18.700 JORDAN NORMAL FORM NOTES

These are some supplementary notes on how to find the Jordan normal form of a small matrix. First we recall some of the facts from lecture, next we give the general algorithm for finding the Jordan normal form of a linear operator, and then we will see how this works for small matrices.

1. Facts

Throughout we will work over the field \(\mathbb{C}\) of complex numbers, but if you like you may replace this with any other algebraically closed field. Suppose that \(V\) is a \(\mathbb{C}\)-vector space of dimension \(n\) and suppose that \(T : V \to V\) is a \(\mathbb{C}\)-linear operator. Then the characteristic polynomial of \(T\) factors into a product of linear terms, and the irreducible factorization has the form

\[
c_T(X) = (X - \lambda_1)^{m_1}(X - \lambda_2)^{m_2} \cdots (X - \lambda_r)^{m_r},
\]

for some distinct numbers \(\lambda_1, \ldots, \lambda_r \in \mathbb{C}\) and with each \(m_i\) an integer \(m_1 \geq 1\) such that \(m_1 + \cdots + m_r = n\).

Recall that for each eigenvalue \(\lambda_i\), the eigenspace \(E_{\lambda_i}\) is the kernel of \(T - \lambda_i I_V\). We generalized this by defining for each integer \(k = 1, 2, \ldots\) the vector subspace

\[
E_{(X - \lambda_i)^k} = \ker(T - \lambda_i I_V)^k.
\]

It is clear that we have inclusions

\[
E_{\lambda_i} = E_{X - \lambda_i} \subset E_{(X - \lambda_i)^2} \subset \cdots \subset E_{(X - \lambda_i)^e} \subset \cdots.
\]

Since \(\dim(V) = n\), it cannot happen that each \(\dim(E_{(X - \lambda_i)^k}) < \dim(E_{(X - \lambda_i)^{k+1}})\), for each \(k = 1, \ldots, n\). Therefore there is some least integer \(e_i \leq n\) such that \(E_{(X - \lambda_i)^{e_i}} = E_{(X - \lambda_i)^{e_i+1}}\).

As was proved in class, for each \(k \geq e_i\) we have \(E_{(X - \lambda_i)^k} = E_{(X - \lambda_i)^{e_i}}\), and we defined the \textit{generalized eigenspace} \(E_{\lambda_i}^\text{gen}\) to be \(E_{(X - \lambda_i)^{e_i}}\).

It was proved in lecture that the subspaces \(E_{\lambda_1}^\text{gen}, \ldots, E_{\lambda_r}^\text{gen}\) give a direct sum decomposition of \(V\). From this our criterion for diagonalizability of follows: \(T\) is diagonalizable iff for each \(i = 1, \ldots, r\), we have \(E_{\lambda_i}^\text{gen} = E_{\lambda_i}\). Notice that in this case \(T\) acts on each \(E_{\lambda_i}^\text{gen}\) as \(\lambda_i\) times the identity. This motivates the definition of the \textit{semisimple part} of \(T\) as the unique \(\mathbb{C}\)-linear operator \(S : V \to V\) such that for each \(i = 1, \ldots, r\) and for each \(v \in E_{\lambda_i}^\text{gen}\) we have \(S(v) = \lambda_i v\). We defined \(N = T - S\) and observed that \(N\) preserves each \(E_{\lambda_i}^\text{gen}\) and is \textit{nilpotent}, i.e. there exists an integer \(e \geq 1\) (really just the maximum of \(e_1, \ldots, e_r\)) such that \(N^e\) is the zero linear operator. To summarize:

\textbf{(A)} The \textit{generalized eigenspaces} \(E_{\lambda_1}^\text{gen}, \ldots, E_{\lambda_r}^\text{gen}\) defined by

\[
E_{\lambda_i}^\text{gen} = \{ v \in V | \exists e, (T - \lambda_i I_V)^e(v) = 0 \},
\]
give a direct sum decomposition of V. Moreover, we have $\dim(E^\text{gen}_{\lambda_i})$ equals the algebraic multiplicity of λ_i, m_i.

(B) The semisimple part S of T and the nilpotent part N of T defined to be the unique \mathbb{C}-linear operators $V \rightarrow V$ such that for each $i = 1, \ldots, r$ and each $v \in E^\text{gen}_{\lambda_i}$ we have

$$S(v) = S^{(i)}(v) = \lambda_i v, \quad N(v) = N^{(i)}(v) = T(v) - \lambda_i v,$$

satisfy the properties:

1. S is diagonalizable with $c_S(X) = c_T(X)$, and the λ_i-eigenspace of S is $E^\text{gen}_{\lambda_i}$ (for T).
2. N is nilpotent, N preserves each $E^\text{gen}_{\lambda_i}$ and if $N^{(i)} : E^\text{gen}_{\lambda_i} \rightarrow E^\text{gen}_{\lambda_i}$ is the unique linear operator with $N^{(i)}(v) = N(v)$, then $[N^{(i)}]^{e_i-1}$ is nonzero but $[N^{(i)}]^{e_i} = 0$.
3. $T = S + N$.
4. $SN = NS$.
5. For any other \mathbb{C}-linear operator $T' : V \rightarrow V$, T' commutes with T $(T'T = TT')$ iff T' commutes with both S and N. Moreover T' commutes with S iff for each $i = 1, \ldots, r$, we have $T'(E^\text{gen}_{\lambda_i}) \subset E^\text{gen}_{\lambda_i}$.
6. If (S', N') is any pair of a diagonalizable operator S' and a nilpotent operator N' such that $T = S' + N'$ and $S'N' = N'S'$, then $S' = S$ and $N' = N$. We call the unique pair (S, N) the semisimple-nilpotent decomposition of T.

(C) For each $i = 1, \ldots, r$, choose an ordered basis $B^{(i)} = (v^{(i)}_1, \ldots, v^{(i)}_{m_i})$ of $E^\text{gen}_{\lambda_i}$ and let $B = (B^{(1)}, \ldots, B^{(r)})$ be the concatenation, i.e.

$$B = \left(v^{(1)}_1, \ldots, v^{(1)}_{m_1}, v^{(2)}_1, \ldots, v^{(2)}_{m_2}, \ldots, v^{(r)}_1, \ldots, v^{(r)}_{m_r} \right).$$

For each i let $S^{(i)}, N^{(i)}$ be as above and define the $m_i \times m_i$ matrices

$$D^{(i)} = [S^{(i)}]_{B^{(i)}, B^{(i)}}, \quad C^{(i)} = [N^{(i)}]_{B^{(i)}, B^{(i)}}.$$

Then we have $D^{(i)} = \lambda_i I_{m_i}$ and $C^{(i)}$ is a nilpotent matrix of exponent e_i. Moreover we have the block forms of S and N:

$$[S]_{B,B} = \begin{pmatrix} \lambda_1 I_{m_1} & 0_{m_1 \times m_2} & \cdots & 0_{m_1 \times m_r} \\ 0_{m_2 \times m_1} & \lambda_2 I_{m_2} & \cdots & 0_{m_2 \times m_r} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{m_r \times m_1} & 0_{m_r \times m_2} & \cdots & \lambda_r I_{m_r} \end{pmatrix},$$

$$[N]_{B,B} = \begin{pmatrix} C^{(1)} & 0_{m_1 \times m_2} & \cdots & 0_{m_1 \times m_r} \\ 0_{m_2 \times m_1} & C^{(2)} & \cdots & 0_{m_2 \times m_r} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{m_r \times m_1} & 0_{m_r \times m_2} & \cdots & C^{(r)} \end{pmatrix}.$$

Notice that $D^{(i)}$ has a nice form with respect to ANY basis $B^{(i)}$ for $E^\text{gen}_{\lambda_i}$. But we might hope to improve $C^{(i)}$ by choosing a better basis.
A very simple kind of nilpotent linear transformation is the nilpotent Jordan block, i.e. \(T_a : \mathbb{C}^a \to \mathbb{C}^a \) where \(J_a \) is the matrix

\[
J_a = \begin{pmatrix}
0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 1 & 0
\end{pmatrix}.
\]

(10)

In other words,

\[
J_a e_1 = e_2, \quad J_a e_2 = e_3, \ldots, \quad J_a e_{a-1} = e_a, \quad J_a e_a = 0.
\]

(11)

Notice that the powers of \(J_a \) are very easy to compute. In fact \(J_a^a = 0_{a,a} \), and for \(d = 1, \ldots, a-1 \), we have

\[
J_a^d e_1 = e_{d+1}, \quad J_a^d e_2 = e_{d+2}, \ldots, \quad J_a^d e_{a-d} = e_a, \quad J_a^d e_{a+1-d} = 0, \ldots, \quad J_a^d e_a = 0.
\]

(12)

Notice that we have \(\ker(J_a^d) = \text{span}(e_{a+1-d}, e_{a+2-d}, \ldots, e_a) \).

A nilpotent matrix \(C \in M_{m \times m}(\mathbb{C}) \) is said to be in Jordan normal form if it is of the form

\[
C = \begin{pmatrix}
J_{a_1} & 0_{a_1 \times a_2} & \ldots & 0_{a_1 \times a_t} & 0_{a_1 \times b} \\
0_{a_2 \times a_1} & J_{a_2} & \ldots & 0_{a_2 \times a_t} & 0_{a_2 \times b} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0_{a_t \times a_1} & 0_{a_t \times a_2} & \ldots & J_{a_t} & 0_{a_t \times b} \\
0_{b \times a_1} & 0_{b \times a_2} & \ldots & 0_{b \times a_t} & 0_{b \times b}
\end{pmatrix},
\]

(13)

where \(a_1 \geq a_2 \geq \cdots \geq a_t \geq 2 \) and \(a_1 + \cdots + a_t + b = m \).

We say that a basis \(\mathcal{B}^{(i)} \) puts \(T^{(i)} \) in Jordan normal form if \(C^{(i)} \) is in Jordan normal form. We say that a basis \(\mathcal{B} = (\mathcal{B}^{(1)}, \ldots, \mathcal{B}^{(r)}) \) puts \(T \) in Jordan normal form if each \(\mathcal{B}^{(i)} \) puts \(T^{(i)} \) in Jordan normal form.

WARNING: Usually such a basis is not unique. For example, if \(T \) is diagonalizable, then ANY basis \(\mathcal{B}^{(i)} \) puts \(T^{(i)} \) in Jordan normal form.

2. **Algorithm**

In this section we present the general algorithm for finding bases \(\mathcal{B}^{(i)} \) which put \(T \) in Jordan normal form.

Suppose that we already had such bases. How could we describe the basis vectors? One observation is that for each Jordan block \(J_a \), we have that \(e_{d+1} = J_a^d(e_1) \) and also that \(\text{span}(e_1) \) and \(\ker(J_a^{a-1}) \) give a direct sum decomposition of \(\mathbb{C}^a \).

What if we have two Jordan blocks, say

\[
J = \begin{pmatrix}
J_{a_1} & 0_{a_1 \times a_2} \\
0_{a_2 \times a_1} & J_{a_2}
\end{pmatrix}, \quad a_1 \geq a_2.
\]

(14)
This is the matrix such that

\[J e_1 = e_2, \ldots, J e_{a_1 - 1} = e_{a_1}, J e_{a_1} = 0, J e_{a_1 + 1} = e_{a_1 + 2}, \ldots, J e_{a_1 + a_2 - 1} = e_{a_1 + a_2}, J e_{a_1 + a_2} = 0. \]

(15)

Again we have that \(e_{a_1 + 1} = J^d e_1 \) and \(e_{a_1 + a_2 + 1} = J^d e_{a_1 + 1} \). So if we wanted to reconstruct this basis, what we really need is just \(e_1 \) and \(e_{a_1 + 1} \). We have already seen that a distinguishing feature of \(e_1 \) is that it is an element of \(\ker(J^2) \) which is not in \(\ker(J^a) \). If \(a_2 = a_1 \), then this is also a distinguishing feature of \(e_{a_1 + 1} \). But if \(a_2 < a_1 \), this doesn’t work. In this case it turns out that the distinguishing feature is that \(e_{a_1 + 1} \) is in \(\ker(J^2) \) but is not in \(\ker(J^a) + J(\ker(J^a)) \). This motivates the following definition:

Definition 1. Suppose that \(B \in M_{n \times n}(\mathbb{C}) \) is a matrix such that \(\ker(B^e) = \ker(B^{e+1}) \). For each \(k = 1, \ldots, e \), we say that a subspace \(G_k \subset \ker(B^k) \) is primitive (for \(k \)) if

1. \(G_k + \ker(B^{k-1}) + B(\ker(B^{k+1})) = \ker(B^k) \), and
2. \(G_k \cap (\ker(B^{k-1}) + B(\ker(B^{k+1}))) = \{0\} \).

Here we make the convention that \(B^0 = I_n \).

It is clear that for each \(k \) we can find a primitive \(G_k \): simply find a basis for \(\ker(B^{k-1}) + B(\ker(B^{k+1})) \) and then extend it to a basis for all of \(\ker(B^k) \). The new basis vectors will span a primitive \(G_k \).

Now we are ready to state the algorithm. Suppose that \(T \) is as in the previous section. For each eigenvalue \(\lambda_i \), choose any basis \(C \) for \(V \) and let \(A = [T]_{C,C} \). Define \(B = A - \lambda_i I_n \). Let \(1 \leq k_1 < \cdots < k_u \leq n \) be the distinct integers such that there exists a nontrivial primitive subspace \(G_{k_j} \). For each \(j = 1, \ldots, u \), choose a basis \((v[j]_1, \ldots, v[j]_{p_j}) \) for \(G_{k_j} \). Then the desired basis is simply

\[B^{(i)} = (v[u]_1, Bv[u]_1, \ldots, B^{u-1}v[u]_1), \]
\[v[u]_2, Bv[u]_2, \ldots, B^{k_u-1}v[u]_2, \ldots, v[u]_{p_u}, \ldots, B^{k_u-1}v[u]_{p_u}, \ldots, \]
\[v[j]_i, Bv[j]_i, \ldots, B^{k_j-1}v[j]_i, \ldots, v[j]_{1}, \ldots, B^{k_j-1}v[j]_{1}, \ldots, \]
\[v[1]_{p_1}, \ldots, B^{k_1-1}v[1]_{p_1} \). \]

When we perform this for each \(i = 1, \ldots, r \), we get the desired basis for \(V \).

3. Small cases

The algorithm above sounds more complicated than it is. To illustrate this, we will present a step-by-step algorithm in the \(2 \times 2 \) and \(3 \times 3 \) cases and illustrate with some examples.

3.1. Two-by-two matrices

First we consider the two-by-two case. If \(A \in M_{2 \times 2}(\mathbb{C}) \) is a matrix, its characteristic polynomial \(c_A(X) \) is a quadratic polynomial. The first dichotomy is whether \(c_A(X) \) has two distinct roots or one repeated root.

Two distinct roots Suppose that \(c_A(X) = (X - \lambda_1)(X - \lambda_2) \) with \(\lambda_1 \neq \lambda_2 \). Then for each \(i = 1, 2 \) we form the matrix \(B_i = A - \lambda_i I_2 \). By performing Gauss-Jordan elimination we may find a basis for \(\ker(B_i) \). In fact each kernel will be one-dimensional, so let \(v_1 \) be a basis
for ker(B_1) and let v_2 be a basis for ker(B_2). Then with respect to the basis $\mathcal{B} = (v_1, v_2)$, we will have

$$[A]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}. \quad (16)$$

Said a different way, if we form the matrix $P = (v_1|v_2)$ whose first column is v_1 and whose second column is v_2, then we have

$$A = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1}. \quad (17)$$

To summarize:

$$\text{span}(v_1) = E_{\lambda_1} = \ker(A - \lambda_1 I_2) = \ker((A - \lambda_1 I_2)^2) = \cdots = E_{\lambda_1}^{\text{gen}}, \quad (18)$$

$$\text{span}(v_2) = E_{\lambda_2} = \ker(A - \lambda_2 I_1) = \ker((A - \lambda_2 I_2)^2) = \cdots = E_{\lambda_2}^{\text{gen}}. \quad (19)$$

Setting $\mathcal{B} = (v_1, v_2)$ and $P = (v_1|v_2)$, We also have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, A = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1}. \quad (20)$$

Also $S = A$ and $N = 0_{2 \times 2}$.

Now we consider an example. Consider the matrix

$$A = \begin{pmatrix} 38 & -70 \\ 21 & -39 \end{pmatrix}. \quad (21)$$

The characteristic polynomial is $X^2 - \text{trace}(A)X + \det(A)$, which is $X^2 + X - 12$. This factors as $(X + 4)(X - 3)$, so we are in the case discussed above. The two eigenvalues are -4 and 3.

First we consider the eigenvalue $\lambda_1 = -4$. Then we have

$$B_1 = A + 4I_2 = \begin{pmatrix} 42 & -70 \\ 21 & -35 \end{pmatrix}. \quad (22)$$

Performing Gauss-Jordan elimination on this matrix gives a basis of the kernel: $v_1 = (5,3)^\dagger$.

Next we consider the eigenvalue $\lambda_2 = 3$. Then we have

$$B_2 = A - 3I_2 = \begin{pmatrix} 35 & -70 \\ 21 & -42 \end{pmatrix}. \quad (23)$$

Performing Gauss-Jordan elimination on this matrix gives a basis of the kernel: $v_2 = (2,1)^\dagger$.

We conclude that:

$$E_{-4} = \text{span} \left(\begin{pmatrix} 5 \\ 3 \end{pmatrix} \right), E_3 = \text{span} \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix} \right). \quad (24)$$

and that

$$A = P \begin{pmatrix} -4 & 0 \\ 0 & 3 \end{pmatrix} P^{-1}, P = \begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix}. \quad (25)$$
One repeated root: Next suppose that \(c_A(X) \) has one repeated root: \(c_A(X) = (X - \lambda_1)^2 \). Again we form the matrix \(B_1 = A - \lambda_1 I_2 \). There are two cases depending on the dimension of \(E_{\lambda_1} = \ker(B_1) \). The first case is that \(\dim(E_{\lambda_1}) = 2 \). In this case \(A \) is diagonalizable. In fact, with respect to some basis \(B \) we have
\[
[A]_{B,B} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 \end{pmatrix}.
\] But, if you think about it, this means that \(A \) has the above form with respect to ANY basis. In other words, our original matrix, expressed with respect to any basis, is simply \(\lambda_1 I_2 \). This case is readily identified, so if \(A \) is not already in diagonal form at the beginning of the problem, we are in the second case.

In the second case \(E_{\lambda_1} \) has dimension 1. According to our algorithm, we must find a primitive subspace \(G_2 \subset \ker(B_1^2) = \mathbb{C}^2 \). Such a subspace necessarily has dimension 1, i.e. it is of the form \(\text{span}(v_1) \) for some \(v_1 \). And the condition that \(G_2 \) be primitive is precisely that \(v_1 \notin \ker(B_1) \). In other words, we begin by choosing ANY vector \(v_1 \notin \ker(B_1) \). Then we define \(v_2 = B(v_1) \). We form the basis \(B = (v_1, v_2) \), and the transition matrix \(P = (v_1|v_2) \). Then we have \(E_{\lambda_1} = \text{span}(v_2) \) and also
\[
[A]_{B,B} = \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}, \quad A = P \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix} P^{-1}.
\] This is the one case where we have nontrivial nilpotent part:
\[
S = \lambda_1 I_2 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}, \quad N = A - \lambda_1 I_2 = B_1 = P \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} P^{-1}.
\]

Let’s see how this works in an example. Consider the matrix from the practice problems:
\[
A = \begin{pmatrix} -5 & -4 \\ 1 & -1 \end{pmatrix}.
\] The trace of \(A \) is \(-6\) and the determinant is \((-5)(-1) - (-4)(1) = 9\). So \(c_A(X) = X^2 + 6X + 9 = (X + 3)^2 \). So the characteristic polynomial has a repeated root of \(\lambda_1 = -3 \). We form the matrix \(B_1 = A + 3I_2 \),
\[
B_1 = A + 3I_2 = \begin{pmatrix} -2 & -4 \\ 1 & 2 \end{pmatrix}.
\] Performing Gauss-Jordan elimination (or just by inspection) a basis for the kernel is given by \((2, -1)^\dagger\). So for \(v_1 \) we choose ANY vector which is not a multiple of this vector, for example \(v_1 = e_1 = (1, 0)^\dagger \). Then we find that \(v_2 = B_1 v_1 = (-2, 1)^\dagger \). So we define
\[
B = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}.
\] Then we have
\[
[A]_{B,B} = \begin{pmatrix} -3 & 0 \\ 1 & -3 \end{pmatrix}, \quad A = P \begin{pmatrix} -3 & 0 \\ 1 & -3 \end{pmatrix} P^{-1}.
\]

The semisimple part is just \(S = -3I_2 \), and the nilpotent part is:
\[
N = B_1 = P \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} P^{-1}.
\]
3.2. **Three-by-three matrices.** This is basically as in the last subsection, except now there are more possible types of A. The first question to answer is: what is the characteristic polynomial of A. Of course we know this is $c_A(X) = \det(XI_3 - A)$. But a faster way of calculating this is as follows. We know that the characteristic polynomial has the form

$$c_A(X) = X^3 - \text{trace}(A)X^2 + tX - \det(A),$$

for some complex number $t \in \mathbb{C}$. Usually trace(A) and det(A) are not hard to find. So it only remains to determine t. This can be done by choosing any convenient number $c \in \mathbb{C}$ other than $c = 0$, computing det($cI_2 - A$) (here it is often useful to choose c equal to one of the diagonal entries to reduce the number of computations), and then solving the one linear equation

$$ct + (c^3 - \text{trace}(A)c^2 - \det(A)) = \det(cI_2 - A),$$

(35)

to find t. Let’s see an example of this:

$$D = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 1 & 2 \\ 0 & -1 & 3 \end{pmatrix}. \quad (36)$$

Here we easily compute trace(D) = 6 and det(D) = 8. Finally to compute the coefficient t, we set $c = 2$ and we get

$$\det(2I_2 - A) = \det \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & -2 \\ 0 & 1 & -1 \end{pmatrix} = 0. \quad (37)$$

Plugging this in, we get

$$(2)^3 - 6(2)^2 + t(2) - 8 = 0 \quad (38)$$
or $t = 12$, i.e. $c_A(X) = X^3 - 6X^2 + 12X - 8$. Notice from above that 2 is a root of this polynomial (since det$(2I_3 - A) = 0$). In fact it is easy to see that $c_A(X) = (X - 2)^3$.

Now that we know how to compute $c_A(X)$ in a more efficient way, we can begin our analysis. There are three cases depending on whether $c_A(X)$ has three distinct roots, two distinct roots, or only one root.

Three roots: Suppose that $c_A(X) = (X - \lambda_1)(X - \lambda_2)(X - \lambda_3)$ where $\lambda_1, \lambda_2, \lambda_3$ are distinct. For each $i = 1, 2, 3$ define $B_i = \lambda_i I_3 - A$. By Gauss-Jordan elimination, for each B_i we can compute a basis for ker(B_i). In fact each ker(B_i) has dimension 1, so we can find a vector v_i such that $E_{\lambda_i} = \ker(B_i) = \text{span}(v_i)$. We form a basis $B = (v_1, v_2, v_3)$ and the transition matrix $P = (v_1|v_2|v_3)$. Then we have

$$[A]_{B,B} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \quad A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} P^{-1}. \quad (39)$$

We also have $S = A$ and $N = 0$.

Let’s see how this works in an example. Consider the matrix
\[A = \begin{pmatrix} 7 & -7 & 2 \\ 8 & -8 & 2 \\ 4 & -4 & 1 \end{pmatrix}. \] (40)

It is easy to see that trace(A) = 0 and also det(A) = 0. Finally we consider the determinant of \(I_3 - A \). Using cofactor expansion along the third column, this is:

\[\det \begin{pmatrix} -6 & 7 & -2 \\ -8 & 9 & -2 \\ -4 & 4 & 0 \end{pmatrix} = -2((-8)4 - 9(-4)) - (-2)((-6)4 - 7(-4)) = -2(4) + 2(4) = 0. \] (41)

So we have the linear equation
\[1^3 - 0 * 1^2 + t * 1 - 0 = 0, t = -1. \] (42)

Thus \(c_A(X) = X^3 - X = (X + 1)X(X - 1) \). So A has the three eigenvalues \(\lambda_1 = -1, \lambda_2 = 0, \lambda_3 = 1 \). We define \(B_1 = A - (-1)I_3, B_2 = A, B_3 = A - I_3 \). By Gauss-Jordan elimination we find

\[E_{-1} = \ker(B_1) = \text{span} \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}, E_0 = \ker(B_2) = \text{span} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \]
\[E_1 = \ker(B_3) = \text{span} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}. \]

We define
\[\mathcal{B} = \begin{pmatrix} 3 & 4 \\ 2 & 0 \end{pmatrix}, \quad P = \begin{pmatrix} 3 & 1 & 2 \\ 4 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}. \] (43)

Then we have
\[[A]_{\mathcal{B}, \mathcal{B}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A = P \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}. \] (44)

Two roots: Suppose that \(c_A(X) \) has two distinct roots, say \(c_A(X) = (X - \lambda_1)^2(X - \lambda_2) \). Then we form \(B_1 = A - \lambda_1 I_3 \) and \(B_2 = A - \lambda_2 I_3 \). By performing Gauss-Jordan elimination, we find bases for \(E_{\lambda_1} = \ker(B_1) \) and for \(E_{\lambda_2} = \ker(B_2) \). There are two cases depending on the dimension of \(E_{\lambda_1} \).

The first case is when \(E_{\lambda_1} \) has dimension 2. Then we have a basis \((v_1, v_2)\) for \(E_{\lambda_1} \) and a basis \(v_3 \) for \(E_{\lambda_2} \). With respect to the basis \(\mathcal{B} = (v_1, v_2, v_3) \) and defining \(P = (v_1 | v_2 | v_3) \), we have

\[[A]_{\mathcal{B}, \mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}, A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} P^{-1}. \] (45)

In this case \(S = A \) and \(N = 0 \).
The second case is when E_{λ_1} has dimension 2. Using Gauss-Jordan elimination we find a basis for $E_{\lambda_1}^{\text{gen}} = \ker(B_1^2)$. Choose any vector $v_1 \in E_{\lambda_1}^{\text{gen}}$ which is not in E_{λ_1} and define $v_2 = B_1 v_1$. Also using Gauss-Jordan elimination we may find a vector v_3 which forms a basis for E_{λ_2}. Then with respect to the basis $\mathcal{B} = (v_1, v_2, v_3)$ and forming the transition matrix $P = (v_1|v_2|v_3)$, we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 1 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}, A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 1 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} P^{-1}. \quad (46)$$

Also we have

$$[S]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}, S = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} P^{-1}, \quad (47)$$

and

$$[N]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A = P \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}. \quad (48)$$

Let’s see how this works in an example. Consider the matrix

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & -1 \\ -1 & 0 & 2 \end{pmatrix}. \quad (49)$$

It isn’t hard to show that $c_A(X) = (X - 3)^2(X - 2)$. So the two eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 2$. We define the two matrices

$$B_1 = A - 3I_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & -1 \end{pmatrix}, B_2 = A - 2I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 0 \end{pmatrix}. \quad (50)$$

By Gauss-Jordan elimination we calculate that $E_2 = \ker(B_2)$ has a basis consisting of $v_3 = (0,1,1)^\dagger$. By Gauss-Jordan elimination, we find that $E_3 = \ker(B_1)$ has a basis consisting of $(0,1,0)^\dagger$. In particular it has dimension 1, so we have to keep going. We have

$$B_1^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}. \quad (51)$$

By Gauss-Jordan elimination (or inspection), we conclude that a basis consists of $(1,0,-1)^\dagger, (0,1,0)^\dagger$. A vector in $E_3^{\text{gen}} = \ker(B_1^2)$ which isn’t in E_3 is $v_1 = (1,0,-1)^\dagger$. We define $v_2 = B_1 v_1 = (0,1,0)^\dagger$. Then with respect to the basis

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}\right), P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}. \quad (52)$$

we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}, A = P \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} P^{-1}. \quad (53)$$
We also have that

\[
[S]_{B,B} = \begin{pmatrix}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{pmatrix},
S = P \begin{pmatrix}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{pmatrix} P^{-1} = \begin{pmatrix}
3 & 0 & 0 \\
-1 & 3 & 1 \\
-1 & 0 & 2
\end{pmatrix}, \quad (54)
\]

\[
[N]_{B,B} = \begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix},
N = P \begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} P^{-1} = \begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}. \quad (55)
\]

One root: The final case is when there is only a single root of \(c_A(X)\), say \(c_A(X) = (X - \lambda_1)^3\). Again we form

\[
B_1 = A_1 - \lambda_1 I_3. \quad (54)
\]

This case breaks up further depending on the dimension of \(E_{\lambda_1} = \ker(B_1)\). The simplest case is when \(E_{\lambda_1}\) is three-dimensional, because in this case \(A\) is diagonal with respect to ANY basis and there is nothing more to do.

Dimension 2 Suppose that \(E_{\lambda_1}\) is two-dimensional. This is a case in which both \(G_1\) and \(G_2\) are nontrivial. We begin by finding a basis \((w_1, w_2)\) for \(E_{\lambda_1}\). Choose any vector \(v_1\) which is not in \(E_{\lambda_1}\) and define \(v_2 = B_1 v_1\). Then find a vector \(v_3\) in \(E_{\lambda_1}\) which is NOT in the span of \(v_2\). Define the basis \(B = (v_1, v_2, v_3)\) and the transition matrix \(P = (v_1|v_2|v_3)\). Then we have

\[
[A]_{B,B} = \begin{pmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_1 & 0 \\
0 & 0 & \lambda_1
\end{pmatrix},
A = P \begin{pmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_1 & 0 \\
0 & 0 & \lambda_1
\end{pmatrix} P^{-1}. \quad (56)
\]

Notice that there is a Jordan block of size 2 and a Jordan block of size 1. Also, \(S = \lambda_1 I_3\) and we have \(N = B_1\).

Let’s see how this works in an example. Consider the matrix

\[
A = \begin{pmatrix}
-1 & -1 & 0 \\
1 & -3 & 0 \\
0 & 0 & -2
\end{pmatrix}. \quad (57)
\]

It is easy to compute \(c_A(X) = (X + 2)^3\). So the only eigenvalue of \(A\) is \(\lambda_1 = -2\). We define \(B_1 = A - (-2) I_3\), and we have

\[
B_1 = \begin{pmatrix}
1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{pmatrix}. \quad (58)
\]

By Gauss-Jordan elimination, or by inspection, we see that \(E_{-2} = \ker(B_1)\) has a basis \(((1,1,0)^\dagger, (0,0,1)^\dagger)\). Since this is 2-dimensional, we are in the case above. So we choose any vector not in \(E_{-2}\), say \(v_1 = (1,0,0)^\dagger\). We define \(v_2 = B_1 v_1 = (1,1,0)^\dagger\). Finally, we choose a vector in \(E_{\lambda_1}\) which is not in the span of \(v_2\), say \(v_3 = (0,0,1)^\dagger\). Then we define

\[
\mathcal{B} = \begin{pmatrix}
(1,0,0)^\dagger, (1,1,0)^\dagger, (0,0,1)^\dagger
\end{pmatrix},
P = \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}. \quad (59)
\]
We have

\[
[A]_{B,B} = \begin{pmatrix}
-2 & 0 & 0 \\
1 & -2 & 0 \\
0 & 0 & -2
\end{pmatrix}, \quad A = P \begin{pmatrix}
-2 & 0 & 0 \\
1 & -2 & 0 \\
0 & 0 & -2
\end{pmatrix} P^{-1}.
\]

(60)

We also have \(S = -2I_3 \) and \(N = B_1 \).

Dimension One In the final case for three by three matrices, we could have that \(c_A(X) = (X - \lambda_1)^3 \) and \(E_{\lambda_1} = \ker(B_1) \) is one-dimensional. In this case we must also have \(\ker(B_2) \) is two-dimensional. By Gauss-Jordan we compute a basis for \(\ker(B_2) \) and then choose ANY vector \(v_1 \) which is not contained in \(\ker(B_2) \). We define \(v_2 = B_1 v_1 \) and \(v_3 = B_1 v_2 = B_2^2 v_1 \). Then with respect to the basis \(B = (v_1, v_2, v_3) \) and the transition matrix \(P = (v_1|v_2|v_3) \), we have

\[
[A]_{B,B} = \begin{pmatrix}
\lambda_1 & 0 & 0 \\
1 & \lambda_1 & 0 \\
0 & 1 & \lambda_1
\end{pmatrix}, \quad A = P \begin{pmatrix}
\lambda_1 & 0 & 0 \\
1 & \lambda_1 & 0 \\
0 & 1 & \lambda_1
\end{pmatrix} P^{-1}.
\]

(61)

We also have \(S = \lambda_1 I_3 \) and \(N = B_1 \).

Let’s see how this works in an example. Consider the matrix

\[
A = \begin{pmatrix}
5 & -4 & 0 \\
1 & 1 & 0 \\
2 & -3 & 3
\end{pmatrix}.
\]

(62)

The trace is visibly 9. Using cofactor expansion along the third column, the determinant is \(+3(5*1 - 1(-4)) = 27\). Finally, we compute \(\det(3I_3 - A) = 0 \) since \(3I_3 - A \) has the zero vector for its third column. Plugging in this gives the linear relation

\[
(3)^3 - 9(3)^2 + t(3) - 27 = 0, \quad t = 27.
\]

(63)

So we have \(c_A(X) = X^3 - 9X^2 + 27X - 27 \). Also we see from the above that \(X = 3 \) is a root. In fact it is easy to see that \(c_A(X) = (X - 3)^3 \). So \(A \) has the single eigenvalue \(\lambda_1 = 3 \).

We define \(B_1 = A_1 - 3I_3 \), which is

\[
B_1 = \begin{pmatrix}
2 & -4 & 0 \\
1 & -2 & 0 \\
2 & -3 & 0
\end{pmatrix}.
\]

(64)

By Gauss-Jordan elimination we see that \(E_3 = \ker(B_1) \) has basis \((0, 0, 1)^\dagger\). Thus we are in the case above. Now we compute

\[
B_2 = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & -2 & 0
\end{pmatrix}.
\]

(65)

Either by Gauss-Jordan elimination or by inspection, we see that \(\ker(B_2) \) has basis \((2, 1, 0)^\dagger, (0, 0, 1)^\dagger\). So for \(v_1 \) we choose any vector not in the span of these vectors, say \(v_1 = (1, 0, 0)^\dagger \). Then we define \(v_2 = B_1 v_1 = (2, 1, 2)^\dagger \) and we define \(v_3 = B_1 v_2 = B_2^2 v_1 = (0, 0, 1)^\dagger \). So with respect to
the basis and transition matrix

\[B = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{pmatrix}, \quad P = \begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{pmatrix}, \quad (66) \]

we have

\[[A]_{B,B} = \begin{pmatrix}
3 & 0 & 0 \\
1 & 3 & 0 \\
0 & 1 & 3
\end{pmatrix}, \quad A = P \begin{pmatrix}
3 & 0 & 0 \\
1 & 3 & 0 \\
0 & 1 & 3
\end{pmatrix} P^{-1}. \quad (67) \]

We also have \(S = 3I_3 \) and \(N = B_1 \).