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This thesis comprises of two main results which are proved using renormalization techniques.

For the first result, we show that a quadratic polynomial with a fixed Siegel disc of bounded type

rotation number is conformally mateable with the basilica polynomial fB(z) := z2 − 1.

For the second result, we study sufficiently dissipative complex quadratic Hénon maps with a semi-

Siegel fixed point of inverse golden-mean rotation number. It was recently shown in [GaRYa] that the

Siegel disks of such maps are bounded by topological circles. We investigate the geometric properties of

such curves, and demonstrate that they cannot be C1-smooth.
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Preface

In the last several decades, renormalization has emerged as a key theme in the field of low dimensional

dynamics through a series of seminal works of Douady and Hubbard [DH2], Sullivan [Su], McMullen

[Mc1, Mc2], Lyubich [Ly1], Yoccoz [Yo1, Hu], and many others. Loosely speaking, the renormalization

of a dynamical system is defined as a rescaled first return map on an appropriately chosen subset of

the phase space. Iterating this procedure reveals the small-scale asymptotic behaviour of the dynamics,

which is often universal and insensitive to the incidental details of the system.

The renormalization approach has been particularly useful in the study of indifferent dynamical

systems, which are often the most challenging cases. The numerous important examples of this include

the works of Herman [He], Lanford [La1, La2], Yoccoz [Yo2], Shishikura [Sh1, ISh], and Yampolsky

([Ya2, Ya3]). In this thesis, we consider two different applications of renormalization: the topological

modelling of the dynamics of Siegel rational maps, and the analysis of the geometric properties of Siegel

disks for dissipative Hénon maps. We present each topic in their own independent self-contained chapter,

which we summarize below.

1. Mating the Basilica with a Siegel Disk

In the first chapter, we study the following one-parameter family of quadratic rational maps

Ra(z) :=
a

z2 + 2z
for a ∈ C \ {0},

called the basilica family. The characteristic feature of a map Ra is that it has a superattracting two-

periodic orbit. The unique (up to an affine change of coordinates) quadratic polynomial that satisfies

this property is given by

fB(z) := z2 − 1
conj∼ 1

u2 + 2u
.

For the shape of its filled Julia set, we call fB the basilica polynomial. It follows that for a 6= 1, the

maps Ra provide examples of non-polynomial dynamical systems.

Analogous to the Mandelbrot set M for the quadratic polynomials, we can define the non-escape

locus MB in the parameter space of the basilica family. Comparing the plot of M shown in Figure

1.1 and the plot of MB shown in Figure 1.3, we see that the two sets are structurally very similar. In

fact, it is conjectured that the maps in MB are realizations of the matings of fB and the quadratic

polynomials in M. Loosely speaking, this means that the dynamics of Ra in MB is the amalgamation

of the dynamics of fB (from whence it obtains the superattracting two-periodic orbit) with the dynamics

of some corresponding quadratic polynomial in M.

1



2

In most cases, this conjecture has been verified through the works of Rees, Tan and Shishikura [Re,

Tan, Sh2]; Häıssinsky [Ha]; Aspenberg and Yampolsky [AYa]; and Dudko [Du]. The only parameters that

are not accounted for, but for which we still expect a positive answer, are the “nice” Siegel parameters

contained in the boundary of hyperbolic components that are not too “deep” inside MB. For our first

result, we settle the conjecture for a key subclass of such parameters. Specifically, we show that if Raν

has a fixed Siegel disk of bounded type rotation number ν = e2πθi, then Raν is a mating with the basilica.

The main ideas of the proof are as follows. First, by using a similar argument as the one found

in [YaZ], we prove the existence of a Blaschke product Fν whose dynamics outside the grand orbit of

the unit disc matches that of Raν . This Blaschke product Fν can then be transformed into Raν by a

quasiconformal surgery replacing the unit disc with a Siegel disc (see Theorem 1.4.5). This proves that

the boundary of the Siegel disc for Raν is a quasicircle, and that it contains a critical point (see Main

Theorem 1A).

Using Main Theorem 1A, we construct chains of iterated preimages of the Siegel disc connected by

iterated preimages of the critical point in the dynamical space of Raν . These structures are called bubble

rays, and they play an analogous role to external rays for polynomials. Using these bubble rays, we create

a dynamical partition for Raν . This naturally defines a correspondence between the map Raν and the

topological model given by the mating of the basilica polynomial fB and the Siegel quadratic polynomial

fS with rotation number ν. Theorem 1.4.5 then allows us to use a result in the renormalization theory of

critical circle maps developed by Yampolsky in [Ya3] called complex a priori bounds. Using this estimate,

we are able to show that the dynamic partition elements for Raν shrink to points. This implies that the

correspondence between Raν and the mating of fB and fS is one-to-one. From this key fact, the rest of

the result follows readily.

2. The Siegel Disk of a Dissipative Hénon Map Has Non-Smooth

Boundary

In the second chapter, we study the following two-dimensional extension of a one-parameter family of

quadratic polynomials

Hc,b(x, y) = (x2 + c− by, x) for c ∈ C and b ∈ C \ {0}

called the (complex quadratic) Hénon family. More specifically, we are interested in Hénon maps Hµ∗,ν =

Hcµ∗,ν ,bµ∗,ν
that has a fixed point p0 with multipliers µ∗ = e2πiθ∗ and ν ∈ D \ {0}, where

θ∗ :=

√
5− 1

2

is the inverse golden-mean.

By a classic theorem of Siegel, there exists a neighborhoods N of (0, 0) and N of p0, and a biholo-

morphic change of coordinates

φ : (N, (0, 0))→ (N ,p0)

such that

Hµ∗,ν ◦ φ = φ ◦ L,
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where L(x, y) := (µ∗x, νy). This linearizing map can be biholomorphically extended to

φ : (D× C, (0, 0))→ (C,p0)

so that the image C := φ(D × C) is maximal (see [MNTU]). We call C and D := φ(D × {0}) the Siegel

cylinder and the Siegel disk of Hµ∗,ν respectively.

Consider the quadratic polynomial

fc∗(x) = x2 + c∗

with a Siegel fixed point x0 of multiplier µ∗. Let D be its Siegel disk, and let ψ : D → D be its

biholomoprhic linearizing map. It is well-known that ψ extends quasi-symmetrically to the boundary.

Moreover, ∂D contains the critical point of fc∗ . Since ∂D is invariant under fc∗ , it follows immediately

that ∂D cannot be a smooth curve.

For the Hénon map Hµ∗,ν , it was recently shown in [GaRYa] that φ restricted to the Siegel disk D
extends homeomorphically, but not C1-smoothly to the boundary ∂D (see Theorem 2.1.2). However,

this does not imply that ∂D is itself not a C1-smooth curve. Moreover, unlike in the one-dimensional

case, ∂D does not contain the critical point for Hµ∗,ν , as no such point exists. Indeed, Hµ∗,ν is a

diffeomorphism with a constant Jacobian equal to bµ∗,ν 6= 0.

Our proof of non-smoothness relies instead on the renormalization theory developed by Gaidashev

and Yampolsky in [GaYa]. Loosely speaking, they showed that high iterates of Hµ∗,ν restricted to

appropriately chosen nested neighborhoods that intersect ∂D converge to a universal degenerate one-

dimensional dynamical system with a simple critical point. Geometrically, this means that ∂D contains a

sequence of “near critical” points for higher iterates of Hµ∗,ν . Moreover, the higher the iterate, the more

“near critical” such points become. Hence, if ∂D were C1-smooth, then by the invariance of ∂D, these

“near critical” points would force ∂D to have corners. Such corners would accumulate to a singularity,

which would contradict the smoothness of ∂D.



Chapter 1

Mating the Basilica with a Siegel

Disk

1.1 The Definition of Mating

The simplest non-linear examples of holomorphic dynamical systems are given by the quadratic polyno-

mials in C. By an affine change of coordinates, any quadratic polynomial can be uniquely normalized

as

fc(z) := z2 + c for some c ∈ C.

This is referred to as the quadratic family.

The critical points for fc are ∞ and 0. Observe that ∞ is a superattracting fixed point for fc.

Let A∞c be the attracting basin of ∞. It follows from the maximum modulus principle that A∞c is a

connected set. The complement of A∞c is called the filled Julia set Kc. It is known that the boundary

of Kc is equal to the Julia set Jc := J(fc) for fc (see [M3]).

The non-escape locus in the parameter space for fc, referred to as the Mandelbrot set, is defined as

the following compact subset of C:

M := {c ∈ C | 0 /∈ A∞c }.

It is known that M is connected (see [DH1]). Moreover, it is not difficult to prove that Jc is connected

(and therefore, A∞c is simply connected) if and only if c ∈ M. In fact, if c /∈ M, then Jc = Kc is a

Cantor set, and the dynamics of fc restricted to Jc is conjugate to the dyadic shift map (see [M2]). We

also define the following subset of the Mandelbrot set:

L := {c ∈M | Jc is locally connected}.

It should be noted that L is a proper subset of M (for example, if c ∈ M is Cremer, then it is known

that Jc is not locally connected).

Some of the most celebrated results in holomorphic dynamics are centered on the quadratic family fc,

including those obtained by Douady and Hubbard [DH2], Milnor [M1], Yoccoz [Yo1], and Lyubich [Ly2].

Having been the focal point in the field since the subject first emerged, the dynamics of the quadratic

4



Chapter 1. Mating the Basilica with a Siegel Disk 5

Figure 1.1: The Mandelbrot set M. The 1/2-limb L1/2 is highlighted.

family is now almost completely understood. In contrast, obtaining a similarly explicit dynamical

description of other families of rational maps remains a wide open area of research. One of the most

natural starting point for advancement in this direction is the study of non-polynomial quadratic rational

maps. In this section, we describe a construction, originally put forward by Douady and Hubbard (see

[Do]), which produces quadratic rational maps by combining the dynamics of two quadratic polynomials.

Suppose c ∈ L. Since Jc is connected, A∞c must be a simply connected domain. Let

φc : A∞c → D

be the unique conformal Riemann mapping such that φc(∞) = 0 and φ′c(∞) > 0. It is not difficult to

prove that the following diagram commutes:

A∞c
fc−−−−→ A∞cyφc yφc

D z 7→z2−−−−→ D

and hence, φc is the Böttcher uniformization of fc on A∞c . Moreover, since Jc is locally connected,

Carathéodory’s theory implies that the inverse of φc extends continuously to the boundary of D (see

[M3]). If we let

τc := φ−1
c |∂D,

we obtain a continuous parametrization of Jc by the unit circle ∂D = R/Z known as a Carathéodory

loop. Observe that fc, when restricted to Jc, acts via τc as the angle doubling map:

fc(τc(t)) = τc(2t).

Now, suppose c1, c2 ∈ L. Using τc1 and τc2 , we can glue the dynamics of fc1 and fc2 together to

construct a new dynamical system as follows. First, we construct a new dynamical space Kc1 ∨Kc2 by
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gluing the filled Julia sets Kc1 and Kc2 :

Kc1 ∨Kc2 := (Kc1 tKc2)/{τc1(t) ∼ τc2(−t)}. (1.1)

We refer to the resulting equivalence relation ∼ as ray equivalence, and denote it by ∼ray. For a point

x in Kc1 or Kc2 , we denote the ray equivalency class of x by [x]ray.

We now define a new map

fc1 ∨ fc2 : Kc1 ∨Kc2 → Kc1 ∨Kc2 ,

called the formal mating of fc1 and fc2 , by letting fc1 ∨ fc2 ≡ fc1 on Kc1 and fc1 ∨ fc2 ≡ fc2 on Kc2 .

Note that the definition of fc1 ∨ fc2 is consistent, since on their Julia sets, both fc1 and fc2 act by angle

doubling.

Figure 1.2: The Douady rabbit fc with c ≈ −0.123 + 0.754i mated with the basilica polynomial fB.

If the space Kc1 ∨Kc2 is homeomorphic to the 2-sphere, then fc1 and fc2 are said to be topologically

mateable. If, in addition, there exists a quadratic rational map R and a homeomorphism

Λ : Kc1 ∨Kc2 → Ĉ

such that Λ is conformal on K̊c1 t K̊c2 ⊂ Kc1 ∨Kc2 , and the following diagram commutes:

Kc1 ∨Kc2

fc1∨fc2−−−−−→ Kc1 ∨Kc2yΛ

yΛ

Ĉ R−−−−→ Ĉ
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then fc1 and fc2 are said to be conformally mateable. The quadratic rational map R is called a conformal

mating of fc1 and fc2 . We also say that R realizes the conformal mating of fc1 and fc2 .

In applications, it is sometimes more useful to work with the following reformulation of the definition

of conformal mateability:

Proposition 1.1.1. Suppose c1, c2 ∈ L. Then fc1 and fc2 are conformally mateable if and only if there

exists a pair of continuous maps

Λ1 : Kc1 → Ĉ and Λ2 : Kc2 → Ĉ

such that for all i, j ∈ {1, 2} the following three conditions are satisfied:

(i) Λi(z) = Λj(w) if and only if z ∼ray w,

(ii) Λi is conformal on K̊ci , and

(iii) there exists a rational function R of degree 2 such that the following diagrams commute:

Kc1

fc1−−−−→ Kc1yΛ1

yΛ1

Ĉ R−−−−→ Ĉ

and

Kc2

fc2−−−−→ Kc2yΛ2

yΛ2

Ĉ R−−−−→ Ĉ

Proof. Assume that there exists a pair of maps Λ1 and Λ2 satisfying (i), (ii) and (iii). Consider the

space Kc1 ∨Kc2 given by (1.1). Define Λ : Kc1 ∨Kc2 → Ĉ by letting Λ|Kc1 := Λ1 and Λ|Kc2 := Λ2. By

(i), this definition is consistent. Conformal mateability readily follows from the other two properties of

Λ1 and Λ2.

Assume that fc1 and fc2 are conformally mateable, and let Λ be the conjugacy between fc1 ∨ fc2 and

a rational map R. Define

Λ1 := Λ|Kc1 and Λ2 := Λ|Kc2 .

The properties (i), (ii) and (iii) follow immediately.

Corollary 1.1.2. Suppose R is a conformal mating of fc1 and fc2 for some c1, c2 ∈ L. Then R has a

locally connected Julia set J(R).

Proof. Let Λ1 : Kc1 → Ĉ and Λ2 : Kc2 → Ĉ be as given in Proposition 1.1.1. Note that

J(R) = Λ1(Jc1) = Λ2(Jc2).

Since the continuous image of a compact locally connected set is locally connected, the result follows.

Example 1.1.3. For c ∈ L, the quadratic polynomial fc is trivially conformally mateable with the

squaring map f0(z) = z2. This follows from choosing Λ1 and Λ2 in Proposition 1.1.1 to be the identity

map on Kc and the inverse of the Böttcher uniformization of fc on A∞c respectively. Note that the

conformal mating of fc and f0 is realized by fc itself. The following result shows that with the exception

of this trivial case, the mating construction always yields a non-polynomial dynamical system.

Proposition 1.1.4. Suppose a quadratic polynomial P : C → C is a conformal mating of fc1 and fc2

for some c1, c2 ∈ L. Then either fc1 or fc2 must be equal to the squaring map f0.
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Proof. Let J(P ) and A∞P denote the Julia set and the attracting basin of infinity for P respectively. We

have

J(P ) = Λ1(Jc1) = Λ2(Jc2).

Hence, A∞P must be contained in either Λ1(K̊c1) or Λ2(K̊c2). Assume for concreteness that it is contained

in the former. Since Λ1|K̊c1 is conformal, and

fc1(z) = Λ−1
1 ◦ P ◦ Λ1(z) for all z ∈ Kc1 ,

we see that Λ−1
1 (∞) must be a superattracting fixed point for fc1 . The only member in the quadratic

family that has a bounded superattracting fixed point is the squaring map f0.

Example 1.1.5. Consider the formal mating of the basilica polynomial fB(z) := f−1(z) = z2 − 1 with

itself. The glued space KB∨KB consists of infinitely many spheres connected together at discrete nodal

points (refer to Section 1.5.1 for the structural properties of KB). Hence, it is not homeomorphic to

the 2-sphere. Therefore, fB is not conformally mateable with itself (since it is not even topologically

mateable with itself). This is actually a specific instance of a more general result, which we state below.

Let H0 be the principal hyperbolic component defined as the set of c ∈ M for which fc has an

attracting fixed point zc ∈ C. It is conformally parametrized by the multiplier of zc:

λ : c 7→ f ′c(zc)

(see e.g. [M2]). Note that λ extends to a homeomorphism between H0 and D.

A connected component of M\H0 is called a limb. It is known (see e.g. [M2]) that the closure of

every limb intersects ∂H0 at a single point. Moreover, the image of this point under λ is a root of unity.

Henceforth, the limb growing from the point λ−1(e2πip/q) for some p/q ∈ Q will be denoted by Lp/q. For

example, the parameter value −1 for the basilica polynomial fB(z) = z2−1 is contained in the 1/2-limb

L1/2.

The following standard observation is due to Douady [Do]:

Proposition 1.1.6. Suppose c1 and c2 are contained in complex conjugate limbs Lp/q and L−p/q of the

Mandelbrot set M. Then fc1 and fc2 are not topologically mateable.

Proof. There exists a unique repelling fixed point α1 ∈ K1 (resp. α2 ∈ K2) such that K1 \ {α1} (resp.

K2 \ {α2}) is disconnected. Since c1 and c2 are contained in complex conjugate limbs, α1 and α2 are in

the same ray equivalency class. Hence they are glued together to a single point in Kc1 ∨Kc2 . Removing

this single point from Kc1 ∨Kc2 leaves it disconnected, which is impossible if Kc1 ∨Kc2 is homeomorphic

to the 2-sphere. For more details, see [M2].

1.2 Matings with the Basilica Polynomial

Matings can be particularly useful in describing the dynamics in certain one-parameter families of rational

maps. The best studied example of such a family is

Ra(z) :=
a

z2 + 2z
for a ∈ C \ {0},
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which is referred to as the basilica family.

The critical points for Ra are ∞ and −1. Observe that {∞, 0} is a superattracting 2-periodic orbit

for Ra. Let A∞a be the attracting basin of {∞, 0}. The boundary of A∞a is equal to the Julia set J(Ra).

Proposition 1.2.1. Suppose f : Ĉ → Ĉ is a quadratic rational map with a superattracting 2-periodic

orbit. Then by a linear change of coordinates, f can be normalized as either:

(i) Ra for some a ∈ C \ {0}, or

(ii) z 7→ 1
z2 .

Proof. By a linear change of coordinates, we may assume that f has a superattracting 2-periodic orbit

{∞, 0} with a critical point at ∞. Let

f(z) =
a2z

2 + a1z + a0

b2z2 + b1z + b0
.

Since f(∞) = 0 and f(0) =∞, we have a2 = b0 = 0, b2 6= 0 and a0 6= 0. If a1 6= 0, then for r sufficiently

large, we have

f(reθ) ∼ a1

b2r
e−θ.

This implies that ∞ cannot be a critical point for f by the argument principle. Hence, we must have

a1 = 0. These observations yield the following expression for f :

f(z) =
a

z2 + bz
with a ∈ C \ {0}.

If the second critical point for f is equal to 0, then by using a similar argument as above, we see that

b = 0. In this case, we have

f(λz)/λ =
1

z2
,

where λ is a cube root of a.

On the other hand, if the second critical point for f is not equal to 0, then we may assume by a linear

change of coordinates that it is equal to −1. A straightforward computation shows that f ′(−1) = 0 if

and only if b = 2, which means f = Ra as claimed.

Analogously to M, the non-escape locus in the parameter space for Ra is defined as

MB := {a ∈ C \ {0} | − 1 /∈ A∞a }.

We also define the following subset of MB:

LB := {a ∈MB | J(Ra) is locally connected}.

The basilica polynomial

fB(z) := z2 − 1

is the only member of the quadratic family that has a superattracting 2-periodic orbit. Let KB be the

filled Julia set for fB. The following result is an analogue of the Böttcher uniformization theorem for

the quadratic family. Refer to [AYa] for the proof.
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Figure 1.3: The non-escape locus MB for Ra (in black). At the center of the largest component of
MB is the rational map R1, which realizes the conformal mating of the basilica polynomial fB with
the squaring map f0. Compare with Figure 1.1. Note that instead of a copy of the 1/2-limb L1/2, the
main component of MB has a second cusp at 0 (see Example 1.1.5).

Proposition 1.2.2. Suppose a ∈MB. Then there exists a unique conformal map ψa : A∞a → K̊B such

that the following diagram commutes:

A∞a
Ra−−−−→ A∞ayψa yψa

K̊B
fB−−−−→ K̊B

Moreover, if B is a connected component of A∞a , then ψa extends to a homeomorphism between B and

ψa(B).

Suppose for some c ∈ L∩ (C \L1/2), the quadratic polynomials fc and fB are conformally mateable.

If F : Ĉ → Ĉ is a conformal mating of fc and fB, then F has a superattracting 2-periodic orbit. By

Proposition 1.2.1, F can be normalized as Ra for some a ∈ LB.

In view of Proposition 1.2.2, it is natural to ask whether for every a ∈ LB, the quadratic rational

map Ra is a conformal mating of fc and fB for some c ∈ L ∩ (C \ L1/2). It turns out this cannot be

true: for some a ∈ LB, the map Ra can only be identified as the product more general form of mating

called mating with laminations between fc and fB with c /∈ L (see [Du]). However, the following weaker

statement does hold. The proof is completely analogous to the proof of Proposition 1.1.4, so we omit it

here.

Proposition 1.2.3. Suppose Ra is a conformal mating. Then Ra is a conformal mating of fc and fB

for some c ∈ L ∩ (C \ L1/2).

The principal motivation in this chapter is to answer the following question:
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Motivating Question. Suppose c ∈ L ∩ (C \ L1/2). Are fc and fB conformally mateable? If so, is

there a unique member of the basilica family that realizes their conformal mating?

We now summarize the known results on this topic.

Theorem 1.2.4 (Rees, Tan, Shishikura [Re, Tan, Sh2]). Suppose c ∈ L∩ (C \L1/2). If fc is hyperbolic,

then fc and fB are conformally mateable. Moreover, their conformal mating is unique up to conjugacy

by a Möbius map.

Theorem 1.2.4 is actually a corollary of a much more general result which states that two post-

critically finite quadratic polynomials fc1 and fc2 are (essentially) mateable if and only if c1 and c2 do

not belong to conjugate limbs of the Mandelbrot set. See [Tan] for more details.

Theorem 1.2.5 (Aspenberg, Yampolsky [AYa]). Suppose c ∈ L ∩ (C \ L1/2). If fc is at most finitely

renormalizable and has no non-repelling periodic orbits, then fc and fB are conformally mateable. More-

over, their conformal mating is unique up to conjugacy by a Möbius map.

Theorem 1.2.6 (Dudko [Du]). Suppose c ∈ L∩ (C\L1/2). If fc is at least 4 times renormalizable, then

fc and fB are conformally mateable. Moreover, their conformal mating is unique up to conjugacy by a

Möbius map.

Together, Theorem 1.2.4, 1.2.5 and 1.2.6 provide a positive answer to the main question in almost all

cases. However, the parameters contained in the boundary of hyperbolic components that are not too

“deep” inside the Mandelbrot set are still left unresolved. We discuss these parameters in greater detail

in the next section.

1.3 Matings in the Boundary of Hyperbolic Components

Let H be a hyperbolic component ofM\L1/2. By Theorem 1.2.4, the quadratic polynomial fc and the

basilica polynomial fB are conformally mateable for all c ∈ H. Our goal is to determine if this is also

true for c ∈ ∂H ∩ L.

Choose a parameter value c0 ∈ H, and let a0 ∈MB be a parameter value such that Ra0 is a conformal

mating of fc0 and fB. Since Ra0 must be hyperbolic, a0 is contained in some hyperbolic component HB

of MB.

For all c ∈ H, the quadratic polynomial fc has a non-repelling n-periodic orbit Oc := {f ic(zc)}n−1
i=0

for some fixed n ∈ N (see e.g. [M2]). Likewise, for all a ∈ HB, the quadratic rational map Ra has a non-

repelling n-periodic orbit Oa := {Ria(wa)}n−1
i=0 . Define the multiplier maps λ : H → D and µ : HB → D

by:

λ(c) := (fnc )′(zc) and µ(a) := (Rna )′(wa).

It is known that λ and µ are homeomorphisms which are conformal on the interior of their domains (see

[M2]).

The following result can be proved using a standard application of quasiconformal surgery (see chapter

4 in [BF]).

Proposition 1.3.1. Define a homeomorphism φH : H → HB by

φH := µ−1 ◦ λ.
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Then for all c ∈ H, the quadratic rational map RφH(c) is a conformal mating of fc and fB.

Our goal is to extend the statement of Proposition 1.3.1 to the boundary of H where possible.

Consider c ∈ ∂H, and let a = φH(c) ∈ ∂HB. The multiplier of Oc and Oa is equal to e2πθi for

some θ ∈ R/Z. The number θ is referred to as the rotation number. If θ is rational, then Oc and Oa
are parabolic. In this case, an application of trans-quasiconformal surgery due to Häıssinsky implies the

following result (see [Ha]).

Theorem 1.3.2. Suppose that the rotation number θ is rational, so that Oc and Oa are parabolic. Then

fc and fB are conformally mateable, and Ra is the unique member of the basilica family that realizes

their conformal mating.

If θ is irrational, then Oc is either Siegel or Cremer. In the latter case, it is known that the Julia

set Jc for fc is non-locally connected (see e.g. [M3]). This means that the formal mating of fc and fB

cannot be defined, and hence, they are not conformally mateable.

For our discussion of the Siegel case, we first recall a classical result of Siegel [S]. An irrational

number x is said to be Diophantine of order κ if there exists a fixed constant ε > 0 such that for all

p/q ∈ Q, the following inequality holds:

|x− p

q
| ≥ ε

qκ
.

The set of all irrational numbers that are Diophantine of order κ is denoted D(κ). The smallest possible

value of κ such that D(κ) is non-empty is 2 (see [M3]).

Theorem 1.3.3 (Siegel [S]). Let f : U → V be an analytic function. Suppose f has an indifferent

periodic orbit O with an irrational rotation number θ. If θ ∈ D(κ) for some κ ≥ 2, then O is a Siegel

orbit.

There is a classical connection between Diophantine classes and continued fraction approximations

(see e.g. [M3]). In particular, if

x =
1

a1 +
1

a2 + . . .

is the continued fraction representation of x, then x ∈ D(2) if and only if all the ai’s are uniformly

bounded. In view of this, we say that the numbers contained in D(2) are of bounded type. Siegel

quadratic polynomials of bounded type are prominently featured in the study of renormalization (see

e.g. [P, Mc1, Ya1, Ya3]).

Theorem 1.3.4 (Peterson [P]). Suppose a quadratic polynomial fc has an indifferent periodic orbit with

an irrational rotation number of bounded type. Then fc has a locally connected Julia set Jc.

In this chapter, we present a positive answer to the motivating question (stated in Section 1.2) for

quadratic polynomials fS that have an indifferent fixed point with an irrational rotation number of

bounded type. Note that by Theorem 1.3.3, the indifferent fixed point is Siegel, and by Theorem 1.3.4,

the formal mating of fS and fB is well defined.

The solution to the uniqueness part of the main question is elementary.

Proposition 1.3.5. Suppose λ ∈ D. Then there exists a unique c ∈ M (resp. a ∈ MB) such that fc

(resp. Ra) has a non-repelling fixed point z0 6=∞ with multiplier λ.
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Proof. Suppose fc has a fixed point z0 6=∞ with multiplier λ ∈ C. It is easy to check that the value of

c is given by

c =
λ

2
− λ2

4
.

Hence, c is uniquely determined.

Likewise, suppose Ra has a fixed point with multiplier λ ∈ C. Then the value of a is given by

a = − 8λ

(λ− 1)3
.

Hence, a is uniquely determined.

Our main results are stated below.

Main Theorem 1A. Suppose ν ∈ R \ Q is of bounded type. Let Raν with aν ∈ MB be the unique

member of the basilica family that has a Siegel fixed point z0 with rotation number ν. Let S be the fixed

Siegel disc containing z0. Then S is a quasidisk, and contains the critical point −1 in its boundary.

Main Theorem 1B. Suppose ν ∈ R \ Q is of bounded type. Let fS be the unique member of the

quadratic family that has a Siegel fixed point with rotation number ν. Then fS and fB are conformally

mateable, and Raν is the unique member of the basilica family that realizes their conformal mating.

Figure 1.4: The Siegel polynomial fc with c = λ
2 −

λ2

4 and λ = e(
√

5−1)πi mated with the basilica
polynomial fB. The Siegel disc is highlighted.
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1.4 The Construction of a Blaschke Product Model

Consider the Blaschke product

Fa,b(z) := − 1

eiθ
z(z − a)(z − b)
(1− āz)(1− b̄z)

,

where ab = reiθ with r ∈ R+ and θ ∈ [0, 2π). Note that 0 is a fixed point with multiplier −r.

Lemma 1.4.1. For any value of r and θ, the parameters a = a(r, θ) and b = b(r, θ) can be chosen such

that Fa,b has a double critical point at 1.

Proof. Let

F ′a,b(z) =
P (z)

Q(z)
.

Then

F ′′a,b(z) =
P ′(z)Q(z)− P (z)Q′(z)

Q(z)2
.

Thus, the condition

F ′a,b(1) = F ′′a,b(1) = 0

is equivalent to

P (1) = P ′(1) = 0.

A straightforward computation shows that

P (z) = κz4 − 2ζz3 + (3− |κ|2 + |ζ|2)z2 − 2ζz + κ,

where

κ := ab and ζ := a+ b.

Thus, Fa,b has a double critical point at 1 if the following two equations are satisfied:

2κ− 3ζ + (3− |κ|2 + |ζ|2) = ζ (1.2)

3κ− 2ζ + (3− |κ|2 + |ζ|2) = κ. (1.3)

Subtracting (1.2) from (1.3), we see that

κ− ζ = κ− ζ.

Substituting κ = x+ iy and ζ = u+ iy into (1.2), we obtain

u2 − 4u+ (2x− x2 + 3) = 0. (1.4)

The equation (1.4) has two solutions: u = −x+ 3 and u = x+ 1. The first solution corresponds to the

relation

ζ = −κ+ 3.
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Therefore, by choosing a and b to be the solutions of

z2 + (re−iθ − 3)z + reiθ = 0,

we ensure that the map Fa,b has a double critical point at 1.

Lemma 1.4.2. Let a = a(r, θ) and b = b(r, θ) satisfy the condition in Lemma 1.4.1. Then for all r > 1

sufficiently close to 1, there exists a local holomorphic change of coordinates φ at 0 so that the map

G := φ−1 ◦ F 2
a,b ◦ φ takes the form

G(z) = r2z(1 + z2 +O(z3)).

Proof. Expanding Fa,b(z) as a power series around 0, we have

Fa,b(z) = −rz + λz2 +O(z3)

for some λ = λ(r, θ) depending continuously on r and θ. Define

ψµ(z) := z + µz2 for µ ∈ C.

A straightforward computation shows that

H(z) := ψ−1
µ ◦ Fa,b ◦ ψµ(z) = −rz + (λ+ (1 + r)µ)z2 +O(z3).

Thus, by choosing

µ =
−λ

1 + r
,

we have

H(z) = −rz(1 + νz2 +O(z3))

for some ν = ν(r, θ) depending continuously on r and θ.

Observe that the second iterate of H is equal to

H2(z) = r2z(1 + (1 + r2)νz2 +O(z3)).

When r = 1, the point 0 is a parabolic fixed point of multiplicity 2. This means that ν(1, θ) cannot be

equal to zero for all θ ∈ [0, 2π). Hence, for some ε > 0 sufficiently small, ν(r, θ) is not equal to zero for

all r ∈ (1, 1 + ε) and θ ∈ [0, 2π). After one more change of coordinates, we arrive at

G(z) :=
√

(1 + r2)ν ·H2

(
z√

(1 + r2)ν

)
= r2z(1 + z2 +O(z3)).

Lemma 1.4.3. Let a = a(r, θ) and b = b(r, θ) satisfy the condition in Lemma 1.4.1. Then for all r > 1

sufficiently close to 1, the Blaschke product Fa,b has an attracting 2-periodic orbit near 0.

Proof. Consider the map G := φ−1◦F 2
a,b◦φ defined in Lemma 1.4.2. We prove that G has two attracting
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fixed points near 0.

Observe that G satisfies

|G(z)| = r2|z|(1 + Re(z2) + (higher terms))

and

arg(G(z)) = arg(z) + Im(z2) + (higher terms).

Consider the wedge shaped regions

V +
ε := {ρe2πit ∈ C | 0 ≤ ρ ≤ ε, 3

16
≤ t ≤ 5

16
}

and

V −ε := −V +
ε .

It is easily checked that G(V +
ε ) ⊂ V +

ε and G(V −ε ) ⊂ V −ε . Since 0 is the only fixed point on the boundary

of these regions, and it is repelling, V +
ε and V −ε must each contain an attracting fixed point for G.

Theorem 1.4.4. Given any angle ν ∈ [0, 2π), there exists a Blaschke product Fν that satisfies the

following three properties:

(i) There exists a superattracting 2-periodic orbit O = {∞, Fν(∞)} with a critical point at ∞.

(ii) The rotation number of the map Fν |∂D is equal to ν.

(iii) The point 1 is a double critical point.

Proof. The family of Blaschke products {Fa,b} that satisfy Lemma 1.4.1 and 1.4.3 are continuously

parameterized by r and θ. Let ρ(r, θ) denote the rotation number of the map Fa,b|∂D. In [YaZ], it is

proved that ρ(1, ·) is not nullhomotopic. By continuity, ρ(r, ·) is also not nullhomotopic. Thus, for any

angle ν ∈ [0, 2π), there exists θ such that ρ(r, θ) = ν.

So far, we have proved the existence of a Blaschke product Fa,b that has an attracting 2-periodic

orbit near zero, has a double critical point at 1, and whose restriction to ∂D has rotation number equal

to ν. A standard application of quasiconformal surgery turns the attracting 2-periodic orbits of Fa,b into

superattracting orbits (the surgery must be symmetric with respect to the unit circle to ensure that the

resulting map is also a Blaschke product). Then after conjugating by the appropriate Blaschke factor,

we obtain the desired map Fν .

Theorem 1.4.5. Suppose ν is irrational and of bounded type. Let Fν be the Blaschke product constructed

in Theorem 1.4.4. Then there exists a quadratic rational function Rν and quasiconformal maps ψ : D→
D, and φ : Ĉ→ Ĉ such that ψ(1) = 1; φ(1) = 1, φ(∞) =∞, and φ(ψ(0)) = 0; and

Rν(z) =

{
φ ◦ ψ ◦ Rotν ◦ ψ−1 ◦ φ−1(z) : if z ∈ φ(D)

φ ◦ Fν ◦ φ−1(z) : if z ∈ Ĉ \ φ(D),

where Rotν denotes rigid rotation by angle ν.

Proof. Since ν is of bounded type, there exists a unique homeomorphism ψ : (∂D, 1)→ (∂D, 1) such that

ψ ◦ Rotν ◦ ψ−1 = Fν |∂D,
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and ψ extends to a quasiconformal map on D.

Define

g(z) =

{
ψ ◦ Rotν ◦ ψ−1(z) : if z ∈ D
Fν(z) : if z ∈ Ĉ \ D.

By construction, g is continuous.

To obtain a holomorphic map with the same dynamics as g, we define and integrate a new complex

structure µ on Ĉ. Start by defining µ on D as the pullback of the standard complex structure σ0 by

ψ−1. Next, pull back µ on D by the iterates of g to define µ on the iterated preimages of D. Finally,

extend µ to the rest of Ĉ as the standard complex structure σ0.

Let φ : Ĉ→ Ĉ be the unique solution of the Beltrami equation

∂zφ(z) = µ(z)∂zφ(z)

such that φ(1) = 1, φ(∞) =∞ and φ(ψ(0)) = 0. Then the map

Rν := φ ◦ g ◦ φ−1

gives us the desired quadratic rational function.

Figure 1.5: An illustration of the quasiconformal surgery in Theorem 1.4.5. The image of D under the
quasiconformal map φ is a Siegel disc for Rν . Also note that the double critical point for Fν (represented
by a cross) becomes a single critical point for Rν .

Proof of Main Theorem 1A.

Consider the quadratic rational function Rν constructed in Theorem 1.4.5. Observe that Rν satisfies

the following three properties:

(i) There exists a superattracting 2-periodic orbit {∞, Rν(∞)} with a critical point at ∞.

(ii) The image of D under the quasiconformal map φ is a Siegel disc with rotation number ν.
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(iii) The point 1 is a critical point, and is contained in ∂φ(D) .

Clearly, the critical value Rν(∞) is not equal to the critical point 1. The theorem now follows from

Proposition 1.2.1.

1.5 The Construction of Bubble Rays

1.5.1 For the basilica polynomial

Consider the basilica polynomial

fB(z) := z2 − 1.

Note that fB has a superattracting 2-periodic orbit {0,−1}, and hence, is hyperbolic. Denote the Julia

set and the filled Julia set for fB by JB and KB respectively. The following is a consequence of the

hyperbolicity of fB (see e.g. [M3]).

Proposition 1.5.1. The Julia set JB for fB is locally connected.

A connected component of B := K̊B is called a bubble. Let B0 be the bubble containing the critical

point 0. We have

B =

∞⋃
n=0

f−nB (B0).

Let B ⊂ B be a bubble. The generation of B, denoted by gen(B), is defined to be the smallest

number n ∈ N such that fnB(B) = B0. The center of B is the unique point z ∈ B that is mapped to 0

under f
gen(B)
B .

Proposition 1.5.2. There exists a unique repelling fixed point b contained in ∂B0.

Note that the repelling fixed point b in Proposition 1.5.2 is the α-fixed point of fB (see [M2]).

Let b ∈ JB be an iterated preimage of b. The generation of b, denoted by gen(b), is defined to be the

smallest number n ∈ N such that fnB(b) = b. Suppose b is contained in the boundary of some bubble B.

If the generation of b is the smallest among all iterated preimages of b that are contained in ∂B, then b

is called the root of B. It is easy to see that every bubble has a unique root.

Proposition 1.5.3. Let b ∈ JB be an iterated preimage of b. Then there are exactly two bubbles B1

and B2 in B which contain b in their closures. Moreover, we have

B1 ∩B2 = {b}.

Proof. There are exactly two bubbles, B0 and fB(B0), that contain b in their closures. Moreover, we

have

B0 ∩ fB(B0) = {b}.

There exists a neighbourhood N containing b such that N is mapped conformally onto a neighbourhood

of b by f
gen(b)
B . The result follows.

Let b ∈ JB be an iterated preimage of b, and let B1 and B2 be the two bubbles that contain b in

their closures. Suppose gen(B1) < gen(B2). Then B1 and B2 are referred to as the parent and the child

at b respectively. Note that b must be the root of B2.
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Consider a set of bubbles {Bi}ni=0 in B, and a set of iterated preimages {bi}ni=0 of b such that the

following properties are satisfied:

(i) B0 = B0 and b0 = b, and

(ii) for 1 ≤ i ≤ n, the bubbles Bi−1 and Bi are the parent and the child at bi respectively.

The set

RB := fB(B0) ∪ (

n⋃
i=0

Bi)

is called a bubble ray for fB (the inclusion of fB(B0) is to ensure that a bubble ray is mapped to a

bubble ray). For conciseness, we use the notation RB ∼ {Bi}ni=0. The bubble ray RB is said to be finite

or infinite according to whether n <∞ or n =∞. Lastly, {bi}ni=0 is called the set of attachment points

for RB.

Proposition 1.5.4. If B ⊂ B is a bubble, then there exists a unique finite bubble ray RB ∼ {Bi}ni=0

such that Bn = B. Consequently, if RB
1 ∼ {B1

i }ni=0 and RB
2 ∼ {B2

i }mi=0 are two bubble rays, then there

exists N ≥ 0 such that B1
i = B2

i for all i ≤ N , and B1
i 6= B2

i for all i > N .

Proof. We can construct a finite bubble ray ending in B as follows. First, let B̃0 = B. Next, let b̃0

be the root of B̃0, and let B̃1 be the parent of B̃0 at b̃0. Proceeding inductively, we obtain a sequence

of bubbles B̃0, B̃1, B̃2, . . ., and a sequence of roots b̃0, b̃1, b̃2, . . . , such that B̃i+1 is the parent of B̃i at

b̃i. Since gen(B̃i+1) is strictly less than gen(B̃i), this sequence must terminate at B̃n = B0 for some

n ≥ 0. Then RB ∼ {B̃n−i}ni=0 is the desired finite bubble ray. The uniqueness of RB follows from the

uniqueness of the root of a bubble and Proposition 1.5.3.

Let RB ∼ {Bi}∞i=0 be an infinite bubble ray. We say that RB lands at z ∈ JB if the sequence of

bubbles {Bi}∞i=0 converges to z in the Hausdorff topology. The following result is a consequence of the

hyperbolicity of fB (see [DH1]).

Proposition 1.5.5. There exists 0 < s < 1, and C > 0 such that for every bubble B ⊂ B, we have

diam(B) < Csgen(B).

Consequently, every infinite bubble ray for fB lands.

Denote the attracting basin of infinity for fB by A∞B . Let

φA∞B : A∞B → C \ D

and

φB0 : B0 → D

be the Böttcher uniformization of fB on A∞B and B0 respectively. Using φA∞B and φB0 , we can encode

the dynamics of bubble rays for fB in two different ways: via external angles, and via bubble addresses.

Suppose that RB is an infinite bubble ray, and let z ∈ JB be its landing point. Then there exists a

unique external ray

R∞−t := {arg(φA∞B ) = −t}



Chapter 1. Mating the Basilica with a Siegel Disk 20

which lands at z (note that arg stands for the argument of a complex number—e.g. if w = re2πiθ, then

arg(w) = θ). The external angle of RB is defined to be t. Henceforth, the infinite bubble ray with

external angle t will be denoted RB
t .

Let b ∈ ∂B0 be an iterated preimage of b. Define

adr(b) := arg(φB0(b)).

If b′ is an interated preimage of b and b′ /∈ ∂B0, then there exists a unique bubble B ⊂ B such that B

is the parent at b′. In this case, define

adr(b′) := adr(f
gen(B)
B (b′)).

Let RB be a bubble ray and let {bi}ni=0 be the set of attachment points for RB. The bubble address

of RB is defined to be

adr(RB) := (adr(b0), adr(b1), . . . , adr(bn)),

where the tuple is interpreted to be infinite if RB is an infinite bubble ray.

If B ⊂ B is a bubble, then by Proposition 1.5.4, there exists a unique finite bubble ray RB ∼ {Bi}ni=0

such that B = Bn. The bubble address of B is defined to be

adr(B) := adr(RB).

Figure 1.6: The infinite bubble ray RB
t with t ≈ 0.354841 for the basilica polynomial fB. The bubbles

contained in RB
t are colored in light gray. The white crosses represent the set of attachment points for

RB
t .
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1.5.2 For the Siegel polynomial

Suppose ν ∈ R\Q is of bounded type, and let fS be the unique member of the quadratic family that has

a Siegel fixed point z0 with rotation number ν. Denote the Siegel disc, the Julia set and the filled Julia

set for fS by S0, JS and KS respectively. By Theorem 1.3.4, JS is locally connected. A quasiconformal

surgery procedure due to Douady, Ghys, Herman, and Shishikura (see e.g. [P]) implies the following:

Theorem 1.5.6. The Siegel disc S0 is a quasidisc whose boundary contains the critical point 0.

A connected component of S := K̊S is called a bubble. Note that

S =

∞⋃
n=0

f−nS (S0).

Let S ⊂ S be a bubble. The generation of S, denoted by gen(S), is defined to be the smallest number

n ∈ N such that fnS (S) = S0. The center of S is the unique point z ∈ S that is mapped to the Siegel

fixed point z0 by f
gen(S)
S .

Let s ∈ JS be an iterated preimage of the critical point 0. The generation of s, denoted by gen(s),

is defined to be the smallest number n ∈ N such that fnS (s) = 0.

Proposition 1.5.7. Let s ∈ JS be an iterated preimage of the critical point 0. Then there are exactly

two bubbles S1 and S2 in S which contain s in their closure. Moreover, we have

S1 ∩ S2 = {s}.

The construction of a bubble ray RS for fS is completely analogous to the construction of a bubble

ray RB for fB.

Proposition 1.5.8. If S ⊂ S is a bubble, then there exists a unique finite bubble ray RS ∼ {Si}ni=0 such

that Sn = S. Consequently, if RS
1 ∼ {S1

i }ni=0 and RS
2 ∼ {S2

i }mi=0 are two bubble rays, then there exists

M ≥ 0 such that S1
i = S2

i for all i ≤M , and S1
i 6= S2

i for all i > M .

The following proposition is a consequence of complex a priori bounds due to Yampolsky (see [Ya1]).

It is proved in the same way as Proposition 1.8.5.

Proposition 1.5.9. Every infinite bubble ray RS for fS lands.

Denote the attracting basin of infinity for fS by A∞S . Let

φA∞S : A∞S → C \ D

be the Böttcher uniformization of fS on A∞S .

Suppose RS is an infinite bubble ray, and let z ∈ JS be its landing point. Then there exists a unique

external ray

R∞t := {arg(φA∞S ) = t}

which lands at z. The external angle of RS is defined to be t. Henceforth, the infinite bubble ray with

external angle t will be denoted RS
t .
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Let s ∈ ∂S0 be an iterated preimage of 0. Define

adr(s) := gen(s).

The bubble address of a bubble S ⊂ S for fS can now be defined in the same way as its counterpart for

fB.

Figure 1.7: The infinite bubble ray RS
1
3

for the Siegel polynomial fS. The bubbles contained in RS
1
3

are colored in dark gray. The white crosses represent the set of attachment points for RS
1
3

.

1.5.3 For the candidate mating

Consider the quadratic rational function Rν constructed in Theorem 1.4.5. Denote the Fatou set and

the Julia set for Rν by F (Rν) and J(Rν) respectively. A connected component of F (Rν) is called a

bubble.

The critical points for Rν are∞ and 1. Recall that {∞, Rν(∞)} is a superattracting 2-periodic orbit,

and thus is contained in F (Rν). Let B∞ be the bubble containing ∞. The set

B :=

∞⋃
n=0

R−nν (B∞)

is the basin of attraction for {∞, Rν(∞)}.

The quadratic rational function Rν has a Siegel fixed point at 0 with rotation number ν. Denote the

Siegel disc for Rν (the set φ(D) in Section 1.4) by S0. As noted in the proof of Main Theorem 1A, the
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critical point 1 is contained in ∂S0. Consider the set of iterated preimages of S0

S :=

∞⋃
n=0

R−nν (S0),

It is easy to see that F (Rν) = B ∪ S.

Proposition 1.5.10. Suppose U ⊂ F (Rν) is a bubble. Then ∂U is locally connected.

Proof. The result follows immediately from Proposition 1.2.2 and Main Theorem 1A.

Lemma 1.5.11. Suppose X ⊂ J(Rν) is a closed, connected, non-recurring set (that is, Rnν (X)∩X = ∅
for all n ∈ N). Then X cannot intersect the boundary of bubbles from both B and S.

Proof. Suppose that there exists two bubbles B ⊂ B and S ⊂ S such that X intersects both ∂B and ∂S.

Without loss of generality, we may assume that B = B∞ and S = S0. Observe that R2n
ν (X) intersects

∂B∞ and ∂S0 for all n ≥ 0. Likewise, R2n+1
ν (X) intersects Rν(B∞) and ∂S0 for all n ≥ 0.

Let Y := X ∪R2
ν(X), and consider the set

W := Ĉ \ (B∞ ∪ S0 ∪ Y ).

We claim that if C is a component of W , then C is arcwise connected. Let c be a point in C \ C̊ ⊂
∂B∞ ∪ ∂S0. Since Y is a closed set, there exists a neighbourhood N of c such that N ∩ Y = ∅. By

Proposition 1.5.10, it follows that c is arcwise accessible from N ∩ C̊. Thus, every point in C is arcwise

accessible from C̊. Since C is connected, this implies that C is arcwise connected.

Now, let C ′ be the component of W that contains Rν(B∞). We claim that ∂S0 ∩W is not contained

in C ′. Choose a point x0 contained in X ∩ ∂S0. Since ∂S0 is homeomorphic to a circle, we see that

∂S0 \ {x0, R
2
ν(x0)} has exactly two components: γ1 and γ2. Choose two points w1 ∈ γ1 ∩ W and

w2 ∈ γ2 ∩W . If ∂S0 ∩W is contained in C ′, then there exists a simple curve Γ ⊂ C ′ whose endpoints

are w1 and w2. The complement of S0 ∪Γ has exactly two components: one which contains x0, and one

which contains R2
ν(x0). This contradicts the fact that B∞ ∪ Y is connected.

We conclude that there exists at least one connected component of W that intersects ∂S0 but does

not intersect Rν(B∞). Denote this component by D. Since X is non-recurring, we have

R2n+1
ν (X) ∩D = ∅ for all n ≥ 0.

However, since the orbit of Rν(x0) under R2
ν is dense in ∂S0, there exists N ≥ 0 such that

R2N+1
ν (x0) ∈ ∂S0 ∩D.

This is a contradiction.

Proposition 1.5.12. Let B ⊂ B and S ⊂ S be two bubbles. Then ∂B ∩ ∂S = ∅.

Proof. Suppose that ∂B ∩ ∂S contains a point x0. Since S is an iterated preimage of a Siegel disc, x0

must be non-recurrent. This contradicts Lemma 1.5.11.

Proposition 1.5.13. There exists a unique repelling fixed point β contained in ∂B∞.
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Proposition 1.5.14. Let u be an iterated preimage of β (resp. of 1). Then there are exactly two bubbles

U1 and U2 in B (resp. in S) which contain u in their closure. Moreover, we have

U1 ∩ U2 = {u}.

A bubble ray for Rν can be constructed using bubbles in either B or S. In the former case, the bubble

ray is denoted RB, and in the latter case, it is denoted RS . The details of the construction will be

omitted as it is very similar to the construction of a bubble ray RB for fB or RS for fS.

Proposition 1.5.15. If B ⊂ B is a bubble, then there exists a unique finite bubble ray RB ∼ {Bi}ni=0

such that Bn = B. Consequently, if RB1 ∼ {B1
i }ni=0 and RB2 ∼ {B2

i }mi=0 are two bubble rays, then there

exists N ≥ 0 such that B1
i = B2

i for all i ≤ N , and B1
i 6= B2

i for all i > N . The analogous statement is

also true for bubble rays in S.

The bubble address of a bubble U ⊂ F (Rν) for Rν is defined in the same way as its counterpart for

fB or fS. However, since Rν is not a polynomial, the external angle of a bubble ray RB or RS cannot

be defined using external rays. To circumvent this problem, we need the following theorem.

Theorem 1.5.16. There exists a unique conformal map ΦB : B→ B such that the bubble addresses are

preserved, and the following diagram commutes:

B
fB−−−−→ ByΦB

yΦB

B Rν−−−−→ B

Likewise, there exists a unique conformal map ΦS : S→ S such that the bubble addresses are preserved,

and the following diagram commutes:

S
fS−−−−→ SyΦS

yΦS

S Rν−−−−→ S
Furthermore, if B ⊂ B (resp. S ⊂ S) is a bubble, then ΦB (resp. ΦS) extends to a homeomorphism

between B and ΦB(B) (resp. S and ΦS(S)).

Proof. For each bubble B ⊂ B, there exists a unique bubble B′ ⊂ B such that

adr(B) = adr(B′).

Define ΦB|B to be the unique conformal map between B and B′ which sends the center and the root of

B to the center and the root of B′ respectively. Then by construction, ΦB conjugates fB on B with Rν

on B. Moreover, ΦB extends continuously to boundary of bubbles by Proposition 1.5.10.

The map ΦS is defined similarly.

Let RB ∼ {Bi}∞i=0 be an infinite bubble ray for Rν . The external angle of RB is defined to be the

external angle of the infinite bubble ray RB ∼ {Φ−1
B (Bi)}∞i=0 for fB. The external angle of an infinite

bubble ray RS is defined similarly. Henceforth, the infinite bubble rays for Rν with external angle t will

be denoted by RBt and RSt .
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Figure 1.8: The infinite bubble rays RBt with t ≈ 0.354841 and RS1
3

for Rν . The bubbles contained in

RBt and RS1
3

are colored in light gray and dark gray respectively. The white crosses represent the set of

attachment points for RBt and RS1
3

. Compare with Figure 1.6 and 1.7.

1.6 The Construction of Puzzle Partitions

1.6.1 For the basilica polynomial

Consider the basilica polynomial fB discussed in Section 1.5.1. By definition, the infinite bubble ray

RB
t for fB with external angle t ∈ R/Z has the same landing point as the external ray R∞−t.

Lemma 1.6.1. Let RB
t1 and RB

t2 be two distinct infinite bubble rays for fB, and define

XB
t1,t2 := RB

t1 ∪R
∞
−t1 ∪R

B
t2 ∪R

∞
−t2 .

Then Ĉ \XB
t1,t2 has exactly two connected components: CB

(t1,t2) and CB
(t2,t1). If t ∈ (t1, t2) ⊂ R/Z, then

R∞−t ⊂ CB
(t1,t2). Similarly, if t ∈ (t2, t1) ⊂ R/Z, then R∞−t ⊂ CB

(t2,t1).

Proof. First, consider the set

X̃B
t1,t2 := KB ∪R∞−t1 ∪R

∞
−t2 .

Observe that the complement Ĉ \ X̃B
t1,t2 has exactly two connected components: C̃B

(t1,t2) and C̃B
(t2,t1),

which are given by

C̃B
(t1,t2) =

⋃
t∈(t1,t2)

R∞−t

and

C̃B
(t2,t1) =

⋃
t∈(t2,t1)

R∞−t.
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Now, let RB
t1 ∼ {B

1
i }∞i=0 and RB

t2 ∼ {B
2
i }∞i=0, and let N ≥ 0 be the number given in Proposition

1.5.4. Define

X̂B
t1,t2 :=

∞⋃
i=N

B1
i ∪

∞⋃
i=N

B2
i ∪R∞−t1 ∪R

∞
−t2 .

Observe that X̂B
t1,t2 ⊂ X̃B

t1,t2 , and that the complement Ĉ \ X̂B
t1,t2 also has exactly two connected com-

ponents. Let ĈB
(t1,t2) be the component containing C̃B

(t1,t2), and let ĈB
(t2,t1) be the component containing

C̃B
(t2,t1).

Let b be the root of the bubble B1
N , and consider the set

Y := XB
t1,t2 \ X̂

B
t1,t2 .

If Y = ∅, then the result is proved. Otherwise, there are three possibilities:

i) Y = fB(B0) \ {b},

ii) Y = B0 \ {b}, or

iii) Y = fB(B0) ∪ (
⋃N−1
i=0 B1

i ) \ {b}.

In all three cases, it follows from Proposition 1.5.4 that Y is disjoint from either ĈB
(t1,t2) or ĈB

(t2,t1).

Assume for concreteness that it is disjoint from the former. Then immediately we have CB
(t1,t2) ≡ Ĉ

B
(t1,t2).

Moreover, since Y is simply connected, and its closure intersects ∂ĈB
(t2,t1) at only one point (namely, at

b), the set CB
(t2,t1) = ĈB

(t2,t1) \ Y must be connected.

The infinite bubble ray RB
0 and the external ray R∞0 land at the same repelling fixed point kB ∈ C.

For n ∈ N, the puzzle partition of level n for fB is defined as

PB
n := f−nB (RB

0 ∪R∞0 ) =

2n−1⋃
i=0

RB
i

2n
∪R∞− i

2n
.

Note that the puzzle partitions form a nested sequence: PB
1 ( PB

2 ( PB
3 . . . .

By Lemma 1.6.1, the complement of the puzzle partition of level n is equal to

Ĉ \ PB
n =

2n−1⊔
i=0

CB
( i
2n ,

i+1
2n )

.

The puzzle piece of level n for fB is defined as

PB
[ i2n ,

i+1
2n ]

:= CB
( i
2n ,

i+1
2n )

for i ∈ {0, . . . , 2n − 1}.

The interval [ i2n ,
i+1
2n ] ⊂ R/Z is referred to as the angular span of PB

[ i2n ,
i+1
2n ]

. Note that a puzzle piece of

level n ≥ 2 is mapped homeomorphically onto a puzzle piece of level n− 1 by fB.

Proposition 1.6.2. Let x ∈ JB, and let n ∈ N. If x is not contained in ∂PB
n , or there is a unique

bubble B contained in PB
n such that x ∈ ∂B, then there is a unique puzzle piece of level n that contains

x. Otherwise, x is contained in exactly two puzzle pieces of level n.

Proof. First, suppose x is not contained in ∂PB
n . Then x is contained in a single connected component

of Ĉ \ PB
n . The closure of this component is the unique puzzle piece of level n containing x.
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Figure 1.9: The puzzle pieces of level 2 (left) and 3 (right) for fB.

Now, suppose x ∈ ∂PB
n . Then there are three possible cases:

i) There is a unique bubble B contained in PB
n such that x ∈ ∂B.

ii) There are two bubbles B1 and B2 contained in PB
n such that B1 ∩B2 = {x}.

iii) The point x is an iterated preimage of kB.

Case i) Since PB
n contains finitely many bubble rays whose landing points are all distinct from x, we can

choose a sufficiently small disc D centered at x such that D∩PB
n ⊂ B. Then D∩ (Ĉ\PB

n ) = D∩ (Ĉ\B)

has a single connected component, which must be contained in a unique puzzle piece of level n. The

result follows.

Case ii) By a similar reasoning as in Case i), we may choose a sufficiently small disc D centered at x

such that D ∩ PB
n ⊂ B1 ∪B2. Thus, we see that D ∩ (Ĉ \ PB

n ) = D ∩ (Ĉ \ B1 ∪B2) has exactly two

connected components, say D1 and D2. Let PB
[t1,t2] be the puzzle piece of level n containing D1. Then

D2 must be contained in CB
(t2,t1), which is disjoint from PB

[t1,t2]. This implies that D2 is contained in a

puzzle piece distinct from PB
[t1,t2]. The result follows.

Case iii) Let t ∈ Q/Z be the unique dyadic rational such that the bubble ray RB
t ⊂ PB

n lands at x.

Then it is easy to see that PB
[t,t+ 1

2n ]
and PB

[t− 1
2n ,t]

are the two puzzle pieces of level n that contain x.

A nested puzzle sequence is a collection of puzzle pieces

ΠB = {PB
[sk,tk]}

∞
k=1

such that PB
[sk+1,tk+1] ( PB

[sk,tk] for all k ≥ 1. Note that this is equivalent to the condition that

[sk+1, tk+1] ( [sk, tk]. The set

L(ΠB) :=

∞⋂
k=1

PB
[sk,tk]

is called the limit of ΠB.
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Proposition 1.6.3. Let ΠB = {PB
[sk,tk]}

∞
k=1 be a nested puzzle sequence. Then L(ΠB) ∩B = ∅.

Proof. Let B ⊂ B be a bubble. Since B is eventually mapped to B0 ⊂ PB
1 by fB, there exists N ≥ 1

such that B ⊂ PB
n for all n ≥ N . This means that B is disjoint from any puzzle piece of level greater

than N . Since PB
[sk,tk] must be of level at least k, we have B ∩ PB

[sk,tk] = ∅ for all k ≥ N .

The external angle t ∈ R/Z of ΠB is defined by

{t} =

∞⋂
k=1

[sk, tk].

Henceforth, a nested puzzle sequence for fB with external angle t ∈ R/Z will be denoted by ΠB
t .

Proposition 1.6.4. Let ΠB
t := {PB

[sk,tk]}
∞
k=1 be a nested puzzle sequence. Then

L(ΠB
t ) = R∞−t.

Proof. It follows from Lemma 1.6.1 that R∞−t ⊂ L(ΠB
t ). If s 6= t, then for k sufficiently large, we have

s /∈ [sk, tk]. This means that R∞−s is disjoint from PB
[sk,tk]. The result now follows from Proposition

1.6.3.

A nested puzzle sequence ΠB
t is said to be maximal if there is no nested puzzle sequence which

contains ΠB
t as a proper subset. If two nested puzzle sequences are contained in the same maximal

nested puzzle sequence, they are said to be equivalent.

Proposition 1.6.5. Suppose ΠB
s and ΠB

t are two equivalent nested puzzle sequences. Then s = t, and

L(ΠE
s ) = L(ΠE

t ).

Proof. Let ΠB
s = {PB

[sk,tk]}
∞
k=1, and let Π̂B

u = {PB
[rk,uk]}

∞
k=1 be the maximal nested puzzle sequence

containing ΠB
s . Since PB

[sk,tk] ⊆ P
B
[rk,uk] for all k ≥ 1, we have

L(ΠB
s ) ⊂ L(Π̂B

u ).

On the other hand, since ΠB
s ⊂ Π̂B

u , we have

L(Π̂B
u ) ⊂ L(ΠB

s ).

The proof that s = t is similar.

Proposition 1.6.6. Let x ∈ JB. If x is an iterated preimage of b or kB, then there are exactly two

maximal nested puzzle sequences whose limit contains x. Otherwise, there is a unique maximal nested

puzzle sequence whose limit contains x.

Proof. This is an immediate consequence of Proposition 1.6.2.

Proposition 1.6.7. Let x ∈ JB. If x is an iterated preimage of b, then x is biaccessible. Otherwise, x

is uniaccessible.
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Proof. Suppose ΠB
t = {PB

[sk,tk]}
∞
k=1 and Π̃B

t = {P̃B
[uk,vk]}

∞
k=1 are two maximal puzzle sequences whose

external angles are both equal to t ∈ R/Z. If ΠB
t and Π̃B

t are nonequivalent, then there exists k ∈ N
such that (sk, tk)∩ (uk, vk) = ∅. However, since t is contained in both [sk, tk] and [uk, vk], we must have

t = tk = uk or t = sk = vk. In either case, t must be a dyadic rational.

The result now follows from Proposition 1.6.4 and 1.6.6.

1.6.2 For the Siegel polynomial

Consider the Siegel polynomial fS discussed in Section 1.5.2. By definition, the infinite bubble ray RS
t

for fS with external angle t ∈ R/Z has the same landing point as the external ray R∞t . The following

result is a direct analog of Lemma 1.6.1, and can be proved in the same way.

Lemma 1.6.8. Let RS
t1 and RS

t2 be two infinite bubble rays for fS, and define

XS
t1,t2 := RS

t1 ∪R
∞
t1 ∪R

S
t2 ∪R

∞
t2 .

Then Ĉ \XS
t1,t2 has exactly two connected components: CS

(t1,t2) and CS
(t2,t1). If t ∈ (t1, t2) ⊂ R/Z, then

R∞t ⊂ CS
(t1,t2). Similarly, if t ∈ (t2, t1) ⊂ R/Z, then R∞t ⊂ CS

(t2,t1).

The bubble ray RB
0 and the external ray R∞0 both land at the same repelling fixed point kS ∈ C.

A puzzle partition PS
n , a puzzle piece PS

[t1,t2], and a nested puzzle sequence ΠS
t for fS are defined in the

same way as their counterparts for fB.

Figure 1.10: The puzzle pieces of level 2 (left) and 3 (right) for fS.

The following four results are analogs of Proposition 1.6.2, 1.6.4, 1.6.6 and 1.6.7. The proofs are

identical, and hence, they will be omitted here.

Proposition 1.6.9. Let x ∈ JS, and let n ∈ N. If x is not contained in ∂PS
n , or there is a unique

bubble S contained in PS
n such that x ∈ ∂S, then there is a unique puzzle piece of level n that contains

x. Otherwise, x is contained in exactly two puzzle pieces of level n.
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Proposition 1.6.10. Let ΠS
t := {PS

[sk,tk]}
∞
k=1 be a nested puzzle sequence. Then

L(ΠS
t ) = R∞t .

Proposition 1.6.11. Let x ∈ JS. If x is an iterated preimage of 0 or kS, then there are exactly two

maximal nested puzzle sequences whose limit contains x. Otherwise, there is a unique maximal nested

puzzle sequence whose limit contains x.

Proposition 1.6.12. Let x ∈ JS. If x is an iterated preimage of 0, then x is biaccessible. Otherwise, x

is uniaccessible.

1.6.3 For the candidate mating

Consider the quadratic rational function Rν constructed in Theorem 1.4.5. The following result is an

analog of Lemma 1.6.1 and 1.6.8.

Lemma 1.6.13. Let RBt1 and RBt2 be two infinite bubble rays in B, and let RSs1 and RSs2 be two infinite

bubble rays in S. Suppose RBt1 and RSs1 land at the same point x1, and RBt2 and RSs2 land at the same

point x2. Define

Xt1,t2
s1,s2 := RBt1 ∪RSs1 ∪R

B
t2 ∪RSs2 .

Then Ĉ \Xt1,t2
s1,s2 has exactly two connected components: C

(t1,t2)
(s1,s2) and C

(t2,t1)
(s2,s1), such that

ΦB(B ∩ CB
(t1,t2)) = B ∩ C(t1,t2)

(s1,s2), ΦB(B ∩ CB
(t2,t1)) = B ∩ C(t2,t1)

(s2,s1),

ΦS(S ∩ CS
(s1,s2)) = S ∩ C(t1,t2)

(s1,s2), and ΦS(S ∩ CS
(s2,s1)) = S ∩ C(t2,t1)

(s2,s1),

where ΦB : B→ B and ΦS : S→ S are the maps given in Theorem 1.5.16.

Proof. Consider the bubble rays RB
t1 ∼ {B

1
i }∞i=0, RB

t2 ∼ {B
2
i }∞i=0, RS

s1 ∼ {S
1
i }∞i=0, and RS

s2 ∼ {S
2
i }∞i=0

for fB and fS. Let N ≥ 0 and M ≥ 0 be the numbers given in Proposition 1.5.4 and 1.5.8 respectively.

Define

Y B
t1,t2 :=

∞⋃
i=N

B1
i ∪

∞⋃
i=N

B2
i and Y S

s1,s2 :=

∞⋃
i=M

S1
i ∪

∞⋃
i=M

S2
i

Recall the definition of ĈB
(t1,t2) and ĈB

(t2,t1) for fB given in the proof of Lemma 1.6.1. Let ĈS
(s1,s2) and

ĈS
(s2,s1) be the analogous structures for fS. Define

γB(t1,t2) := Y B
t1,t2 ∩ ∂Ĉ

B
(t1,t2), and γB(t2,t1) := Y B

t1,t2 ∩ ∂Ĉ
B
(t2,t1).

The sets γS(s1,s2) and γS(s2,s1) are defined analogously.

The maps ΦB and ΦS extend continuously to Y B
t1,t2 and Y S

s1,s2 . Define

X̂t1,t2
s1,s2 := ΦB(Y B

t1,t2) ∪ ΦS(Y S
s1,s2) ∪ {x1, x2}.

It follows from Proposition 1.5.12 and 1.5.15 that the complement Ĉ \ X̂t1,t2
s1,s2 has exactly two connected

components. Since ΦB and ΦS are orientation preserving, the boundary of one of these components con-

tains ΦB(γB(t1,t2)) and ΦS(γS(s1,s2)), and the boundary of the other contains ΦB(γB(t2,t1)) and ΦS(γS(s2,s1)).

Denote the former component by Ĉ
(t1,t2)
(s1,s2) and the latter component by Ĉ

(t2,t1)
(s2,s1).
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Now, given a bubble U ⊂ B, let RB
U ∼ {Ui}ni=0 be the unique finite bubble ray such that Un = U .

Since ΦB extends to a homeomorphism on RB
U ∪RB

t1 ∪R
B
t2 , it follows from the above definitions together

with Proposition 1.5.12 and 1.5.15 that ΦB(U) ⊂ Ĉ
(t1,t2)
(s1,s2) if U ⊂ ĈB

(t1,t2), and ΦB(U) ⊂ Ĉ
(t2,t1)
(s2,s1) if

U ⊂ ĈB
(t2,t1). A completely symmetric argument shows that the analogous statement is true for bubbles

in S.

The rest of the proof is similar to that of Lemma 1.6.1, and hence, will be omitted here.

In order to construct the puzzle partitions for Rν , we need to prove that every infinite periodic bubble

ray lands at a repelling periodic orbit point. This requires the following classical result in holomorphic

dynamics (see e.g. [M1]).

Lemma 1.6.14 (Snail’s Lemma). Let V ⊂ C be a neighbourhood of 0, and let f : V → C be a

holomorphic function. Suppose there exists a path γ : [0,∞)→ V \ {0} which is mapped into itself by f

in such a way that f(γ(t)) = γ(t+ 1) and γ converges to 0. Then 0 is a fixed point for f , and f ′(0) = 1

or |f ′(0)| < 1.

Proposition 1.6.15. Let Rt = RBt or RSt be an infinite bubble ray. If t is rational, then Rt lands. If t

is p-periodic, then Rt lands at a repelling p-periodic point.

Proof. Let Ω be the set of cluster points for Rt. Define

Λ := Ω ∪ {∞, Rν(∞)} ∪ S0.

Observe that

Rpν : Ĉ \R−pν (Λ)→ Ĉ \ Λ

is a regular 2p-fold covering of connected hyperbolic spaces. Moreover, since Λ ( R−pν (Λ), the inclusion

map

ι : Ĉ \R−pν (Λ)→ Ĉ \ Λ

is a strict contraction in the hyperbolic metric. Hence, the map ι ◦R−pν lifts to the universal cover D of

Ĉ \ Λ to a map

R̂−pν : D→ D

which is also a strict contraction in the hyperbolic metric.

Now, choose a bubble U ⊂ Rt such that gen(U) > 1, and let x0 be a point contained in U . For every

k ≥ 0, there exists a unique point xk ∈ Rt such that Rkpν (xk) = x0. Let γ0 ⊂ Rt be a curve from x0 to

x1, and let γk be the unique component of R−kpν (γ0) whose end points are xk and xk+1.

By the strict contraction property of R̂pν , the hyperbolic lengths of γn must go to zero as n goes

to infinity. Hence, if z ∈ Ω, then for any neighbourhood N of z, there exists a smaller neighbourhood

N ′ ⊂ N such that if γn ∩N ′ 6= ∅, then γn ⊂ N . In other words, Rpν(N) ∩N 6= ∅. Since this is true for

all neighbourhood of z, the map Rpν must fix z.

The set of fixed points for Rpν is discrete. Since Ω is connected, this implies that Ω must be equal to

the single point set {z}. By Lemma 1.6.14, we conclude that z is a repelling fixed point.

If t is strictly preperiodic, then Rt is the preimage of some periodic infinite bubble ray. The result

follows.

Proposition 1.6.16. The bubble rays RB0 and RS0 land at the same repelling fixed point κ ∈ C.
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Proof. The quadratic rational map Rν has exactly three fixed points, two of which must be the Siegel

fixed point 0 and the repelling fixed point β. Clearly, a bubble ray cannot land at 0, so it suffices to

prove that a fixed bubble ray cannot land at β.

Let D be a sufficiently small disc centered at β such that Rν is conformal on D. The set D ∩ (Ĉ \
B∞ ∪Rν(B∞)) has two connected components D1 and D2 such that D1 ⊂ Rν(D2) and D2 ⊂ Rν(D1).

Suppose R is a bubble ray that lands at β. Then R must be disjoint from either D1 or D2. Hence, R
cannot be fixed.

Proposition 1.6.17. Let t ∈ R/Z be a dyadic rational. Then RBt and RSt land at the same iterated

preimage of κ.

Proof. Define Dn := { i
2n }

2n−1
i=0 ⊂ R/Z, and let t ∈ Dn for some n ≥ 0. Note that the case n = 0 is

proved in Proposition 1.6.16. Proceeding inductively, assume that n > 0, and that the result is true for

the dyadic rationals in Dn−1.

If t ∈ Dn \Dn−1, then t can be expressed as

t =
i

2n−1
+

1

2n
for some i ∈ {0, . . . , 2n−1 − 1}.

Observe that t is the unique member of Dn contained in the interval ( i
2n−1 ,

i+1
2n−1 ). It follows from Lemma

1.6.13 that RBt is the only member of {RBs }s∈Dn whose landing point lies in C
( i

2n−1 ,
i+1

2n−1 )

( i

2n−1 ,
i+1

2n−1 )
. Likewise, RSt

is the only member of {RSs }s∈Dn whose landing point lies in C
( i

2n−1 ,
i+1

2n−1 )

( i

2n−1 ,
i+1

2n−1 )
. By Proposition 1.6.16, RBt

and RSt must land at the same point.

For n ∈ N, define the puzzle partition of level n for Rν by

Pn := R−nν (RB0 ∪RS0 ) =

2n−1⋃
i=0

RBi
2n
∪RSi

2n
.

By Lemma 1.6.13 and 1.6.17, the complement of the puzzle partition of level n is equal to

Ĉ \ Pn =

2n−1⊔
i=0

C
( i
2n ,

i+1
2n )

( i
2n ,

i+1
2n )

.

A puzzle piece of level n for Rν is defined as

P[ i2n ,
i+1
2n ] := C

( i
2n ,

i+1
2n )

( i
2n ,

i+1
2n )

for i ∈ {0, . . . , 2n − 1}.

The interval [ i2n ,
i+1
2n ] ⊂ R/Z is referred to as the angular span of P[ i2n ,

i+1
2n ].

Proposition 1.6.18. Let P[t1,t2] be a puzzle piece with angular span [t1, t2] ⊂ R/Z. If Rt = RBt or RSt
is an infinite bubble ray with external angle t ∈ [t1, t2], then the accumulation set of Rt is contained in

P[t1,t2].

The following result is an analog of Proposition 1.6.2. The proof is very similar, and hence, it will

be omitted here.
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Figure 1.11: The puzzle pieces of level 2 (left) and 3 (right) for Rν . Compare with Figure 1.9 and
1.10.

Proposition 1.6.19. Let x ∈ J(Rν), and let n ∈ N. If x is not contained in ∂Pn, or there is a unique

bubble U contained in Pn such that x ∈ ∂U , then there is a unique puzzle piece of level n that contains

x. Otherwise, x is contained in exactly two puzzle pieces of level n.

A nested puzzle sequence Πt for Rν is defined in the same way as its counterpart for fB.

Proposition 1.6.20. Let x ∈ J(Rν). If x is an iterated preimage of κ, β or 1, then there are exactly

two maximal nested puzzle sequences whose limit contains x. Otherwise, there is exactly one maximal

nested puzzle sequence whose limit contains x.

Proof. This is an immediate consequence of Proposition 1.6.19.

Proposition 1.6.21. Let Πt be a nested puzzle sequence for Rν . Its limit L(Πt) cannot intersect the

boundary of bubbles from both B and S.

Proof. It is easy to see that the limit set of any nested puzzle sequence is closed, connected, and contained

in J(Rν). Moreover, it must be either pre-periodic or non-recurrent.

Now, suppose that L(Πt) intersects the boundary of bubbles from both B and S. We may assume

that L(Πt) contains a point x ∈ ∂S0. Note that the orbit of x is dense in ∂S0. Hence, if L(Πt) is periodic,

then L(Πt) must contain ∂S0, which is clearly impossible. Therefore, L(Πt) must be non-recurrent. This

contradicts Lemma 1.5.11.

Let Πt be a nested puzzle sequence. We say that Πt shrinks to x if its limit L(Πt) is equal to {x}.

Proposition 1.6.22. Let Πt = {P[sk,tk]}∞k=1 be a nested puzzle sequence, and let Π̂t = {P[rk,uk]}∞k=1 be

the unique maximal nested puzzle sequence containing Πt. Then Πt shrinks to a point x ∈ J(Rν) if and

only if Π̂t does.

The following result is proved in the next two sections.

Theorem 1.6.23 (the Shrinking Theorem). Every nested puzzle sequence for Rν shrinks to a point.
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1.7 A Priori Bounds for Critical Circle Maps

A C2 homeomorphism f : S1 → S1 is called a critical circle map if it has a unique critical point c ∈ S1

of cubic type. Let ρ = ρ(f) be the rotation number of f . In this section, f will be analytic, and ρ will

be irrational.

The rotation number ρ can be represented as an infinite continued fraction:

ρ = [a1, a2, a3, . . . ] =
1

a1 +
1

a2 +
1

a3 + . . .

.

The nth partial convergent of ρ is the rational number

pn
qn

= [a1, . . . , an].

The sequence of denominators {qn}∞n=1 represent the closest return times of the orbit of any point to

itself. It satisfies the following inductive relation:

qn+1 = anqn + qn−1.

Let Dn ⊂ S1 be the closed arc containing c with end points at fqn(c) and fqn+1(c). The arc Dn
can be expressed as the union of two closed subarcs An and An+1, where An has its end points at c

and fqn(c). The subarc An is called the nth critical arc. The qnth iterated preimage of An under f is

denoted by A−n. The set of closed arcs

PS
1

n = {An, f(An), . . . , fqn+1−1(An)} ∪ {An+1, f(An+1), . . . , fqn−1(An+1)},

which are disjoint except at the end points, is a partition of S1. The collection PS1

n is called the

dynamical partition of level n. The following is an important estimate regarding dynamical partitions

due to Swia̧tek and Herman (see [Sw]):

Theorem 1.7.1 (Real a priori bounds). Let f : S1 → S1 be a critical circle map with an irrational

rotation number ρ. Then for all n sufficiently large, every pair of adjacent atoms in PS1

n have K-

commensurate diameters for some universal constant K > 1.

Below, we present an adaptation of complex a priori bounds of [Ya1] (see also [YaZ]) to our setting.

Consider the quadratic rational function Rν discussed in Section 1.5.3 and 1.6.3. Denote the Siegel

disc for Rν by S0. By Theorem 1.4.5, there exist a Blaschke product Fν and a quasiconformal map

φ : Ĉ→ Ĉ such that

Rν(z) = φ ◦ Fν ◦ φ−1(z) for all z ∈ Ĉ \ S0.

Recall that {∞, Fν(∞)} and {0, Fν(0)} are superattracting 2-periodic orbits for Fν . Denote the

bubble (the connected component of the Fatou set) for Fν containing 0 and∞ byA0 andA∞ respectively.

By Theorem 1.4.4, the restriction of Fν to S1 is a critical circle map.

A puzzle piece of level n for Fν is the image of a puzzle piece of level n for Rν under φ−1. The nth

critical puzzle piece, denoted P critn , is defined inductively as follows:
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(i) P crit0 is the puzzle piece of level 1 which contains the first critical arc A1.

(ii) P critn is the puzzle piece which contains the preimage arc A−n, and is mapped homeomorphically

onto P critn−1 by F qnν .

Observe that Πeven := {P crit2n }∞n=0 and Πodd := {P crit2n+1}∞n=0 form two disjoint nested puzzle sequences

for Fν at the critical point 1.

Figure 1.12: The 0th and 1st critical puzzle piece for Fν .

Lemma 1.7.2. Let A∞ ∪ Fν(A∞) be the immediate attracting basin of the superattracting 2-periodic

orbit {∞, Fν(∞)} for Fν . Then there exists N ≥ 0 such that for all n ≥ N , the nth critical puzzle piece

P critn is disjoint from the closure of A∞ ∪ Fν(A∞).

Proof. The result follows immediately from Proposition 1.6.21.

Theorem 1.7.3. For all n sufficiently larger than the constant N in Lemma 1.7.2, we have the following

inequality:

diam(P critn )

diam(A−n)
≤ C1

3

√
diam(P critn−1)

diam(A−(n−1))
+ C2,

where C1 and C2 are universal constants.

Proof. Similarly to [YZ], we first lift a suitable inverse branch of Fν to the universal covering space.

Define the exponential map Exp : C→ C by

Exp(z) := e2πiz.
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Let I = (τ − 1, τ) ⊂ R be an open interval such that 0 ∈ I, and

Exp(τ) = Exp(τ − 1) = Fν(1).

Let

Log : S1 \ {Fν(1)} → I

be the inverse of Exp restricted to I. The nth critical interval is defined as

In := Log(An).

Denote the component of Exp−1(P critn ) intersecting I by P̂ critn .

Define

A := A0 ∪ Fν(A0) ∪ A∞ ∪ Fν(A∞),

and let S ⊂ C be the universal covering space of Ĉ \ A with the covering map Exp|S : S → Ĉ \ A. For

any given interval J ⊂ R, we denote

SJ := (S \ R) ∪ J.

The restriction of the map Fν to S1 is a homeomorphism, and hence, has an inverse. We define a

lift φ : I → I of (Fν |∂D)−1 by

φ(x) := Log ◦ F−1
ν ◦ Exp(x).

Note that φ is discontinuous at Log(F 2
ν (1)), which is mapped to τ − 1 and τ by φ. Let n ∈ N. By the

combinatorics of critical circle maps, the kth iterate of φ on In is continuous for all 1 ≤ k ≤ qn. By

monodromy theorem, φk extends to a conformal map on SIn .

For z ∈ SJ , let lz and rz be the line segment connecting z to τ − 1 and z to τ respectively. The

smaller of the outer angles formed between lz and (−∞, τ − 1), and rz and (τ,+∞) is denoted (̂z, J).

Denote the hyperbolic distance in SJ by distSJ . A hyperbolic neighbourhood {z ∈ SJ | distSJ (z, J)}
of J forms an angle θ ∈ (0, π) with R. Denote this neighbourhood by Gθ(J). Observe that Gθ(J) ⊂
{z ∈ SJ | (̂z, J) > θ}.

For n ∈ N, define En ⊂ S1 as the open arc containing 1 with end points at F
qn+1
ν (1), and F

qn−qn+1
ν (1).

Observe that En contains the critical arcs An and An+1. Define

Gnθ := Gθ(Log(En)).

Consider the constant N in Lemma 1.7.2. Since P critN ∪ P critN+1 is disjoint from the closure of A, it is

contained in some annulus E b Ĉ \ A. Let S̆ b S be the universal cover of E with the covering map

Exp|S̆ . Choose θ such that P̂ critN+2 ∪ P̂ critN+3 ⊂ G
N+1
θ . Then we have P̂ critn ⊂ GN+1

θ for all n ≥ N + 3.

Now, suppose we are given n ≥ N + 3. Let

J0 := In, J−1 := φ(J0), . . . , J−qn := φqn(In), (1.5)

be the orbit of In under φ. Given any point z0 ∈ SJ0 , let

z0, z−1 := φ(z0), . . . , z−qn := φqn(z0), (1.6)
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Figure 1.13: Illustration of (̂z, J) = min(θ1, θ2).

be the orbit of z0 under φ.

The following three lemmas are adaptations of lemma 2.1, 4.2 and 4.4 in [Ya1] and lemma 6.1, 6.2

and 6.3 in [YaZ]:

Lemma 1.7.4. Consider the orbit (1.6). Let k ≤ qn − 1. Assume that for some i between 0 and k, we

have zi ∈ S̆ and ̂(z−i, J−i) > ε. Then

dist(z−k, J−k)

|J−k|
≤ C dist(z−i, J−i)

|J−i|

for some constant C = C(ε, S̆) > 0.

Lemma 1.7.5. Let J and J ′ be two consecutive returns of the orbit (1.5) of J0 to Im for 1 < m < n,

and let ζ and ζ ′ be the corresponding points of the inverse orbit (1.6). If ζ ∈ Gmθ , then either ζ ′ ∈ Gmθ
or (̂ζ ′, J ′) > ε and dist(ζ ′, J ′) < C|Im|, where the constants ε and C are independent of m.

Lemma 1.7.6. Let J be the last return of the orbit (1.5) to the interval Im preceding the first return

to Im+1 for 1 ≤ m ≤ n− 1, and let J ′ and J ′′ be the first two returns to Im+1. Let ζ, ζ ′ and ζ ′′ be the

corresponding points in the inverse orbit (1.6), so that ζ ′ = φqm(ζ) and ζ ′′ = φqm+2(ζ ′). Suppose that

ζ ∈ Gmθ . Then either ̂(ζ ′′, Im+1) > ε and dist(ζ ′′, J ′′) < C|Im+1|, or ζ ′′ ∈ Gm+1
θ , where the constants ε

and C are independent of m.

The interested reader can follow the proofs of Lemma 1.7.4, 1.7.5 and 1.7.6, and the rest of the proof

of Theorem 1.7.3 in [YaZ] mutatis mutandis.
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Figure 1.14: Illustration of the hyperbolic neighbourhood Gθ(J).

Corollary 1.7.7. For all n sufficiently larger than the constant N in Lemma 1.7.2, diam(P critn ) is

K-commensurate to diam(A−n) for some universal constant K ≥ 1. Consequently, diam(P critn )→ 0 as

n→∞.

Proof. It suffices to show that any sequence of positive numbers {an}∞n=0 satisfying the relation

an ≤ C1
3
√
an−1 + C2 for all n ≥ 1

is bounded.

Consider the sequence {bn}∞n=0 defined inductively by

i) b0 = max(1, a0),

ii) bn = C 3
√
bn−1,

where C is chosen so that

C
3
√
k ≥ C1

3
√
k + C2 for all k ≥ 1.

It is easy to see that bn ≥ an for all n.

A straightforward computation shows that

bn = C1+ 1
3 +...+ 1

3n−1 3n−1
√
b0

n→∞−−−−→ C
3
2 .

Hence, {bn}∞n=0 and therefore, {an}∞n=0 are bounded.

The following result we record for later use:
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Lemma 1.7.8. For all n sufficiently large, the nth critical puzzle piece P critn contains a Euclidean disc

Dn such that diam(Dn) is K-commensurate to diam(P critn ) for some universal constant K > 1.

Proof. Let D1 be a disc centered at 1 such that F qnν (1) ∈ ∂D1. The map F qnν |An has a well defined

inverse branch which extends to D1. Denote this inverse branch by ψn. As a consequence of real a priori

bounds, we have the following estimate:

1

|K1|
≤ |ψ′n(1)| ≤ |K1|,

where K1 is some universal constant independent of n.

Observe that the preimage of D under Fν consists of two connected components Uin ⊂ D and

Uout ⊂ C \ D. Moreover, Uin ∩ Uout = {1}. It is not difficult to see that ψn extends to Uout, and that

ψn(Uout) ⊂ P critn .

Now, choose a subdisc D2 ⊂ D1 ∩ Uout such that the annulus A = D1 \ D2 satisfies the following

estimate
1

|K2|
≤ mod(A) ≤ |K2|,

for some universal constant K2 independent of n. By Koebe distortion theorem, ψn has uniformly

bounded distortion on D2. Since ψn(D2) ⊂ ψN (Uout) ⊂ P critn , the result follows.

1.8 The Proof of the Shrinking Theorem

We are ready to prove the shrinking theorem stated at the end of Section 1.6. The proof will be split

into three propositions.

Proposition 1.8.1. If Πt is a nested puzzle sequence such that L(Πt) contains β or κ, then Πt shrink

to a point.

Proof. We prove the result in the case where L(Πt) contains κ. The proof of the other case is similar.

Since L(Πt) contains κ, it follows that t = 0. Observe that L(Π0) is invariant under Rν . Hence,

L(Π0) ∩ ∂S0 = ∅.

Let Dr be a disc of radius r > 0 centered at κ. Since κ is a repelling fixed point, if r is sufficiently

small, then Dr is mapped into itself by an appropriate inverse branch of Rν . This inverse branch extends

to a map g : N → N , where N is a neighbourhood of L(Π0) which is disjoint from ∂S0 and therefore,

the closure of the post critical set for Rν .

Any set compactly contained within N converges to κ under iteration of Rν . It follows that L(Π0) =

{κ}.

For the proof of the remaining two propositions, it will be more convenient for us to work with the

Blaschke product Fν rather than Rν itself. It is clear from the definition that a nested puzzle sequence

for Rν shrinks if and only if the corresponding nested puzzle sequence for Fν shrinks.

Proposition 1.8.2. If Πt is a nested puzzle sequence such that 1 ∈ L(Πt), then Πt shrink to 1

Proof. Recall the definition of critical puzzle pieces {P critn }∞n=0 for Fν in Section 1.7. Let Π̂even and Π̂odd

be the maximal nested puzzle sequence containing {P crit2n }∞n=0 and {P crit2n+1}∞n=0 respectively. Corollary
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1.7.7 and Proposition 1.6.22 imply that Π̂even and Π̂odd both shrink to 1. By Proposition 1.6.20, there

is no other maximal nested puzzle sequence at 1.

For the proof of the final proposition, we need the following lemma.

Lemma 1.8.3. Let f : Ĉ → C be a rational map of degree d > 1. Let {(f |U )−n}∞n=0 be a family of

univalent inverse branches of f restricted to a domain U . Suppose U ∩ J(f) 6= ∅. If V b U , then

diam((f |U )−n(V ))→ 0

as n→∞.

Proposition 1.8.4. Let w0 be a point in the Julia set J(Rν) which is not an iterated preimage of κ, β

or 1. If Πt is a nested puzzle sequence such that w0 ∈ L(Πt), then Πt shrinks to w0.

Proof. Let z0 := φ−1(w0), and consider the forward orbit

O = {zn}∞n=0

of z0 under Fν . The proof splits into two cases.

Case 1. Suppose there exists some critical puzzle piece P critM such that

O ∩ P critM = ∅.

Let z∞ be an accumulation point of O, and let P∞ be the puzzle piece of level M containing z∞.

Observe that the orbit of the critical point 1 is dense in ∂D. Hence, P∞ must be disjoint from ∂D, since

otherwise, P∞ would map into P critM by some appropriate inverse branch of Fν .

Let U ⊂ C \ D be a neighbourhood of P∞, and choose a subsequence of orbit points {znk}∞k=0 from

O such that znk ∈ P∞. For each k, let

gk : U → C

be the inverse branch of Fnkν that maps znk to z0. Since P∞ intersects the Julia set for Fν , the nested

puzzle sequence

Π := {gk(P∞)}∞k=0

must shrink to z0 by Lemma 1.8.3.

Case 2. Suppose the critical point 1 is an accumulation point of O. Then there exists an increasing

sequence of numbers {nk}∞k=0 such that

O ∩ P critnk
6= ∅.

Fix k, and let zmk be the first orbit point that enters the critical puzzle piece P critnk
. Let

P−n ⊂ F−nν (P critnk
)

be the nth pull back of P critnk
along the orbit

z0 7→ z1 7→ . . . 7→ zmk . (1.7)
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Suppose that P−n intersects 1 for some n > 0. Then for all m ≤ n, the puzzle piece P−m must

intersect ∂D. Recall that P critnk
contains the the preimage arc A−nk . Hence, for every m ≤ n, the puzzle

piece P−m contains the mth preimage of A−nk under Fν |∂D. By the combinatorics of critical circle

maps, it follows that P−qnk must be the first puzzle piece in the backward orbit {P−1, P−2, . . . , P−mk}
to intersect 1.

Since there are exactly two maximal nested puzzle sequences whose limit contains 1, all puzzle pieces

of level n > nk + qnk which intersect 1 must be contained in either P critnk
or P−qnk . Either case would

contradict the fact that zmk is the first orbit point to enter P critnk
. Therefore, P−n does not intersect 1

for all n ≥ qnk .

Let m ≤ mk be the last moment when the backward orbit of P 0 = P critnk
intersect ∂D. By The-

orem 1.7.1, Corollary 1.7.7 and combinatorics of critical circle maps, the distance between P−m and

Fν(1) is commensurate to diam(P−m). Hence, the distance between P−m−1 and 1 is commensurate to

diam(P−m−1). Therefore, by Theorem 1.7.1 and Koebe distortion theorem, the inverse branch of Fmkν

along the orbit (1.7) can be expressed as either

F−mkν |P critnk
= η

if 1 /∈ Pn for all n > 0, or

F−mkν |P critnk
= ζ1 ◦Q ◦ ζ2

if 1 ∈ P−qnk , where η, ζ1 and ζ2 are conformal maps with bounded distortion, and Q is a branch of the

cubic root.

Now, by Lemma 1.7.8, P critnk
contains a Euclidean disc Dnk such that diam(Dnk) is commensurate

to diam(P critnk
). The above argument implies that the puzzle piece P−mk must also contain a Euclidean

disc D such that diam(D) is commensurate to diam(P−mk). Hence, diam(P−mk) → 0 as k → ∞, and

the nested puzzle sequence

Π := {P−mk}∞k=0

must shrink to z0.

As an application of the shrinking theorem, we prove that every infinite bubble ray for Rν lands.

Proposition 1.8.5. Every infinite bubble ray for Rν lands.

Proof. Let Rt be an infinite bubble ray, and let Ω be its accumulation set. If t is a dyadic rational, then

Rt lands at an iterated preimage of κ. Otherwise, there exists a unique nested maximal puzzle sequence

Πt = {P[sk,tk]}∞k=1 with external angle equal to t. By Proposition 1.6.18, Ω must be contained in P[sk,tk]

for all k ≥ 1. The result now follows from the shrinking theorem.

1.9 The Proof of Conformal Mateability

We are ready to prove that Rν is a conformal mating of fB and fS. Recall the maps ΦB and ΦS in

Theorem 1.5.16 defined on the union of the closure of every bubble in B and S respectively. Our first

task is to continuously extend ΦB and ΦS to the filled Julia sets KB = B and KS = S. For brevity, we

will limit our discussion to ΦS. The map ΦB can be extended in a completely analogous way.
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Let Φ̃S : JS → J(Rν) be the map defined as follows. For x ∈ JS, let ΠS
t = {PS

[sk,tk]}
∞
k=1 be a maximal

nested puzzle sequence whose limit contains x. By the shrinking theorem, the corresponding maximal

nested puzzle sequence Πt = {P[sk,tk]}∞k=1 for Rν must shrink to a single point, say y ∈ J(Rν). Define

Φ̃S(x) := y. We claim that Φ̃S is a continuous extension of ΦS on JS.

Proposition 1.9.1. Let S ⊂ S be a bubble. If x ∈ ∂S, then Φ̃S(x) = ΦS(x).

Proof. Let z := ΦS(x). It is easy to see from the proof of Lemma 1.6.13 that z ∈ Ĉ(sk,tk)
(sk,tk) for all k ≥ 1.

It follows immediately that z ∈ P[sk,tk] for all k ≥ 1, and hence, {z} = L(Πt) = {y}.

Proposition 1.9.2. The map Φ̃S : JS → J(Rν) is well defined.

Proof. Suppose there are two maximal nested puzzle sequences at x ∈ JS. By Proposition 1.6.11, x is

either an iterated preimage of kS or 0. The first case follows from Proposition 1.6.18. The second case

follows from Proposition 1.9.1.

Proposition 1.9.3. Define ΦS(x) := Φ̃S(x) for all x ∈ JS. The extended map ΦS : KS → Ĉ is

continuous.

Proof. It suffices to show that if {xi}∞i=0 ⊂ KS is a sequence converging to x ∈ JS, then the sequence of

image points {yi = ΦS(xi)}∞i=0 converges to y = ΦS(x). The proof splits into four cases:

i) The point x is an iterated preimage of 0.

ii) There exists a unique bubble S ⊂ S such that x ∈ ∂S.

iii) The point x is an iterated preimage of kS.

iv) Otherwise.

Case i) By Proposition 1.5.7, there exist exactly two bubbles S1 and S2 which contain x in their boundary.

Moreover, we have {x} = S1∩S2. By Proposition 1.9.1, any subsequence of {xi}∞i=0 contained in S1∪S2

is mapped under ΦS to a sequence which converges to y. Hence, we may assume that xi is not contained

S1 ∪ S2 for all i ≥ 0.

By Proposition 1.6.11, there are exactly two maximal nested puzzle sequences ΠS
t = {PS

[sk,tk]}
∞
k=1 and

ΠS
v = {PS

[uk,vk]}
∞
k=1 whose limit contains x. Let Dr(x) be a disc of radius r > 0 centered at x. For every

k, we can choose rk > 0 sufficiently small such that Drk(x)∩PS
k = Drk(x)∩(S1∪S2). Let Nk ≥ 0 be large

enough such that {xi}∞i=Nk is contained in Drk(x). This implies that {xi}∞i=Nk ⊂ P
S
[sk,tk] ∪ P

S
[uk,vk]. It is

easy to see that the sequence of image points {yi = ΦS(xi)}∞i=Nk must be contained P[sk,tk]∪P[uk,vk]. By

Proposition 1.9.2, Πt = {P[sk,tk]}∞k=1 and Πv = {P[uk,vk]}∞k=1 both converge to y, and the result follows.

Case ii) The proof is very similar to Case i), and hence, it will be omitted.

Case iii) Since x is an iterated preimage of kS, it must be the landing point of some bubble ray RS
t ,

where t ∈ R/Z is a dyadic rational. By Proposition 1.6.18, y is the landing point of the corresponding

bubble ray RSt . Any subsequence of {xi}∞i=0 contained in RS
t is mapped under ΦS to a sequence in RSt

which converges to y. Hence, we may assume that xi is not contained RS
t for all i ≥ 0.

The remainder of the proof is very similar to Case i), and hence, it will be omitted.



Chapter 1. Mating the Basilica with a Siegel Disk 43

Case iv) By Proposition 1.6.11, there exists a unique maximal nested puzzle sequences ΠS
t = {PS

[sk,tk]}
∞
k=1

whose limit contains x. Let Dr(x) be a disc of radius r > 0 centered at x. Since x is not contained the

puzzle partition PS
n of any level n ∈ N, it follows that for every k ≥ 1, there exists rk > 0 sufficiently small

such that Dr(x) ⊂ PS
[sk,tk]. Thus, there exists Nk ≥ 0 such that {xi}∞i=Nk is contained in PS

[sk,tk]. It is

easy to see that the sequence of image points {yi = ΦS(xi)}∞i=Nk must be contained in the corresponding

puzzle piece P[sk,tk] for Rν . Since the nested puzzle sequence Πt = {P[sk,tk]}∞k=1 must shrink to y, the

result follows.

Proposition 1.9.4. Let t ∈ R/Z, and let x ∈ JB and y ∈ JS be the landing point of the external ray

for fB and fS with external angle −t and t respectively. Then ΦB(x) = ΦS(y).

Proof. Consider the nested puzzle sequences ΠB
t = {PB

[sk,tk]}
∞
k=1, ΠS

t = {PS
[sk,tk]}

∞
k=1 and Πt = {P[sk,tk]}∞k=1.

By Proposition 1.6.4 and 1.6.10, we have L(ΠB
t ) ∩ JB = {x} and L(ΠS

t ) ∩ JS = {y}. Let z be the point

that Πt shrinks to. By definition, ΦB(x) = z = ΦS(y).

Proof of Main Theorem 1B.

We verify the mating criterion given in Proposition 1.1.1. Let fc1 = fB, fc2 = fS, Λ1 = ΦB, Λ2 = ΦS,

and R = Rν . Clearly, conditions (ii) and (iii) are satisfied. It remains to check condition (i).

Let τB : R/Z → JB and τS : R/Z → JS be the Carathéodory loop for fB and fS respectively (refer

to Section 1.1 for the definition of Carathéodory loop). Define σB(t) := τB(−t). By Proposition 1.9.4,

the following diagram commutes:

R/Z σB−−−−→ JByτS yΦB

JS
ΦS−−−−→ J(Rν)

It follows that if z ∼ray w, then z and w are mapped to the same point under ΦB or ΦS.

To check the converse, it suffices to prove that for z, w ∈ JS, if ΦS(z) = ΦS(w) = x ∈ J(Rν), then

z ∼ray w. First, observe that ΦS maps iterated preimages of 0 homeomorphically onto the iterated

preimages of 1. Similarly, ΦS maps iterated preimages of kS homeomorphically onto the iterated preim-

ages of κ. Now, by Proposition 1.6.20, two distinct maximal nested sequences for Rν shrink to x if and

only if x is an iterated preimage of 1, κ or β. If x is an iterated preimage of 1 or κ, then z must be equal

to w. If x is an iterated preimage of β, then z ∼ray w.

1.10 Further Thoughts

We finish this chapter with a brief discussion about possible generalizations of our results. The following

are the conditions we assumed in our main theorem.

i) The rotation number of the Siegel disk is of bounded type.

ii) The Siegel disk is fixed.

iii) The super-attracting orbit of the hyperbolic polynomial has period 2.

As we explain below, (i) and (ii) are integral to the methods used in our proof, while (iii) can easily be

replaced with a more general condition that allows for attracting orbits of any period.
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In the proof of the main theorem, we modelled the dynamics of the candidate mating Rν by a Blaschke

product Fν (see Section 1.4). This allowed us to consider chains of iterated preimages of the Siegel disk

joined together at the iterated preimages of the critical point to form bubble rays. Moreover, it gave

us a way to adapt Yampolsky’s complex a priori bounds to prove that the puzzle pieces that are cut

out by these bubble rays shrink to points at the Siegel boundary (see Section 1.7). Without condition

(i), the conjugacy between the critical circle map Fν |∂D and rigid rotation by angle ν cannot extend

quasiconformally to D, and hence, we no longer can define the quasiconformal surgery that transforms

Fν to Rν .

For quadratic polynomials, any result about a fixed Siegel disk tends to generalize to Siegel disks of

period greater than one. This is due to the fact that a quadratic polynomial with a periodic Siegel disk

can be renormalized to a quadratic-like map with a fixed Siegel disk using external rays. However, no

such renormalization technique is known to exist for the basilica family Ra. As a result, we are unable

to remove condition (ii).

On the other hand, it is not necessary for us to restrict ourselves to matings of Siegel quadratic

polynomials with the basilica polynomial fB. Indeed, the only property of fB that was used in our

proof is the fact that the Fatou components in the filled Julia set for fB are joined together at discrete

points (namely, the iterated preimages of the α-fixed point b). Hence, fB can be replaced with any

hyperbolic quadratic polynomial that satisfies this same property. For example, consider a parameter c

which is contained in a satellite component of the main cardioid of the Mandelbrot set M. For such c,

the quadratic polynomial fc is said to be starlike. With only a slight adjustment to the construction of

the Blaschke product Fν in Section 1.4 and to the definition of bubble rays in Section 1.5, the argument

presented in this chapter can be used to prove the following more general result.

Main Theorem 1B’. Suppose ν ∈ R \ Q is of bounded type. Let fS be the unique member of the

quadratic family that has a Siegel fixed point with rotation number ν, and let fc be a starlike polynomial.

Then fS and fc are conformally mateable.



Chapter 2

The Siegel Disk of a Dissipative

Hénon Map Has Non-Smooth

Boundary

2.1 Introduction to Semi-Siegel Hénon Maps

In several complex variables, the archetypical class of examples are given by the following two-dimensional

extension of the quadratic family

Hc,b(x, y) = (fc(x)− by, x) = (x2 + c− by, x) for c ∈ C and b ∈ C \ {0}

called the (complex quadratic) Hénon family.

Since

H−1
c,b (x, y) =

(
y,
y2 + c− x

b

)
,

a Hénon map Hc,b is a polynomial automorphism of C2. Moreover, it is easy to see that Hc,b has constant

Jacobian:

JacHc,b ≡ b.

Note that for b = 0, the map Hc,b degenerates to the following embedding of fc:

(x, y) 7→ (fc(x), x).

Hence, the parameter b can be viewed as a measure of how far Hc,b is from being a degenerate one-

dimensional system. We will always assume that Hc,b is a dissipative map (i.e. |b| < 1).

As usual, we let K± be the sets of points in C2 that do not escape to infinity under forward/backward

iterations of the Hénon map respectively. Their topological boundaries are J± = ∂K±. Let K =

K+ ∩K− and J = J− ∩ J+. The sets J± and K± are unbounded and connected (see [BS1]), while J

and K are compact (see [HOV1]). In analogy to one-dimensional dynamics, the set J is called the Julia

set of the Hénon map.

A Hénon map Hc,b is determined uniquely by the multipliers µ and ν at a fixed point p0. In particular,

45
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we have

b = µν,

and

c = (1 + b)

(
µ

2
+

b

2µ

)
−
(
µ

2
+

b

2µ

)2

.

When convenient, we will write Hµ,ν instead of Hc,b to denote a Hénon map.

A dissipative Hénon map Hµ,ν has a semi-Siegel fixed point p0 if µ = e2πiθ for some θ ∈ (0, 1) \ Q,

and there exist neighbourhoods N of (0, 0) and N of p0, and a biholomorphic change of coordinates

φ : (N, (0, 0))→ (N ,p0)

such that

Hµ,ν ◦ φ = φ ◦ L,

where L(x, y) := (µx, νy). A classic theorem of Siegel states, in particular, that Hµ,ν is semi-Siegel

whenever θ is Diophantine. That is, for some constants C and d, we have

qn+1 < Cqdn,

where pn/qn are the continued fraction convergents of θ (see Section 1.3 for a more detailed discussion

of Diophantine numbers). In this case, the linearizing map φ can be biholomorphically extended to

φ : (D× C, (0, 0))→ (C,p0)

so that the image C := φ(D× C) is maximal (see [MNTU]). The set C is a connected component of the

interior of K+, and its boundary coincides with J+ (see [BS2]). Let

D := φ(D× {0}).

Then clearly, C = W s(D) and D ⊂ K. We call C and D the Siegel cylinder and the Siegel disk of the

Hénon map respectively.

Remark 2.1.1. The Siegel disk D must be contained in the center manifold W c(p0) of the semi-Siegel

fixed point p0 (see e.g. [S] for the definition of center manifolds). The center manifold is not unique

in general, but all center manifolds of p0 must coincide on the Siegel disk. This phenomenon is nicely

illustrated in [O], Figure 5.

The geometry of Siegel disks in one dimension is a challenging and important topic, studied by

numerous authors; including Herman [He], McMullen [Mc3], Petersen [P], Inou and Shishikura [ISh],

Yampolsky [Ya3], and others. In the two-dimensional Hénon family, the corresponding problems have

been wide open until a very recent work of Gaidashev, Radu, and Yampolsky [GaRYa], who proved:

Theorem 2.1.2 (Gaidashev, Radu, Yampolsky). Let θ∗ = (
√

5− 1)/2 be the inverse golden mean, and

let µ∗ = e2πiθ∗ . Then there exists ε > 0 such that if |ν| < ε, then the boundary of the Siegel disk D of

Hµ∗,ν is a homeomorphic image of the circle. In fact, the linearizing map

φ : D× {0} → D
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extends continuously and injectively (but not smoothly) to the boundary.

Theorem 2.1.2 raises a natural question whether the boundary ∂D can ever lie on a smooth curve.

In the present note we answer this in the negative:

Main Theorem 2. Let ε > 0 be as in Theorem 2.1.2 and let |ν| < ε. Then the boundary of the Siegel

disk of Hµ∗,ν is not C1-smooth.

2.2 Renormalization of Almost-Commuting Pairs

In this section we give a summary of the relevant statements on renormalization of almost-commuting

pairs; we refer the reader to [GaYa] for further details.

2.2.1 One-dimensional renormalization

For a domain Z ⊂ C, we denote A(Z) the Banach space of bounded analytic functions f : Z → C
equipped with the norm

‖f‖ = sup
x∈Z
|f(x)|. (2.1)

Denote A(Z,W ) the Banach space of bounded pairs of analytic functions ζ = (f, g) from domains

Z ⊂ C and W ⊂ C respectively to C equipped with the norm

‖ζ‖ =
1

2
(‖f‖+ ‖g‖) . (2.2)

Henceforth, we assume that the domains Z and W contain 0.

For a pair ζ = (f, g), define the rescaling map as

Λ(ζ) := (s−1
ζ ◦ f ◦ sζ , s

−1
ζ ◦ g ◦ sζ), (2.3)

where

sζ(x) := λζx and λζ := g(0).

Definition 2.2.1. We say that ζ = (η, ξ) ∈ A(Z,W ) is a critical pair if

(i) η and ξ have a simple unique critical point at 0, and

(ii) ξ(0) = 1.

The space of critical pairs in A(Z,W ) is denoted by C(Z,W ).

Definition 2.2.2. We say that ζ = (η, ξ) ∈ A(Z,W ) is a commuting pair if

η ◦ ξ = ξ ◦ η.

It turns out, requiring strict commutativity is too limiting in the category of analytic functions.

Hence, we work with the following less restrictive condition:

Definition 2.2.3. We say that ζ = (η, ξ) ∈ C(Z,W ) is an almost commuting pair (cf. [Bur, Stir]) if

di(η ◦ ξ − ξ ◦ η)

dxi
(0) = 0 for i = 0, 2.
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The space of almost commuting pairs in C(Z,W ) is denoted by B(Z,W ).

Proposition 2.2.4 (cf. [GaYa]). The spaces C(Z,W ) and B(Z,W ) have the structure of an immersed

Banach submanifold of A(Z,W ) of codimension 3 and 5 respectively.

Denote

c(x) := x̄.

Definition 2.2.5. Let ζ = (η, ξ) ∈ B(Z,W ). The pre-renormalization of ζ is defined as:

pR(ζ) = pR((η, ξ)) := (η ◦ ξ, η).

The renormalization of ζ is defined as:

R(ζ) = R((η, ξ)) := Λ((c ◦ η ◦ ξ ◦ c, c ◦ η ◦ c)).

We say that ζ is renormalizable if R(ζ) ∈ B(Z,W ).

The following is shown in [GaYa]:

Theorem 2.2.6. There exist topological disks Ẑ c Z and Ŵ cW , and a commuting pair ζ∗ = (η∗, ξ∗) ∈
B(Z,W ) such that the following holds:

(i) There exists a neighbourhood N of ζ∗ in the submanifold B(Z,W ) such that

R : N → B(Ẑ, Ŵ )

is an anti-analytic operator.

(ii) The pair ζ∗ is the unique fixed point of R in N .

(iii) The differential Dζ∗R is a compact anti-linear operator. The operator

L := Dζ∗R ◦ c

has a single, simple eigenvalue with modulus greater than 1. The rest of its spectrum lies inside

the open unit disk D (and hence is compactly contained in D by the spectral theory of compact

operators).

2.2.2 Two-dimensional renormalization

For a domain Ω ⊂ C2, we denote A2(Ω) the Banach space of bounded analytic functions F : Ω → C2

equipped with the norm

‖F‖ = sup
(x,y)∈Ω

|F (x, y)|. (2.4)

Define

‖F‖y := sup
(x,y)∈Ω

|∂yF (x, y)|. (2.5)

Moreover, for

F =

[
f1

f2

]
,
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define

‖F‖diag := sup
(x,y)∈Ω

|f1(x, y)− f2(x, y)|. (2.6)

Denote A2(Ω,Γ) the Banach space of bounded pairs of analytic functions Σ = (F,G) from domains

Ω ⊂ C2 and Γ ⊂ C2 respectively to C2 equipped with the norm

‖Σ‖ =
1

2
(‖F‖+ ‖G‖) . (2.7)

Define

‖Σ‖y :=
1

2
(‖F‖y + ‖G‖y) . (2.8)

Moreover,

‖Σ‖diag :=
1

2
(‖F‖diag + ‖G‖diag) . (2.9)

Henceforth, we assume that

Ω = Z × Z and Γ = W ×W,

where Z and W are subdomains of C containing 0. For a function

F (x, y) :=

[
f1(x, y)

f2(x, y)

]

from Ω or Γ to C2, we denote

π1F (x) := f1(x, 0) and π2F (x) := f2(x, 0).

For a pair Σ = (F,G), define the rescaling map as

Λ(Σ) := (s−1
Σ ◦ F ◦ sΣ, s

−1
Σ ◦G ◦ sΣ), (2.10)

where

sΣ(x, y) := (λΣx, λΣy) and λΣ := π1G(0).

The following definitions are analogs of Definition 2.2.1, 2.2.2 and 2.2.3.

Definition 2.2.7. For κ ≥ 0, we say that Σ = (A,B) ∈ A2(Ω,Γ) is a κ-critical pair if

(i) π1A and π1B have a simple unique critical point which is contained in a κ-neighbourhood of 0,

and

(ii) π1B(0) = 1.

The space of κ-critical pairs in A2(Ω,Γ) is denoted by C2(Ω,Γ, κ).

Definition 2.2.8. We say that Σ = (A,B) ∈ A2(Ω,Γ) is a commuting pair if

A ◦B = B ◦A.
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Definition 2.2.9. We say that Σ = (A,B) ∈ C2(Ω,Γ, κ) is an κ-almost commuting pair if∣∣∣∣diπ1[A,B]

dxi
(0)

∣∣∣∣ :=

∣∣∣∣diπ1(A ◦B −B ◦A)

dxi
(0)

∣∣∣∣ ≤ κ for i = 0, 2.

The space of κ-almost commuting pairs in C2(Ω,Γ, κ) is denoted by B2(Ω,Γ, κ).

Proposition 2.2.10 (cf.[GaYa]). The space B2(Ω,Γ, κ) has the structure of an immersed Banach sub-

manifold of A2(Ω,Γ) of codimension 1.

For 0 < ε, δ ≤ ∞, let A2(Ω,Γ, ε, δ) be the open subset of A2(Ω,Γ) consisting of pairs Σ = (A,B)

such that the following holds:

1. ‖Σ‖y < ε, and

2. ‖Σ‖diag < δ.

Note that

A2(Ω,Γ,∞,∞) ≡ A2(Ω,Γ).

We denote

C2(Ω,Γ, ε, δ, κ) := A2(Ω,Γ, ε, δ) ∩ C2(Ω,Γ, κ), (2.11)

and

B2(Ω,Γ, ε, δ, κ) := A2(Ω,Γ, ε, δ) ∩ B2(Ω,Γ, κ). (2.12)

Proposition 2.2.11 (cf. [GaYa]). If ε, δ, and κ are sufficiently small, then there exists an analytic

projection map Πac : C2(Ω,Γ, ε, δ, κ)→ B2(Ω,Γ, ε, δ, κ) such that

Πac|B2(Ω,Γ,ε,δ,κ) ≡ Id. (2.13)

We define an isometric embedding ι of the space A(Z) to A2(Ω) as follows:

ι(f)(x, y) = ι(f)(x) :=

[
f(x)

f(x)

]
. (2.14)

We extend this definition to an isometric embedding of A(Z,W ) into A2(Ω,Γ) as follows:

ι((η, ξ)) := (ι(η), ι(ξ)). (2.15)

Note that

ι(B(Z,W )) = B2(Ω,Γ, 0, 0, 0).

Notation 2.2.12. Let I be the space of all finite multi-indexes

ω = (a0, . . . , an) ∈ ({0} ∪ N)n for some n ∈ N,

with the partial ordering relation ≺ defined as follows. We have

(a0, a1, . . . , ak, b) ≺ (a0, a1, . . . , an, an+1)
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if either k < n and b ≤ ak+1, or k = n and b < an+1. For a pair ζ = (η, ξ) and a multi-index

ω = (a0, . . . , an) ∈ I, denote

ζω = φan ◦ . . . ◦ ξa1 ◦ ηa0

where φ is either η or ξ, depending on whether n is even or odd. Lastly, define a sequence {α0, α1, . . .} ⊂ I
such that

pRn(ζ) = (ζαn , ζαn−1),

where pR is the pre-renormalization operator defined in Definition 2.2.5.

Lemma 2.2.13. Let Z̃ b Z and W̃ b W be domains in C. For any four-times 1D renormalizable pair

ζ0 = (η0, ξ0) ∈ B(Z,W ), there exists a neighbourhood N (ζ0) ⊂ A(Z,W ) of ζ0 such that if ζ = (η, ξ) ∈
N (ζ0), then the pair

R4(ζ) := Λ(ζα4 , ζα3)

is a well-defined element of A(Z̃, W̃ ).

Let D2(Ω,Γ, ε) ⊂ A2(Ω,Γ, ε,∞) be the open set consisting of pairs Σ = (A,B) such that the following

conditions hold.

(i) The pair Λ(Σ1) is a well-defined element of A2(Ω̃, Γ̃), where

Σ1 = (A1, B1) := (A−1 ◦ Σα4 ◦A,A−1 ◦ Σα3 ◦A),

and

Ω̃ := (1− ε)Ω and Γ̃ := (1− ε)Γ.

(ii) The map π2B1 is conformal on π1B
−1 ◦A1 ◦A−1(V ) and π1B

−1 ◦B1 ◦A−1(V ), where

V := λΣ1
Z ∪W ⊂ C.

We define the renormalization of Σ ∈ D2(Ω,Γ, ε) in several steps.

Write

Σ = (A,B) =

([
a

h

]
,

[
b

g

])
,

and denote

ηi(x) := πiA(x) and ξi(x) := πiB(x) , for i ∈ {1, 2}.

Let

ay(x) := a(x, y),

and consider the following non-linear changes of coordinates:

H(x, y) :=

[
a−1
y (x)

y

]
and V (x, y) :=

[
x

ξ2 ◦ ξ−1
1 ◦ η−1

1 (y)

]
. (2.16)

Observe that

A ◦H(x, y) =

[
ay ◦ a−1

y (x)

g(a−1
y (x), y)

]
=

[
x

g(a−1
y (x), y)

]
.
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Moreover,

V −1 ◦H−1 ◦B =

[
ag ◦ b

η1 ◦ ξ1 ◦ ξ−1
2 ◦ g

]
.

Thus, we have

‖A ◦H‖y < O(ε) and ‖V ◦H ◦B − ι(η1 ◦ ξ1)‖ < O(ε)

where defined.

Let

A2 := V −1 ◦H−1 ◦A1 ◦H ◦ V,

and

B2 := V −1 ◦H−1 ◦B1 ◦H ◦ V.

Define the pre-renormalization of Σ as

pR(Σ) := (A2, B2). (2.17)

Let

ζ := (η1, ξ1).

From the above inequalities, it follows that

‖pR(Σ)− ι(pR4(ζ))‖ < O(ε) and ‖pR(Σ)‖y < O(ε2) (2.18)

where defined.

By the argument principle, if ε is sufficiently small, then the function π1B1 ◦A1 has a simple unique

critical point ca near 0. Set

Ta(x, y) := (x+ ca, y), (2.19)

Likewise, the function π1T
−1
a ◦A1 ◦B1 ◦ Ta has a simple unique critical point cb near 0. Set

Tb(x, y) := (x+ cb, y). (2.20)

Note that if Σ is a commuting pair (i.e. A ◦B = B ◦A), then Tb ≡ Id.

Define the critical projection of pR(Σ) as

Πcrit ◦ pR(Σ) = (A3, B3) := (T−1
b ◦ T−1

a ◦A2 ◦ Ta, T−1
a ◦B2 ◦ Ta ◦ Tb). (2.21)

Note that

0 = π1(B3 ◦A3)′(0) = (π1A3)′(0) +O(ε2),

and likewise

0 = π1(A3 ◦B3)′(0) = (π1B3)′(0) +O(ε2).

Hence,

(π1A3)′(0) = O(ε2) and (π1B3)′(0) = O(ε2). (2.22)

It follows that there exists a uniform constant C > 0 such that the rescaled pair Λ ◦ Πcrit ◦ pR(Σ) is
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contained in C2(Ω,Γ, Cε2, Cε, Cε2) (recall that this means Λ ◦ Πcrit ◦ pR(Σ) is a Cε2-critical pair with

Cε2 dependence on y that is Cε away from the diagonal; see (2.11)).

Finally, define the 2D renormalization of Σ as

R(Σ) := Πac ◦ Λ ◦Πcrit ◦ pR(Σ), (2.23)

where the projection map Πac is given in Proposition 2.2.11.

Proposition 2.2.14. If Σ = (A,B) ∈ D2(Ω,Γ, ε) is a commuting pair (i.e. A ◦B = B ◦A), then R(Σ)

is a conjugate of (Σα4 ,Σα3).

Theorem 2.2.15. Let ζ∗ be the fixed point of the 1D renormalization given in Theorem 2.1.2. For

ε > 0, let Nε(ι(ζ∗)) b D2(Ω,Γ, ε) be a neighbourhood of ι(ζ∗) with compact closure. Then there exists a

uniform constant C > 0 depending on Nε(ι(ζ∗)) such that the 2D renormalization operator

R : D2(Ω,Γ, ε)→ A2(Ω,Γ),

is a well-defined analytic operator satisfying the following properties:

1. R|Nε(ι(ζ∗)) : Nε(ι(ζ∗))→ B2(Ω,Γ, Cε2, Cε, Cε2).

2. If Σ = (A,B) ∈ Nε(ι(ζ∗)) and ζ := (π1A, π1B), then

‖R(Σ)− ι(R4(ζ))‖ < Cε.

Consequently, if N (ζ∗) ⊂ B(Z,W ) is a neighbourhood of ζ∗ such that ι(N (ζ∗)) ⊂ Nε(ι(ζ∗)), then

R ◦ ι|N (ζ∗) ≡ ι ◦ R
4|N (ζ∗).

3. The pair ι(ζ∗) is the unique fixed point of R in Nε(ι(ζ∗)).

4. The differential Dι(ζ∗)R is a compact linear operator whose spectrum coincides with that of Dζ∗R4.

More precisely, in the spectral decomposition of Dι(ζ∗)R, the complement to the tangent space

Tι(ζ∗)(ι(N (ζ∗))) corresponds to the zero eigenvalue.

We denote the stable manifold of the fixed point ι(ζ∗) for the 2D renormalization operator R by

W s(ι(ζ∗)) ⊂ D2(Ω,Γ, ε).

Let Hµ∗,ν be the Hénon map with a semi-Siegel fixed point q of multipliers µ∗ = e2πiθ∗ and ν, where

θ∗ = (
√

5 − 1)/2 is the inverse golden mean rotation number, and |ν| < ε. We identify Hµ∗,ν as a pair

in D2(Ω,Γ, ε) as follows:

ΣHµ∗,ν := Λ(H2
µ∗,ν , Hµ∗,ν). (2.24)

The following is shown in [GaRYa]:

Theorem 2.2.16. The pair ΣHµ∗,ν is contained in the stable manifold W s(ι(ζ∗)) ⊂ D2(Ω,Γ, ε) of the

fixed point ι(ζ∗) for the 2D renormalization operator R.



Chapter 2. The Siegel Disk of a Dissipative Hénon Map Has Non-Smooth Boundary 54

2.3 The Renormalization Arc

Let

ζ∗ = (η∗, ξ∗)

be the fixed point of the 1D renormalization operator R given in Theorem 2.1.2. By Theorem 2.2.15,

the diagonal embedding ι(ζ∗) of ζ∗ is a fixed point of the 2D renormalization operator R. Hence, we

have

R(ι(ζ∗)) = (s−1
∗ ◦ ι(ζ)α4 ◦ s∗, s−1

∗ ◦ ι(ζ)α3 ◦ s∗) = ι(ζ∗),

where

s∗(x, y) := (λ∗x, λ∗y) , |λ∗| < 1.

Let Σ = (A,B) be a pair contained in the stable manifold W s(ι(ζ∗)) of the fixed point ι(ζ∗). Assume

that Σ is commuting, so that

A ◦B = B ◦A.

Write

Σn = (An, Bn) =

([
an

hn

]
,

[
bn

gn

])
:= Rn(Σ),

and let

ηn(x) := π1An(x) = an(x, 0) and ξn(x) := π1Bn(x) = bn(x, 0).

By Theorem 2.2.15, we may express

An = ι(ηn) + En and Bn = ι(ξn) + Fn (2.25)

where the error terms En and Fn satisfy

‖En‖ < Cε2
n−1

and ‖Fn‖ < Cε2
n−1

. (2.26)

Hence, the sequence of pairs {Σn}∞n=0 converges to B2(Ω,Γ, 0, 0, 0) super-exponentially.

Denote

(an)y(x) := an(x, y).

Let

Hn(x, y) :=

[
(an)−1

y (x)

y

]
and Vn(x, y) :=

[
x

π2Bn ◦ ξ−1
n ◦ η−1

n (y)

]
be the non-linear changes of coordinates given in (2.16), let

Tn(x, y) := (x+ dn, y),

be the translation map given in (2.19), and let

sn(x, y) := (λnx, λny) , |λn| < 1

be the scaling map so that if

φn := Hn ◦ Vn ◦ Tn ◦ sn, (2.27)
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then by Proposition 2.2.14, we have

An+1 = φ−1
n ◦A−1

n ◦ Σα4
n ◦An ◦ φn

and

Bn+1 = φ−1
n ◦A−1

n ◦ Σα3
n ◦An ◦ φn.

Denote

Φkn := φn ◦ φn+1 ◦ . . . ◦ φk−1 ◦ φk , Ωkn := Φkn(Ω) and Γkn := Φkn(Γ).

Define

Ukn :=
⋃

ω≺αk−n

Σωn(Ωkn) and V kn :=
⋃

ω≺αk−n−1

Σωn(Γkn).

It is not hard to see that {Ukn ∪ V kn }∞k=n form a nested sequence. Define the renormalization arc of Σn

as

γn :=

∞⋂
k=n

Ukn ∪ V kn . (2.28)

Proposition 2.3.1. The renormalization arc γn is invariant under the action of Σn. Moreover, if

pkn :=
⋃

ω≺αk−n

Σωn(Φkn(γk ∩ Ω)) and qkn :=
⋃

ω≺αk−n−1

Σωn(Φkn(γk ∩ Γ)),

then

γn = pkn ∪ qkn.

Let θ∗ = (
√

5− 1)/2 be the golden mean rotation number, and let

IL := [−θ∗, 0] and IR := [0, 1].

Define L : IL → R and R : IR → R as

L(t) := t+ 1 and R(t) := t− θ∗.

The pair (R,L) represents rigid rotation of R/Z by angle θ∗.

The following is a classical result about the renormalization of 1D pairs.

Proposition 2.3.2. Suppose ‖Σ‖y = 0. Then for every n ≥ 0, there exists a quasi-symmetric homeo-

morphism between IL ∪ IR and the renormalization arc γn that conjugates the action of Σn = (An, Bn)

and the action of (R,L). Moreover, the renormalization arc γn contains the unique critical point cn = 0

of ηn.

The following is shown in [GaRYa].

Theorem 2.3.3. Let Σ = (A,B) be a commuting pair contained in the stable manifold W s(ι(ζ∗)) of

the 2D renormalization fixed point ι(ζ∗). Then for every n ≥ 0, there exists a homeomorphism between

IL ∪ IR and the renormalization arc γn that conjugates the action of Σn = (An, Bn) and the action of

(R,L). Moreover, this conjugacy cannot be C1 smooth.
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Theorem 2.1.2 follows from the above statement and the following:

Theorem 2.3.4 ([GaRYa]). Suppose

Σ = ΣHµ∗,ν ,

where ΣHµ∗,ν is the renormalization of the Hénon map given in Theorem 2.2.16. Then the linear rescaling

of the renormalization arc s0(γ0) is contained in the boundary of the Siegel disc D of Hµ∗,ν . In fact, we

have

∂D = s0(γ0) ∪Hµ∗,ν ◦ s0(γ0).

Henceforth, we consider the renormalization arc of Σn as a continuous curve γn = γn(t) parameterized

by IL ∪ IR. The components of γn are denoted

γn(t) =

[
γxn(t)

γyn(t)

]
.

Lastly, denote the renormalization arc of ι(ζ∗) by

γ∗(t) =

[
γx∗ (t)

γy∗ (t)

]
.

The following are consequences of Theorem 2.2.15.

Corollary 2.3.5. As n→∞, we have the following convergences (each of which occurs at a geometric

rate):

1. ηn → η∗,

2. λn → λ∗ (hence sn → s∗),

3. φn → ψ∗, where

ψ∗(x, y) =

[
η−1
∗ (λ∗x)

η−1
∗ (λ∗y)

]
, and

4. γn → γ∗ (hence |γxn(0)| → 0).

2.4 Normality of the Compositions of Microscope Maps

Define

ψn(x, y) :=

[
η−1
n (λnx)

η−1
n (λny)

]
.

For n ≤ k, denote

Ψk
n := ψn ◦ ψn+1 ◦ . . . ◦ ψk−1 ◦ ψk.

Let [
σkn 0

0 σkn

]
:= (D(0,0)Ψ

k
n)−1.

Proposition 2.4.1. The family {σknΨk
n}∞k=n is normal.
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Proof. By Corollary 2.3.5, there exists a domain U ⊂ C2 and a uniform constant c < 1 such that for all

k sufficiently large, the map ψk is well defined on U , and

Ω ∪Ak+1(Ω) ∪ Γ ∪Bk+1(Γ) b cU.

Thus, by choosing a smaller domain U if necessary, we can assume that ψk and hence, Ψk
n extends to a

strictly larger domain V c U . It follows from applying Koébe distortion theorem to the first and second

coordinate that {σknΨk
n}∞k=n is a normal family.

Proposition 2.4.2. There exists a uniform constant M > 0 such that

||φn − ψn|| < Mε2
n−1

.

Proof. The result follows readily from (2.25) and (2.26).

Proposition 2.4.3. There exists a uniform constant K > 0 such that

σkn||Φkn −Ψk
n|| < Kε2

n−1

.

Proof. By Proposition 2.4.2, we have

φk−1 = ψk−1 + Ẽk−1 and φk = ψk + Ek,

where ||Ẽk−1|| < Mε2
k−2

and ||Ek|| < Mε2
k−1

. Observe that

φk−1 ◦ φk = φk−1 ◦ (ψk + Ek)

= φk−1 ◦ ψk + Ēk

= (ψk−1 + Ẽk−1) ◦ ψk + Ēk

= ψk−1 ◦ ψk + Ẽk−1 ◦ ψk + Ēk,

where ||Ēk|| < Lε2
k−1

for some uniform constant L > 0 by Corollary 2.3.5. Let

Ek−1 := Ẽk−1 + Ēk ◦ ψ−1
k .

By Corollary 2.3.5, ψ−1
k is uniformly bounded, and hence, we have

||Ek−1|| < Mε2
k−2

+ 2Lε2
k−1

< 2Mε2
k−2

.

Thus, we have

φk−1 ◦ φk = ψk−1 ◦ ψk + Ek−1 ◦ ψk.

Proceeding by induction, we obtain

Φkn = Ψk
n + En ◦ ψn+1 ◦ . . . ◦ ψk,

where

||En|| < 2Mε2
n−1

.
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By definition, we have

σkn(ψn ◦ ψn+1 ◦ . . . ◦ ψk)′(0) = 1.

Factor the scaling constant as

σkn := σ̇knσ
k
n+1,

so that

|σ̇knψ′n(ψn+1 ◦ . . . ◦ ψk(0))| = 1,

and

|σkn+1(ψn+1 ◦ . . . ◦ ψk)′(0)| = 1.

Let

M := sup
x∈Z

η′n(x).

Observe that σ̇kn is uniformly bounded by λ−1
n M . Moreover, by Proposition 2.4.1, we have that σkn+1(ψn+1◦

. . . ◦ ψk)′ is also uniformly bounded. Therefore,

||σkn(En ◦ ψn+1 . . . ◦ ψn)′|| = ||σ̇knE′n(ψn+1 . . . ◦ ψn)|| · ||σkn+1(ψn+1 . . . ◦ ψn)′||

= K||E′n(ψn+1 . . . ◦ ψn)||

< Kε2
n−1

for some universal constant K > 0.

By Proposition 2.4.1 and 2.4.3, we have the following theorem.

Theorem 2.4.4. The family {σknΦkn}∞k=n is normal.

2.5 The Proof of Non-Smoothness.

Let [tl, tr] ⊂ R be a closed interval, let W be a domain in either C or C2, and let C : [tl, tr] → W be a

smooth curve. For any N ⊂W , we define the angular deviation of C on N as

∂θ(C,N) := sup
t,s∈C−1(N)

| arg(C ′(t))− arg(C ′(s))|, (2.29)

where the function arg is defined as

arg(re2πθi) := 2πθ (2.30)

Lemma 2.5.1. Let θ ∈ R/Z, and let Cθ : [0, 1] → C be a smooth curve such that Cθ(0) = 0 and

Cθ(1) = e2πθi. Then for some t ∈ [0, 1], we have

arg(C ′θ(t)) = 2πθ.

Lemma 2.5.2. Let

q2(x) := x2 and ARr := {z ∈ C | r < |z| < R}. (2.31)

Suppose C : [tl, tr] → DR is a smooth curve such that |C(tl)| = |C(tr)| = R, and |C(t0)| < r for some

t0 ∈ [tl, tr]. Then for every δ > 0, there exists M > 0 such that if mod(ARr ) > M , then either ∂θ(C,A
R
r )
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or ∂θ(q2(C), q2(ARr )) is greater than π/3− δ.

Proof. Without loss of generality, assume that R = 1, and C(tr) = 1. We prove the case when r = 0, so

that C(t0) = 0. The general case follows by continuity.

Suppose that ∂θ(C,D) < π/3. Then by Lemma 2.5.1, we have

2π/3 < arg(C(tl)) < 4π/3.

This implies that

−2π/3 < 2 arg(C(t1)) < 2π/3.

Hence, by Lemma 2.5.1, we have ∂θ(q2 ◦ C,D) > π/3.

Lemma 2.5.3. Let W ⊂ C be a domain, and let C : [tl, tr]→W 2 be a smooth curve given by

C(t) =

[
Cx(t)

Cy(t)

]
.

Let f : W → f(W ) and F : W 2 → F (W 2) be smooth functions such that

F = ι(f) + E

and ‖E‖ < ε. Suppose

inf
x∈U
|f ′(x)| > m.

Then

‖ arg((ι(f) ◦ Cx)′)− arg((F ◦ C)′)‖ < Kε/m

for some uniform constant K.

Let U ⊂ Z ⊂ C be a simply-connected domain containing the origin. For all k sufficiently large, the

unique critical point ck of ηk is contained in U . Let Vk := ηk(U). Then there exists conformal maps

uk : D→ U and vk : D→ Vk such that the following diagrams commutes:

D uk−−−−→ Uyq2 yηk
D vk−−−−→ Vk

By Corollary 2.3.5, we have the following result:

Proposition 2.5.4. The maps uk : D → U and vk : D → Vk converge to conformal maps u∗ : D → U

and v∗ : D→ η∗(U). Moreover, the following diagram commutes:

D u∗−−−−→ Uyq2 yη∗
D v∗−−−−→ η∗(U)

Proof of Main Theorem 2. By Theorem 2.4.4, the sequence {σk0 Φk0}∞k=0 has a converging subsequence.

By replacing the sequence by this subsequence if necessary, assume that {σk0 Φk0}∞k=0 converges. Consider



Chapter 2. The Siegel Disk of a Dissipative Hénon Map Has Non-Smooth Boundary 60

the following commutative diagrams:

D uk−−−−→ Uyq2 yηk
D vk−−−−→ Vk

and

Ω
Φk0−−−−→ ΩyAk yA0

Ak(Ω)
Φk0−−−−→ A0(Ω)

.

Let δ > 0. Then by Proposition 2.5.4, we can choose R > 0 sufficiently small so that if

Xk := uk(DR), and Yk := vk(DR2),

then the following uniform estimates on the angular deviation hold:

1. For any smooth curve C ⊂ D, we have

∂θ(C,DR) < ∂θ(uk ◦ C,Xk) + δ and ∂θ(C,DR2) < ∂θ(vk ◦ C, Yk) + δ.

2. For any smooth curves C1 ⊂ Ω and C2 ⊂ Ak(Ω), we have

κ∂θ(C1, X
2
k) < ∂θ(Φ

k
0 ◦ C1,Φ

k
0(X2

k))

and

κ∂θ(C2, Y
2
k ) < ∂θ(Φ

k
0 ◦ C2,Φ

k
0(Y 2

k ))

for some uniform constant κ > 0.

Consider the renormalization arc of Σn:

γn(t) =

[
γxn(t)

γyn(t)

]
.

Let

χk := u−1
k ◦ γ

x
k . (2.32)

Now, choose r > 0 is sufficiently small so that the annulus ARr satisfies the condition of Lemma 2.5.2.

Next, choose K sufficiently large so that for all k > K, we have

|χk(0)| < r.

Let

mk := inf
x∈uk(ARr )

|η′k(x)| > 0.

Then mk is uniformly bounded below by m∗ > 0. Lastly, denote

Wk := vk ◦ q2(ARr ) ⊂ Yk.

Now, suppose towards a contradiction that γ0, and hence γk is smooth for all k ≥ 0. By the above
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estimates, we can conclude:

∂θ(γ0,Φ
k
0(X2

k)) = ∂θ(Φ
k
0 ◦ γk,Φk0(X2

k))

> κ∂θ(γk, X
2
k)

> κ∂θ(γ
x
k , Xk)

> κ∂θ(χk,DR)− κδ

> κ∂θ(χk, A
R
r )− κδ,

and

∂θ(γ0,Φ
k
0(Y 2

k )) = ∂θ(Φ
k
0 ◦ γk,Φk0(Y 2

k ))

> κ∂θ(γk, Y
2
k )

> κ∂θ(γk,W
2
k )

= κ∂θ(Ak(γk),W 2
k )

> κ∂θ(ι(ηk) ◦ γxk ,W 2
k )− 2κKε2

k

/m∗ (2.33)

> κ∂θ(ηk ◦ γxk ,Wk)− 2κKε2
k

/m∗

> κ∂θ(q2 ◦ χk, q2(ARr ))− κδ − 2κKε2
k

/m∗.

where in (2.33), we used Lemma 2.5.3.

By Lemma 2.5.2, either ∂θ(χk, A
R
r ) or ∂θ(q2 ◦ χk, q2(ARr )) is greater than π/3− δ. Hence,

max{∂θ(γ0,Φ
k
0(X2

k)), ∂θ(γ0,Φ
k
0(Y 2

k ))} > l

for some uniform constant l > 0. Since Φk0(X2
k) and Φk0(Y 2

k ) both converge to a point in γ0 as k → ∞,

this is a contradiction.

2.6 Further Thoughts

It is natural to wonder if our results can be extended to rotation numbers other than the inverse-golden

mean θ∗ = (
√

5 − 1)/2. In fact, our proof is quite general and largely independent of which specific

rotation number we are considering. The key geometric observation we make is that in the presence of

a critical point (or a “near-critical” point for dissipative diffeomorphisms of two variables), there cannot

be an invariant smooth curve, since any such curve would have to contain corners. The same argument

would apply to, for example, any rotation number of bounded type, since for these rotation numbers,

the Siegel boundary of a quadratic polynomial is guaranteed to contain a critical point (see [Do2]).

The real obstruction that prevents us from generalizing our results lies in the fact that the renor-

malization hyperbolicity theorem in one-dimension (Theorem 2.2.6) has only been established for the

inverse golden-mean rotation number. Gaidashev and Yampolsky gave a computer-assisted proof of this

result in [GaYa]. From a conceptual point of view, it is expected that the same result should hold for

a more general class of rotation numbers. However, in [GaYa], a specific rotation number was used in

order to carry out the necessary computations.
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