular, for every g ∈ H, cg(H) equals
H.

Proof. Assume first that g is an element of G such that cg(H) = H. Applying the automorphism
cg−1 to both sides, also cg−1(cg(H)) = cg−1(H). However, cg−1 and cg are inverse isomorphisms.
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Thus, cg−1(cg(H)) equals H. Therefore, also cg−1(H) = H. In particular, both cg(H) ⊆ H and
cg−1(H) ⊆ H.

Conversely, assume that both cg(H) ⊆ H and cg−1(H) ⊆ H. Applying cg to the second equation,
we have

cg(cg−1(H)) ⊆ cg(H).

As above, cg(cg−1(H)) equals H. Thus H ⊆ cg(H). Since both cg(H) ⊆ H and H ⊆ cg(H), in fact,
cg(H) equals H. Therefore, for every g ∈ G, cg(H) equals H if and only if both cg(H) ⊆ H and
cg−1(H) ⊆ H.

Finally, for every g ∈ H and for every h ∈ H, since H is a subgroup, cg(h) = g ∗ h ∗ g−1 is an
element of H. Thus cg(H) ⊆ H. Since H is a subgroup, also g−1 is an element of H. Thus, by the
same argument, cg−1(H) ⊆ H. By the previous paragraph, cg(H) equals H.

For a group (G, ∗), for a subgroup H of G, an element g of G normalizes H if cg(H) equals H.
The set of all elements g ∈ G that normalize H is the normalizer of H in G, denoted NG(H).
Thus, a subgroup N of G is normal if and only if NG(N) equals all of G, i.e., every element of G
normalizes N .

Recall that for every set T , the power set of T is the set of all subsets of T , including both T
and the empty set. In the standard axiomatic systems for set theory, for every set T , the power
set of T is again a set (because of Russell’s Paradox, this puts restrictions on the other axioms of
set theory). For every group (G, ∗) denote by Subgroup(G) the subset of the power set of G whose
elements are all of the subgroups H of G. For instance, for every integer n ≥ 1, for the cyclic
group G = Z/nZ with addition, Subgroup(Z/nZ) is the set {〈[d]n〉|d ≥ 1, d divides n}. Similarly,
for G = S(3),

Subgroup(S(3)) = {〈(1)〉, 〈(12)〉, 〈(13)〉, 〈(23)〉, A(3), S(3)}.

The conjugation action of G on itself defines a set map,

cG,Sub(G) : G× Subgroup(G)→ Subgroup(G), cG,Sub(G)(g,H) = cg(H).

Since cg : G→ G is a group automorphism, for every subgroup H ⊂ G, the restriction cg|H : H → G
is a group homomorphism. Therefore the image cg(H) is a subgroup of G, so that cG,Sub(G) is a
well-defined set map.

Lemma 5.2. The set map cG,Sub(G) is a left action of G on Subgroup(G).

Proof. For every subgroup H of X, cG,Sub(G)(e,H) = ce(H) = IdG(H) = H. This is the first
axiom for a left action. For every g, k ∈ G, cG,Sub(G)(g, cG,Sub(G)(k,H)) = cg(ck(H)) = cg∗k(H) =
cG,Sub(G)(g ∗ k,H). This is the second axiom for a left action.
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By definition, for every H in Subgroup(G), the stabilizer subgroup StabcG,Sub(G)
(H) equals NG(H).

For every subgroup K of G, denote by cK,Sub(G) the restriction to K ⊂ G of the left action of G on
Subgroup(G),

cK,Sub(G) : K × Subgroup(G)→ Subgroup(G), cK,Sub(G)(k,H) = ck(H).

The stabilizer subgroup StabcK,Sub(G)
(H) of K equals K ∩ StabcG,Sub(G)

(H) = K ∩ NG(H). Denote
this subgroup of K by NK(H).

Lemma 5.3. The subgroup NK(H) of K is the unique maximal subgroup of K such that NK(H)H
is a subgroup of G that contains H as a normal subgroup. In particular, for every subgroup K
of G that contains H, NK(H) is the unique maximal subgroup of K that contains H as a normal
subgroup. The coset space G/NG(H) is bijective to the cG,Sub-orbit of H in Subgroup(G).

Proof. Since NG(H) is the stabilizer of H, G/NG(H) is bijective to the orbit of H in Subgroup(G)
by Lagrange’s Theorem.

For every subgroup K of G, K∩NG(H) is a subgroup of K that equals the set of all k ∈ K such that
ck(H) = H, and this is equivalent to ck−1(H) = H since ck and ck−1 are inverse bijections. Thus,
NK(H)H is a subgroup of G: (k′ ∗h′)∗ (k ∗h) = (k′ ∗k)∗ (ck−1(h′)∗h) and (k ∗h)−1 = k−1 ∗ck(h−1).
This subgroup contains H = {e}H. For every k∗h in NK(H)H, ck∗h(H) = ck(ch(H)) = ck(H) = H.
Thus, H is a normal subgroup of NK(H)H.

For every subgroup L of K such that LH is a subgroup of G that contains H as a normal subgroup,
then every element k of L satisfies ck(H) ⊂ H since k ∈ LH and H is normal in LH. Since also k−1

is in L, also ck−1(H) ⊂ H. Therefore k is an element of NG(H), i.e., k is an element of K ∩NG(H).
Thus L is a subgroup of K ∩NG(H) = NK(H). Therefore NK(H) is the unique maximal subgroup
of K such that NK(H)H is a subgroup of G that contains H as a normal subgroup.

In particular, for every subgroup K that contains H, since H is a subgroup of NG(H), also H is a
subgroup of K ∩NG(H) = NK(H). Thus NK(H)H equals NK(H). Therefore NK(H) is the unique
maximal subgroup of K that contains H as a normal subgroup.

For every group (G, ∗) and for every subgroup H of G, for the quotient set function

qH : G→ G/H, qH(g) = gH,

there is a unique left action of G on H such that q is left G-equivariant,

cG,G/H : G× (G/H)→ G/H, cG,G/H(g, kH) = cG,G/H(g, qH(k)) = qH(g ∗ k) = (g ∗ k)H.

Theorem 5.4 (First Isomorphism Theorem). A subgroup N of G is normal if and only if NG(N)
equals N . In this case, there is a unique group structure • on G/N such that qN is a group homo-
morphism. Moreover, every left N-coset equals a right N-coset. Finally, the rule that associates to
every subgroup L of G/N the preimage subgroup qpreN (L) is an order-preserving bijection between the
subgroups of G/N and the subgroups K of G that contain N . The preimage under qN of a normal
subgroup of G/N is a normal subgroup of G.
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Proof. This has mostly been discussed in the exercises and above. For every g ∈ G, for every
n ∈ N , and for every k ∈ G, g ∗n∗k equals g ∗k ∗ ck−1(n). Since N is normal, ck−1(n) is an element
of N . Thus, qN(g ∗ n ∗ k) equals qN(g ∗ k). Thus, there is a well-defined set function,

• : (G/N)× (G/N)→ G/N, qN(g) • qN(k) = qN(g ∗ k).

This is the unique set function such that qN(g ∗ k) equals qN(g) • qN(k) for every g, k ∈ G. In
particular, qN(g) • qN(e) = qN(g ∗ e) = qN(g) and qN(e) ∗ qN(g) = qN(e ∗ g) = qN(g). Thus
qN(e) = N satisfies the identity axiom of a group. Also, for every g, h, k ∈ G,

(qN(g) • qN(h)) • qN(k) = qN(g ∗ h) • qN(k) = qN((g ∗ h) ∗ k) =

qN(g ∗ (h ∗ k)) = qN(g) • (qN(h ∗ k)) = qN(g) • (qN(h) • qN(k)).

Thus, the group operation satisfies the axiom of associativity. Finally, for every g ∈ G, qN(g) •
qN(g−1) = qN(g ∗ g−1) = qN(e) and qN(g−1) • qN(g) = qN(g−1 ∗ g) = qN(e) (technically that is
redundant). Thus the group operation also satisfies the inverse axiom. Therefore • is a group
operation on G/N .

Next, for every g ∈ G, since cg(N) equals N , gN = (gNg−1)g = cg(N)g = Ng. Therefore every
left N -coset equals a right N -coset.

For every subgroup L of G/N , since qN is a group homomorphism, qpreN (L) is a subgroup of G.
Since L contains q(e) = q(N), qpreN (L) is a subgroup that contains N . Since preimage preserves set
inclusion and intersection, this rule preserves inclusion of subgroups and intersection of subgroups.
Similarly, for every subgroup K of G, qN(K) is a subgroup of G/N , and this rule also preserves
inclusion of subgroups. Since qN is onto, qN(qpreN (L)) equals L. Finally, for every subgroup K of G
that contains N , for every k ∈ K, since K is a subgroup, K contains kN = qpreN (qN({k})). Thus, K
equals qpreN (qN(K)). Therefore the operation of preimage group, L 7→ qpreN (L), and of image group,
K 7→ qN(K), are inverse bijections between the set of all subgroups of G/N and the set of all
subgroups of G that contains N . It was proved in lecture that for every group homomorphism q,
the preimage under q of a normal subgroup is a normal subgroup of G.

Let (G, ∗) be a group, let H be a subgroup, and let K ⊂ NG(H) be a subgroup. Thus, KH is a
subgroup of G that contains H as a normal subgroup. For the quotient set map

qKH,H : KH → (KH)/H, qKH,H(g) = gH,

there is a unique structure of group operation • on (KH)/H such that qKH,H is a group homomor-
phism. This group homomorphism restricts on the subgroup K ⊂ KH to a group homomorphism,

qK,H : K → (KH)/H, qK,H(g) = gH.

The kernel of qK,H equals K ∩Ker(qKH,H) = K ∩H, and this is a normal subgroup of K. For the
quotient set map,

qK,K∩H : K → K/(K ∩H), qK,K∩H(g) = g(K ∩H),
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there is a unique group operation • on K/(K ∩ H) such that qK,K∩H is a group homomorphism.
By Lagrange’s Theorem, there is a left K-equivariant bijection

qK∩H,KH : K/(K ∩H)→ qK,H(K), qK∩H,KH(g(K ∩H)) = gH.

Theorem 5.5 (Second Isomorphism Theorem). The group homomorphism qK,H is onto, and the
bijection qK∩H,KH is a group isomorphism from K/(K ∩H) to KH/H.

Proof. By definition, every element of KH is of the form k ∗h for some k ∈ K and for some h ∈ H.
Thus, qKH,H(k∗h) equals qKH,H(k). This in turn equals qK,H(k). Therefore every element of KH/H
is in the image of qK,H , i.e., qK,H is onto. By Lagrange’s Theorem, qK∩H,KH is a bijection. To prove
that qK∩H,KH is a group isomorphism, it suffices to prove that qK∩H,KH is a group homomorphism.

Since qK,K∩H is onto, to prove that qK∩H,KH is a group homomorphism, it suffices to prove for every
g, k ∈ K that qK∩H,KH(qK,K∩H(g) • qK,K∩H(k)) equals qK∩H,KH(qK,K∩H(g)) • qK∩H,KH(qK,K∩H(k)).
Since qK,K∩H is a group homomorphism, qK,K∩H(g) • qK,K∩H(k) equals qK,K∩H(g ∗k). By definition
of qK∩H,KH , qK∩H,KH(qK,K∩H(j)) equals qKH,H(j) for every j ∈ K. Thus, qK∩H,KH(qK,K∩H(g ∗ k))
equals qKH/H(g ∗ k). Since qKH/H is a group homomorphism, this equals qKH,H(g) • qKH,H(k).
Reversing the steps, this equals qK∩H,KH(qK,K∩H(g))•qK∩H,KH(qK,K∩H(k)), as was to be shown.

Let (G, ∗) be a group, let X be a nonempty set, and let

λ : G×X → X,

be a left action of G on X. Let N ⊆ G be a normal subgroup. Denote the quotient group
homomorphism from G to G/N by

qG,N : G→ G/N, qG,N(g) = gN.

An induced left action of G/N on X is a left group action

λG/N,X : (G/N)×X → X,

such that for every g ∈ G and for every x ∈ X, λG/N,X(qG,N(g), x) equals λ(g, x).

Proposition 5.6. For a normal subgroup N of G, for every x ∈ X, if N is contained in Stabλ(x),
then for every y in the λ-orbit of x, N is a subgroup of Stabλ(y). There is an induced left action
of G/N on X if and only if N is contained in Stabλ(y) for every y ∈ X. In this case, the induced
left action is unique.

Proof. By definition of orbit, for every y in the λ-orbit of x, there exists g ∈ G with y = λ(g, x).
Then Stabλ(y) equals cg(Stabλ(x)). Since N is contained in Stabλ(x), also cg(N) is contained in
cg(Stabλ(x)). Since N is normal, cg(N) equals N . Therefore N is contained in Stabλ(y).
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Let N be a normal subgroup of G that is contained in Stabλ(y) for every y ∈ X. Since N is
contained in Stabλ(y), for every g ∈ G and for every k ∈ N , λ(g ∗ k, y) = λ(g, λ(k, y)) = λ(g, y).
Thus, there is a unique well-defined set map

λG/N,X : (G/N)×X → X, λG/N,X(gN, y) = λ(g, y),

such that for every g ∈ G and for every y ∈ X, λG/N,X(qN(g), y) equals λ(g, y), i.e., λG/N,X is
an induced left action of G/N on X. Note that this is indeed a left action: λG/N,X(qN(e), y) =
λ(e, y) = y and λG/N,X(qN(g), λG/N,X(qN(k), y)) = λ(g, λ(k, y)) = λ(g ∗ k, y) = λG/N,X(qN(g ∗
k), y) = λG/N,X(qN(g) • qN(k), y). Since λ is a left action of G on X, also λG/N,X is a left action of
G/N on X.

Conversely, if N ⊆ G is a normal subgroup, and if λG/N,X is an induced left action of G/N on X,
then for every y ∈ X, for every n ∈ N , λ(n, y) = λG/N,X(qN(n), y) = λG/N,X(qN(e), y) = λ(e, y) = y.
Thus, N is contained in Stabλ(y) for every y ∈ X.

Theorem 5.7 (Third Isomorphism Theorem). Let λ be a transitive left action of G on a set X.
Let N ⊂ G be a normal subgroup, and assume that there exists an induced left action λG/N,X of
G/N on X. Then the action λG/N,X is transitive, and StabλG/N,X

(x) equals qG,N(Stabλ(x)) for every
x ∈ X. There is a unique left G-equivariant bijection qG/N,x : (G/N)/qG,N(Stabλ(x))→ X sending
the coset qG,N(Stabλ(x)) to x.

Proof. Since the action λ is transitive, for every x, y ∈ X, there exists g ∈ G such that y equals
λ(g, x). By the defining property of λG/N,X , also λG/N,X(gN, x) equals y. Thus λG/N,X is transitive.
By Lagrange’s Theorem, there is a unique G-equivariant bijection

(G/N)/StabλG/N,X
(x)→ X

sending the coset StabλG/N,X
(x) to x. Finally, by definition of λG/N,X , λG/N,X(qG,N(g), x) equals

λ(g, x). Thus, qG,N(g) is in the λG/N,X-stabilizer of x if and only if g is in the λ-stabilizer of x, i.e.,
qG,N(Stabλ(x)) equals the λG/N,X-stabilizer of x.

Let (G, ∗) be a group, and let H ⊂ G be a subgroup. Define X to be G/H with its natural left
action λG,G/H of G on G/H. This is a transitive action. The induced group homomorphism

λ̃G,G/H : G→ S(X),

has kernel N = NG,H equal to a normal subgroup of G that is contained in H. In particular, G/N
is a quotient group of G, and H/N is a subgroup of G/N such that the coset space (G/N)/(H/N)
is bijective to G/H.

Lemma 5.8. The kernel of λ̃G,G/H equals the common intersection over all g ∈ G of cg(H). If H
has finite index m in G, then the index of N in G is a finite integer that divides m!, and the index
of H/N in G/N equals m.
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Proof. For a left action λ of G on a set X, by the definition of the associated group homomorphism
λ̃ : G→ S(X), the kernel of λ̃ equals the intersection over all x ∈ X of Stabλ(x). For the transitive
action λG,G/H , for every g ∈ G, the stabilizer of gH ∈ G/H equals cg(H). Thus N equals the
intersection over all g ∈ G of cg(H).

If H has finite index m in G, then X is a set with m elements by Lagrange’s Theorem. Thus
the symmetric group S(X) is isomorphic to S(m). This has m! elements. Thus the image group

λ̃G,H(G) ⊂ S(X) is a subgroup of the finite group S(X) that has order dividing m!, again by
Lagrange’s Theorem. By Lagrange’s Theorem once more, the image of G in S(X) is naturally
bijective to G/N . Thus, the index of N in G divides m!, and equals the order of the image of G in
S(X). By the previous lemma, the index of H/N in G/N equals the index m of H in G.

Let (G, ∗) be a group, let K ⊂ G be a subgroup, and let H ⊂ K be a subgroup. Denote the
quotient set maps to the coset spaces by

qG,G/K : G→ G/K, qG,G/K(g) = gK,

qG,G/H : G→ G/H, qG,G/H(g) = gH.

For every g ∈ G, gK contains gH. Thus, for every g′ ∈ gH, qG,G/K(g′) equals qG,G/K(g). Therefore,
there exists a well-defined set function,

qG/H,G/K : G/H → G/K, qG/H,G/K(gH) = gK.

This is the unique set function such that qG/H,G/K ◦ qG,G/H equals qG,G/K . For every g ∈ G, the
preimage under qG/H,G/K over {gK} is precisely qG,G/H(gK). For every g ∈ G, there is a bijection,

lg : K/H → qG,G/H(gK), lg(kH) = (g ∗ k)H.

Proposition 5.9. If K has infinite index in G, or if H has infinite index in K, then also H has
infinite index in G. If both [G : K] and [K : H] are finite, then also [G : H] is finite, and [G : H]
equals [G : K][K : H].

Proof. Since qG/H,G/K is onto, if G/K is infinite, then G/H is infinite. Similarly, since every fiber
of qG/H,G/K is in bijection with K/H via lg, if K/H is infinite then also G/H is infinite. On the
other hand, if all of these are finite, then the fibers of the onto map qG/H,G/K form a partition of
G/H. Thus,

#(G/H) =
∑

gK∈G/K

#qpreG/H,G/K({gK}) =
∑

gK∈G/K

#(K/H) = #(G/K)#(K/H),

i.e., [G : H] equals [G : K][K : H].
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6 The Sylow Theorem

In lecture, the Sylow theorem was only mentioned in passing. The discussion here is only for
completeness. The general Sylow theorem is used in the proof of the Structure Theorem for Finite
Abelian Groups, but that theorem can be proved with much less than the general Sylow theorem.

For every prime integer p, a p-group is a group such that every element has finite order equal to
a power of p (possibly 1 = p0 for the identity, and the power certainly depends on the element).

Lemma 6.1. Every subgroup of a p-group is a p-group. For every group homomorphism f :
(P, ∗)→ (R, •), P is a p-group if and only if both f(P ) and Ker(f) are p-groups. A finite group P
is a p-group if and only if the order of P is a power of p.

Proof. Let (P, ∗) be a p-group. For every subgroup H of P , since every element of P has finite
order equal to a power of p, in particular, every element of H has finite order equal to a power of
p. Thus H is a p-group.

Let f : P → R be a group homomorphism. First assume that P is a p-group. By the previous
paragraph, the subgroup Ker(f) is a p-group. Next, for every g ∈ P , since there exists an integer
n ≥ 0 with gp

n
= e, then also f(g)p

n
= f(e). Thus the order of f(g) is finite and divides pn.

Therefore, the order of f(g) is a power of p. So every f(g) ∈ f(P ) has finite order equal to a power
of p, i.e., f(P ) is a p-group.

Next, assume that both f(P ) and Ker(f) are p-groups. For every g ∈ P , there exists an integer
n ≥ 0 such that f(g)p

n
= f(e). Thus gp

n
is an element of Ker(f). Since Ker(f) is a p-group, there

exists an integer m ≥ 0 such that (gp
n
)p

m
equals e. Altogether, gp

n+m
equals e. Therefore the order

of g is finite and divides pn+m. So for every g ∈ G, the order of g is finite and equals a power of p,
i.e., G is a p-group.

If P is a finite group of order pn, then by Lagrange’s theorem, the order of every element of P is
finite and divides pn. Thus, the order of every element of P is finite and equal to a power of p, i.e.,
P is a p-group. Conversely, assume that P is a finite group whose order does not equal a power of
p. By the Unique Factorization of Integers, there exists a prime integer q 6= p such that q divides
the order of P . By the Cauchy-Frobenius Theorem, there exists an element g of P of order equal
to q. Thus P is not a p-group. Therefore, for a finite group P , P is a p-group if and only if the
order of P equals a power of p.

Corollary 6.2. Let (P, ∗) be a p-group. For every subgroup H of G of finite index, [G : H] equals
a power of p. Similarly, for every finite subgroup H of G, #H equals a power of p.

Proof. By the previous lemma, every subgroup H of G is a p-group. If H is finite, then the previous
lemma implies that #H equals a power of p.

Next let H be a subgroup of finite index. By the previous section, there exists a normal subgroup
N ⊂ P such that N is contained in H, and such that N has finite index in P . By the previous
lemma, the quotient group P/N is a p-group, and it is finite. Thus P/N has order equal to a power
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of p. In particular, the index of H/N in P/N divides the order of P/N by Lagrange’s theorem.
Thus the index of H/N in P/N also equals a power of p. By the third isomorphism theorem in the
previous section, the index of H in P equals the index of H/N in P/N . Therefore the index of H
in P equals a power of p.

For a group (G, ∗) a p-subgroup is a subgroup P of G such that (P, ∗) is a p-group. A p-subgroup
P of G is a p-Sylow subgroup of G if every p-subgroup Q of G that contains P equals P , i.e., P
is a p-subgroup of G that is maximal with respect to set inclusion of p-subgroups.

Proposition 6.3. Let (G, ∗) be a group, and let P ⊂ G be a p-subgroup. For every element g ∈ G
of p-power order such that cg(P ) = P , the subset Q = 〈g〉P is a p-subgroup of G that contains P .
If P is a p-Sylow subgroup, then g is an element of P .

Proof. By the homework exercises, since cg(P ) equals P , 〈g〉P is a subgroup Q of G. By construc-
tion, P is a normal subgroup of Q. Thus the left Q-action on the P -coset space Q/P extends
uniquely to a group structure on H/P such that the quotient function q : Q → Q/P is a group
homomorphism. Since Q equals 〈g〉, the restriction of q to the subgroup 〈g〉 ⊂ Q is a group homo-
morphism qg : 〈g〉 → H/P that is surjective. In particular, the order of Q/P divides the order of
〈g〉. By hypothesis, the order of 〈g〉 is a power of p. Thus the same is true of the order of Q/P ,
i.e., the index [Q : P ] is a power of p (possibly 1 = p0). By Lagrange’s Theorem, the order of Q
equals [Q : P ]#P . Since both factors are powers of p, also the order of Q is a power of P . Thus Q
is a p-subgroup of G that contains P . If P is a p-Sylow subgroup of G, then Q equals P . In that
case, since g is an element of Q = 〈g〉P , also g is an element of P .

For every element g ∈ G, conjugation by g is an automorphism of G with inverse automorphism
cg−1 . In particular, for every finite subgroup H, the order of cg(H) equals the order of H. Similarly,
for every subgroup H of finite index in G, the index of cg(H) equals the index of H. In particular,
for every p-subgroup P , also cg(P ) is a p-subgroup of G.

Lemma 6.4. For every g ∈ G, for every p-Sylow subgroup P of G, also cg(P ) is a p-Sylow subgroup
of G.

Proof. Let Q be a p-subgroup of G that contains the p-subgroup cg(P ). Then cg−1(Q) is a p-
subgroup of G that contains the p-subgroup P . If P is a p-Sylow subgroup, then cg−1(Q) equals p,
and then also cg(P ) equals Q.

Denote by Sylp(G) the subset of Subgroup(G) whose elements are all of the p-Sylow subgroups
of G. Please note, if the only element of G of p-power order is the identity element e (of order
1 = p0), then Sylp(G) has only one element {e}. However, for every finite group (G, ∗) whose order
is divisible by p, then G contains elements of order p, hence Sylp(G) is a nonempty finite set, every
element of which is a p-Sylow subgroup of order ≥ p.
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For instance, for every integer n ≥ 1, writing n = prm with gcd(m, p) = 1, then Sylp(G) is
the singleton subset containing the element 〈[m]n〉 ∼= Z/prZ. Similarly, for the symmetric group
G = S(3) with order 6 = 2 · 3, the nontrivial p-Sylow subgroups are,

Syl2(S(3)) = {〈(12)〉, 〈(13)〉, 〈(23)〉}, Sym3(S(3)) = {〈(123)〉} = {〈(132)〉}.

Lemma 6.5. For the conjugation action cG,Sub, the subset Sylp(G) of Subgroup(G) is a cG,Sub-
preserved subset.

Proof. By the previous lemma, Sylp(G) is a cG,Sub-preserved subset of Subgroup(G).

For every p-Sylow subgroup P of G, for every element g of NG(P ) whose order is a power of p, g
is an element of P by Proposition 6.3. Therefore, the normal subgroup P of NG(P ) is the unique
p-Sylow subgroup of NG(P ), and every p-subgroup of NG(P ) is contained in P .

Lemma 6.6. Let P and Q be p-subgroups of G. Then NQ(P )P is a p-subgroup of G that contains
P as a normal subgroup. If P is a p-Sylow subgroup, then NQ(P ) equals Q ∩ P .

Proof. By the previous result, K := NQ(P )P is a subgroup of P that contains P as a normal
subgroup. It only remains to prove that K is a p-group. Since P is a normal subgroup of K, there
is a unique group structure on the coset space K/P such that the quotient map q : K → K/P is a
group homomorphism, say

• : (K/P )× (K/P )→ K/P, q(k) • q(k′) = q(k ∗ k′).

For every element g ∈ NQ(P ) ⊂ Q and h ∈ P , q(g ∗ h) equals q(g) • q(h) = q(g) ∗ q(e) = q(g).

Consider the quotient group homomorphism qK,K/P : K → K/P . By the Second Isomorphism
Theorem, the restricted group homomorphism qK,K/P |N : NQ(P ) → K/P is onto and has kernel
NQ(P ) ∩ P . Since NQ(P ) is a subgroup of Q, by Lemma 6.1, NQ(P ) is a p-group. By that same
lemma, the homomorphic image K/P of qK,K/P |N is also a p-group. Since P is a p-group and K/P
is a p-group, by the lemma once more, also K is a p-group.

Now assume that P is a p-Sylow subgroup. Since K is a p-group that contains P , K equals P . In
particular, since NQ(P ) is contained in K, NQ(P ) is contained in P . Thus, NQ(P ) is contained in
Q ∩ P . On the other hand, since P is a subgroup of NG(P ), also Q ∩ P ⊂ Q ⊂ NG(P ) = NQ(P ).
Therefore, NQ(P ) equals Q ∩ P .

For the cG,Sub-preserved subset Sylp(G) of Subgroup(G), denote by cG,p the restriction of cG,Sub,

cG,p : G× Sylp(G)→ Sylp(G), cG,p(g, P ) = cg(P ).

This is a left action of G on Sylp(G).

Let X ⊂ Sylp(G) be a cG,p-orbit, i.e., for every P ∈ X, X equals the set of all conjugates cg(P ) of
P . The left action of G on Sylp(G) restricts to a left action of G on X, say

cG,X : G×X → X, cG,X(g, P ) = cg(P ).
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For every subgroup K of G, denote by cK,X the restriction of cG,X to a left action of K on X,

cK,X : G×X → X, cK,X(g, P ) = cg(P ).

If G is a finite group, then Sylp(G) is a subset of the power set of G, and thus also Sylp(G) is finite.
Therefore every orbit X is also finite.

Theorem 6.7 (The Sylow Theorem). Assume that there exists a cG,p-orbit X of Sylp(G) that has
finite cardinality nX . Then for every P in X, NG(P ) is a subgroup of G that has finite index
[G : NG(P )] = nX . The positive integer nX satisfies nX ≡ 1 (mod p). If also P has finite index in
G, then [NG(P ) : P ] is prime to p so that [G : P ] is also prime to p. Finally, for every p-subgroup Q
of G, there exists a p-Sylow subgroup P in X such that P contains Q. In particular, every p-Sylow
subgroup of G is an element of X, i.e., Sylp(G) equals X.

Proof. Let X be a cG,p-orbit of Symp(G) that has finite cardinality nX ≥ 1. Let P be a p-Sylow
subgroup that is an element of X. The stabilizer subgroup StabcG,p

(P ) equals NG(P ). Thus, by
Lagrange’s Theorem, NG(P ) is a finite index subgroup with [G : NG(P )] equal to nX .

For every p-subgroup Q of G, consider the cQ,X-orbit of P . This is a subset of the cG,X-orbit of P ,
i.e., the cQ,X orbit of P is a subset of X. Since X is finite, also the cQ,X-orbit is finite. Thus the
stabilizer subgroup NQ(P ) = Q ∩NG(P ) is a finite index subset of Q. By Corollary 6.2, the index
of NQ(P ) in Q is a power of p. In particular, that power equals 1 if and only if Q is contained
in NG(P ). By Proposition 6.3, Q is contained in NG(P ) if and only if Q is contained in P . In
summary, the cQ,X-orbit of P has cardinality a power of p, and that power equals 1 if and only if
Q is contained in P .

Now consider the special case that Q equals P . In this case, since P is contained in P , the cP,X-
orbit of P equals {P} and has size 1. For every P ′ in X with P ′ 6= P , then P is not contained
in P ′, since this would contradict that P is a p-subgroup that is maximal for set inclusion. Thus,
the cP,X-orbit of P ′ has size equal to a power of p, in particular, it is divisible by p. Thus, for the
action cP,X of P on X, there is precisely one orbit of size 1, and every other orbit has size equal to
a multiple of p. Therefore, since the size nX of X equals the sum of the sizes of distinct orbits by
Lagrange’s Theorem,

nX ≡ 1 (mod p).

Recall that P is the unique p-Sylow subgroup of NG(P ), and P is normal in NG(P ). For any
p-subgroup R of NG(P )/P , the preimage subgroup of NG(P ) is a p-subgroup by Lemma 6.1, and it
contains P . Thus, the preimage subgroup of NG(P ) equals P . So the only p-subgroup of NG(P )/P
is the trivial subgroup {e}. If NG(P )/P is finite, then by the Cauchy-Frobenius Theorem, p does not
divide the order of NG(P )/P , i.e., [NG(P ) : P ] is relatively prime to p. Since also nX = [G : NG(P )]
is relatively prime to p, by Proposition 5.9, also [G : P ] is a product of integers that are relatively
prime to p. Since p is prime, [G : P ] is relatively prime to p.

Next let Q be any p-group, and consider the action cQ,X of Q on X. For every P in X such that
Q is not contained in P , the cQ,X-orbit of P is a power of p, hence is divisible by P . Thus, for the
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cQ,X-preserved subset XQ of X that equals all P with Q not contained in P , the size of XQ equals
the sum over the distinct cQ,X-orbits of XQ of the size of that orbit, and that size is a multiple of
p. Therefore the size of XQ is a multiple of p. Since the size nX of X is congruent to 1 modulo P ,
XQ does not equal all of X. Therefore, there exists P in X that is not in XQ, i.e., P is an element
of X such that Q is contained in P .

There are versions of Sylow’s Theorem even when Sylp(G) is infinite. However, there do exist
infinite groups such that Sylp(G) contains two distinct cG,p-orbits.

A typical application of the Sylow Theorem is the following result.

Corollary 6.8. Let p and q be distinct prime integers with q < p and with p 6≡ 1 (mod q). Every
group of order pq is isomorphic to Z/pqZ.

Proof. Let (G, ∗) be a group of order pq. Then Subgroup(G) is finite, so also Sylp is finite. Therefore,
by the Sylow Theorem, np(G) = #Sylp is congruent to 1 modulo p and divides #G = pq. Thus
np(G) equals 1 or q. Since q < p, certainly q 6= 1 (mod p). Thus, np(G) equals 1. So there exists a
unique p-Sylow subgroup P that is necessarily normal.

Similarly, nq(G) divides p, so nq(G) equals 1 or p. Since also nq(G) is congruent to 1 modulo q,
by hypothesis, nq(G) does not equal p. Thus nq(G) equals 1. So there exists a unique q-Sylow
subgroup Q that is necessarily normal.

For every g ∈ P and for every h ∈ Q, ch(g
−1) is an element of P since P is a normal subgroup,

and cg(h) is an element of Q since Q is a normal subgroup. Thus g ∗ h ∗ g−1 ∗ h−1 = cg(h) ∗ h−1 is
an element of the subgroup Q. Similarly, g ∗ h ∗ g−1 ∗ h−1 = g ∗ ch(g−1) is an element of P . Thus
g ∗ h ∗ g−1 ∗ h−1 is an element of P ∩ Q. Since P ∩ Q is a subgroup of the p-group P , P ∩ Q is a
p-group. Since P ∩ Q is a subgroup of the q-group Q, P ∩ Q is a q-group. Thus P ∩ Q is {e} so
that g ∗ h = h ∗ g. Therefore G is isomorphic to the direct product P ×Q. Since P has order p, P
is isomorphic to Z/pZ. Similarly, Q is isomorphic to Z/qZ. Thus G is isomorphic to Z/pZ×Z/qZ.
By the Chinese Remainder Theorem, this is isomorphic to Z/pqZ.

7 Finite Abelian Groups

Recall that for an indexing set I and a collection (Gi, ∗i) of groups indexed by i ∈ I with identity
elements ei ∈ Gi, the direct product group is defined to be the product set

G =
∏
i∈I

Gi = {(gi)i∈I |gi ∈ Gi},

with the group operation

∗ : G×G→ G, (gi)i∈I ∗ (hi)i∈I = (gi ∗i hi)i∈I .
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Lemma 7.1. The operation ∗ is a group structure on G. The group identity is e = (ei)i∈I . For
every g = (gi)i∈I in G, the inverse group element is g−1 = (g−1i )i∈I .

Proof. First, g ∗ e = (gi ∗i ei)i∈I = (gi)i∈I = g, and e ∗ g = (ei ∗i gi)i∈I = (gi)i∈I = g. Thus e satisfies
the identity axiom. For every element h = (hi)i∈I of G, and for every element k = (ki)i∈I ,

(g ∗ h) ∗ k = (gi ∗i hi)i ∗ (ki)i = ((gi ∗i hi) ∗i ki)i∈I = (gi ∗i (hi ∗i ki))i = (gi)i ∗ (hi ∗i ki)i = g ∗ (h ∗ k).

Thus the group operation satisfies the associative axiom. Finally, for every g, g∗g−1 = (gi)i∗(g−1i )i =
(gi ∗i g−1i )i = (ei)i = e, and similarly g−1 ∗ g = e. Thus the inverse axioms is also valid. Therefore
(G, ∗) is a group.

For every i ∈ I, denote the projection from G to Gi by pri,

pri : G→ Gi, (gj)j∈I 7→ gi.

Proposition 7.2. Every set function pri is a group homomorphism. For every group (H, •), and
for every collection (fi)i∈I of group homomorphisms fi : (H, •) → (Gi, ∗i), there exists a unique
group homomorphism f : (H, •)→ (G, ∗) such that for every i ∈ I, pri ◦ f equals fi.

Proof. By definition of ∗, for g = (gj)j∈I and for k = (kj)j∈I , g ∗k = (gj ∗j kj)j∈I . Thus, pri(g ∗k) =
gi ∗k ki = pri(g) ∗i pri(k). Therefore pri is a group homomorphism.

Let (fi)i∈I be a collection of group homomorphisms. Define f : H → G by f(h) = (fj(h))j∈I . This
is the unique set function such that for every i ∈ I, pri ◦ f equals fi. Moreover,

f(h • h′) = (fj(h • h′))j∈I = (fj(h) ∗j fj(h′))j∈I = (fj(h))j∈I ∗ (fj(h
′))j∈I = f(h) ∗ f(h′).

Thus f is a group homomorphism.

Let (H, •) be a group. Let I be a nonempty indexing set. For every i ∈ I, let Ni ⊂ H be a
normal subgroup. Denote the common intersection by N ,

N = ∩i∈INi.

Similarly, for every i ∈ I, denote by Mi the (normal) subgroup,

Mi = ∩j ∈ I, j 6= iNj.

If I is a singleton set {i}, denote H by Mi. Denote the quotient group H/Ni by Gi, and denote
the quotient homomorphism H → H/Ni by qi : H → Gi. By the previous lemma, there is a unique
group homomorphism,

q : H → G

such that for every i ∈ I, pri ◦ q equals qi.
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Proposition 7.3. The kernel of q equals N . In particular, q is one-to-one if and only if N equals
{e}. If I is a finite set, and if MiNi equals H for every i ∈ I, then q is onto.

Proof. By the definition of G, g ∈ G equals e if and only if pri(g) equals ei for every i ∈ I. Thus,
for every h ∈ H, q(h) equals e if and only if qi(h) equals ei for every i ∈ I, i.e., if and only if h ∈ Ni

for every i ∈ I. Thus the kernel of q equals N .

Assume next that I is a finite set and that every MiNi equals H. Let (hiNi)i∈I be an element of
G. Since MiNi equals H, for every i ∈ I, there exists mi ∈Mi such that hiNi equals miNi. Choose
some ordering of I, say I = {i1, . . . , ir}, and define h = mi1 ∗ . . .mir . For every ij, qij(h) equals
qij(mi1) ∗ · · · ∗ qij(mir). For every ik 6= ij, Mik is contained in Nij , so that qij(mik) equals eij . Thus,
qij(h) equals qij(mij) = hijNij for every ij ∈ I. Therefore q(h) equals (hiNi)i∈I . So q is onto.

In particular, if N equals {e} and if every MiNi equals H, then q is an isomorphism.

Now let (A, ∗) be a finite Abelian group. If the order of A equals 1, then A equals {e}, and A is a
trivial group. Thus, assume that the order of A is > 1. By the Unique Factorization of Integers,
the set of primes dividing #A is a finite set, say a subset of a finite set of primes I = {p1, . . . , pr}.
Then n = #A satisfies n = pe11 · · · · · perr for integers e1, . . . , er ≥ 0. For every pi ∈ I, by the Sylow
Theorem, there exists a pi-Sylow subgroup Mi ⊂ A that has order peii . Since A is Abelian, Mi is a
normal subgroup. Thus Mi is the unique pi-Sylow subgroup of A.

For every pi ∈ I, denote by Ni ⊂ A the product over all j 6= i of the normal subgroup Mj. Denote
by Gi the quotient group A/Ni. Denote by qi : A→ Gi the quotient group homomorphism. Denote
by G the product over all pi ∈ I of Gi, and denote by q : A→ G the induced group homomorphism.

Since every element of Mj has order dividing p
ej
j by Lagrange’s Theorem, and since the subgroups

Mj commute with one another, every element of Ni has order dividing
∏

j 6=i p
ej
j = n/peii . In

particular, no element of Ni has order equal to a positive power of pi. Thus, by the Cauchy-
Frobenius theorem, the order of Ni is prime to pi. By Lagrange’s Theorem, the order of Ni divides
n. Thus the order of Ni divides n/peii =

∏
j 6=i p

ej
j . On the other hand, for every j 6= i, Ni contains

Mj. So, again by Lagrange’s Theorem, the order of Ni is divisible by each p
ej
j for j 6= i. Therefore

the order of Ni equals n/peii .

Since Mi ∩ Ni is a subgroup of Mi, it is a pi-group. Since n/peii has order prime to pi, Mi ∩ Ni is
the trivial subgroup {e}. For every j 6= i, since Mj is a subgroup of Ni, also Mi ∩Mj is a subgroup
of Mi ∩ Ni, so that Mi ∩Mj is also the trivial subgroup. Since [Mi : Mi ∩ Ni] equals #Mi = peii ,
by the Second Isomorphism theorem, MiNi has order [Mi : Mi ∩ Ni]#Ni = peii (n/peii ) = n. Thus,
MiNi equals A.

Proposition 7.4. For every finite Abelian group (A, ∗) with order n > 1 divisible only by some of
the primes in a finite subset I = {p1, . . . , pr}, for the pi-Sylow subgroups Mi and for Ni =

∏
j 6=iMj,

the restriction qi|Mi
: Mi → (A/Ni) is a group isomorphism. The induced group homomorphism

q : A→
∏

pi∈IMi is an isomorphism.

28

http://www.math.stonybrook.edu/~jstarr/mat312f16/index.html
mailto:jstarr@math.stonybrook.edu


MAT 312 / AMS 351 Applied Algebra
Stony Brook University
Burnside’s Lemma

Jason Starr
Fall 2016

Proof. The only thing that remains to prove is that qi|Mi
: Mi → A/Ni is a group isomorphism. By

the computation above, the kernel Mi∩Ni is a trivial group, so qi is one-to-one. Also, by Lagrange’s
Theorem, #(A/Ni) = #A/#Ni = peii , and this equals #Mi. Therefore, by the Pigeonhole Principle,
also qi|Mi

is onto.

By the proposition, every finite Abelian group is canonically isomorphic to the direct product of all
of its nontrivial Sylow subgroups. Thus, to classify all finite Abelian groups, it suffices to classify
the finite Abelian p-groups M . If M is nontrivial, then by the Cauchy-Frobenius Theorem there
exists an element g ∈M of order p. A maximal order element of M is an element g whose order
is maximal among the orders of all elements of M . Since M is a finite set, it has a maximal order
element g. By the Cauchy-Frobenius Theorem, the p-power order pn of g satisfies n ≥ 1. Let C
denote the cyclic subgroup 〈g〉. Denote the quotient group M/C by K, and denote by q : M → K
the quotient group homomorphism.

Since C is a cyclic subgroup, every subgroup of C is of the form 〈gps〉 for some integer 0 ≤ s ≤ n.
Let B ⊂M be another cyclic subgroup of order pm. Then B ∩C is a subgroup of C, and it is also
a subgroup of B. Thus there exists a generator h of B such that hp

r
equals gp

s
for some integer

0 ≤ r ≤ m. For t = n − s, (hp
r
)p

t−1
= (gp

s
)p

t−1
= gp

n−1
does not equal e, yet (hp

r
)p

t
= gp

n
does

equal e. Therefore the order of h divides pr+t, yet the order does not divide pr+t−1. Therefore the
order of h equals pr+t. Since g is a maximal order element r + t ≤ n = s+ t. Therefore also r ≤ s.
Now consider the element h′ = h ∗ g−ps−r

. Then hC equals h′C, and (h′)p
r

equals e.

Proposition 7.5. Every finite Abelian p-group is isomorphic to a direct product of finite cycle
p-groups.

Proof. This is proved by induction on the order of M . If the order of M equals 1, then M is a
trivial group and so M is a cyclic group. Thus, by way of induction, assume that the order of M is
> 1, and assume that the result has been proved for all finite Abelian p-groups of strictly smaller
order.

As above, let g be a maximal order element, and let C be the cyclic subgroup generated by g.
Denote by q : M → K the quotient group homomorphism with kernel C. By Lemma 6.1, K is also
a p-group. Since M is finite and Abelian, the quotient K is also finite and Abelian. Since the order
of g is pn with n ≥ 1, by Lagrange’s Theorem, #K = #M/pn is strictly less than #M . Thus, by
the induction hypothesis, K is a direct product of cyclic p-subgroups. Precisely, let k2, . . . , kr ∈ K
be elements such that K equals the direct product of the cyclic subgroups 〈k2〉, . . . , 〈kr〉.

For every i = 2, . . . , r, denote the order of ki by pri . Let Bi ⊂ M be a cyclic subgroup that
is generated by an element that maps under q to ki. By the previous argument, there exists a
generator hi of Bi such that hp

ri

i equals gp
s
. By the argument, ri ≤ s ≤ n, and there exists another

element gi ∈ M such that q(qi) = q(hi) and such that gp
ri

i equals e. Thus, for every i = 2, . . . , r,
the restriction

qi : 〈gi〉 → 〈ki〉
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is an onto group homomorphism between groups of order pri . By the Pigeonhole Principle, qi is also
one-to-one. Hence qi is an isomorphism. Thus the product K ′ ⊂M of the subgroups 〈g2〉, . . . , 〈gr〉
is a subgroup of M such that

qK : K ′ → K

is onto. Thus K ′ has order ≥ #K. On the other hand, by the iterated Lagrange’s Theorem, the
order of K ′ is no greater than the product of the orders of 〈g2〉, . . . , 〈gr〉, and that also equals #K.
Thus qK is an isomorphism. So K ′ is isomorphic to a direct product of cyclic groups.

Finally, set g1 = g. Since qK is onto, M equals K ′C. By Lagrange’s Theorem, #M = #C#K =
#C#K ′. By the Second Isomorphism Theorem, K ′ ∩C has order 1. Thus, by Proposition 7.3, M
is isomorphic to the direct product C ×K ′. Altogether, M is isomorphic to the direct product of
the cyclic subgroups 〈g1〉, . . . , 〈gr〉. Thus, by induction, every finite, Abelian p-group is isomorphic
to a direct product of copies of cyclic p-groups.

As is clear from the proof, every nontrivial finite Abelian p-group is isomorphic to a product

Z/pn1Z× Z/pn2Z× · · · × Z/pnrZ,

for an integer r ≥ 1 and for integers n1, . . . , nr with n1 ≥ n2 ≥ · · · ≥ nr ≥ 1.

From now on we will denote the group operation on an Abelian A group by +, i.e., we write the
group operation additively. For consistency, the group identity element will be denoted by 0. The
group inverse operation applied to g will be denoted −g. Also, for every element g ∈ A, instead of
denoting the n-fold operation g ∗ · · · ∗ g by gn, we will denote g+ · · ·+ g by n · g. For every integer
n ≥ 1, define the n-torsion subgroup of A to be

A[n] = {g ∈ G|n · g = 0}.

Lemma 7.6. The subset A[n] of A is a subgroup.

Proof. Clearly 0 is an element of A[n]. For elements g and h of a group G that commute with each
other, for the group product k of g and h, we have seen before that the order of k divides the least
common multiple of the orders of g and h. Thus, if the order of g and the order of h both divide n,
then also the order of k divides n. Thus A[n] is preserved by products of elements in A[n]. Finally,
for every group element g, the order of g equals the order of the group inverse of g. Thus, if g is in
A[n], then also the group inverse of g is in A[n]. Therefore A[n] is a subgroup of A.

Please be aware, this can fail badly for a non-Abelian group. For instance, the set of elements of
S(3) that have order dividing 2 equals {(1), (12), (13), (23)}, and this is not stable under products
of pairs of elements in the subset.

For a direct product of Abelian groups, A = A1 × · · · × Ar, the inclusions Ai[n] ⊂ Ai induce a
direct product decomposition,

A[n] = A1[n]× · · · × Ar[n].
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For an Abelian group A, and for integers m,n ≥ 1 with m|n, then A[m] is a subgroup of A[n]. Con-
sider the quotient group A[n]/A[m]. For a direct product group, the direct product decompositions
above determine a direct product decomposition,

A[n]/A[m] = (A1[n]/A1[m])× · · · × (Ar[n]/Ar[m]).

Now specialize to the case that Ai is a cyclic group of order pni , m = pe−1 and n = pe. Then Ai[p
e]

is either pni−eAi if ni ≥ e, or else Ai[p
e] equals all of Ai if e ≥ ni. Thus, Ai[p

e]/Ai[p
e−1] is either

isomorphic to Z/pZ if e ≤ ni, or Ai[p
e]/Ai[p

e−1] is a trivial group if e > ni.

Finally, consider a direct product group A = A1×· · ·×Ar where each Ai is an Abelian group of order
pni with r ≥ 1 and n1 ≥ · · · ≥ nr ≥ 1. For every integer e > n1, A[pe]/A[pe−1] is a trivial group. For
every integer e ≤ n1, denote by i the unique integer such that n1 ≥ · · · ≥ ni ≥ e > ni+1 ≥ · · · ≥ nr.
Then Aj[p

e]/Aj[p
e−1] is isomorphic to Z/pZ for j ≥ i, and otherwise it is isomorphic to {0}. Thus,

the group A[pe]/A[pe−1] is isomorphic to a direct product of i copies of Z/pZ. In particular, by
Lagrange’s Theorem,

#A[pe]/#A[pe−1] = pi.

Given the data of the sizes #A[pe]/#A[pe−1], the sequence (n1, . . . , nr) can be uniquely recovered.
Thus, we have proved the following.

Proposition 7.7. For every finite Abelian p-group, the sequence (n1, . . . , nr) of integers with
n1 ≥ · · · ≥ nr ≥ 1 satisfying A ∼= (Z/pn1Z) × · · · × (Z/pnrZ) is unique, and it can be effectively
reconstructed from the function e 7→ #A[pe].

For various reasons, it is sometimes inconvenient to decompose a finite Abelian group into a direct
product of its Sylow subgroups. As indicated in lecture, using the Chinese Remainder Theorem,
the structure theory above is equivalent to the following structure theorem.

Theorem 7.8 (Structure Theorem for Finite Abelian Groups). For every nontrivial finite Abelian
group A, there exists a unique integer r ≥ 1, and there exist a unique r-tuple of integers (m1, . . .mr)
with mr > 1 and with m2|m1, m3|m2, . . . ,mr|mr−1 such that A is isomorphic to the direct product
of cyclic groups (Z/m1Z) × · · · × (Z/mrZ). This sequence can be effectively computed from the
function m 7→ #A[m].

The sequence of integers (m1, . . . ,mr) is called the sequence of elementary divisors of the finite
Abelian group A. It is important to note that, although the sequence of elementary divisors is
unique, the isomorphism of A with the direct product of cyclic groups is almost never unique.
The only canonical isomorphism in the structure theorem is the isomorphism of A with the direct
product of the nontrivial Sylow subgroups of A.

Corollary 7.9. A finite Abelian group A of order n is cyclic if and only if, for every positive integer
divisor m of n, #A[m] is at most m.
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Proof. For every divisor m of n, (Z/nZ)[m] equals the cyclic subgroup generated by [n/m]n, and
this is isomorphic to Z/mZ. Thus, #(Z/nZ)[m] equals m. So for every cyclic group A of order n,
for every divisor m of n, #A[m] equals m. Thus it remains to prove the opposite implication: if
every #A[m] is at most m, then A is cyclic.

This does follow from the structure theorem, but it is also straightforward to prove directly. The
proof is by induction on n. If n equals 1, then A equals {0}, and so it is cyclic generated by 0.
Thus, by way of induction, assume that n > 1, and assume that the result has been proved for all
groups of order < n.

Consider first the case that n is a prime, n = p. In this case, by the Cauchy-Frobenius Theorem,
there exists an element a of A of order p. Thus, the cyclic subgroup of A generated by a equals all
of A. Therefore, if n is a prime, then A is cyclic.

Consider next the case that n is composite, divisible by more than one prime, say n = ` ·m with
both `,m > 1 and gcd(`,m) = 1. By Proposition 7.4, the subgroup A[`], resp. A[m], is the
product of p-Sylow subgroups for all prime integers p dividing `, resp. p dividing m. Thus A is the
product A[`]×A[m]. For every divisor d of `, since d is relatively prime to m, A[d] equals (A[`])[d].
Thus, the subgroup A[`] satisfies the same hypothesis as A, #(A[`])[d] ≤ d. Since ` < n, by the
induction hypothesis, A[`] is isomorphic to a cyclic group Z/`Z. By the same argument, also A[m]
is isomorphic to Z/mZ. By the results above, A is isomorphic to A[`] × A[m], which in turn is
isomorphic to (Z/`Z) × (Z/mZ). Since ` and m are relatively prime, by the Chinese Remainder
Theorem, (Z/`Z)× (Z/mZ) is isomorphic to Z/(`m)Z. Therefore A is cyclic.

Finally, consider the case that n equals pr for an integer r ≥ 2. By the Cauchy-Frobenius Theorem,
there exists an element a of A of order equal to p. Denote by N the cyclic subgroup of A generated
by a. Since A is Abelian, the subgroup N is normal. Thus, there is a unique group structure on
the coset space Q = G/N such that the quotient map q : G → Q is a group homomorphism. By
Lagrange’s Theorem, #Q equals #G/#N = pr/p = pr−1.

For every integer s ≥ 0, q−1(Q[ps]) is a subgroup of G that contains N . By Lagrange’s Theorem,
#q−1(Q[ps]) equals #N ·#Q[ps]. For every element b ∈ q−1(Q[ps]), q(psb) = psq(b) = 0, so that psb
is an element of N . Since N has order p, p(psb) equals 0, i.e., ps+1b equals 0. Thus, q−1(Q[ps]) is
contained in A[ps+1]. By hypothesis, #A[ps+1] is at most ps+1. Thus, #q−1(Q[ps]) is at most ps+1.
Combined with Lagrange’s Theorem, #Q[ps] is at most ps. Thus, Q satisfies the same hypothesis
as A, but #Q = pr−1 is less than #A = pr. Therefore, by the induction hypothesis, Q is cyclic of
order pr−1.

Let b ∈ A be an element such that Q equals the cyclic subgroup generated by q(b). In particular,
q(pr−1b) equals 0, but q(pr−2b) does not equal 0. Thus, pr−1b is an element of N , but pr−2b is not
in N . If pr−1b equals 0, then pr−2b is an element of order p in A, i.e., pr−2b ∈ A[p]. Already N is
a subgroup of A[p] that has order p. Since #A[p] is at most p, N equals all of A[p]. Thus, there is
no element pr−2b of A of order p that is not contained in N . Therefore, pr−1b is not zero. So the
order of b is strictly greater than pr−1, i.e., the order of b equals pr. Therefore A is a cyclic group
generated by b.
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Thus, in all cases, A is a cyclic group. Therefore, by way of induction, for every finite Abelian
group A, A is cyclic if and only if, for every positive integer divisor m of n, #A[m] is at most
m.

8 Finite Subgroups of Multiplicative Groups

Recall, a commutative ring is a datum (R,+, 0, ·, 1) of a set R, a binary operation + : R ×
R → R called “addition”, a specified element 0 ∈ R, a binary operation · : R × R → R called
“multiplication”, and a specified element 1 ∈ R such that for every r, s, t ∈ R, all of the following
hold.

(i) [Additive Associativity] (r + s) + t equals r + (s+ t),

(ii) [Additive Identity] r + 0 = r = 0 + r,

(iii) [Additive Inverses] there exists an element −r ∈ R such that r + (−r) = 0 = (−r) + r,

(iv) [Additive Commutativity] r + s equals s+ r,

(v) [Multiplicative Associativity] (r · s) · t equals r · (s · t),

(vi) [Distributivity] r · (s+ t) equals (r · s) + (r · t),

(vii) [Multiplicative Identity] r · 1 = r = 1 · r, and

(viii) [Multiplicative Commutativity] (r · s) equals (s · r).

In every ring 0 · r = (0 + 0) · r = (0 · r) + (0 · r). Thus, by additive cancellation, for every r ∈ R,
0 · r equals 0. The main example of a commutative ring is Z, the ring of integers with its standard
addition and multiplication. Also, for every integer n, the set Z/nZ with its standard addition and
multiplication is an example of a commutative ring.

A field is a commutative ring (F,+, 0, ·, 1) such that 0 6= 1 and such that for every r ∈ F \ {0},
there exists an element r−1 ∈ F such that r · r−1 = 1 = r−1 · r. For every pair r, s ∈ F \ {0}, note
that

(r · s) · (s−1 · r−1) = ((r · s) · s−1) · r−1 = (r · (s · s−1)) · r−1 = (r · 1) · r−1 = r · r−1 = 1.

Since 0 · (s−1 · r−1) equals 0 and 0 6= 1, r · s is not 0; moreover, (r · s)−1 equals s−1 · r−1. One
example of a field is the ring Q of rational numbers. Also R is a field, as is C. Finally, for every
prime integer p (by definition, p > 1 and its only positive divisors are 1 and p), the ring Z/pZ is a
field, often denoted by Fp.

For every field F , denote by F ∗ the subset F \ {0}. By the argument above, for every r, s ∈ F ∗,
also r · s is in F ∗. Thus, multiplication restricts to a binary operation on F ∗. By multiplicative
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associativity, multiplicative identity, and the existence of inverses, F ∗ is a group with group opera-
tion given by multiplication and with group identity given by 1. By multiplicative commutativity,
F ∗ is an Abelian group. Quite often F ∗ is infinite, e.g., if F equals Q, R, or C. What are the finite
subgroups of F ∗?

Lemma 8.1. For every integer m ≥ 1, the subgroup (F ∗)[m] of F ∗ has order ≤ m.

Proof. Consider the polynomial fm(x) = xm − 1 in F [x]. The elements of (F ∗)[m] are precisely
the zeroes of fm(x) in F . Each zero λ of fm(x) gives a linear polynomial x− λ that divides fm(x).
Of course x− λ is an irreducible element of F [x]. By the Unique Factorization Theorem for F [x],
fm(x) has a unique factorization as a product of monic irreducible polynomials. Since the degree
of fm equals m, the number of monic irreducible factors is at most m. Thus, there are at most m
distinct linear factors of fm(x). Therefore (F×)[m] has at most m elements.

Proposition 8.2. The finite subgroups of F ∗ are precisely the cyclic subgroups generated by a root
of unity, i.e., generated by an element of (F ∗)[m] for some integer m ≥ 1.

Proof. First of all, for every m ≥ 1, by the previous lemma, (F ∗)[m] is a finite group of size ≤ m.
Thus, for every element of (F ∗)[m], the cyclic subgroup generated by that element is finite of size
≤ m. Therefore, the cyclic subgroups generated by roots of unity are finite subgroups of F ∗.

Next, let G be a finite subgroup of F ∗. For every integer m ≥ 1, G[m] is a subgroup of (F ∗)[m]. By
the lemma, (F ∗)[m] has size ≤ m. Thus, also G[m] has size ≤ m. By Corollary 7.9, G is a cyclic
group of some finite order, say m. For every generator λ of G, since λ has order m, λm equals 1.
Thus, λ is an element of (F ∗)[m], i.e., G is a cyclic group generated by a root of unity.

Corollary 8.3. For every field F that is finite as a set, the multiplicative group F ∗ is cyclic. In
particular, for every prime integer p > 1, there exists an element [a]p ∈ Gp that is a cyclic generator
of Gp of order φ(p) = p− 1.

Proof. Since F is a finite set, also the subset F ∗ = F \ {0} is a finite set. Therefore F ∗ is a cyclic
group.

9 Field Extensions and Finite Fields

The following material was not covered in the book, nor in the lecture. If the semester continued
for one more week, this is what we would have discussed next.

9.1 Algebras over a Field

For every field (F,+, 0, ·, 1), a F -algebra is a pair of a commutative ring (A,+, 0, ·, 1) and a
ring homomorphism u : F → A, i.e., u(1) equals 1, and for every f1, f2 ∈ F , u(f1 + f2) equals
u(f1)+u(f2) and u(f1 ·f2) equals u(f1) ·u(f2). If 1 equals 0 in A, then necessarily u is not injective:
every element a of A equals 0 since a = a · 1 = a · 0 = 0.
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Lemma 9.1. For every F -algebra u : (F,+, 1, ·, 0) → (A,+, 1, ·, 0), if 1 6= 0 in A, then u is
injective. Moreover, the binary operation F ×A→ A by (f, a) 7→ u(f) · a makes the Abelian group
(A,+, 0) into an F -vector space.

Proof. For every f ∈ F \ {0}, there exists f ′ ∈ F with f · f ′ = 1. Thus, u(f) · u(f ′) equals
u(f · f ′) = u(1) = 1. Since 0 · u(f ′) equals 0, and since 0 6= 1, u(f) does not equal 0. Thus, u is
injective.

Since (A,+) is an Abelian group under addition, the additional axioms for an F -vector space are
the identity axiom, scalar associativity, and distributivity, i.e., for every f1, f2 ∈ F and for every
a1, a2 ∈ A,

1∗a1 = a1, f1∗(f2∗a1) = (f1·f2)∗a1, (f1+f2)∗a1 = (f1∗a1)+(f2∗a1), f1∗(a1+a2) = (f1∗a1)+(f1∗a2).

Each of these follows quickly from the corresponding axioms for the ring (A,+, 0, ·, 1) and the fact
that u is a ring homomorphism.

For F -algebras, (A, u : F → A) and (B,w : F → B), a F -algebra homomorphism is a ring
homomorphism v : A→ B such that v ◦u equals w. The identity ring homomorphism IdA : A→ A
is an F -algebra homomorphism. Moreover, every composition of F -algebra homomorphisms is
again an F -algebra homomorphism.

A particularly important F -algebra is the algebra of polynomials in a specified variable x with
coefficients in F , i.e., F [x]. A bit more generally, for every F -algebra A, A[x] is defined to be the
set of all formal linear combinations,

p(x) = a0 + a1x+ a2x
2 + · · ·+ ad−1x

d−1 + adx
d,

where d ≥ 0 is an arbitrary integer and where a0, . . . , ad are arbitrary elements of A. Equivalently,
the polynomial p(x) is an element (a0, a1, . . . , ad) ∈ Ad. For every integer e ≥ d, (a0, . . . , ad) ∈ Ad
is identified with (a0, . . . , ad, 0, . . . , 0) ∈ Ae, and in this way A[x] is the union ∪d≥0Ad. Addition
is defined coefficient-by-coefficient, just as the usual addition in Ad. Multiplication is defined
according to the usual rule,

(a0 + · · ·+ a`x
` + · · ·+ adx

d) · (b0 + · · ·+ bmx
m + · · ·+ bex

e) = c0 + · · ·+ cnx
n + · · ·+ cd+ex

d+e,

cn =
∑

`+m=n

a`bm.

As checked in lecture, this does define a product making A[x] into a commutative ring with 1.
Moreover, there is a ring homomorphism ux : A → A[x] sending every a ∈ A to the constant
polynomial with a0 = a. In particular, ux ◦ u : F → A[x] makes A[x] into an F -algebra. For every
F -algebra homomorphism v : A → B as above, there is an associated F -algebra homomorphism
A[x]→ B[x], also denote by v,

v : A[x]→ B[x], adx
d + · · ·+ a`x

` + · · ·+ a0x
0 7→ v(ad)x

d + · · ·+ v(a`)x
` + · · ·+ v(a0)x

0.
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The composition v ◦ ux equals the composition wx ◦ v. Moreover, v(x) equals x.

For every F -algebra B, and for every F -algebra homomorphism ṽ : A[x] → B, the composition
ṽ ◦ ux : A→ B is an F -algebra homomorphism. Moreover, the element ṽ(x) is a specified element
of B.

Lemma 9.2. For every pair of F -algebras, u : (F,+, 0, ·, 1)→ (A,+, 0, ·, 1) and w : (F,+, 0, ·, 1)→
(B,+, 0, ·, 1), for every F -algebra homomorphism v : A→ B, every element b ∈ B, there is a unique
F -algebra homomorphism ṽb : F [x] → B such that ṽb ◦ ux equals v and such that ṽb(x) equals b.
The image of ṽb, denoted v(A)[b] ⊂ B, is the smallest F -subalgebra of B that contains the image
of v and contains b.

Proof. For any F -algebra homomorphism whose composition with ux equals v and sending x to
b, because every polynomial is obtained by iterated addition and multiplication from x and from
constants, the F -algebra homomorphism must be,

ṽb : A[x]→ B, adx
d + · · ·+ a`x

` + · · ·+ a0x
0 7→ v(ad)b

d + · · ·+ v(a`)b
` + · · ·+ v(a0)b

0.

It is straightforward to check that this is a ring homomorphism; the main step is checking that it is
compatible with multiplication. Thus, ṽb is the unique F -algebra homomorphism such that ṽb ◦ ux
equals v and such that ṽb(x) equals b.

Since ṽb is a homomorphism of F -algebras, the image v(A)[b] is an F -subalgebra of B. The image
contains v(A) = ṽb(ux(A)) and it contains b = ṽb(x). Every F -subalgebra of B that contains v(A)
and contains b contains every polynomial in b with coefficients in v(A), since the F -subalgebra
is stable for addition and multiplication. Thus, v(A)[b] is the smallest F -subalgebra of B that
contains v(A) and b.

The kernel of ṽb is quite important.

Lemma 9.3. For every F -algebra homomorphism ṽb : A[x] → B, the kernel of ṽb is an ideal in
A[x], i.e., an additive subgroup such that for every p(x) ∈ Ker(ṽb) and for every q(x) ∈ A[x],
the product q(x)p(x) is also in Ker(ṽb). If 1 6= 0 in B, then the kernel is a proper ideal, i.e.,
Ker(ṽb) 6= A[x]. If, moreover, B, or even just the subspace v(A)[b] ⊂ B, has finite dimension as
an F -vector space, then Ker(ṽb) contains a nonconstant polynomial.

Proof. As for every ring homomorphism, if ṽb(p(x)) equals 0, then for every q(x) ∈ A[x], also

ṽb(q(x) · p(x)) = ṽb(q(x)) · ṽb(p(x)) = ṽb(q(x)) · 0 = 0.

Thus, for every p(x) ∈ Ker(ṽb), for every q(x) ∈ A[x], also q(x) · p(x) ∈ Ker(ṽb).

If 1 6= 0 in B, then ṽb(1) = 1 6= 0. Thus, 1 is not in Ker(ṽb).

Similarly, ifB has finite dimension as an F -vector space, the infinite sequence of elements (ṽb(x
0), ṽb(x

1), . . . , ṽb(x
`), . . . )

cannot be F -linearly independent. Since 1 6= 0 in B, ṽb(x
0) = 1 6= 0, so the least linear relation
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involves terms of degree > 0. Thus, there exists a least integer d > 0, and there exist elements
c0, . . . , cd−1 ∈ F such that

−ṽb(xd) = cd−1ṽb(x
d−1) + · · ·+ c0ṽb(x

0).

Therefore the polynomial p(x) = u(xd + cd−1x
d−1 + · · · + c0) ∈ A[x] is a nonconstant element in

Ker(ṽb).

The most important special case is when the F -algebra A equals F . In this case, for every F -algebra
w : F → B, for every element b ∈ B, ṽb : F [x]→ B is a homomorphism of F -algebras.

Lemma 9.4. For every F -algebra w : F → B, for every b ∈ B, the image of ṽb : F [x]→ B is the
smallest F -subalgebra of B that contains b. The kernel of ṽb is nonzero if and only if the F -subspace
v(F )[b] ⊂ B has finite F -dimension d. In this case, gb(x) ∈ F [x] is a monic polynomial of degree
d.

Proof. Since ṽb is an F -algebra homomorphism, the image is an F -subalgebra of B. The image
contains b. Every F -subalgebra of B the contains b contains every polynomial in b, since the F -
subalgebra is preserved by addition and multiplication. Therefore the image of ṽb is the smallest
F -subalgebra of B that contains b.

As proved above, the kernel of ṽb is nonzero if and only if there exists an integer d such that ṽb(x
d)

is contained in the F -span of ṽb(x
0), . . . , ṽb(x

d−1), i.e., there exists c0, . . . , cd−1 ∈ F such that

−ṽb(xd) = c0ṽb(x
0) + · · ·+ cd−1ṽb(x

d−1).

The collection of such linear relations is in bijection with the monic polynomials

g(x) = xd + cd−1x
d−1 + · · ·+ c1x

1 + c0x
0

that are contained in the kernel of ṽb. In particular, choosing d to be minimal, the polynomial
gd(x) is a generator of Ker(ṽd). In this case, B = (ṽb(x

0), . . . , ṽb(x
d−1)) is an ordered F -basis for

v(F )[b] since every f(x) ∈ F [x] is congruent modulo gb(x) to a unique F -linear combination of
(x0, . . . , xd−1).

In the case above, if Ker(ṽb) is nonzero, then the element b is called integral over F , or sometimes
algebraic over F . In this case, the polynomial gb(x) is the minimal polynomial of b over F ,
sometimes denoted mB/F,b(x).

9.2 Field Extensions

Our main interest in F -algebras is the case when both the domain and the target are fields. For a
field (F,+, 0, ·, 1), a field extension is an F -algebra, u : (F,+, 0, ·, 1) → (E,+, 0, ·, 1), such that
(E,+, 0, ·, 1) is a field. In this case, since 1 6= 0 in F , u is injective. Psychologically, one often
identifies F with the image of this injection, and thus one thinks of E as a “bigger field”.
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The field extension is a finite field extension if E has finite dimension as an F -vector space,
otherwise the field extension is infinite. For a finite field extension, the finite dimension of E as
an F -vector space is called the degree of the field extension, and it is denoted dimF (E), deg(u),
deg(E/F ) or [E : F ].

PLEASE NOTE: Although we sometimes use the same notation [E : F ] for the degree of a field
extension as we use for the index of a subgroup, it is almost never the case that the degree of the
field extension equals the index of the additive subgroup u(F ) in E.

For field extensions u : F → E and w : F → K, a homomorphism of F -extensions is an
F -algebra homomorphism v : E → K, i.e., a ring homomorphism such that v ◦ u equals w. For
every F -extension u : F → E, the identity map IdE : E → E is a homomorphism of F -extensions.
Every composition of F -extensions is an F -extension.

Lemma 9.5. For field extensions u : (E,+, 0, ·, 1) → (F,+, 0, ·, 1) and v : (F,+, 0, ·, 1) →
(K,+, 0, ·, 1), the composition v ◦ u : (E,+, 0, ·, 1) → (K,+, 0, ·, 1) is also a field extension. If
either u is infinite or v is infinite, then v ◦ u is infinite. If both u and v are finite, then v ◦ u is
finite and dimE(K) equals dimE(F ) · dimF (K).

Proof. In fact, every composition of ring homomorphisms is a ring homomorphsm,

(v ◦ u)(1) = v(u(1)) = v(1) = 1,

(v ◦ u)(e1 + e2) = v(u(e1 + e2)) = v(u(e1) + u(e2)) = v(u(e1)) + v(u(e2)),

(v ◦ u)(e1 · e2) = v(u(e1 · e2)) = v(u(e1) · u(e2)) = v(u(e1)) · v(u(e2)).

Thus v ◦ u is a field extension.

The ring homomorphism v is a homomorphism of E-vector spaces that is injective. Thus, if F
has infinite dimension as an E-vector space, then so does K. Similarly, every generating set of
K as an E-vector space is also a generating set of K as an F -vector space. Thus, if K has finite
E-dimension, then it has finite F -dimension. Contrapositively, if K has infinite F -dimension, then
K has infinite E-dimension. Thus, if either u or v is an infinite extension, then so is v ◦ u.

Finally, assume that both v and u are finite field extensions. Then, as an F -vector space, K is
isomorphic to F e, where e = dimF (K). Similarly, as an E-vector space, F is isomorphic to Ed,
where d = dimE(F ). Thus, altogether, as an E-vector space, K is isomorphic to (Ed)f = Edf .
Therefore the degree of v ◦ u equals the product of the degree of v and the degree of u.

For every homomorphism of F -extensions, v : E → K, and for every b ∈ K, there is a unique
F -algebra homomorphism ṽb : E[x] → K such that ṽb ◦ ux equals v and such that ṽb(x) equals b.
The element b is transcendental over E if Ker(ṽb) is {0}, otherwise it is algebraic over E. The
F -extension v is algebraic if every b ∈ K is algebraic over E, otherwise it is transcendental (but
not necessarily “purely transcendental”).
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Lemma 9.6. The element b is algebraic over E if and only if the E-subalgebra v(E)[b] ⊂ K has
finite E-dimension d. In that case, v(E)[b] is a subfield of K, and the monic generator gb(x) of
Ker(ṽb) is irreducible of degree d.

Proof. As proved in lecture, in the Euclidean domain E[x], every ideal is either {0} or it is of
the form g(x)E[x] for some unique monic polynomial g(x); the monic element of least degree in
the ideal. If the kernel is {0}, then ṽb is an injective E-linear transformation from an infinite-
dimensional E-vector space E[x] to K. Thus, in that case, Image(ṽb) has infinite E-dimension.

Assume that E[b] := Image(ṽb) has finite E-dimension equal to d. As proved above, Ker(ṽb) =
gb(x)E[x] for a unique monic polynomial gb(x) of degree d. For every c ∈ E[b], since E[b] is an
E-subalgebra of K, multiplication by c maps E[b] to itself,

Lc : E[b]→ E[b], Lc(k) = c · k.

Since K is a field, for every nonzero c, k ∈ K, also c · k is nonzero. Thus Lc is an injective E-linear
transformation from the d-dimensional E-vector space E[b] to itself. By the Rank-Nullity Theorem,
also Lc is surjective. Thus, there exists k ∈ E[b] such that c · k equals 1, i.e., E[b] is a field.

Finally, if gb(x) equals h(x)k(x), then ṽb(h(x)) · ṽb(k(x)) = ṽb(gb(x)) = 0. As proved above, in every
field K, every product of two nonzero elements is nonzero. Thus, either h(x) is in Ker(ṽb) or k(x)
is in Ker(ṽb). Thus, either gb divides h(x) or gb divides k(x). Therefore gb(x) is irreducible.

For applications in number theory (MAT 311), it is important to identify which elements in a given
extension are algebraic. The following result clarifies this.

Proposition 9.7. For field extensions u : F → E and v : E → K, every element b ∈ K that is
F -algebraic is also E-algebraic. If u is finite, then every element b ∈ K that is E-algebraic is also
F -algebraic. For every pair b, c ∈ K of F -algebraic elements, both b + c ∈ K and b · c ∈ K are
F -algebraic elements. For a nonzero F -algebraic element b ∈ K, also 1/b ∈ K is F -algebraic. The
subset AlgK/F ⊂ K of all F -algebraic elements of K is an F -subextension of K.

Proof. If b is F -algebraic, then for the minimal polynomial mK/F,b(x) ∈ F [x], also u(mK/F,b(x)) ∈
E[x] is in the kernel of ṽb : E[x]→ K. Thus, b is E-algebraic. Conversely, if b is E-algebraic, then
v(E)[b] ⊂ K is a finite E-subextension of K. If also u : F → E is finite, then the composition
F → E → v(E)[b] is a finite extension. Thus, since v(u(E))[b] is an E-subspace of v(E)[b], also
v(u(E))[b] has finite E-dimension, so that b is E-algebraic.

For every pair b, c ∈ K of F -algebraic elements, the F -subextension L = F [b] ⊂ K is a finite
F -extension. Since c is finite over F , also c is finite over L. Thus, the L-subextension L[c] ⊂ K is
also finite. As the composition of finite extensions, F → L → L[c] is a finite extension. Thus, for
every k ∈ L[c], since F [k] is an F -subalgebra of L[c], and since L[c] has finite F -dimension, also
F [k] has finite F -dimension. Thus, k is algebraic over F . Applying this to k = b + c ∈ L[c], resp.
k = b · c ∈ L[c], resp. k = 1/b ∈ L[c], each of these is F -algebraic. Thus, the subset AlgK/F ⊂ K is
a subfield of K that contains the image of F .
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9.3 Characteristic of a Field

For every field (F,+, 0, ·, 1), consider the multiplicative identity 1 as an element of the additive
group (F,+, 0); in particular, consider the “additive order” of 1 as an element of this group. The
characteristic of F , denoted char(F ), equals 0 if 1 has infinite additive order, and otherwise the
characteristic of F equals the additive order of 1. When the characteristic of F is not 0, F is said
to have positive characteristic.

Lemma 9.8. If the characteristic of the field F is zero, then F is an infinite set. If the characteristic
of the field F is positive, then it equals a prime integer.

Proof. If a group contains an element of infinite order, then the group is infinite. Thus, if the
additive order of 1 is infinite, then the field is an infinite set.

Since F is a field, 1 is not equal to 0. Thus, the characteristic does not equal 1. Assume that the
characteristic is a positive integer > 1. In that case, for every integer r with 0 < r < char(F ), r · 1
is nonzero. For every factorization of char(F ) as a product of positive integers, say char(F ) = m ·n,
using multiplicative associativity, distributitivity, and multiplicative identity,

(m · 1) · (n · 1) = char(F ) · (1 · 1) = char(F ) · 1 = 0.

In a field, the product of nonzero elements is nonzero. Thus, either m · 1 equals 0 or n · 1 equals 0.
Thus, char(F ) divides m or n. Therefore the characteristic is a prime integer.

For this reason, fields of positive characteristic are also sometimes called fields of prime charac-
teristic. Assume that F has positive characteristic equal to p. Associated to the element 1 in
(F,+, 0) of order p, there is a unique group homomorphism,

E1 : (Z/pZ,+)→ (F,+),

such that E1([1]p) equals 1.

Lemma 9.9. The group homomorphism E1 is a ring homomorphism, i.e., E1([1]p) equals 1, and
for every [n]p, [a]p ∈ Z/pZ, also E1([n]p ·[a]p) equals E1([n]p)·E1([a]p). Thus, E1 is a field extension.

Proof. By definition, E1([1]p) equals 1. Group homomorphisms preserve exponentiation of group
elements. Since these groups are written additively, this means that for every [a]p ∈ Z/pZ, for
every integer n ∈ Z, E1(n · [a]p) equals n · E1([a]p). In particular,

E1([n]p) = E1(n · [1]p) = n · E1([1]p) = n · 1.

But then also,

E1([n]p · [a]p) = E1(n · [a]p) = n · E1([a]p) = E1([n]p) · E1([a]p).

Thus, E1 is a ring homomorpism.
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By definition of p as the characteristic of F , E1 is injective. The image of E1 is a subfield of F that
is called the prime subfield, but it is always identified with Z/pZ. When thinking of Z/pZ as a
field, it is more common to refer to this as Fp for “field with p elements”, or sometimes GF (p) for
“Galois field with p elements”.

For every field F of characteristic p, the Frobenius homomorphism is the set map

FrobF,p : F → F, f 7→ fp.

Lemma 9.10. For every field F of characteristic p, the Frobenius homomorphism is a homomor-
phism of Fp-extensions.

Proof. By construction FrobF,p(1) equals 1p = 1. Also, for every f1, f2 ∈ F , FrobF,p(f1 · f2) equals
(f1 · f2)p = fp1 · f

p
2 , and this in turn equals FrobF,p(f1) · FrobF,p(f2). The key issue is compatibility

with addition. By the Binomial Theorem, for every f1, f2 ∈ F ,

FrobF,p(f1 + f2) = (f1 + f2)
p = fp1 +

(
p−1∑
`=1

(
p

`

)
fp−`1 f `2

)
+ fp2 .

For every integer ` = 1, . . . , p− 1, (p− `)! · `! ·
(
p
`

)
equals p!. Since p divides p!, yet p divides neither

`! nor (p− `)!, since p is a prime, p divides
(
p
`

)
. Thus, since F has characteristic p,

(
p
`

)
fp−`1 f `2 equals

0. Therefore,
FrobF,p(f1 + f2) = fp1 + fp2 = FrobF,p(f1) + FrobF,p(f2).

Thus, FrobF,p is a ring homomorphism.

For every integer n ≥ 1, the claim is that np ≡ n (mod p). This is proved by induction on n. For
n = 1, since 1p equals 1, the result holds. Thus, by way of induction, assume the result is proved
for n and consider the case n+ 1. By the previous paragraph,

[n+ 1]pp = ([n]p + [1]p)
p = [n]pp + [1]pp = [n]p + [1]p = [n+ 1]p.

Therefore, also (n+ 1)p ≡ n+ 1 (mod p). Thus, by induction on n, for every n ≥ 1, FrobF,p([n]p) =
[n]p. Therefore FrobF,p : F → F is a homomorphism of Fp-extensions.

Since composition of homomorphisms of Fp-extensions is again a homomorphism of Fp-extensions,
for every integer e ≥ 1, for q = pe, the e-fold composition,

FrobF,pe = FrobF,p ◦ FrobF,pe−1 = · · · = FrobF,p ◦ . . .FrobF,p

is also a homomorphism of Fp-extensions,

FrobF,q : F → F, f 7→ f q.
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9.4 Finite Fields

A special case of a finite field extension is when the target field is finite as a set.

Lemma 9.11. For every field extension u : (E,+, 0, ·, 1) → (F,+, 0, ·, 1), if F is finite, then so
is E. In that case, the degree d of u is also finite. Finally, #F equals (#E)d. In particular,
for p = char(F ), for e equal to the degree of E1 : Fp → F , #F equals q = pe. In that case,
FrobF,q : F → F equals the identity map, and each of q distinct elements of F is a root of the
polynomial gq(x) = xq − x ∈ Fp[x].

Proof. Since u is injective, E is isomorphic to the subfield u(E) of F . Since F is finite, the subset
u(E) is also finite. Therefore E is finite.

Always, F is generated as an E-vector space by the subset of F equal to all of F . Since F is finite,
this is a finite generating set. Since F has a finite generating set, F has finite dimension d as
an E-vector space. As an E-vector space, F is isomorphic to Ed. Counting elements, #F equals
(#E)d.

Finally, applying this to the prime field extension E1 : Fp → F , #F equals pe for e = deg(E1).

By Corollary 8.3, F ∗ is a cyclic group of order q − 1. Thus, by Lagrange’s Theorem, for every
α ∈ F ∗, αq−1 equals 1. Thus, αq = αq−1 · α equals α. Similarly, for α = 0, αq = 0q equals
0. Therefore, for every α ∈ F , αq = α. So FrobF,q is IdF , and every element of F is a root of
gq(x) = xq − x ∈ Fp[x].

9.5 Splitting Fields

The main source of finite field extensions arises from irreducible polynomials. Let F be a field.
For every ideal g(t)F [t] in F [t], as discussed in lecture, the F -algebra F [t]/g(t)F [t] is an F -vector
space. If g(t) equals 0, this is the infinite-dimensional F -vector space F [t] with infinite basis
{t0, t1, . . . , tn, . . . }. If g(t) is nonzero of degree d, then as discussed in lecture, F [t]/g(t)F [t] is
a finite-dimensional F -vector space with ordered basis B = ([t0]g(t), [t

1]g(t), . . . , [t
d−1]g(t)). Thus,

the dimension equals d, the degree of g(t). Finally, as proved in lecture, if g(t) is a nonzero,
noninvertible element of F [t] that is irreducible, then Kg := F [t]/g(t)F [t] is a field. Then the
F -algebra homomorphism of constant polynomials,

ug : F → Kg, ug(c) = [c]g,

is a finite field extension. Moreover, there is a distinguished element γg = [t]g ∈ Kg that is a root
of ug(g(x)) ∈ Kg[x]; the proof in lecture used the Cayley-Hamilton Theorem, but there are more
direct proofs.

Lemma 9.12. For every field extension w : (F,+, 0, ·, 1)→ (L,+, 0, ·, 1), for every element α ∈ L
that is a root of w(g(x)) ∈ L[x], there exists a unique homomorphism of F -field extensions, ŵα :
(Kg,+, 0, ·, 1) → (L,+, 0, ·, 1) such that ŵα(γg) equals α. Conversely, for every homomorphism ŵ
of F -field extensions, α := ŵ(γg) is an element such that g(α) equals 0, and thus ŵ equals ŵα.
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Proof. For every F -algebra, w : F → B, composition with the projection homomorphism F [t] →
F [t]/g(t)F [t] defines a one-to-one correspondence between F -algebra homomorphisms ŵ : F [t]/g(t)F [t]→
B and F -algebra homomorphisms w̃ : F [t]→ B such that w̃(g(t)) equals 0. By the universal prop-
erty of F [t], for every element b ∈ B, there is a unique F -algebra homomorphism w̃b : F [t] → B
with w̃b(t) = b. By construction w̃b(g(t)) equals 0 if and only if b is a root of w(g(t)) ∈ B[t]. Thus,
there is a one-to-one correspondence between F -algebra homomorphisms ŵ : F [t]/g(t)F [t] → B
and roots b ∈ B of w(g(t)) ∈ B[t].

For every field extension v : F → M , if v(g(x)) ∈ M [x] factors as a product of linear factors, then
the field extension M/F splits the polynomial g(x). Because there exists a distinguished root γg
of g(x) in Kg, the polynomial vg(g(x)) ∈ Kg[x] factors as (x − γg)h(x) for some h(x) of smaller
degree. This leads to an induction proof of the following.

Lemma 9.13. For every field (F,+, 0, ·, 1), for every nonzero, noninvertible polynomial g(x) ∈
F [x], there exists a finite field extension w : (F,+, 0, ·, 1) → (M,+, 0, ·, 1) that splits g(x). For
every factored polynomial g(x) = h(x)k(x) in F [x], w splits g(x) if and only if w splits both h(x)
and k(x).

Proof. First assume that g(x) factors as h(x)k(x) in F [x]. Let w : F → M is a field extension.
For the irreducible factorizations of w(h(x)) ∈ M [x] and w(k(x)) ∈ M [x], the concatenation of
these factorizations is an irreducible factorization of w(g(x)) in M [x]. By the Unique Factorization
Theorem, it follows that w(g(x)) factors as a product of linear factors if and only if both w(h(x))
and w(k(x)) factor as products of linear factors. Thus, w splits g(x) if and only if w splits both
h(x) and k(x).

By Unique Factorization of Polynomials, g(x) factors as a product of irreducible polynomials. The
result is proved by induction on the greatest degree of an irreducible factor, and by induction on
the number of irreducible factors of that degree. When the greatest degree of an irreducible factor
equals 1, then g(x) already factors as a product of linear polynomials. Thus, by way of induction,
assume that the greatest degree d = d(F, g) of an irreducible factor of g(x) in F [x] is > 1, assume
that the number m = m(F, g, d) of irreducible factors of degree d is ≥ 0, and assume that the result
has already been proved for all pairs (E, h) of a field E and a polynomial h if either d(E, h) < d(F, g)
or if d(E, h) = d(F, g) yet m(E, h, d) < m(F, g, d).

Denote an irreducible factorization of g(x) in F [x] by

g(x) = g1(x) · · · gm(x) · · · gr(x),

and assume that g1(x), . . . , gm(x) are the irreducible factors of degree d. For the F -algebraK = Kg1 ,
and for the distinguished root β of g1 in Kg1 , the F -algebra homomorphism is a finite field extension,
u : F → K, and β ∈ K is an element such that g1(β) equals 0.

In K[x], a factorization of u(g(x)) is

u(g(x)) = u(g1(x)) · · ·u(gm(x)) · u(gr(x)),
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and deg(u(gi(x))) = deg(gi(x)). Thus, factoring each u(gi(x)) into irreducibles, it follows that the
degree of the maximal irreducible dividing u(gi(x)) is at most deg(gi(x)), and these are equal if
and only if u(gi(x)) is irreducible in K[x]. In particular, d(K, u(g)) ≤ d and m(K, u(g), d) ≤ m,
with equality if and only if every u(g1), . . . , u(gm) is irreducible in K[x]. However, by construction,
u(g1(x)) does factor in K[x] as a product of (x − β) and a polynomial of degree d − 1. Thus, the
induction hypothesis holds for (K, u(g)). Therefore, by the induction assumption, there exists a
finite field extension v : K →M such that v(g(x)) factors in M [x] into a product of linear factors.
Therefore, defining w to be v ◦ u, then w : F → M is a finite field extension such that w(g(x))
factors into a product of linear factors.

A splitting field of g(x) is a finite field extension v : F → L that splits g(x), and such that no
proper F -subextension of L/F splits g(x).

Proposition 9.14. For every finite field extension v : F →M that splits g, there exists a subfield
L ⊂ M that contains v(F ) such that the subextension v : F → L is a splitting field of g(x). In
particular, for every field F , for every nonzero, noninvertible g(x) in F [x], there exists a splitting
field of g(x).

Proof. The dimension of M as an F -vector space is a finite integer d. Thus, for every F -subspace
of M , the dimension of the subspace is also finite, and it is less than or equal to d with equality
if and only if the subspace equals all of M . Thus, among all subfields L of M that contain v(F )
and such that L splits g(x) (and L = M is one such subfield), there exists one that has minimal
dimension d(F, g, v) as an F -vector space. For such a minimal subfield L, for every proper subfield
K of L that contains v(F ), since the dimension of K as an F -vector space is strictly smaller than
d(F, g, v), then K does not split g(x). Thus, v : F → L is a splitting field of g(x).

By the previous lemma, there exists a finite field extension F → M that splits g(x). Combined
with the previous paragraph, there exists a splitting field of g(x).

If every irreducible factor of g(x) is linear, then the identity IdF : F → F is already a splitting field
of g(x), and thus every splitting field v : F → L of g(x) is also an isomorphism; since v(F ) is an
F -subextension of L that splits g(x), L must equals v(F ).

Theorem 9.15. For every field extension w : F → K that splits g(x), for every irreducible factor
h(x) of g(x) in F [x], for every root α of h(x) in L, for every root β of h(x) in K, there exists a
homomorphism of F -extensions τ : L→ K such that β equals τ(α).

Proof. First consider the case that h(x) is linear, say c(x− γ) for some unique c ∈ F ∗ and γ ∈ F .
Then the unique root of w(h(x)) in K is β = w(γ). Similarly, α equals u(γ). Thus, for any
homomorphism τ : L → K of F -extensions, τ(α) = τ(u(γ)) = v(γ) = β. Thus, when h(x) has
degree 1, every homomorphism τ of F -extensions satisfies τ(α) = β.

The result is proved by induction on the degree of L/F . When the degree equals 1, then u : F → L
is an isomorphism, and so g(x) already splits as a product of linear polynomials in F . Thus, by
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the previous paragraph, the F -extension τ = w ◦ u−1 : L→ K satisfies τ(α) = β. This proves the
result when the degree of L/F equals 1.

Thus, by way of induction, assume that the degree d of L/F is greater than 1, and assume the

result is true for all (F̃ , g̃(x), ũ : F̃ → L̃, h̃, α̃, β̃) with deg(L̃/F̃ ) smaller than d. Since d > 1, g(x)
does not split as a product of linear polynomials in F [x], i.e., there exists an irreducible factor of

degree > 1. If h(x) has degree > 1, define ĥ(x) to be h(x), define α̃ to equal α, and define β̃ to

equal β. If h(x) has degree 1, define ĥ(x) to be one of the irreducible factors of g(x) of degree > 1,

define α̃ to equal a root of ĥ(x) in L, and define β̃ to equal a root of ĥ(x) in K.

Associated to the root α̃ of the irreducible polynomial ĥ(x) ∈ F [x], for the F -extension Kĥ =

F [t]/ĥ(t)F [t] and its distinguished root γ̂ = [t]ĥ(t) of ĥ(x), there exists a unique homomorphism of

F -extensions, vα̃ : Kĥ → L sending γ̂ to α̃. Similarly, associated to the root β̃ of ĥ(x), there exists

a unique homomorphism of F -extensions, vβ̃ : Kĥ → K sending γ̂ to β̃. Since deg(L/F ) equals

deg(L/Kĥ)deg(Kĥ/F ), and since deg(Kĥ/F ) = deg(ĥ(x)) > 1, deg(L/Kĥ) is strictly less than d.
Since L is a splitting field of g(x) over F , also the extension vα̂ splits the polynomial g(x) ∈ Kĥ[x].
Since vα̂ is a homomorphism of F -extensions, the image of F in L is contained in the image of Kĥ

in L. Thus, every subfield of L that contains the image of Kĥ also contains the image of F . Since
u : F → L is a splitting field for g(x) ∈ F [x], also vα̃ : Kĥ → L is a splitting field for g(x) ∈ Kĥ[x].

Define F̃ to be Kĥ. Define L̃ to equal L. Define K̃ to equal K. Define ṽ : Kĥ → L to be vα̃. Define

w̃ : Kĥ → K to be vβ̃. Define g̃(x) to be the image of g(x) in Kk̂[x]. Define h̃(x) to be x− γ̂. By

construction, α̃ equals ṽ(γ̂), and β̃ equals w̃(γ̂). Thus, α̃ and β̃ are roots of h̃(x) in the F̃ -extension

L̃, resp. K̃. Thus, (F̃ , g̃(x), ũ : F̃ → L̃, h̃, α̃, β̃) is a datum as in the statement of the proposition,

and deg(L̃/F̃ ) is strictly less than d = deg(L/F ). Thus, by the induction assumption, there exists

a homomorphism of F̃ -extensions, τ̃ : L→ K, such that β̃ equals τ̃(α̃).

Define τ to equals τ̃ . Since τ is a F̃ -extension, τ ◦ vα̃ equals vβ̃. Therefore,

τ ◦ v = τ ◦ (vα̃ ◦ ug) = (τ ◦ vα̃) ◦ ug = vβ̃ ◦ ug = w.

Thus, τ is a homomorphism of F -extensions. If h(x) has degree 1, then by the first paragraph,

τ maps α to β. Finally, if h(x) has degree > 1, then ĥ(x) equals h(x), α̃ equals α, and β̃ equals

β. Since τ̃ maps α̃ to β̃, τ maps α to β. Thus, the result is proved in all cases by induction on
deg(L/F ).

Now let g(x) ∈ F [x] be a nonzero, noninvertible polynomial, let v : F → L be a splitting field of
g(x), and let v′ : F → L′ be a splitting field of g(x) (possibly v equals v′).

Corollary 9.16. For every irreducible factor h(x) of g(x) in F [x], for every root α of h(x) in L,
for every root α′ of h(x) in L′, there exists an isomorphism of F -extensions, τ : L→ L′ such that
τ(α) equals α′.
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Proof. By the theorem, with v : F → L playing the role of the splitting field, there exists a
homomorphism of F -extensions, τ : L → L′ such that τ(α) equals α′. Since also v′ : F → L′ is
a splitting field of g(x), then applying the theorem once more, there exists a homomorphism of
F -extensions τ ′ : L′ → L such that τ ′(α′) equals α.

Consider the composite field extension σ = τ ′ ◦ τ from L to L. Since σ is a homomorphism of
F -field extensions, it is an F -linear transformation. Since it is a ring homomorphism of fields, it is
injective, so that the nullity of σ equals 0. Finally, since L is a finite-dimensional F -vector space,
then by the Rank-Nullity Theorem, σ is also surjective. Thus, σ : L → L is an isomorphism of
F -extensions. Therefore σ−1 ◦ τ ′ : L′ → L is a left inverse of τ .

Permuting the roles of L and L′, there is also a right inverse of τ . Thus, τ is invertible, i.e., τ is an
isomorphism of F -extensions.

9.6 Finite Fields are Splitting Fields

Because of the corollary, any two splitting fields of g(x) ∈ F [x] are isomorphic as F -extensions.
In particular, the degree of any of these splitting fields are equal, and this integer is called the
splitting degree of g(x). This leads to a characterization of finite fields.

Proposition 9.17. For every finite field L with q = pe elements, E1 : Fp → L is a splitting field
of gq(x) = xq − x ∈ Fp[x], and every element of L is a root of gq(x). In particular, any two finite
fields with q = pe elements are isomorphic.

Proof. We have already seen that every finite field L of characteristic p has q = pe elements for some
integer e ≥ 1, and every element α of L is a root of gq(x) = xq−x. Thus, for u(gq(x)) = xq−x ∈ L[x],
for every α ∈ L, x − α is an irreducible factor for xq − x in L[x]. This is already q distinct linear
factors of the degree q, monic polynomial xq − x. Therefore, by the Unique Factorization of
Polynomials, gq(x) factors in L[x] as

gq(x) =
∏
α∈L

(x− α).

So L is a splitting field of gq(x).

Now, by the previous theorem, any two splitting fields of gq(x) are isomorphic. Thus, any two finite
fields with q = pe elements are isomorphic as Fp-extensions.

Let F be a finite field with q = pe elements. Let u : F → L be a field extension. Recall that the
function,

FrobL,q : L→ L, α 7→ αq,

is a homomorphism of Fq-extensions.

Lemma 9.18. The function FrobL,q is a homomorphism of F -extensions. In particular, it is an
F -linear transformation. The kernel of the F -linear transformation FrobL,q − IdL is precisely the
image of u.
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Proof. By Lemma 9.11, FrobL,q restricts as the identity on u(F ). Thus the homomorphism FrobL,q
of Fp-field extensions is a homomorphism of F -field extensions.

For every α ∈ L, if FrobL,q(α) equals α, then α is a root of gq(x) = xq − x. Since F is already the
splitting field of gq(x), every root of gq(x) in L is contained in the image of u. Thus, the kernel of
FrobL,q − IdL is precisely the image of u.

As a particular consequence, an element of L[x] is in the image of F [x] if and only if it is preserved
by the induced ring homomorphism,

FrobL,q : L[x]→ L[x], adx
d + · · ·+ a1x

1 + a0x
0 7→ aqdx

d + · · ·+ aq1x
1 + aq0x

0.

This leads to a characterization of the degree of an F -algebraic element α ∈ L∗. Since F [α] ⊂ L is a
finite F -extension of some degree d, by Corollary 8.3, (F [α])∗ is a cyclic group of order qd−1. Thus,
the multiplicative order m of α ∈ L∗ is a finite integer dividing qd−1. In particular, qd ≡ 1 (mod m).
Thus [q]m is an element of Gm that has some finite multiplicative order. By Lagrange’s Theorem,
this multiplicative order divides d.

Proposition 9.19. For every F -algebraic element α ∈ L∗ of multiplicative order m, the degree d
of α as an F -algebraic element is the order of [q]m as an element of Gm. In particular, if L is a
finite extension of F of degree e, then the degree d divides e.

Proof. As remarked above, the multiplicative order r of [q]m ∈ Gm divides the degree d of α as an
F -algebraic element. Conversely, form the sequence of r elements

(α0, α1, . . . , αr−1) = (αq
0

, αq
1

, . . . , αq
r−1

),

of L∗. Observe that for every i = 0, . . . , r − 2, FrobL,q(αi) equals αi+1. Finally,

FrobL,q(αr−1) = (αq
r−1

)q = αq
r

= αq
r−1 · α = 1 · α = α0.

Thus, for the degree r, monic polynomial,

gα(x) = (x− α0) · (x− α1) · · · (x− αr−2) · (x− αr−1)

the image under FrobL,q is,

FrobL,q(gα(x)) = (x− α1) · (x− α2) · · · (x− αr−1) · (x− α0) = gα(x).

Since this polynomial is invariant under FrobL,q, it is the image under u of a unique, degree r,
monic polynomial. For clarity, this polynomial is also denoted as gα(x) ∈ F [x],

u(gα(x)) = (x− α0) · · · (x− αr−1).

Since α = α0 is a root of u(gα(x)), the minimal polynomial mL/F,α(x) of α(x) divides gα(x). Thus
the degree d of mL/F,α(x) is at most r. Since r divides d, d equals r.

If L/F has degree e, then L∗ is a cyclic group of order qe − 1. Thus, by Lagrange’s Theorem, m
divides qe − 1, i.e., [q]em = [1]m. So the multiplicative order d of [q]m ∈ Gm divides e.
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Proposition 9.17 characterizes all finite fields with pe elements as the splitting field of gpe(x),
assuming that there exists a finite field with pe elements. It is natural to try to construct such a
field as the splitting field of gpe(x). In order to prove that this works, it is useful to recall some
facts about the integer-coefficient polynomials

Se(x) = x0 + x1 + x2 + · · ·+ xm + · · ·+ xe−1 + xe =
e−1∑
m=0

xm =
xe − 1

x− 1
.

This is relevant since gqr(x) equals

xq
r − x = x(xq

r−1 − 1) = x(x− 1)Sqr−1(x).

Lemma 9.20. For every integer ` ≥ 1, S`(0) equals 1, and S`(1) equals d. For every pair of integers
`,m ≥ 1, if ` divides m then Sm(x) = Sm/`(x

`)S`(x). More generally, for every pair of integers
m,n ≥ 1 with gcd(m,n) = `, there exist integer-coefficient polynomials Bm,n(x), Bn,m(x) ∈ Z[x]
such that

Bn,m(x) · Sn(x) +Bm,n(x) · Sn(x) = S`(x).

In particular, for every integer a ≥ 0, the greatest common divisor of the integers Sm(a) and Sn(a)
equals S`(a).

This is proved in the solutions to the Final Exam Review Sheet. In particular, consider the case
that ` = q − 1 and m = qr − 1. Then m/` equals Sr(q) = 1 + q + · · ·+ qr−1.

Lemma 9.21. For a finite field F with q = pd elements that is the splitting field of gq(x) = xq−x,
for every α ∈ F , S(qe−1)/(q−1)(α

q−1) equals 1. Thus, α is not a root of S(qe−1)/(q−1)(x
q−1). So F is

not a splitting field of gqe(x) = x(x− 1)Sqe−1(x).

Proof. For α = 0, αq−1 equals 0. For every integer m ≥ 0, Sm(0) equals 1. Next, for α ∈ F ∗, αq−1
equals 1. Also (qe − 1)/(q − 1) equals Sr(q). Thus, S(qe−1)/(q−1)(α

q−1) equals SSr(q)(1) = Sr(q) · 1.
Since Sr(q) = 1 + q + · · · + qr−1, Sr(q) is congruent to 1 modulo p. Thus, Sr(q) · 1 equals 1 in Fp,
hence also in F . Thus, for every α ∈ F , S(qe−1)/(q−1)(α

q−1) equals 1. Therefore α is not a root of
S(qe−1)/(q−1)(x

q−1). Since Sqe−1(x) = Sq−1(x) · S(qe−1)/(q−1)(x
q−1), and since S(qe−1)/(q−1)(x

q−1) has
no roots in F , Sqe−1(x) does not factor as a product of linear factors in F [x]. Since gqe(x) equals
x(x− 1)Sqe−1(x), also gqe(x) does not split in F [x].

Now we can prove that for every power of p, there does exist a finite field whose size equals that
power of p.

Theorem 9.22. For every finite field F with q = pm elements, for every integer e ≥ 1, every
splitting field v : F → L of gqe(x) = xq

e − x ∈ F [x] is a finite field with qe = pem elements.
Conversely, for every finite field L with qe elements, there exists a ring homomorphism v : F → L
that is a splitting field of gqe(x).
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Proof. The last statement above is simply a reformulation of the previous proposition. The main
issue is proving that every splitting field of gqe(x) ∈ F [x] has degree e as an extension of F .

This is proved by induction on e ≥ 1. For e = 1, then, by the proposition, the identity function
IdF : F → F is already a splitting field of gq(x). Moreover, for every field L with q elements, also
L is a splitting field of gq(x). Thus there exists an isomorphism v : F → L.

Thus, by way of induction on e, assume that e > 1, and assume that the result is proved for all
smaller values of e. Since e > 1, e is not invertible. Thus, there exists a prime ` > 1 such that
e = d`. Since 1 ≤ d < e, a splitting field of gqd(x) over F is a finite field with qd elements. Up to
replacing F by this splitting field, replacing q by qd, and replacing e by `, assume that e is already
a prime.

By Proposition 9.14, there exists a splitting field v : F → L of gqe(x). Denote the degree deg(L/F )
by d. By Lemma 9.21, d is greater than 1, i.e., F is not already a splitting of gqe(x). By Corollary
8.3, L∗ is a cyclic group of order qd−1. The subset of L∗ of roots of xq

e−x is precisely the subgroup
H of elements whose order m divides qe − 1. In particular, this is a cyclic group. Let α ∈ L∗ be a
generator of this cyclic group, and let m denote the multiplicative order of α in L∗. Since α is a
generator for H, every nonzero root of xq

e − x is a power of α, and hence the root is an element
of the F -subextension F [α] ⊂ L. Also 0 is in F [α]. Thus, every root of xq

e − x in L is already
contained in F [α], i.e., xq

e − x splits in F [α]. Since L is a splitting field of xq
e − x, L equals F [α].

Thus, the degree d equals the degree of α over F . By Proposition 9.19, d equals the multiplicative
order of [q]m in Gm. Since αq

e
equals α, also αq

e−1 equals 1. Thus, [q]em = [1]m, so d divides e.
Since d > 1, and since e is prime, d equals e. Thus, the splitting field L of gqe(x) ∈ F [x] is an
extension of F of degree e, i.e., #L equals qe. Thus, the theorem is proved by induction on e.

As a consequence of the proof, please note that for every prime power q = pr, for a finite field
F of size q = pr, for every integer e ≥ 1, for a finite extension F → L of degree e, the smallest
power of the F -algebra homomorphism FrobL,q : L→ L that equals the identity function is e. This
is essentially equivalent to the “Fundamental Theorem of Galois Theory” for the field extension
F → L.
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