
SOME NOTES ON THE SPECTRAL THEOREM

1. Introduction

These are notes for an introductory graduate algebra class explaining a spectral
theorem: a self adjoint operator on a real inner product space or a normal operator
on a complex Hermitian space is always diagonalizable and the eigenspaces are
orthogonal.

2. Inner Product Spaces and Hermitian Spaces

The theory has one formulation in terms of real inner product spaces and one in
terms of complex Hermitian spaces. In fact the real case is naturally encompassed
by the complex case. But since the real case is so often used, we will give both
formulations starting with the real case.

Let V be a real vector space. A real pairing 〈·, ·〉 on V ,

〈·, ·〉 : V × V → R, (~v, ~w) 7→ 〈~v, ~w〉
is symmetric if for every ~v, ~w in V ,

〈~w,~v〉 = 〈~v, ~w〉.
A pairing which is symmetric turns out to be bilinear if and only if for every ~v1, ~v2, ~w
in V and for every scalar c in R,

〈c~v1 + ~v2, ~w〉 = c · 〈~v1, ~w〉+ 〈~v2, ~w〉.
For every ~v in V , define ‖~v‖2 by

‖~v‖2 := 〈~v,~v〉.
A symmetric, bilinear pairing is positive definite if for every nonzero ~v in V , ‖~v‖2
is a positive real number. In this case define ‖~v‖ by

‖~v‖ :=
√
‖~v‖2 =

√
〈~v,~v〉.

Definition 2.1. A real inner product space is a pair (V, 〈·, ·〉) of a real vector space
V and a symmetric, bilinear, positive definite pairing 〈·, ·〉 on V .

Next let V be a C-vector space. A complex pairing 〈·, ·〉 on V ,

〈·, ·〉 : V × V → C, (~v, ~w) 7→ 〈~v, ~w〉
is conjugate symmetric if for every ~v, ~w in V ,

〈~w,~v〉 = 〈~v, ~w〉.
A pairing which is conjugate symmetric turns out to be sesquilinear (or “half-
linear”) if and only if for every ~v1, ~v2, ~w in V and for every scalar c in R,

〈c~v1 + ~v2, ~w〉 = c · 〈~v1, ~w〉+ 〈~v2, ~w〉.
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As above define ‖~v‖2 by
‖~v‖2 := 〈~v,~v〉.

A conjugate symmetric, sesquilinear pairing is positive definite if for every nonzero
~v in V , ‖~v‖2 is a positive real number. In this case define ‖~v‖ by

‖~v‖ :=
√
‖~v‖2 =

√
〈~v,~v〉.

Definition 2.2. A complex Hermitian space is a pair (V, 〈·, ·〉) of a complex vector
space V and a conjugate symmetric, sesquilinear, positive definite pairing 〈·, ·〉 on
V .

In both the case of a real inner product space and a complex Hermitian space, the
(conjugate) symmetry of the pairing and the additivity of the first argument imply
the additivity of the second argument,

〈~v, ~w1 + ~w2〉 = 〈~v, ~w1〉+ 〈~v, ~w2〉.

And in the case of a real inner product space, symmetry and scaling in the first
argument imply scaling in the second argument,

〈~v, c · ~w〉 = c · 〈~v, ~w〉.

Thus a real symmetric pairing which satisfies the condition above is R-bilinear
in the usual sense. However, in the case of a complex Hermitian space, complex
conjugation intervenes,

〈~v, c · ~w〉 = c〈~v, ~w〉.
A pairing which is linear in the first argument but “conjugate linear” in the second
is sesquilinear. For a conjugate symmetric pairing, linearity in the first argument
implies sesquilinearity.

Proposition 2.3 (Cauchy-Bunyakovsky-Schwarz inequality). For every pair of el-
ements ~v, ~w of V ,

|〈~v, ~w〉|2 ≤ ‖~v‖2 · ‖~w‖2

and equality holds if and only if ~v, ~w are linearly dependent.

Proof. If ~v and ~w are linearly dependent, i.e., if one is a scalar multiple of the other,
then it is straightforward to verify that the inequality is an equality. Similarly, if
〈~v, ~w〉 equals 0, then the proposition trivially follows. Therefore assume that ~v, ~w
are linearly independent and assume that 〈~v, ~w〉 is nonzero.

Define c to the be the scalar (complex in the Hermitian case) of unit length defined
by

c =
|〈~v, ~w〉|
〈~v, ~w〉

.

In particular, the scalar c〈~v, ~w〉 is a positive real number. Consider the quadratic
polynomial in the real variable t,

q(t) = 〈c~v + t~w, c~v + t~w〉.

On the one hand, expanding out gives

q(t) = ‖~w‖2t2 + 2t|〈~v, ~w〉|+ ‖~v‖2.
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Since ~v and ~w are linearly independent, c~v + t~w is never the zero vector. Thus, by
positive definiteness, q(t) is never 0. Since q(t) has no real roots, the discriminant
of the quadratic polynomial is negative, i.e.,

(2|〈~v, ~w〉|)2 < 4‖~v‖2 · ‖~w‖2.

Dividing by 4 gives the inequality. �

Corollary 2.4. The function ‖ · ‖ : V → R is a norm, i.e., it satisfies each of the
following.

(i). Homogeneity. For every ~v in V and every scalar c, ‖c · ~v‖ equals c · ‖~v‖.
(ii). Positive definite. For every nonzero ~v in V , ‖~v} is positive.

(iii). Triangle inequality. For every ~v, ~w in V ,

‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖.

Proof. The first two items are obvious. The triangle inequality follows from the
previous result. By definition,

‖~v + ~w‖2 = 〈~v,~v〉+ 2Re(〈~v, ~w〉) + 〈~w, ~w〉.

Applying the Cauchy-Bunyakovsky-Schwarz inequality, this is bounded by

‖~v + ~w‖2 ≤ ‖~v‖2 + 2‖~v‖‖~w‖+ ‖~w‖2 = (|~v‖+ ‖~w‖)2.

Taking square roots gives the result. �

Examples. (1). Let n ≥ 0 be an integer. Let V be the real vector space Rn with
its standard ordered basis (e1, . . . , en). Let 〈·, ·〉 be the Euclidean inner product,

〈
n∑
i=1

xiei,
n∑
j=1

yjej〉 =
n∑
k=1

xkyk.

This is a real inner product space. It is usually called the real Euclidean n-space.

Examples. (2). Similarly, let V be the complex vector space Cn with its standard
ordered basis (e1, . . . , en). Let 〈·, ·〉 be the pairing

〈
n∑
i=1

xiei,
n∑
j=1

yjej〉 =
n∑
k=1

xkyk.

This is a complex Hermitian space. It is sometimes also called a Euclidean n-space.

Examples. (3). Let `2R, respectively `2C, denote the real vector space, resp. com-
plex vector space, of all sequences (an)n≥0 of real numbers, resp. complex numbers,
such that the series

∞∑
n=0

|an|2

is convergent. Define a pairing by the series

〈(an)n≥0, (bn)n≥0〉 =
∞∑
n=0

anbn.

Applying the Cauchy-Bunyakovsky-Scwarz inequality to the finite sequences (an)n≤N ,
(bn)n≤N considered as elements of the Euclidean N -space, it follows that the se-
ries above is bounded by the product of the convergent sequences ‖(an)‖ · ‖(bn)‖.
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Therefore the series is absolutely convergent. It is straightforward to verify that
this defines a real inner product space, resp. a complex Hermitian space.

Examples. (4). Let I be a closed interval in R (possibly unbounded), and let
C2

R(I), resp. C2
C(I), denote the real vector space, resp. complex vector space, of

continuous functions f on I which are real-valued, resp. complex-valued, and such
that the integral ∫

I

|f(t)|2dt

is convergent. Notice the convergence is automatic when I is a bounded interval.
Define an inner product by

〈f, g〉 =
∫
I

f(t)g(t)dt.

For every bounded interval J , the restrictions of f and g to J satisfy the Cauchy-
Bunyakovsky-Schwarz inequality, i.e.,∣∣∣∣∫

J

f(t)g(t)dt
∣∣∣∣2 ≤ ∣∣∣∣∫

I

|f(t)|2dt
∣∣∣∣ · ∣∣∣∣∫

I

|g(t)|2dt
∣∣∣∣ .

Since the product on the right is convergent, it follows the supremum over all J of
the integeral on the left is also defined. Thus the inner product of f and g is well-
defined. This pairing defines a real inner product space, resp. a complex Hermitian
space. (However, it is usually not complete with respect to the corresponding
norm.)

Examples. (5). Let (V, 〈·, ·〉) be a real inner product space. Denote by VC the
associated complex vector space,

VC := V ⊗R C.

Every element in this space has a unique decomposition of the form ~vR + i~vI where
~vR, ~vI are elements of V . Define a pairing

〈·, ·〉 : VC × VC → C,

by the rule

〈~vR + i~vI , ~wR + i ~wI〉 := (〈~vR, ~wR〉+ 〈~vI , ~wI〉) + i(〈~vI , ~wR〉 − 〈~vR, ~wI〉).
It is straightforward to verify that this is a Hermitian product. Thus associated
to every real inner product space there is a complex Hermitian space. This is the
beginning of many parallels between the theory of real inner product spaces and
complex Hermitian spaces.

3. Orthonormal Bases and Gram-Schmidt

Let (V, 〈·, ·〉) be a real inner product space or complex Hermitian space. An element
~v of V is normal if ‖v‖ equals 1. A subset S of elements in V is orthogonal if for
every pair ~v, ~w of distinct elements in S, 〈~v, ~w〉 equals 0. An orthogonal subset of
normal vectors is an orthonormal subset. When (V, 〈·, ·〉) is a complex Hermitian
space, the word “unitary” is sometimes also used to mean “orthonormal”. Every
orthonormal set is linearly independent.

A collection (Ui)i∈I of subspaces of V is orthogonal if for every pair i, j of distinct
elements of I, every element in Ui is orthogonal to every element in Uj . Given any
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subspace U of V , the set of all vectors ~v in V which are orthogonal to every element
of U is called the orthogonal complement of U and denote U⊥.

Lemma 3.1. Every collection of orthogonal subspaces is linearly independent. In
particular, for every linear subspace U of V , U and U⊥ are linearly independent.

Proof. The definition of linear independence involves finite linear combinations.
Thus it suffices to verify the first assertion for finite collections of orthogonal sub-
spaces. This is proved by induction on the number of subspaces in the collection.
The main case is when there are two subspaces, say U ′ and U ′′. And U ′, U ′′ are
linearly independent if and only if U ′ ∩U ′′ is {0}. Let ~u be an element in U ′ ∩U ′′.
Since ~u is in U ′ it is orthogonal to every element of U ′′. Since also ~u is in U ′′,
~u is orthogonal to itself, i.e., ‖~u‖2 equals 0. By positive definiteness, ~u equals 0.
Therefore U ′, U ′′ are linearly independent.

Now suppose that n ≥ 3 and let (U1, . . . , Un) be an orthogonal collection of vectors.
Denote by U ′ the sum U1 + · · · + Un−1 and denote by U ′′ the space Un. By the
induction hypothesis, (U1, . . . , Un) is linearly independent. Thus to prove that
(U1, . . . , Un−1, Un) is linearly independent, it suffices to prove that U ′ and U ′′ are
linearly independent. Since (U1, . . . , Un) is orthogonal, U ′ and U ′′ are orthogonal.
Therefore, by the last paragraph, U ′ and U ′′ are linearly independent. �

Proposition 3.2 (Gram-Schmidt). Let (~v1, . . . , ~vn) be a linearly independent set
of elements in V . There exists a unique orthonormal set (û1, . . . , ûn) such that for
every r = 1, . . . , n, span(~v1, . . . , ~vr) equals span(û1, . . . , ûr) and 〈~vr, ûr〉 is a positive
real number.

Proof. This is proved by induction on n. For n = 1, û1 := ~v1/‖~v1‖ is the unique
normal vector in span(~v1) such that 〈~v1, û1〉 is a positive real number. Thus, by
way of induction, assume that n > 1 and assume the result is proved for n− 1.

Denote span(~v1, . . . , ~vn) by U . Denote by U ′ the subspace span(~v1, . . . , ~vn−1). And
denote by U ′′ the orthogonal complement of U ′ in U . Since ~vn is linearly indepen-
dent from ~v1, . . . , ~vn−1, ~vn is not contained in U ′.

By the induction hypothesis, there exists an orthonormal set (û1, . . . , ûn−1) satis-
fying the conditions of the proposition for r = 1, . . . , n− 1. Denote

~v′n =
n−1∑
m=1

〈~vn, ûm〉ûm

and denote ~v′′n := ~vn − ~v′n. By construction ~v′n is in U ′. For every i = 1, . . . , n− 1,

〈~v′n, ûi〉 = 〈~vn, ûi〉.
Therefore 〈~v′′n, ûi〉 equals 0, i.e., ~v′′n is in U ′′. By the previous lemma U ′ and U ′′ are
linearly independent. Thus ~v′n and ~v′′n are the unique elements in U ′ and U ′′ such
that ~vn equals ~v′n + ~v′′n. In particular, note that

〈~vn, ~v′′n〉 = ‖~v′′n‖2

which is a nonnegative real number.

In fact, since ~vn is not contained in U ′, also ~v′′n is not contained in U ′, i.e., ~v′′n is
nonzero. So the nonnegative real number above is a positive real number. Also,
since U ′ and U ′′ are linearly independent and since U ′ + U ′′ is contained in U ,
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dim(U ′) + dim(U ′′) is at most dim(U). Thus dim(U ′′) is at most 1. Therefore ~v′′n
is a basis for U ′′. Since any vector ûn satisfying the conditions of the proposition
lies in U ′′, ûn must be a scalar multiple of ~v′′n. But since ûn must be normal and
since lr~vn, ûn must be a positive real number, there is no choice about the scalar
multiple. The only scalar multiple satisfying these conditions is

ûn :=
~v′′n
‖~v′′n‖

.

Since (û1, . . . , ûn−1) is a basis for U ′ and since ûn is a basis for U ′′, (û1, . . . , ûn−1, ûn)
is a linearly independent set of n elements in the n-dimensional space U . Therefore
this is a basis for U .

Since ~v′′n is a normal vector which is orthogonal to U ′, and since (û1, . . . , ûn−1)
are orthonormal by the induction hypothesis, also the set (û1, . . . , ûn−1, ûn) is or-
thonormal. By the induction hypothesis (û1, . . . , ûn−1) is the unique set satisfying
the conditions for i = 1, . . . , n− 1. And, as shown, ûn is the unique normal vector
in span(~v1, . . . , ~vn) which is orthogonal to (û1, . . . , ûn−1) and such that 〈~vr, ûr〉 is
a positive real number. Thus (û1, . . . , ûn) is the unique orthonormal set satisfying
the conditions of the proposition. Thus the proposition is proved by induction on
n. �

In particular, if V is finite dimensional, then it follows that V has a basis which is
orthonormal. When V is complex Hermitian, an orthonormal basis is sometimes
also called a unitary frame.

It also follows from Gram-Schmidt that if V is a finite dimensional vector space,
then for every linear subspace U , (U,U⊥) gives a direct sum decomposition of V .
Since by the lemma (U,U⊥) is linearly independent, it suffices to prove that every
vector ~v in V is a sum of elements in U and U⊥. If ~v is in U , this is obvious. If ~v is
not in U , first use Gram-Schmidt to produce an orthnormal basis (û1, . . . , ûm) for
U . Next apply Gram-Schmidt to (û1, . . . , ûm, ~v) to produce (û1, . . . , ûm, û

′′). Then
û′′ is in U⊥ and ~v is a sum of a linear combination of û1, . . . , ûm, which is in U , and
a scalar multiple of û′′, which is in U⊥. This proves that V = U⊕U⊥. Incidentally,
this fails when V is infinite dimensional. One characterization of Hilbert spaces, i.e.,
real inner product spaces or complex Hermitian spaces where the metric induced
by ‖ · ‖ is complete, is that for every closed subspace U , the pair (U,U⊥) does give
an orthogonal decomposition of V .

4. Adjoint Operators and Normal Operators

For a real vector space V , resp. a complex vector space V , a linear functional on
V is a linear transformation from V to R, resp. C. The set of linear functionals
is denoted V ∨ and is naturally a real vector space, resp. complex vector space, as
discussed in lecture. A linear functional χ is bounded (with respect to ‖ · ‖) if there
exist a positive real number M such that for every ~v in V ,

|χ(~v)| ≤M‖~v‖.

In this case, for every nonzero ~v in V , |χ(~v)|/‖~v‖ is defined and bounded by M .
Therefore the supremum of |χ(~v)|/‖~v‖ over nonzero ~v is a well-defined nonnegative
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real number which is positive if χ is nonzero. This is the operator norm of χ,

‖χ‖ = sup
~v 6=0

|χ(~v)|
‖~v‖

.

In particular, for every vector ~w in V , define φ~w to be the linear functional

φ~w(~v) = 〈~v, ~w〉.
Then the Cauchy-Schwarz inequality implies that φ~w is bounded and

‖φ~w‖ = ‖~w‖.

In all that follows we will assume that V is finite dimensional. In fact there are
infinite dimensional analogues which are even more important than the finite di-
mensional results. But this is more the topic of an analysis course rather than an
algebra course.

Lemma 4.1 (Riesz Representation Theorem). Assume that V is finite dimensional.
Every linear functional on V is bounded. The map Φ : V → V ∨ defined by Φ(~w) =
φ~w is an R-linear isomorphism of R-vector spaces. Moreover, ‖Φ(~w)‖ equals ‖~w‖
so that ‖ · ‖ is a norm on V ∨ and Φ is an isometry.

Proof. As we have seen, when V is finite dimensional then V ∨ is also finite dimen-
sional and has the same dimension as V . If V and V ∨ are complex vector spaces,
then they are also both finite dimensional real vector spaces whose real dimension
is twice the complex dimension, via the inclusion R ⊂ C. It is straightforward that
Φ is R-linear. Thus Φ is an R-linear transformation between R-vector spaces of the
same finite dimension. It follows from the rank-nullity theorem that Φ is surjective
if and only if Φ is an R-linear isomorphism if and only if Φ is injective.

Let ~w be any nonzero element of V . Since φ~w(~w) = ‖~w‖2 and since 〈·, ·〉 is positive
definite, φ~w(~w) is nonzero. Thus φ~w is nonzero. Thus Φ is injective. Therefore
Φ is an R-linear isomorphism. A posteriori it follows that every element in V ∨ is
bounded (since they are each of the form φ~w) and that ‖ · ‖ is a norm on V ∨ (since
‖ · ‖ is a norm on V ). �

Remarks. (1). It is important to remark that when V is a complex Hermitian
space, Φ is not C-linear. In fact Φ(c · ~w) = c · Φ(w).

(2). In analysis classes it is proved that if V is complete with respect to the norm
‖ · ‖ (which is automatic if V is finite dimensional), then Φ is an isometric R-linear
isomorphism from V onto the subspace of bounded linear functionals. This is the
usual statement of the Riesz representation theorem.

Now let (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) be finite dimensional real inner product spaces,
resp. finite dimensional complex Hermitian spaces. Let T : V → W be a linear
transformation. Recall that the linear transformation T † : W∨ → V ∨ is defined by

(T †(~χ))(~v) = χ(T (~v)).

By the Riesz Representation Theorem there exists a unique linear transformation

T ∗ : W → V, such that ΦV ◦ T ∗ = T † ◦ ΦW .

In other words, for every ~v in V and for every ~w in W ,

〈T (~v), ~w〉W = 〈~v, T ∗(~w)〉V .
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The linear transformation T ∗ is called the adjoint of T .

The most important case is when (W, 〈·, ·〉W ) equals (V, 〈·, ·〉V ), i.e., T is a linear
operator on V . In this case T ∗ is also a linear operator on V .

Definition 4.2. The linear transformation T is self-adjoint if T ∗ equals T . The
linear transformation T is anti-self-adjoint if T ∗ equals −T . The linear transfor-
mation is normal if T ∗T equals TT ∗, i.e., T commutes with its adjoint. And the
linear transformation T is orthogonal, resp. unitary in the complex case, if T ∗ and
T are inverse operators.

Examples. (1). Let (V, 〈·, ·〉) be the real Euclidean space Rn. Let T be a linear
operator on V . And let M be the matrix representative of T . Then the matrix
representative of T ∗ is M†, the transpose matrix of M , (M†)i,j = Mj,i. Thus T is
self-adjoint if and only if the associated matrix M is symmetric, Mi,j = Mj,i. Also
T is anti-self-adjoint if and only if M is skew-symmetric, −Mi,j = Mj,i. And T is
orthogonal if and only if the column vectors of M are an orthonormal basis for Rn.
In fact, for every finite dimensional real inner product space V , for every linear op-
erator T and for every ordered orthonormal basis B = (û1, . . . , ûn), T is self-adjoint,
resp. anti-self-adjoint, orthogonal, if and only if the matrix representative [T ]B,B
is symmetric, resp. skew-symmetric, orthogonal. This is because B determines a
linear, isometric isomorphism between (V, 〈·, ·〉) and the real Euclidean space.

Examples. (2). Let (V, 〈·, ·〉) be the complex Euclidean space Cn. Let T be a
linear operator on V . And letM be the matrix representative of T . Then the matrix
representative of T ∗ is M†, the conjugate transpose matrix of M , (M†)i,j = Mj,i.
Thus T is self-adjoint if and only if M is “conjugate symmetric”, Mi,j = Mj,i. Also
T is anti-self-adjoing if and only if M is “conjugate skew-symmetric”, −Mi,j =
Mj,i. And T is unitary if and only if the column vectors of M are a unitary
frame (i.e., orthonormal basis) for Cn. For the same reason as above, for every
finite dimensional complex Hermitian space V , for every linear operator T and for
every ordered orthonormal basis B = (û1, . . . , ûn), T is self-adjoing, resp. anti-
self-adjoing, unitary, if and only if the matrix representative [T ]B,B is conjugate
symmetric, resp. conjugate skew-symmetric, unitary.

The point of normal operators is that self-adjoint, anti-self-adjoint and orthogonal,
resp. unitary, operators are all examples of normal operators. So the class of normal
operators is the correct one in which to consider all three types of operators. The
basic fact about normal operators is the following.

Lemma 4.3. For a normal operator T , the kernel of T ∗ equals the kernel of T .
And the kernel and image of T are orthogonal subspaces of V .

Proof. Let ~v be in the kernel of T . Then T ∗T (~v) equals 0. Since T is normal, i.e.,
TT ∗ equals T ∗T , also TT ∗(~v) equals 0. Thus the square norm of T ∗(~v) equals 0 by

‖T ∗(~v)‖2 = 〈T ∗(~v), T ∗(~v)〉 = 〈TT ∗(~v), ~v〉 = 〈0, ~v〉 = 0.

Since 〈·, ·〉 is positive definite, T ∗(~v) equals 0. Thus v is in the kernel of T ∗. Since
(T ∗)∗ equals T , the same argument proves that the kernel of T is contained in the
kernel of T ∗. Therefore the kernel of T equals the kernel of T ∗.
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Now let ~v be in the kernel of T . Then T ∗(~v) equals 0. Therefore, for every element
~w of V ,

〈~v, T (~w)〉 = 〈T ∗(~v), ~w〉 = 〈0, ~w〉 = 0.

Thus ~v is orthogonal to every element T (~w) in the image of T . So the kernel of T
is orthogonal to the image of T . �

A basic fact about commutativity of operators is that it extends to polynomial
expressions in those operators (and in analysis, even to holomorphic expressions on
open neighborhoods of the spectra of the operators). For every linear operator T
and for every polynomial with coefficients in the scalar field,

p(t) = cnt
n + · · ·+ c1t+ c0,

the linear operator p(T ) is defined by

p(T ) = cnT
n + · · ·+ c1T + c0IdV .

Exercise. Let S and T be linear operators that commute, ST = TS. Prove
that for all nonnegative integers m,n, Sm and Tn commute. Conclude that for
all polynomials p(s) and q(t) with coefficients in the scalar field, p(S) and q(T )
commute. In fact, for every pair of 2-variable operators u(s, t) and v(s, t), the
operators u(S, T ) and v(S, T ) are well-defined and commute.

Lemma 4.4. Let T be a normal operator on a complex Hermitian space V . Then
for every polynomial u(s, t) with complex coefficients, u(T∗, T ) is also normal. Also
a vector ~v is an eigenvector of T with eigenvalue λ if and only if ~v is an eigenvector
of T ∗ with eigenvalue λ.

Proof. The first assertion follows immediately from the exercise since u(T∗, T ) is
well-defined and (u(T∗, T ))∗ equals v(T ∗, T ) where v(s, t) is the complex polynomial
v(s, t) = v(t, s). Because T is normal, and using the previous lemma, also T − λId
is normal. And (T − λId)∗ equals T ∗ − λId. By Lemma 4.3, the kernel of T − λId
equals the kernel of (T −λId)∗. Thus the λ-eigenspace of T equals the λ-eigenspace
of T ∗. �

Theorem 4.5 (The Spectral Theorem). Let T be a normal operator on a finite di-
mensional complex Hermitian space. Then T is diagonalizable and the eigenspaces
are pairwise orthogonal. If T is self-adjoint, then the eigenvalues are all real. Sim-
ilarly, every self-adjoint operator on a finite dimensional real inner product space
is diagonalizable with orthogonal eigenspaces.

Proof. First we prove that a normal operator on a complex Hermitian space is
diagonalizable with orthogonal eigenspaces. For every complex number λ, denote
by ET,λ the λ-eigenspace, i.e.,

ET,λ := ker(λIdV − T ).

By Lemma 4.4, ET,λ equals ET∗,λ and λIdV −T is normal. And for every complex
number µ with µ 6= λ, λIdV − T maps ET,µ isomorphically back to itself via the
scaling (λ− µ), i.e., for ~v in ET,µ,

(λIdV − T )(~v) = λ~v − T (~v) = (λ− µ)~v).
9



Thus ET,µ is in the image of λIdV − T . Therefore, by Lemma 4.3, the eigenspaces
(ET,λ1 , . . . , ET,λr ) are orthogonal. So, denoting by λ1, . . . , λr the distinct eigenval-
ues of T , (ET,λ1 , . . . , ET,λr ) is an orthogonal set of subspaces of V . It remains only
to prove that the subspace U ′T = ET,λ1 + · · ·+ ET,λr

equals all of V .

Denote by U ′′T the orthogonal complement of U ′T . Of course T maps each eigenspace
ET,λ back into itself via the scaling λ. And by Lemma 4.4, for every ~v in V and
every ~w in ET,λ,

〈T (~v), ~w〉 = 〈~v, T ∗(~w)〉 = 〈~v, λ~w〉 = λ〈~v, ~w〉.
In particular, if T (~v) is orthogonal to ~w, then also T (~v) is orthogonal to ~w. Therefore
T maps U ′′T back into itself. Also by Lemma 4.4 once more, U ′T∗ equals U ′T , and
thus also U ′′T∗ equals U ′′T . Therefore, by the same argument as above, T ∗ also maps
U ′′T back into itself.

But this means that the restriction

T |U ′′ : U ′′T → U ′′T

is a normal operator on the complex Hermitian space U ′′T with the restricted Her-
mitian product. Every linear operator S on a nonzero, finite dimensional complex
vector space U has a nonzero eigenvector by the Fundamental Theorem of Algebra
applied to the characteristic polynomial

χS(x) = det(xIdU − S).

Therefore, if U ′′T is nonzero, then there exists an eigenvalue λ and a nonzero λ-
eigenvector ~v for T |U ′′ . Then ~v is in ET,λ which is contained in U ′T . Since U ′T and
U ′′T are orthgonal, their intersection equals {0} by Lemma 3.1. So there cannot
exist a nonzero vector ~v in U ′′T and in ET,λ. This proves that U ′′T does equal {0}
(by contradiction). Therefore V equals the sum of the T -eigenspaces, i.e., T is
diagonalizable on V .

Next assume that T is self-adjoint. Let λ be an eigenvalue with a nonzero λ-
eigenvector ~v. By Lemma 4.4, ~v is also a λ-eigenvector of T ∗. But since T = T ∗, it
follows that λ = λ, i.e., λ is real. Therefore every eigenvalue of T is real.

Finally, consider the real case. By Gram-Schmidt, every real inner product space
has an orthonormal basis. Thus we may reduce to the case when the real inner
product space is the Euclidean space Rn. Let

T : Rn → Rn

be an R-linear operator. Define a C-linear operator TC on Cn by

TC : Cn → Cn, TC(~vR + i~vI) := T (~vR) + iT (~vI).

It is straightforward to verify that (TC)∗ equals (T ∗)C. In particular, if T is self-
adjoint then also TC is self-adjoint. Then by the previous case, the Cn is a direct
sum of eigenspace ETC,λ for real numbers λ. But now let ~vR + i~vI be any element
in ETC,λ. Then we have the identity

T (~vR) + iT (~vI) = TC(~vR + i~vI) = λ(~vR + i~vI) = (λ~v) + i(λ~vI).

It follows that both ~vR and ~vI are in ET,λ, i.e., ETC,λ = ET,λ ⊗R C. Therefore
the λ-eigenspaces ET,λ of T on Rn also span Rn. Orthogonality of the distinct
eigenspaces of TC implies orthogonality of the corresponding eigenspaces of T . Thus
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the eigenspaces of T are orthogonal and give a direct sum decomposition of Rn.
Therefore T is diagonalizable on Rn. �

11


	1. Introduction
	2. Inner Product Spaces and Hermitian Spaces
	3. Orthonormal Bases and Gram-Schmidt
	4. Adjoint Operators and Normal Operators

