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MAT 320 Practice for Midterm 2 with Solutions

Remark. If you are comfortable with all of the following problems, you will be well prepared for
Midterm 2.

Exam Policies. You must show up on time for all exams. Please bring your student ID card: ID
cards may be checked, and students may be asked to sign a picture sheet when turning in exams.
Other policies for exams will be announced / repeated at the beginning of the exam.

If you have a university-approved reason for taking an exam at a time different than the scheduled
exam (because of a religious observance, a student-athlete event, etc.), please contact your instructor
as soon as possible. Similarly, if you have a documented medical emergency which prevents you
from showing up for an exam, again contact your instructor as soon as possible.

All exams are closed notes and closed book. Once the exam has begun, having notes or books on
the desk or in view will be considered cheating and will be referred to the Academic Judiciary.

It is not permitted to use cell phones, calculators, laptops, MP3 players, Blackberries or other
such electronic devices at any time during exams. If you use a hearing aid or other such device,
you should make your instructor aware of this before the exam begins. You must turn off your
cell phone, etc., prior to the beginning of the exam. If you need to leave the exam room for any
reason before the end of the exam, it is still not permitted to use such devices. Once the exam has
begun, use of such devices or having such devices in view will be considered cheating and will be
referred to the Academic Judiciary. Similarly, once the exam has begun any communication with a
person other than the instructor or proctor will be considered cheating and will be referred to the
Academic Judiciary.

Review Topics.
Definitions. Please know all of the following definitions. Monotone Sequence. Nondecreasing
/ Nonincreasing Sequence. Bounded Sequence. Limit Supremum / Limit Infimum.
Cauchy Sequence. Subsequence. Subsequential Limit. Metric Space and Distance
Function. Ball of Radius ε Centered at x0 in a Metric Space. Sequence, Subsequence,
Boundedness, Convergence, Cauchy Sequence in a Metric Space. Complete Metric
Space. Interior of a Subset of a Metric Space. Open Subset / Closed Subset of a
Metric Space. Closure of a Subset of a Metric Space. Boundary of a Subset of a
Metric Space. Decreasing Sequence of Closed Bounded Subsets of a Metric Space.
Open Cover / Subcover of an Open Cover. Compactness. Series. Convergence of a
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Series / Divergence of a Series. Absolute Convergence of a Series. Geometric Series.
Cauchy Criterion for Convergence of a Series. Continuity at x0 for a Real-Valued
Function. Continuous Function / Discontinuous Function.
Results. Please know all of the following lemmas, propositions, theorems and corollaries.

Monotone Convergence Theorem. Every bounded monotone sequence of real numbers con-
verges. Every unbounded monotone sequence either diverges to +∞ or diverges to −∞.

Test for Convergence Via Lim Inf and Lim Sup. A bounded sequence of real numbers
converges if and only if the lim inf equals the lim sup, in which case both equal the limit of the
sequence.

Cauchy Convergence Theorem. A sequence of real numbers converges if and only if it is a
Cauchy sequence.

Convergence and Subsequences. Every subsequence of a convergent sequence converges to the
same limit as the original sequence.

Subsequential Limits and Lim Inf / Lim Sup. Every subsequential limit is bounded below
by lim inf and bounded above by lim sup. If lim inf is finite, resp. if lim sup is finite, then it is the
limit of a monotone subsequence.

Bolzano-Weierstrass Theorem. Every bounded sequence of real numbers has a convergent
subsequence.

Convergence in a Product Metric Space. A sequence of elements of Rk converges with the
Euclidean metric if and only if each of the k component sequences converges in R.

Cauchy Convergence Theorem for Rk. Every Cauchy sequence in Rk (with the Euclidean
metric) converges. Said differently, Rk with the Euclidean metric is a complete metric space.

Bolzano-Weierstrass Theorem for Rk. Every bounded sequence in Rk (with the Euclidean
metric) has a convergent subsequence.

Axioms for a Topology. For a metric space (S, d), the empty set and S are both open subsets.
The intersection of any finite collection of open subsets is an open subset. The union of any
collection of open subsets is an open subset. Equivalently, both the empty set and S are closed
subsets, the union of finitely many closed subsets is a closed subset, and the intersection of an
arbitrary collection of closed subsets is a closed subset.

Interiors and Closures. For a subset T of a metric space (S, d), the interior of T equals the
maximal open subset of S that is contained in T . The closure of T equals the minimal closed subset
of S that contains T . In particular, S is open if and only if S equals its interior, resp. S is closed
if and only if S equals its closure.

Countable Compactness and Sequential Compactness. For every metric space (S, d) that
satisfies the Bolzano-Weierstrass theorem (i.e., bounded, closed subsets are “sequentially compact”),
every decreasing sequence of nonempty, bounded, closed subsets has nonempty intersection (i.e.,
bounded, closed subsets are “countably compact”).
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Heine-Borel Theorem. Every bounded metric space (S, d) that satisfies the Bolzano-Weierstrass
theorem is compact: every open covering has a finite subcovering. In particular, every bounded,
closed subset of Rk is compact.

Geometric Series Test. For a 6= 0, the geometric series
∑∞

n=0 ar
n converges if and only if |r| < 1,

in which case it converges absolutely.

p-Series Test. For p > 0, the series
∑∞

n=1(1/n
p) converges if and only if p > 1.

Cauchy Criterion for Convergence. A series converges if and only if the sequence of partial
sums is a Cauchy sequence.

Comparison Test. A series that is bounded above termwise in absolute value by a convergent
series is also convergent. A nonnegative series that is bounded below by a divergent nonnegative
series is also divergent.

Ratio Test. A series of nonzero real numbers is absolutely convergent if the lim sup of the absolute
values of successive ratios is less than 1. The series diverges if the lim inf of the absolute values of
the successive ratios is greater than 1.

Root Test. A series
∑∞

n=0 an is absolutely convergent if lim sup n
√
|an| is less than 1. The series

diverges if lim sup n
√
|an| is greater than 1.

Integral Test. If f(x), x > 0 is an integrable function such that f(x) ≥ an ≥ 0 for every n ∈ N
and for every x ∈ [n − 1, n], and if

∫∞
x=0

f(x)dx converges, then also
∑∞

n=0 an converges and is
bounded above by the improper integral. Conversely, if an ≥ f(x) ≥ 0 for every n ∈ N and for
every x ∈ [n− 1, n], and if

∫∞
x=0

f(x)dx diverges, then also
∑∞

n=0 an diverges.

Alternating Series Test. For a nondecreasing sequence (an) of nonnegative real numbers, the
alternating series

∑
(−1)nan converges if and only if (an) converges to 0.

Sequential Convergence and Convergence. A function f defined at x0 satisfies the ε − δ
definition of continuity if and only if it satisfies the sequential definition of continuity.

Properties of Continuous Functions. The class of continuous functions (defined on a spec-
ified set, continuity measured at a specified point) is preserved by absolute values, scaling, sum,
difference, product, and nonzero division. The composition of continuous functions is continuous.

Extremal Value Theorem. Every bounded, closed subset of R has a maximum, and it has a
minimum. Every continuous, real-valued function defined on a compact set has a maximum value
and a minimum value on that compact set.

Intermediate Value Theorem. Every continuous function defined on a bounded, closed interval
takes on every value between its maximum value and its minimum value.

Strictly Increasing Functions. A strictly increasing function defined on an interval is continuous
if and only if the image is an interval. In this case, the inverse function is also continuous.

Please review all of the homework exercises on Sections 10 - 18. In addition the following theoretical
problems are good practice.
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Practice Problems.

(1) For a sequence of real numbers, if every monotone subsequence converges to a common limit,
prove that the sequence converges to that limit.

Solution to (1) For a sequence (sn)n∈N, if (sn)n∈N is not bounded above, then there exists a
monotone subsequence (snk

) that is not bounded above: define n1 to be the smallest integer n ∈ N
such that sn1 > 1, and for every integer k ∈ N, recursively define nk+1 to be the smallest integer
n ∈ N such that sn > max{k, s1, . . . , snk

}. Yet every convergent sequence is bounded above. Thus,
if every monotone subsequence converges then (sn)n∈N is bounded above. By a similar argument,
also (sn)n∈N is bounded below. In particular, since the sequence is bounded, both lim sup sn and
lim inf sn are defined.

There exists a monotone subsequence (snk
) that converges to lim sup sn. Similarly, there exists

a monotone sequence (snk
) that converges to lim inf sn. Thus, since these monotone sequences

converge to a common limit, then lim sup sn equals lim inf sn. Therefore the bounded sequence
(sn)n∈N converges to the common limit lim sn = lim sup sn = lim inf sn.

(2) Prove that every subsequence of a Cauchy sequence (in a specified metric space) is a Cauchy
sequence. Prove that every subsequence of a convergent sequence is a convergent sequence, and the
limits are equal.

Solution to (2) For a sequence (sn)n∈N, a subsequence is a sequence of the form (snk
)k∈N for a

strictly increasing sequence of natural numbers 1 ≤ n1 < n2 < n3 < . . . . For every integer k ∈ N,
by induction on k, nk is at least as large as k.

First, let (sn)n∈N be a sequence that converges to s. Let (snk
)k∈N be a subsequence. For every

ε > 0, since (sn)n∈N converges, there exists N ∈ N such that for every n ∈ N with n ≥ N , |sn − s|
is less than ε. For every k ∈ N with k ≥ N , since nk is at least as large as k, in particular nk ≥ N .
Therefore, |snk

− s| is less than ε. Thus (snk
)k∈N converges to s.

Next, let (sn)n∈N be a Cauchy sequence. For every ε > 0, there exists N ∈ N such that for every
m,n ∈ N with m ≥ N and with n ≥ N , |sn− sm| is less than ε. For every k, l ∈ N with k ≥ N and
with l ≥ N , then nk ≥ k ≥ N and nl ≥ l ≥ N . Therefore, |snk

− snl
| is less than ε. Thus (snk

)k∈N
is a Cauchy sequence.

(3) For a metric space (S, d) and a subset C, if C with its induced metric is a complete metric
space, prove that C is a closed subset of S.

Solution to (3) Recall that a subset C of a metric space is a closed subset if and only if for every
sequence (cn)n∈N of elements cn ∈ C that converges to an element s as a sequence in S, then, in
fact, s is an element of C. As a convergent sequence in S, (cn)n∈N is a Cauchy sequence in S.
Thus, considered as a sequence in C with its induced metric, (cn)n∈N is a Cauchy sequence in C.
Since C is a complete metric space, (cn)n∈N converges to an element of C. A sequence can converge
to at most one limit (with respect to a given metric function), and thus the limit in C equals s.
Therefore s is an element of C, and C is a closed subset of S.
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(4) Give an example of a sequence of real numbers such that no subsequence is convergent. Prove
your answer.

Solution to (4) Let (sn)n∈N be a sequence. Let R be any positive real number. Consider the
subset AR ⊂ N of integers n such that |sn| ≤ R. If AR is infinite, say {n1, n2, n3, . . . } with
1 ≤ n1 < n2 < . . . , then the subsequence (snk

)nk∈AR
is a bounded sequence. Thus, by Bolzano-

Weierstrass, this bounded sequence has a convergent subsequence. In particular, (sn)n∈N has a
convergent subsequence.

Conversely, if (snk
)k∈N is a convergent subsequence, then it is bounded, i.e., there exists a positive

real number R such that {nk|k ∈ N} is an infinite subset of AR. Therefore, the sequence (sn)n∈N
has a convergent subsequence if and only if AR is infinite for some positive real number R. Con-
trapositively, (sn)n∈N has no convergent subsequence if and only if, for every positive real number
R, AR is a finite set.

There are many such sequences. The simplest are the unbounded, strictly increasing (respectively
strictly decreasing) sequences, e.g., (sn)n∈N = (n)n∈N and the like. However, any sequence (sn)n∈N
such that (|sn|)n∈N is unbounded and strictly increasing gives another example, e.g., (sn)n∈N =
((−1)nn)n∈N.

(5) For a metric space (S, d) and complete subsets C, C ′, prove that the union C ∪ C ′ is again
complete. For every collection (Ci) of complete subsets, prove that the common intersection ∩iCi

is complete.

Solution to (5) Let C and C ′ be complete subsets of (S, d). Let (cn)n∈N be a Cauchy sequence
of elements cn ∈ C ∪ C ′. Thus, for every n ∈ N, either cn is in C or cn is in C ′ (or both). Define
A ⊂ N to be the set of n such that cn ∈ C, and define A′ ⊂ N to be the set of n such that cn ∈ C ′.
Then A∪A′ equals N, so that at least one of A or A′ is infinite. Without loss of generality, assume
that A is infinite, say A = {n1, n2, n3, . . . } with 1 ≤ n1 < n2 < n3 < . . . .

The sequence (cnk
)nk∈A is a subsequence of (cn)n∈N that is a Cauchy sequence in C. Since C is

complete, this Cauchy sequence converges to an element c in C. A Cauchy sequence converges if
and only if at least one of its subsequences converges, and then the limits are (necessarily) equal.
Thus, the entire sequence (cn)n∈N also converges to the element c in C. Since c is an element in
C ∪C ′, the Cauchy sequence converges to an element in C ∪C ′. A similar argument applies in case
A′ is infinite. Thus, in both cases, the Cauchy sequence (cn)n∈N converges to an element in C ∪C ′.
Therefore C ∪ C ′ is a complete metric space.

Next, let (cn)n∈N be a Cauchy sequence of elements cn ∈ ∩iCi. For every i, since every cn is in Ci,
the entire sequence (cn)n∈N is a Cauchy sequence in Ci. Since Ci is complete, the Cauchy sequence
converges to a limit c, and that limit c is in Ci. Since the limit of a convergent sequence is unique,
the limit c is in Ci for every i. Thus c is in ∩iCi. So the Cauchy sequence (cn)n∈N converges to an
element c in ∩iCi. Therefore ∩iCi is complete.

Here is a different proof of this. Since every complete subset of a metric space is a closed subset,
and since every intersection of closed subsets is a closed subset, also ∩iCi is a closed subset of S.
For any particular i, ∩iCi is a subset of Ci that is closed in S, hence closed in Ci. Every closed
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subset of a complete metric space is complete. Since Ci is a complete metric space, the closed
subset ∩iCi is also a complete metric space.

(6) For a metric space (S, d), prove that every compact subset is a closed subset. For compact
subsets C, C ′, prove that the union C ∪C ′ is again compact. For every collection (Ci) of compact
subsets, prove that the common intersection ∩iCi is a compact subset.

Solution to (6) Let C be a compact subset of (S, d). There are two proofs that C is a closed
subset of S. First, because of Heine-Borel, every sequence in C has a subsequence that converges
to an element in C. In particular, every Cauchy sequence has a convergent subsequence, and thus
the entire Cauchy sequence converges to an element in C. Thus C is complete, and hence C is a
closed subset of S.

There is also a proof that does not (explicitly) use Heine-Borel, but instead uses the definition of
compactness in terms of finite subcovers of (infinite) open covers. The goal is to prove that C is a
closed subset, or, equivalently, to prove that the complement S \C is an open subset. Let s ∈ S \C
be any point. For every n ∈ N, consider the closed subset

B1/n(s) := {t ∈ S|d(t, s) ≤ 1/n}.

This is closed because the distance function is continuous (using the triangle inequality). Thus the
complement S \B1/n(s) is an open subset of S,

S \B1/n(s) := {t ∈ S|d(t, s) > 1/n}.

For every c ∈ C, since c 6= s, by the positive definiteness of the metric function, also d(c, s) is
positive. Thus, by the Archimedean property of R, there exists n ∈ N such that d(c, s) > 1/n, i.e.,
c is in the open subset S \B1/n(s). Therefore the collection of open subsets (S \B1/n(s))n∈N is an
infinite open cover of C.

Since C is compact, this infinite open cover of C has a finite subcover. Since these open subsets
are pairwise nested, among the finitely many opens in this finite subcover, there is a single open
that contains C, i.e., C is contained in S \B1/n(s) for some n ∈ N. In particular C is disjoint from
B1/n(s). Thus C is disjoint from the interior, i.e., the usual open ball B1/n(s). Thus B1/n(s) is
contained in S \C. Since for every s in S \C there exists n ∈ N with B1/n(s) contained in S \C, it
follows that S \C is an open subset of S. Hence the complement, C, is a closed subset of S. (This
second proof easily adapts to any “Hausdorff” topological space.)

Next, let C and C ′ be two compact subset of S. Let (Ui)i∈I be an open covering of C ∪ C ′. In
particular, it is an open covering of C. Thus, since C is compact, there exists a finite subset J ⊂ I,
such that already the finite collection of open sets (Ui)i∈J covers C. Similarly, since C ′ is compact,
there exists a finite subset J ′ ⊂ I, such that (Ui)i∈J ′ covers C ′. Since both J and J ′ are finite, also
the union J ∪J ′ is finite. Thus (Ui)i∈J∪J ′ is a finite open cover of C ∪C ′. Since every open covering
of C ∪ C ′ has a finite subcovering, C ∪ C ′ is a compact subset of S.

Finally, let (Ci)i∈I be any collection of compact subsets of S. By the argument above, every Ci is
a closed subset of S. The intersection of an arbitrary collection of closed subset is a closed subset,
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hence ∩i∈ICi is a closed subset of S. For any particular i, it is also contained in Ci, hence it is
a closed subset of Ci. Therefore, as a closed subset of a compact metric space, ∩i∈ICi is also a
compact metric space.

(7) For a metric space (S, d) and subsets A, B, prove that (A ∪ B)− equals A− ∪ B−. Give an
example proving that (A ∩ B)− may be strictly contained in A− ∩ B−. Similarly, prove that the
interior of A ∩ B equals the intersection Ao ∩ Bo, yet the interior of A ∪ B may strictly contain
Ao ∪Bo.

Solution to (7) The set A− is a closed subset of S that contains A, and the set B− is a closed
subset of S that contains B. The union of two closed subsets is a closed subset. Thus A− ∪ B− is
a closed subset of S that contains A ∪ B. Since (A ∪ B)− is the minimal closed subset of S (with
respect to set inclusion) that contains A ∪B, it follows that A− ∪B− contains (A ∪B)−.

On the other hand, (A ∪ B)− is a closed subset of S that contains A ∪ B, and hence contains the
subset A of A ⊂ B. Since A− is the minimal closed subset of S that contains A, it follows that
(A ∪ B)− contains A−. By a similar argument, also (A ∪ B)− contains B−. Thus, since (A ∪ B)−

contains both A− and B−, also (A∪B)− contains A−∪B−. Since we have both inclusions, (A∪B)−

equals A− ∪B− as subsets of S.

For an example where (A∩B)− is strictly contained in A−∩B−, let S be R, and let d be the usual
metric, d(x, y) = |x−y|. Let A be Q and let B be R\Q. By the density of the rationals, Q− equals
R. Similarly, (R \ Q)− equals R. Thus A− ∩ B− equals R ∩ R = R. On the other hand, A ∩ B is
the empty set, so that (A ∩B)− equals ∅. Therefore (A ∩B)− is strictly contained in A− ∩B−.

For every subset E of S, the interior Eo equals S \ (S \E)−. In particular, by De Morgan’s Laws,
Eo ∩ F o equals S \ [(S \ E)− ∪ (S \ F )−]. By the argument above, (S \ E)− ∪ (S \ F )− equals
[(S \E)∪ (S \F )]−. Finally, by De Morgan’s Laws once more, (S \E)∪ (S \F ) equals S \ (E ∩F ).
Therefore Eo ∩ F o equals S \ [S \ (E ∩ F )]−, i.e., Eo ∩ F o equals (E ∩ F )o.

For an example where Ao ∪Bo is strictly contained in (A ∪B)o, let S be R with the usual metric,
let E be Q, and let F be R \ Q. Then Eo and F o are both empty, so that Eo ∪ F o equals ∅. On
the other hand, E ∪ F equals S, so that (E ∪ F )o equals S.

(8) If a series of nonnegative real numbers
∑∞

n=0 an converges, prove that also the series
∑∞

n=0 a
2
n

converges. Does the series
∑∞

n=0

√
an necessarily converge?

Solution to (8) Since the series
∑∞

n=0 an converges, by the Cauchy criterion, for every ε > 0 there

exists an integer N ∈ N such that for every pair of integers m, l with l ≥ m ≥ N , |
∑l

n=m an| is
less than ε. In particular, taking ε = 1 and taking l = m, there exists an integer N ∈ N such that
for every m ≥ N , 0 ≤ am < 1. Thus, by the order axioms, also 0 ≤ a2m < am < 1. Therefore
the series

∑∞
n=N a

2
n is bounded by the convergent series

∑∞
n=N an. By the Comparison Test, the

series
∑∞

n=N a
2
n is convergent. Since the tail of the series is convergent, the entire series

∑∞
n=0 a

2
n is

convergent.

For a convergent series
∑∞

n=0 an, the series
∑∞

n=0 an need not converge. One example is the series∑∞
n=0(1/n

2), which converges to ζ(2) = π2/6, although the associated series
∑∞

n=0(1/n), i.e., the
harmonic series, diverges to ∞ by comparison to the divergent improper integral

∫ x=∞
x=1

(1/x)dx.
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(9) For a series (an), if the series
∑∞

n=1 an converges, does it necessarily follow that for every
subsequence ank

, the series
∑∞

k=1 ank
converges? If

∑∞
n=1 an converges absolutely, does

∑∞
k=1 ank

converge absolutely?

Solution to (9) First, let (an)n∈N be a sequence such that the series
∑∞

n=1 an that converges
absolutely. Let (ank

)k∈N be any subsequence. Define (bn)n∈N to be the sequence such that bn equals
an if n equals nk for some k ∈ N, or else bn equals 0. Then for every n ∈ N, |bn| is at most |an|.
Thus, by the Comparison Test, also the series

∑∞
n=1 bn converges absolutely. Of course

∑∞
n=1 bn is

the same as the series
∑∞

k=1 ank
, hence the series

∑∞
k=1 ank

converges absolutely.

On the other hand, for a series
∑∞

n=1 an that converges conditionally, for a subsequence (ank
)k∈N,

the series
∑∞

k=1 ank
need not converge. For instance, for the alternating harmonic series (an)n∈N =

((−1)n/n)n∈N, the series
∑∞

n=1(−1)n/n does converge conditionally. Yet for the subsequence
(a2, a4, a6, . . . ), the associated series is

∑∞
k=1(−1)2k/2k = 2

∑∞
k=1 1/k, and this diverges.

(10) For a continuous function f defined on R, if f is constant on the terms of a convergent
sequence, prove that f takes the same value at the limit of the sequence. Conclude that if f is
constant on a set T , then f is also constant on the closure T− of T .

Solution to (10) Let f be constant with value c on the convergent sequence (sn)n∈N. Denote the
limit of the sequence by s. Since f is continuous, the inverse image of every open subset is an open
subset. Combined with De Morgan’s Laws, also the inverse image of every closed subset is a closed
subset. Since the singleton set {c} is closed, the inverse image f−1({c}) is a closed subset. Since
this subset contains (sn)n∈N, also this subset contains the limit s. Thus f(s) equals c.
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