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This thesis comprises of two main results which are proved using renormalization techniques.

For the first result, we show that a quadratic polynomial with a fixed Siegel disc of bounded type
rotation number is conformally mateable with the basilica polynomial fg(z) := 2% — 1.

For the second result, we study sufficiently dissipative complex quadratic Hénon maps with a semi-
Siegel fixed point of inverse golden-mean rotation number. It was recently shown in [GaRYa] that the
Siegel disks of such maps are bounded by topological circles. We investigate the geometric properties of

such curves, and demonstrate that they cannot be C'-smooth.
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Preface

In the last several decades, renormalization has emerged as a key theme in the field of low dimensional
dynamics through a series of seminal works of Douady and Hubbard [DH2], Sullivan [Su], McMullen
[Mc1l Mc2], Lyubich [Lyl], Yoccoz [Yoll, [Hu], and many others. Loosely speaking, the renormalization
of a dynamical system is defined as a rescaled first return map on an appropriately chosen subset of
the phase space. Iterating this procedure reveals the small-scale asymptotic behaviour of the dynamics,
which is often universal and insensitive to the incidental details of the system.

The renormalization approach has been particularly useful in the study of indifferent dynamical
systems, which are often the most challenging cases. The numerous important examples of this include
the works of Herman [He], Lanford [Lall [La2], Yoccoz [Yo2], Shishikura [Shil ISh], and Yampolsky
([Ya2], [Yad]). In this thesis, we consider two different applications of renormalization: the topological
modelling of the dynamics of Siegel rational maps, and the analysis of the geometric properties of Siegel
disks for dissipative Hénon maps. We present each topic in their own independent self-contained chapter,

which we summarize below.

1. Mating the Basilica with a Siegel Disk

In the first chapter, we study the following one-parameter family of quadratic rational maps

Ru(z) := ﬁ for ae€C\{0},
called the basilica family. The characteristic feature of a map R, is that it has a superattracting two-
periodic orbit. The unique (up to an affine change of coordinates) quadratic polynomial that satisfies
this property is given by .
conj

f(2) =22 -1~ PR
For the shape of its filled Julia set, we call fg the basilica polynomial. It follows that for a # 1, the
maps R, provide examples of non-polynomial dynamical systems.

Analogous to the Mandelbrot set M for the quadratic polynomials, we can define the non-escape
locus Mgy in the parameter space of the basilica family. Comparing the plot of M shown in Figure
[I:I] and the plot of Mg shown in Figure [I.3] we see that the two sets are structurally very similar. In
fact, it is conjectured that the maps in My are realizations of the matings of fg and the quadratic
polynomials in M. Loosely speaking, this means that the dynamics of R, in Mg is the amalgamation
of the dynamics of fg (from whence it obtains the superattracting two-periodic orbit) with the dynamics

of some corresponding quadratic polynomial in M.



In most cases, this conjecture has been verified through the works of Rees, Tan and Shishikura [Rel,
Tanl, [Sh2); Haissinsky [Hal; Aspenberg and Yampolsky [AYal]; and Dudko [Dul. The only parameters that
are not accounted for, but for which we still expect a positive answer, are the “nice” Siegel parameters
contained in the boundary of hyperbolic components that are not too “deep” inside Mg. For our first
result, we settle the conjecture for a key subclass of such parameters. Specifically, we show that if R,
has a fixed Siegel disk of bounded type rotation number v = €279, then R, is a mating with the basilica.

The main ideas of the proof are as follows. First, by using a similar argument as the one found
in [YaZ], we prove the existence of a Blaschke product F, whose dynamics outside the grand orbit of
the unit disc matches that of R, . This Blaschke product F, can then be transformed into R,,6 by a
quasiconformal surgery replacing the unit disc with a Siegel disc (see Theorem [1.4.5). This proves that
the boundary of the Siegel disc for R,, is a quasicircle, and that it contains a critical point (see Main
Theorem 1A).

Using Main Theorem 1A, we construct chains of iterated preimages of the Siegel disc connected by
iterated preimages of the critical point in the dynamical space of R,,. These structures are called bubble
rays, and they play an analogous role to external rays for polynomials. Using these bubble rays, we create
a dynamical partition for R, . This naturally defines a correspondence between the map R, and the
topological model given by the mating of the basilica polynomial fg and the Siegel quadratic polynomial
fs with rotation number v. Theorem then allows us to use a result in the renormalization theory of
critical circle maps developed by Yampolsky in [Yad] called complez a priori bounds. Using this estimate,
we are able to show that the dynamic partition elements for R, shrink to points. This implies that the
correspondence between R,, and the mating of fg and fs is one-to-one. From this key fact, the rest of

the result follows readily.

2. The Siegel Disk of a Dissipative Hénon Map Has Non-Smooth
Boundary

In the second chapter, we study the following two-dimensional extension of a one-parameter family of

quadratic polynomials
H.p(z,y) = (#* +c—by,x) force€ Candbe C)\ {0}

called the (complex quadratic) Hénon family. More specifically, we are interested in Hénon maps H,,, , =
H

Crux J/vbu*,

_ that has a fixed point py with multipliers p, = €2 and v € D\ {0}, where

V5 —1

0, = 5

is the inverse golden-mean.
By a classic theorem of Siegel, there exists a neighborhoods N of (0,0) and N of pg, and a biholo-
morphic change of coordinates

¢ (N7(0’0))_> (N,po)

such that
H, ,op=¢oL,



where L(z,y) := (u«2,vy). This linearizing map can be biholomorphically extended to
¢ : (]D) X (Ca (070)) - (Cvp0)

so that the image C := ¢(D x C) is mazimal (see [MNTU]). We call C and D := ¢(D x {0}) the Siegel
cylinder and the Siegel disk of H,,, , respectively.
Consider the quadratic polynomial
fc*(x) =%+ Cx

with a Siegel fixed point xy of multiplier u.. Let D be its Siegel disk, and let v» : D — D be its
biholomoprhic linearizing map. It is well-known that i extends quasi-symmetrically to the boundary.
Moreover, 0D contains the critical point of f. . Since 0D is invariant under f. , it follows immediately
that 0D cannot be a smooth curve.

For the Hénon map H,,, ,, it was recently shown in [GaRYa] that ¢ restricted to the Siegel disk D
extends homeomorphically, but not C'-smoothly to the boundary D (see Theorem . However,
this does not imply that 9D is itself not a C'-smooth curve. Moreover, unlike in the one-dimensional
case, 0D does not contain the critical point for H,,, ,, as no such point exists. Indeed, H,, , is a
diffeomorphism with a constant Jacobian equal to b, ., # 0.

Our proof of non-smoothness relies instead on the renormalization theory developed by Gaidashev
and Yampolsky in [GaYa]. Loosely speaking, they showed that high iterates of H,, , restricted to
appropriately chosen nested neighborhoods that intersect 0D converge to a universal degenerate one-
dimensional dynamical system with a simple critical point. Geometrically, this means that 9D contains a
sequence of “near critical” points for higher iterates of H,,, ,. Moreover, the higher the iterate, the more
“pear critical” such points become. Hence, if 9D were C'-smooth, then by the invariance of 9D, these
“near critical” points would force 9D to have corners. Such corners would accumulate to a singularity,

which would contradict the smoothness of 0D.



Chapter 1

Mating the Basilica with a Siegel
Disk

1.1 The Definition of Mating

The simplest non-linear examples of holomorphic dynamical systems are given by the quadratic polyno-
mials in C. By an affine change of coordinates, any quadratic polynomial can be uniquely normalized
as

fo(2):=2*+¢ forsome ceC.

This is referred to as the quadratic family.

The critical points for f. are co and 0. Observe that oo is a superattracting fixed point for f,.
Let A2® be the attracting basin of co. It follows from the maximum modulus principle that A is a
connected set. The complement of A2 is called the filled Julia set K.. It is known that the boundary
of K. is equal to the Julia set J,. := J(f.) for f. (see [M3]).

The non-escape locus in the parameter space for f., referred to as the Mandelbrot set, is defined as

the following compact subset of C:
M:={ceC | 0¢ A}

It is known that M is connected (see [DHI]). Moreover, it is not difficult to prove that J,. is connected
(and therefore, AS° is simply connected) if and only if ¢ € M. In fact, if ¢ ¢ M, then J. = K, is a
Cantor set, and the dynamics of f, restricted to J. is conjugate to the dyadic shift map (see [M2]). We
also define the following subset of the Mandelbrot set:

L:={ce M | J.islocally connected}.

It should be noted that £ is a proper subset of M (for example, if ¢ € M is Cremer, then it is known
that J. is not locally connected).

Some of the most celebrated results in holomorphic dynamics are centered on the quadratic family f.,
including those obtained by Douady and Hubbard [DH2], Milnor [M1], Yoccoz [Yol], and Lyubich [Ly2].
Having been the focal point in the field since the subject first emerged, the dynamics of the quadratic
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Figure 1.1: The Mandelbrot set M. The 1/2-limb L, /, is highlighted.

family is now almost completely understood. In contrast, obtaining a similarly explicit dynamical
description of other families of rational maps remains a wide open area of research. One of the most
natural starting point for advancement in this direction is the study of non-polynomial quadratic rational
maps. In this section, we describe a construction, originally put forward by Douady and Hubbard (see

[Dol), which produces quadratic rational maps by combining the dynamics of two quadratic polynomials.

Suppose ¢ € L. Since J, is connected, A2° must be a simply connected domain. Let
¢ AT =D

be the unique conformal Riemann mapping such that ¢.(c0) = 0 and ¢.(c0) > 0. It is not difficult to

prove that the following diagram commutes:

Ax T A

[

222

D —/—— D

and hence, ¢. is the Bottcher uniformization of f. on A2®. Moreover, since J. is locally connected,
Carathéodory’s theory implies that the inverse of ¢. extends continuously to the boundary of D (see
[M3]). If we let

e = ¢ om,

we obtain a continuous parametrization of J. by the unit circle 9D = R/Z known as a Carathéodory

loop. Observe that fc, when restricted to J., acts via 7. as the angle doubling map:
fc(Tc(t)) = Tc(2t).

Now, suppose c1,ce € L. Using 7., and 7.,, we can glue the dynamics of f., and f., together to

construct a new dynamical system as follows. First, we construct a new dynamical space K., V K., by
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gluing the filled Julia sets K., and K.,:
KCl v KC2 = (KCI U KCQ)/{TCI (t) ~ TCQ(_t)}’ (11)

We refer to the resulting equivalence relation ~ as ray equivalence, and denote it by ~ray. For a point
z in K., or K.,, we denote the ray equivalency class of z by []ay-
We now define a new map

fc1 \% fcz : K01 \ ch — Kcl \/ch,

called the formal mating of f., and f.,, by letting fe, V fe, = fe, on K., and fe, V fe, = fe, on Ko,.
Note that the definition of f., V f., is consistent, since on their Julia sets, both f., and f., act by angle
doubling.

fo2)=24c¢

c~ —0.123 + 0.7544

Figure 1.2: The Douady rabbit f. with ¢ = —0.123 + 0.754¢ mated with the basilica polynomial fg.

If the space K., V K., is homeomorphic to the 2-sphere, then f., and f., are said to be topologically

mateable. If, in addition, there exists a quadratic rational map R and a homeomorphism
A: K, VK., —C

such that A is conformal on ID(Cl U I%CQ C K., V K.,, and the following diagram commutes:

feyViey

K., VK., K., VK.,
[ [
¢ SEELEN ®
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then f., and f., are said to be conformally mateable. The quadratic rational map R is called a conformal
mating of fe, and f.,. We also say that R realizes the conformal mating of f., and f.,.
In applications, it is sometimes more useful to work with the following reformulation of the definition

of conformal mateability:

Proposition 1.1.1. Suppose c1,c2 € L. Then f., and f., are conformally mateable if and only if there

exists a pair of continuous maps
A K. - C  and Ay: K., —C
such that for alli,j € {1,2} the following three conditions are satisfied:
(1) Ai(z) = Aj(w) if and only if 2z ~rqy w,
(ii) A; is conformal on K,,, and

(iii) there exists a rational function R of degree 2 such that the following diagrams commute:

K., 2. K, K., 12 Kk,
lAl lAl and JAZ lAQ
¢ £, ¢ ¢ £ ¢

Proof. Assume that there exists a pair of maps A; and Ay satisfying (i), (ii) and (iii). Consider the
space K., V K., given by (L.I)). Define A : K., V K, — C by letting Alg,, = Ay and Alg,, = Az, By
(1), this definition is consistent. Conformal mateability readily follows from the other two properties of
Ay and As.
Assume that f., and f., are conformally mateable, and let A be the conjugacy between f., V f., and
a rational map R. Define
Ay = A|K01 and Ap:= A|K62.

The properties (i), (ii) and (iii) follow immediately. O

Corollary 1.1.2. Suppose R is a conformal mating of f., and f., for some ci,co € L. Then R has a
locally connected Julia set J(R).

Proof. Let Ay : K., — C and Ao Ko, — C be as given in Proposition Note that
J(R) = Ai(Je,) = Aa(Jey).

Since the continuous image of a compact locally connected set is locally connected, the result follows. [

Example 1.1.3. For ¢ € L, the quadratic polynomial f,. is trivially conformally mateable with the
squaring map fo(z) = 22. This follows from choosing A; and Ay in Proposition to be the identity
map on K. and the inverse of the Bottcher uniformization of f. on A2 respectively. Note that the
conformal mating of f. and fj is realized by f. itself. The following result shows that with the exception

of this trivial case, the mating construction always yields a non-polynomial dynamical system.

Proposition 1.1.4. Suppose a quadratic polynomial P : C — C is a conformal mating of f., and fe,

for some c1,co € L. Then either f., or f., must be equal to the squaring map fo.
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Proof. Let J(P) and A% denote the Julia set and the attracting basin of infinity for P respectively. We
have
J(P) = A1 (Je,) = Aa(Jey).

o

Hence, A® must be contained in either A1 (K,,) or Ag (K s ). Assume for concreteness that it is contained

in the former. Since A|; is conformal, and
fo(2)=A7'oPoA(z) forall ze€K,.,

we see that A7 ' (co) must be a superattracting fixed point for f.,. The only member in the quadratic
family that has a bounded superattracting fixed point is the squaring map fj. O

Example 1.1.5. Consider the formal mating of the basilica polynomial fg(z):= f_1(2) = 22 — 1 with
itself. The glued space Ky V Kg consists of infinitely many spheres connected together at discrete nodal
points (refer to Section for the structural properties of Kg). Hence, it is not homeomorphic to
the 2-sphere. Therefore, fg is not conformally mateable with itself (since it is not even topologically
mateable with itself). This is actually a specific instance of a more general result, which we state below.

Let Hy be the principal hyperbolic component defined as the set of ¢ € M for which f. has an

attracting fixed point z. € C. It is conformally parametrized by the multiplier of z.:
Niers fi(ze)

(see e.g. [M2]). Note that A extends to a homeomorphism between Hy and D.

A connected component of M \ Hy is called a limb. It is known (see e.g. [M2]) that the closure of
every limb intersects 0H( at a single point. Moreover, the image of this point under M is a root of unity.
Henceforth, the limb growing from the point A~ (e2"%/4) for some p/q € Q will be denoted by Ly, For
example, the parameter value —1 for the basilica polynomial fg(z) = 22 — 1 is contained in the 1/2-limb
Ly s

The following standard observation is due to Douady [Dol:

Proposition 1.1.6. Suppose ¢1 and cz are contained in complex conjugate limbs Ly,,, and L of the

q -p/q

Mandelbrot set M. Then f., and f., are not topologically mateable.

Proof. There exists a unique repelling fixed point oy € K (resp. ag € K3) such that K; \ {aq} (resp.
K5\ {asg}) is disconnected. Since ¢; and ¢y are contained in complex conjugate limbs, a; and asg are in
the same ray equivalency class. Hence they are glued together to a single point in K., V K.,. Removing
this single point from K., V K., leaves it disconnected, which is impossible if K., V K., is homeomorphic
to the 2-sphere. For more details, see [M2]. O

1.2 Matings with the Basilica Polynomial

Matings can be particularly useful in describing the dynamics in certain one-parameter families of rational

maps. The best studied example of such a family is

a
Ra(Z) = m for a € C \ {O},
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which is referred to as the basilica family.
The critical points for R, are oo and —1. Observe that {oco,0} is a superattracting 2-periodic orbit
for R,. Let AS° be the attracting basin of {co,0}. The boundary of A is equal to the Julia set J(R,).

Proposition 1.2.1. Suppose f : C—oCisa quadratic rational map with a superattracting 2-periodic

orbit. Then by a linear change of coordinates, f can be normalized as either:
(i) R for some a € C\ {0}, or

Proof. By a linear change of coordinates, we may assume that f has a superattracting 2-periodic orbit

{o0,0} with a critical point at co. Let

agz2 + a1z + ag
f@) =T
baz? + b1z + by

Since f(0o) = 0 and f(0) = co, we have as = bg = 0, ba # 0 and ag # 0. If a; # 0, then for r sufficiently
large, we have

f(ree) ~ b%ﬂe_g.

This implies that co cannot be a critical point for f by the argument principle. Hence, we must have

a1 = 0. These observations yield the following expression for f:

f(z) = with a € C\ {0}.

a
22+ bz
If the second critical point for f is equal to 0, then by using a similar argument as above, we see that

b= 0. In this case, we have

fOe)/A =+

z

where A is a cube root of a.
On the other hand, if the second critical point for f is not equal to 0, then we may assume by a linear
change of coordinates that it is equal to —1. A straightforward computation shows that f/(—1) = 0 if

and only if b = 2, which means f = R, as claimed. O

Analogously to M, the non-escape locus in the parameter space for R, is defined as
Mp :={ac C\{0} | —1¢AF}.
We also define the following subset of Mg:
Ly :={a e Mg | J(R,) is locally connected}.

The basilica polynomial
fB(z) =22 -1

is the only member of the quadratic family that has a superattracting 2-periodic orbit. Let Kg be the
filled Julia set for fg. The following result is an analogue of the Bottcher uniformization theorem for

the quadratic family. Refer to [AYa] for the proof.
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Figure 1.3: The non-escape locus Mg for R, (in black). At the center of the largest component of
Mp is the rational map R;, which realizes the conformal mating of the basilica polynomial fg with
the squaring map fy. Compare with Figure Note that instead of a copy of the 1/2-limb Ly 5, the
main component of Mg has a second cusp at 0 (see Example .

Proposition 1.2.2. Suppose a € Mp. Then there exists a unique conformal map g : AL — Kg such

that the following diagram commutes:
A o AP

lwa J/wa
o fB o
KB E— KB
Moreover, if B is a connected component of AS°, then 1, extends to a homeomorphism between B and

Va(B).

Suppose for some ¢ € LN (C\ Ly/3), the quadratic polynomials f. and fg are conformally mateable.
If F:C — C is a conformal mating of f. and fg, then F has a superattracting 2-periodic orbit. By
Proposition [[.2.1] F' can be normalized as R, for some a € Lg.

In view of Proposition [[.2.2] it is natural to ask whether for every a € Lg, the quadratic rational
map R, is a conformal mating of f. and fg for some ¢ € LN (C\ Ly/3). It turns out this cannot be
true: for some a € Lg, the map R, can only be identified as the product more general form of mating
called mating with laminations between f, and fg with ¢ ¢ £ (see [Dul). However, the following weaker
statement does hold. The proof is completely analogous to the proof of Proposition [I.1.4]} so we omit it

here.

Proposition 1.2.3. Suppose R, is a conformal mating. Then R, is a conformal mating of f. and f
for some c€ LN (C\ Ly 2).

The principal motivation in this chapter is to answer the following question:
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Motivating Question. Suppose c € LN (C\ Ly3). Are f. and fg conformally mateable? If so, is

there a unique member of the basilica family that realizes their conformal mating?
We now summarize the known results on this topic.

Theorem 1.2.4 (Rees, Tan, Shishikura [Re, Tan|, [Sh2]). Suppose c € LN(C\ Ly)3). If fe is hyperbolic,
then f. and fg are conformally mateable. Moreover, their conformal mating is unique up to conjugacy

by a Mébius map.

Theorem [1.2.4] is actually a corollary of a much more general result which states that two post-
critically finite quadratic polynomials f., and f., are (essentially) mateable if and only if ¢; and co do

not belong to conjugate limbs of the Mandelbrot set. See [Tan| for more details.

Theorem 1.2.5 (Aspenberg, Yampolsky [AYal). Suppose c € LN (C\ Lyj3). If fe is at most finitely
renormalizable and has no non-repelling periodic orbits, then f. and fg are conformally mateable. More-

over, their conformal mating is unique up to conjugacy by a Mdbius map.

Theorem 1.2.6 (Dudko [Du]). Suppose c € LN(C\ Ly/2). If f. is at least 4 times renormalizable, then
fe and fg are conformally mateable. Moreover, their conformal mating is unique up to conjugacy by a

Mébius map.

Together, Theorem [1.2.4] [1.2.5] and [T.2.6] provide a positive answer to the main question in almost all

cases. However, the parameters contained in the boundary of hyperbolic components that are not too

“deep” inside the Mandelbrot set are still left unresolved. We discuss these parameters in greater detail

in the next section.

1.3 Matings in the Boundary of Hyperbolic Components

Let H be a hyperbolic component of M\ L; /5. By Theorem the quadratic polynomial f, and the
basilica polynomial fg are conformally mateable for all ¢ € H. Our goal is to determine if this is also
true for c€ OH N L.

Choose a parameter value ¢y € H, and let ag € My be a parameter value such that R, is a conformal
mating of f., and fg. Since R,, must be hyperbolic, ag is contained in some hyperbolic component Hg
of Mg.

For all ¢ € H, the quadratic polynomial f. has a non-repelling n-periodic orbit O, := {f(2.) ;:01
for some fixed n € N (see e.g. [M2]). Likewise, for all a € Hg, the quadratic rational map R, has a non-
repelling n-periodic orbit O, := { R’ (w,) ?:_01. Define the multiplier maps A : H — D and p : Hg — D
by:

MO = (f2) () and  pu(a) = (R2)(wa).

It is known that A and p are homeomorphisms which are conformal on the interior of their domains (see
NIZ).

The following result can be proved using a standard application of quasiconformal surgery (see chapter
4 in [BF]).

Proposition 1.3.1. Define a homeomorphism ¢g : H — Hg by

Gr=p oA
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Then for all c € H, the quadratic rational map Ry, () is a conformal mating of f. and fg.

Our goal is to extend the statement of Proposition to the boundary of H where possible.

Consider ¢ € H, and let a = ¢y(c) € OHg. The multiplier of O, and O, is equal to e2>7% for
some 6§ € R/Z. The number 6 is referred to as the rotation number. If 0 is rational, then O. and O,
are parabolic. In this case, an application of trans-quasiconformal surgery due to Haissinsky implies the

following result (see [Hal).

Theorem 1.3.2. Suppose that the rotation number 0 is rational, so that O, and O, are parabolic. Then
fe and fg are conformally mateable, and R, is the unique member of the basilica family that realizes

their conformal mating.

If 6 is irrational, then O, is either Siegel or Cremer. In the latter case, it is known that the Julia
set J. for f. is non-locally connected (see e.g. [M3]). This means that the formal mating of f. and fg
cannot be defined, and hence, they are not conformally mateable.

For our discussion of the Siegel case, we first recall a classical result of Siegel [S]. An irrational
number z is said to be Diophantine of order k if there exists a fixed constant € > 0 such that for all

p/q € Q, the following inequality holds:

The set of all irrational numbers that are Diophantine of order « is denoted D(x). The smallest possible

value of % such that D(k) is non-empty is 2 (see [M3]).

Theorem 1.3.3 (Siegel [S]). Let f : U — V be an analytic function. Suppose f has an indifferent
periodic orbit O with an irrational rotation number 0. If 6 € D(k) for some k > 2, then O is a Siegel

orbit.

There is a classical connection between Diophantine classes and continued fraction approximations

(see e.g. [M3]). In particular, if

o+ —
a2+...

is the continued fraction representation of x, then z € D(2) if and only if all the a;’s are uniformly
bounded. In view of this, we say that the numbers contained in D(2) are of bounded type. Siegel

quadratic polynomials of bounded type are prominently featured in the study of renormalization (see
e.g. [Pl Mcll [Yall [Yad]).

Theorem 1.3.4 (Peterson [P]). Suppose a quadratic polynomial f. has an indifferent periodic orbit with

an irrational rotation number of bounded type. Then f. has a locally connected Julia set J..

In this chapter, we present a positive answer to the motivating question (stated in Section for
quadratic polynomials fg that have an indifferent fixed point with an irrational rotation number of
bounded type. Note that by Theorem the indifferent fixed point is Siegel, and by Theorem |1.3.4
the formal mating of fg and fg is well defined.

The solution to the uniqueness part of the main question is elementary.

Proposition 1.3.5. Suppose A € D. Then there exists a unique c € M (resp. a € Mp) such that f.
(resp. R,) has a non-repelling fized point zg # 0o with multiplier \.
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Proof. Suppose f. has a fixed point zy # oo with multiplier A € C. It is easy to check that the value of
c is given by
A A2
c=g -
Hence, c is uniquely determined.

Likewise, suppose R, has a fixed point with multiplier A € C. Then the value of a is given by

8\
R

Hence, a is uniquely determined. O

Our main results are stated below.

Main Theorem 1A. Suppose v € R\ Q is of bounded type. Let R,, with a, € My be the unique
member of the basilica family that has a Siegel fixed point zo with rotation number v. Let S be the fized

Siegel disc containing zg. Then S is a quasidisk, and contains the critical point —1 in its boundary.

Main Theorem 1B. Suppose v € R\ Q is of bounded type. Let fs be the unique member of the
quadratic family that has a Siegel fixed point with rotation number v. Then fs and fg are conformally

mateable, and R,, is the unique member of the basilica family that realizes their conformal mating.

fc\/fB

Figure 1.4: The Siegel polynomial f. with ¢ = § — ’\; and A = e(V3=D7 mated with the basilica
polynomial fg. The Siegel disc is highlighted.
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1.4 The Construction of a Blaschke Product Model

Consider the Blaschke product

1 z(z—a)(z—0b)

Fa,b(z) = 7@ (]_ _ dz)(]_ — BZ)’

where ab = e’ with r € Rt and 6 € [0,27). Note that 0 is a fixed point with multiplier —r.

Lemma 1.4.1. For any value of r and 0, the parameters a = a(r,8) and b = b(r,0) can be chosen such

that F, , has a double critical point at 1.

Proof. Let
P(z)

Q(z)

éb(z) =

Then
_ P(2)Q() — P(2)Q'(2)

Q(2)?

Thus, the condition

is equivalent to

A straightforward computation shows that
P(z) =Rzt = 2(2% + (3 — |k|* +|¢|*)2% — 2(2z + &,

where
k:=ab and (:=a+b.

Thus, F, has a double critical point at 1 if the following two equations are satisfied:
26 =3¢+ (3= [s]* +[¢*) = ¢ (1.2)
3k =20+ (B —|>+1¢?) =F. (1.3)
Subtracting from , we see that
k—(=F—C.
Substituting k = x + iy and ¢ = u + iy into , we obtain

u? —4u+ (2x — 2° +3) = 0. (1.4)

The equation (|1.4) has two solutions: w = —x + 3 and w = z + 1. The first solution corresponds to the
relation
(=-Rr+3.
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Therefore, by choosing a and b to be the solutions of
224 (re”® —3)z4ret =0,
we ensure that the map Fj, , has a double critical point at 1. O

Lemma 1.4.2. Let a = a(r,0) and b =b(r,0) satisfy the condition in Lemma m Then for all r > 1
sufficiently close to 1, there exists a local holomorphic change of coordinates ¢ at 0 so that the map
G:=¢"1o Fib o ¢ takes the form

G(z) =r?2(1+ 22 + O(z%)).
Proof. Expanding Fy ;(z) as a power series around 0, we have
Fop(2) = —rz + X% + O(2%)
for some A = A(r,0) depending continuously on r and 6. Define
Vu(2) =2+ p2® for peC.
A straightforward computation shows that
H(z) =" 0 Fapothu(z) = —rz + (A + (1+1)p)z? + O(2%).

Thus, by choosing

we have
H(z) = —rz(1 +vz? + O(2*))

for some v = v(r, ) depending continuously on r and 6.

Observe that the second iterate of H is equal to
H?(2) =722(1 + (1 + r?)v2® + O(2%)).

When r = 1, the point 0 is a parabolic fixed point of multiplicity 2. This means that v(1,6) cannot be
equal to zero for all € [0,27). Hence, for some € > 0 sufficiently small, v(r,8) is not equal to zero for

all € (1,14 ¢) and 6 € [0,27). After one more change of coordinates, we arrive at

G(z) = /(1 +r2)v- H? (Zz/> =r?z(1+ 22 + 0(2%)).

(14172)
O

Lemma 1.4.3. Let a = a(r,0) and b = b(r,0) satisfy the condition in Lemma[l.4.1 Then for all r > 1
sufficiently close to 1, the Blaschke product F, has an attracting 2-periodic orbit near 0.

Proof. Consider the map G := ¢~ ' o F?, 0¢ defined in Lemma We prove that G has two attracting
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fixed points near 0.
Observe that G satisfies

|G(2)| = r?|z|(1 + Re(2?) + (higher terms))

and
arg(G(z)) = arg(z) 4+ Im(2?) + (higher terms).

Consider the wedge shaped regions

, 3 5
t = {pemit <p<e—<t< —
Ve={pe™ eC | 0<p<eqp<t< o}
and
Voi=—VE

It is easily checked that G(V") C V.t and G(V,") C V.. Since 0 is the only fixed point on the boundary

of these regions, and it is repelling, V.© and V.~ must each contain an attracting fixed point for G. O

Theorem 1.4.4. Given any angle v € [0,27), there exists a Blaschke product F, that satisfies the

following three properties:

(i) There exists a superattracting 2-periodic orbit O = {00, F, (c0)} with a critical point at co.
(i) The rotation number of the map F,|sp is equal to v.
(i) The point 1 is a double critical point.

Proof. The family of Blaschke products {Fj;} that satisfy Lemma and are continuously
parameterized by r and 6. Let p(r,6) denote the rotation number of the map Fy plop. In [YaZ], it is
proved that p(1,-) is not nullhomotopic. By continuity, p(r,-) is also not nullhomotopic. Thus, for any
angle v € [0, 27), there exists 6 such that p(r,0) = v.

So far, we have proved the existence of a Blaschke product Fy; that has an attracting 2-periodic
orbit near zero, has a double critical point at 1, and whose restriction to dID has rotation number equal
to v. A standard application of quasiconformal surgery turns the attracting 2-periodic orbits of Fy, ; into
superattracting orbits (the surgery must be symmetric with respect to the unit circle to ensure that the
resulting map is also a Blaschke product). Then after conjugating by the appropriate Blaschke factor,
we obtain the desired map F),. O

Theorem 1.4.5. Suppose v is irrational and of bounded type. Let F,, be the Blaschke product constructed
in Theorem|1.4.4l Then there exists a quadratic rational function R, and quasiconformal maps ¢ : D —
D, and ¢ : C — C such that (1) = 1; ¢(1) = 1, ¢(o0) = 00, and ¢(¥(0)) = 0; and

{ pooRot, o tod™l(z) :ifz€ (D)
Ru(z) = . ~
poF,0p ! (2) if z € C\ ¢(D),

where Rot, denotes rigid rotation by angle v.

Proof. Since v is of bounded type, there exists a unique homeomorphism ¢ : (9D, 1) — (9D, 1) such that

Y oRot, o 1;[}71 = Fl/|8]D)7
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and 1 extends to a quasiconformal map on D.
Define
] YoRot, 09 l(2) :ifzeD
g(z)_{ F(2) [if 2 € €\ D.
By construction, g is continuous.

To obtain a holomorphic map with the same dynamics as g, we define and integrate a new complex
structure p on C. Start by defining p on D as the pullback of the standard complex structure o by
11, Next, pull back i on D by the iterates of g to define 1 on the iterated preimages of D. Finally,
extend u to the rest of C as the standard complex structure og.

Let ¢ : C = C be the unique solution of the Beltrami equation
0=0(2) = u(2)0.0(2)
such that ¢(1) =1, ¢(c0) = co and ¢(19(0)) = 0. Then the map
R, :=¢ogog¢ !

gives us the desired quadratic rational function. O

{4

Figure 1.5: An illustration of the quasiconformal surgery in Theorem The image of D under the
quasiconformal map ¢ is a Siegel disc for R,,. Also note that the double critical point for F, (represented
by a cross) becomes a single critical point for R, .

Proof of Main Theorem 1A.

Consider the quadratic rational function R, constructed in Theorem Observe that R, satisfies

the following three properties:
(i) There exists a superattracting 2-periodic orbit {oco, R, (c0)} with a critical point at oco.

(ii) The image of D under the quasiconformal map ¢ is a Siegel disc with rotation number v.
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(iii) The point 1 is a critical point, and is contained in d¢(D) .

Clearly, the critical value R, (o0) is not equal to the critical point 1. The theorem now follows from
Proposition [[.2:1} O

1.5 The Construction of Bubble Rays

1.5.1 For the basilica polynomial

Consider the basilica polynomial
fe(z) =22 — 1.

Note that fg has a superattracting 2-periodic orbit {0, —1}, and hence, is hyperbolic. Denote the Julia
set and the filled Julia set for fg by Jg and Kpg respectively. The following is a consequence of the
hyperbolicity of fg (see e.g. [M3)]).

Proposition 1.5.1. The Julia set Jg for fg is locally connected.

A connected component of B := KQB is called a bubble. Let By be the bubble containing the critical
point 0. We have

B= Qofg”(Bo).

Let B C B be a bubble. The generation of B, denoted by gen(B), is defined to be the smallest
number n € N such that fg§(B) = By. The center of B is the unique point z € B that is mapped to 0

under fgen(B) .

Proposition 1.5.2. There exists a unique repelling fixed point b contained in 0By.

Note that the repelling fixed point b in Proposition is the a-fixed point of fg (see [M2]).

Let b € Jg be an iterated preimage of b. The generation of b, denoted by gen(b), is defined to be the
smallest number n € N such that f§(b) = b. Suppose b is contained in the boundary of some bubble B.
If the generation of b is the smallest among all iterated preimages of b that are contained in 0B, then b

is called the root of B. It is easy to see that every bubble has a unique root.

Proposition 1.5.3. Let b € Jg be an iterated preimage of b. Then there are exactly two bubbles By

and Bs in B which contain b in their closures. Moreover, we have
By N By = {b}.

Proof. There are exactly two bubbles, By and fg(By), that contain b in their closures. Moreover, we

have

Bo N fs(Bg) = {b}.

There exists a neighbourhood N containing b such that /N is mapped conformally onto a neighbourhood
of b by fécn(b). The result follows. O

Let b € Jg be an iterated preimage of b, and let B; and By be the two bubbles that contain b in
their closures. Suppose gen(B;) < gen(Bsz). Then By and Bs are referred to as the parent and the child
at b respectively. Note that b must be the root of Bs.
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Consider a set of bubbles {B;}" , in B, and a set of iterated preimages {b;}}_, of b such that the

following properties are satisfied:
(i) By =Bg and by = b, and
(ii) for 1 < ¢ < n, the bubbles B;_; and B; are the parent and the child at b; respectively.

The set

RB = fB(BO) U (U Bz)

is called a bubble ray for fg (the inclusion of fg(Byg) is to ensure that a bubble ray is mapped to a
bubble ray). For conciseness, we use the notation RE ~ {B;}"_,. The bubble ray R® is said to be finite
or infinite according to whether n < oo or n = co. Lastly, {b;}7 is called the set of attachment points
for RB.

Proposition 1.5.4. If B C B is a bubble, then there exists a unique finite bubble ray R® ~ {B;}1,
such that B, = B. Consequently, if RE ~ {B}}", and R® ~ {B?}™, are two bubble rays, then there
exists N > 0 such that B} = B? for alli < N, and B} # B? for all i > N.

Proof. We can construct a finite bubble ray ending in B as follows. First, let By = B. Next, let bo
be the root of Bo, and let Bl be the parent of Bo at Bo. Proceeding inductively, we obtain a sequence
of bubbles 307 Bl, Bg, ..., and a sequence of roots 50,51, 132, ..., such that BZ-H is the parent of B; at
b;. Since gen(B;1) is strictly less than gen(B;), this sequence must terminate at B, = By for some
n > 0. Then RB ~ {B,_;}I, is the desired finite bubble ray. The uniqueness of R® follows from the
uniqueness of the root of a bubble and Proposition O

Let RB ~ {B;}2, be an infinite bubble ray. We say that R® lands at 2 € Jg if the sequence of
bubbles {B;}32, converges to z in the Hausdorff topology. The following result is a consequence of the
hyperbolicity of fg (see [DHI]).

Proposition 1.5.5. There exists 0 < s < 1, and C' > 0 such that for every bubble B C B, we have
diam(B) < C's&(B),

Consequently, every infinite bubble ray for fg lands.

Denote the attracting basin of infinity for fg by Ag. Let
(bAloBo : _AOB<> —C \ D

and
¢B, : Bo = D

be the Bottcher uniformization of fg on A and By respectively. Using ¢ax and ¢p,, we can encode
the dynamics of bubble rays for fg in two different ways: via external angles, and via bubble addresses.
Suppose that RB is an infinite bubble ray, and let z € Jg be its landing point. Then there exists a

unique external ray
R, = {arg(¢ay) = —t}
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which lands at z (note that arg stands for the argument of a complex number—e.g. if w = re?™®  then
arg(w) = 0). The external angle of R® is defined to be t. Henceforth, the infinite bubble ray with

external angle ¢ will be denoted RE.

Let b € 0By be an iterated preimage of b. Define

adr(b) = arg(p, (b).

If V' is an interated preimage of b and &’ ¢ 9B, then there exists a unique bubble B C B such that B

is the parent at b'. In this case, define

adr(b') := adr(f5"P¥)).

Let R® be a bubble ray and let {b;}7 be the set of attachment points for RB. The bubble address
of RB is defined to be
adr(RB) := (adr(by), adr(by), ..., adr(b,)),

where the tuple is interpreted to be infinite if R is an infinite bubble ray.

If B C B is a bubble, then by Propositionm there exists a unique finite bubble ray RB ~ {B:},
such that B = B,,. The bubble address of B is defined to be

adr(B) := adr(RPB).

Figure 1.6: The infinite bubble ray RE with ¢t ~ 0.354841 for the basilica polynomial fg. The bubbles
contained in RE are colored in light gray. The white crosses represent the set of attachment points for
RE,
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1.5.2 For the Siegel polynomial

Suppose v € R\ Q is of bounded type, and let fs be the unique member of the quadratic family that has
a Siegel fixed point zg with rotation number v. Denote the Siegel disc, the Julia set and the filled Julia
set for fs by So, Js and Kg respectively. By Theorem [[.3.4] Jg is locally connected. A quasiconformal
surgery procedure due to Douady, Ghys, Herman, and Shishikura (see e.g. [P]) implies the following:

Theorem 1.5.6. The Siegel disc Sy is a quasidisc whose boundary contains the critical point 0.

A connected component of S := Ks is called a bubble. Note that

s = fs"(S0).
n=0

Let S C S be a bubble. The generation of S, denoted by gen(S), is defined to be the smallest number
n € N such that f§(S) = S¢. The center of S is the unique point z € S that is mapped to the Siegel
fixed point zg by féen(s).
Let s € Jg be an iterated preimage of the critical point 0. The generation of s, denoted by gen(s),

is defined to be the smallest number n € N such that fg(s) = 0.

Proposition 1.5.7. Let s € Jg be an iterated preimage of the critical point 0. Then there are exactly

two bubbles S1 and Sy in S which contain s in their closure. Moreover, we have
51N Sy = {s}.
The construction of a bubble ray RS for fg is completely analogous to the construction of a bubble
ray RB for fg.

Proposition 1.5.8. If S C S is a bubble, then there exists a unique finite bubble ray RS ~ {8}, such
that S, = S. Consequently, if R? ~ {S}}"_ and RS ~ {S?}7, are two bubble rays, then there eists
M >0 such that S} = S? for alli < M, and S} # S? for all i > M.

The following proposition is a consequence of complex a priori bounds due to Yampolsky (see [Yall).

It is proved in the same way as Proposition |1.8.5
Proposition 1.5.9. Every infinite bubble ray RS for fs lands.

Denote the attracting basin of infinity for fs by Ag°. Let

be the Bottcher uniformization of fg on AZ’.
Suppose RS is an infinite bubble ray, and let z € Jg be its landing point. Then there exists a unique

external ray
Ry® = {arg(dag) =t}

which lands at z. The external angle of RS is defined to be t. Henceforth, the infinite bubble ray with

external angle ¢ will be denoted R.
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Let s € 0S¢y be an iterated preimage of 0. Define
adr(s) := gen(s).

The bubble address of a bubble S C S for fg can now be defined in the same way as its counterpart for

/B

o

Figure 1.7: The infinite bubble ray RS for the Siegel polynomial fs. The bubbles contained in RS
3 3

are colored in dark gray. The white crosses represent the set of attachment points for RS .
3

1.5.3 For the candidate mating

Consider the quadratic rational function R, constructed in Theorem Denote the Fatou set and
the Julia set for R, by F(R,) and J(R,) respectively. A connected component of F(R,) is called a
bubble.

The critical points for R, are oo and 1. Recall that {co, R, (00)} is a superattracting 2-periodic orbit,

and thus is contained in F'(R,). Let B be the bubble containing co. The set
B:=J R;"(Bx)
n=0

is the basin of attraction for {oo, R, (c0)}.
The quadratic rational function R, has a Siegel fixed point at 0 with rotation number v. Denote the
Siegel disc for R, (the set ¢(D) in Section by Sp. As noted in the proof of Main Theorem 1A, the
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critical point 1 is contained in 0Sy. Consider the set of iterated preimages of Sy
o0
S:=J Ry (S),
n=0

It is easy to see that F(R,) =BUS.
Proposition 1.5.10. Suppose U C F(R,) is a bubble. Then OU is locally connected.
Proof. The result follows immediately from Proposition and Main Theorem 1A. O

Lemma 1.5.11. Suppose X C J(R,) is a closed, connected, non-recurring set (that is, R} (X)NX = &
for alln € N). Then X cannot intersect the boundary of bubbles from both B and S.

Proof. Suppose that there exists two bubbles B C B and S C S such that X intersects both 9B and 05S.
Without loss of generality, we may assume that B = B,, and S = Sy. Observe that R2"(X) intersects
OB, and 98y for all n > 0. Likewise, R2""1(X) intersects R, (Bs) and 88y for all n > 0.

Let Y := X U R2(X), and consider the set

W:=C\ (Bss USyUY).

We claim that if C' is a component of W, then C is arcwise connected. Let ¢ be a point in C'\ Cc
0By U 0Sy. Since Y is a closed set, there exists a neighbourhood N of ¢ such that NNY = @. By
Proposition it follows that ¢ is arcwise accessible from N N C. Thus, every point in C' is arcwise
accessible from C. Since C' is connected, this implies that C' is arcwise connected.

Now, let C’ be the component of W that contains R, (B, ). We claim that 9Sy N W is not contained
in C’. Choose a point ¢ contained in X N dSy. Since dSy is homeomorphic to a circle, we see that
98y \ {z0, R%(x0)} has exactly two components: 7; and 2. Choose two points w; € vy N W and
we € o NW. If Sy N W is contained in C”, then there exists a simple curve I' C ¢’ whose endpoints
are wy and wo. The complement of So UT has exactly two components: one which contains z, and one
which contains RZ(z). This contradicts the fact that B, UY is connected.

We conclude that there exists at least one connected component of W that intersects Sy but does

not intersect m Denote this component by D. Since X is non-recurring, we have
R™YX)nD=o forall n>0.
However, since the orbit of R, (xg) under R2 is dense in 08y, there exists N > 0 such that
R2NF(20) € Sy N D.
This is a contradiction. O

Proposition 1.5.12. Let B C B and S C S be two bubbles. Then 0BN IS = @.

Proof. Suppose that 0B N 0S contains a point zy. Since S is an iterated preimage of a Siegel disc, zq
must be non-recurrent. This contradicts Lemma [[L511] O

Proposition 1.5.13. There exists a unique repelling fixed point B contained in OBy .
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Proposition 1.5.14. Let u be an iterated preimage of 8 (resp. of 1). Then there are exactly two bubbles

Uy and U in B (resp. in S) which contain w in their closure. Moreover, we have
U NUy = {u}.

A bubble ray for R, can be constructed using bubbles in either B or S. In the former case, the bubble
ray is denoted RE, and in the latter case, it is denoted RS. The details of the construction will be

omitted as it is very similar to the construction of a bubble ray RE for fg or RS for fs.

Proposition 1.5.15. If B C B is a bubble, then there exists a unique finite bubble ray R® ~ {B;}1
such that B, = B. Consequently, if R ~ {B}}" , and RS ~ {B2}™, are two bubble rays, then there
exists N > 0 such that B} = B? for alli < N, and B} # B? for all i > N. The analogous statement is

also true for bubble rays in S.

The bubble address of a bubble U C F(R,) for R, is defined in the same way as its counterpart for
fB or fs. However, since R, is not a polynomial, the external angle of a bubble ray RZ or R® cannot

be defined using external rays. To circumvent this problem, we need the following theorem.

Theorem 1.5.16. There exists a unique conformal map &g : B — B such that the bubble addresses are

preserved, and the following diagram commutes:

B ", B

oo o
B . B

Likewise, there exists a unique conformal map ®g : S — S such that the bubble addresses are preserved,
and the following diagram commutes:

s 5. g

L
s Ts s
Furthermore, if B C B (resp. S C S) is a bubble, then ®g (resp. ®g) extends to a homeomorphism

between B and ®g(B) (resp. S and ®s(9)).

Proof. For each bubble B C B, there exists a unique bubble B’ C B such that
adr(B) = adr(B').

Define ®g|p to be the unique conformal map between B and B’ which sends the center and the root of
B to the center and the root of B’ respectively. Then by construction, ®g conjugates fg on B with R,
on B. Moreover, & extends continuously to boundary of bubbles by Proposition

The map ®g is defined similarly. O

Let RB ~ {B;}2°, be an infinite bubble ray for R,. The exzternal angle of R” is defined to be the
external angle of the infinite bubble ray R® ~ {®5'(B;)}2, for fg. The external angle of an infinite
bubble ray RS is defined similarly. Henceforth, the infinite bubble rays for R, with external angle ¢ will
be denoted by RE and RY.
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Figure 1.8: The infinite bubble rays R? with ¢ ~ 0.354841 and RS for R,. The bubbles contained in
3
RB and RS are colored in light gray and dark gray respectively. The white crosses represent the set, of
3
. B S . .
attachment points for Ry and R 1- Compare with Figure and

1.6 The Construction of Puzzle Partitions

1.6.1 For the basilica polynomial

Consider the basilica polynomial fg discussed in Section By definition, the infinite bubble ray
RE for fg with external angle ¢ € R/Z has the same landing point as the external ray R,.

Lemma 1.6.1. Let RE and Rg be two distinct infinite bubble rays for fg, and define

B R
X5, = RBUR>, UREURX,.

Then C \ XP,, has exactly two connected components: 081,152) and C&)tl). Ift € (t1,t2) C R/Z, then

R, C Ca,tz)' Similarly, if t € (t2,t1) C R/Z, then R>, C C&’tl).

Proof. First, consider the set
XB,, =KpURY, URY,.

Observe that the complement ® \ thz has exactly two connected components: C’(I:,htz) and C’g%tl),

which are given by
~B
C(tl,tz) = U RZ

te(ty,ta)

and

6(1?27t1): U RZ%.

te(ta,t1)
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Now, let RE ~ {B}}32; and RE ~ {B?}2,, and let N > 0 be the number given in Proposition
[L5.4 Define
o0 - o0 -
XB., =) Blu|JB2URS, URS,.
i=N i=N
Observe that X2, X2, , and that the complement C\ X2, also has exactly two connected com-
ponents. Let CA'(]?I’ t2) be the component containing CN’(I?h t2)? and let C’B be the component containing
CB ..
(t2,t1)
Let b be the root of the bubble B}, and consider the set

A B B
Y= Xt17t2 \ Xt17t2'

If Y = @, then the result is proved. Otherwise, there are three possibilities:
1) Y = fe(Bo) \ {b},
it) v =B\ {b}, or

iii) Y = fe(Bo) U (Ui, BD) \ {b}.

In all three cases, it follows from Proposition that Y is disjoint from either C’(t ta) OF C’(t )
Assume for concreteness that it is disjoint from the former. Then immediately we have C'( tts) = C’g‘l t2)"
Moreover, since Y is simply connected, and its closure intersects 86’& ty) at only one point (namely, at

b), the set CB ,  =CB . \'Y must be connected. O

(ta,t1) (t2,t1)

The infinite bubble ray RE and the external ray R land at the same repelling fixed point kg € C.
For n € N, the puzzle partition of level n for fg is defined as

P2 = fg"(RBURG) = U RE UR>,.

=0

Note that the puzzle partitions form a nested sequence: PB C PB C PB ...
By Lemma the complement of the puzzle partition of level n is equal to

2" —1

C\PBE = |_| C(W.

2

1.

The puzzle piece of level n for fg is defined as

PB ., =CB, ., for ie{0,...,2"—1}

The interval [54, &5l € R/Z is referred to as the angular span of PB, ... Note that a puzzle piece of

) n
2n 2 PR ]

level n > 2 is mapped homeomorphically onto a puzzle piece of level n — 1 by fg.

Proposition 1.6.2. Let x € Jg, and let n € N. If x is not contained in OPB

n’

or there is a unique
bubble B contained in P2 such that x € OB, then there is a unique puzzle piece of level n that contains

x. Otherwise, x is contained in exactly two puzzle pieces of level n.

Proof. First, suppose x is not contained in OP2. Then z is contained in a single connected component

of C \ PB. The closure of this component is the unique puzzle piece of level n containing .



CHAPTER 1. MATING THE BASILICA WITH A SIEGEL DISK 27

Figure 1.9: The puzzle pieces of level 2 (left) and 3 (right) for fg.

Now, suppose = € 9PE. Then there are three possible cases:

i) There is a unique bubble B contained in P2 such that x € dB.

ii) There are two bubbles B; and By contained in P2 such that B N By = {z}.
iii) The point z is an iterated preimage of kg.

Case i) Since P2 contains finitely many bubble rays whose landing points are all distinct from x, we can
choose a sufficiently small disc D centered at 2 such that DNPB ¢ B. Then DN (C\PB) = DN(C\B)
has a single connected component, which must be contained in a unique puzzle piece of level n. The

result follows.

Case ii) By a similar reasoning as in Case i), we may choose a sufficiently small disc D centered at x
such that D NPB ¢ By UB,. Thus, we see that D N (C\ PB) = DN (C\ B; UBy) has exactly two
connected components, say D1 and Ds. Let P[]f’h ta] be the puzzle piece of level n containing D;. Then
D5, must be contained in C&’tl), which is disjoint from P[tB1 o] This implies that Dy is contained in a

puzzle piece distinct from P[]?l ta]" The result follows.

Case iii) Let t € Q/Z be the unique dyadic rational such that the bubble ray RE C PP lands at z.

Then it is easy to see that PB and P]?i i

1 are the two puzzle pieces of level n that contain z. [
[t,t+5w] [t—5m,t]

A nested puzzle sequence is a collection of puzzle pieces
B B
= = {P[sk,tk]}zil

such that PB -
[Skt1tes1] +

[Sk+1,tk+1]  [Sk,tx]. The set

P[E’k th] for all k& > 1. Note that this is equivalent to the condition that

By .__ B
L(I®) = () PE, o
k=1

is called the limit of IIB.
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Proposition 1.6.3. Let 1B = {P[B 122, be a nested puzzle sequence. Then L(IIB)NB = @.

Skyt)

Proof. Let B C B be a bubble. Since B is eventually mapped to Bg C P2 by fg, there exists N > 1
such that B C PB for all n > N. This means that B is disjoint from any puzzle piece of level greater
than N. Since PP must be of level at least k, we have BN P[]i-.tk] =g forall k> N. O

[sk,tx]

The external angle t € R/Z of TIB is defined by

oo

{t} = [ [sn tal.

k=1
Henceforth, a nested puzzle sequence for fg with external angle ¢t € R/Z will be denoted by I1E.

Proposition 1.6.4. Let IIP := {P[B ]}2021 be a nested puzzle sequence. Then

Skitk

L(IIP) = R,

Proof. It follows from Lemma that R>, C L(IIB). If s # t, then for k sufficiently large, we have

s & [sk,tx]. This means that R, is disjoint from P[E’k 4. The result now follows from Proposition

6.3 O

A nested puzzle sequence IIP is said to be mazimal if there is no nested puzzle sequence which
contains IIB as a proper subset. If two nested puzzle sequences are contained in the same maximal

nested puzzle sequence, they are said to be equivalent.

Proposition 1.6.5. Suppose 112 and 1B are two equivalent nested puzzle sequences. Then s = t, and
L(ITY) = L(ITY).

Proof. Let 1B = {P[B }},;";1, and let IIB = {PB

Stk ['r‘kﬂl,k
containing H?. Since P[E’Mk] - P[]?k,uk] for all £ > 1, we have

}},;";1 be the maximal nested puzzle sequence

L(IP) c L(IIP).
On the other hand, since 1B C 1:[5, we have
L(ILP) € L(IP).
The proof that s =t is similar. O

Proposition 1.6.6. Let x € Jg. If x is an iterated preimage of b or kg, then there are exvactly two
mazimal nested puzzle sequences whose limit contains x. Otherwise, there is a unique mazximal nested

puzzle sequence whose limit contains x.

Proof. This is an immediate consequence of Proposition [L.6.2 O]

Proposition 1.6.7. Let x € Jg. If x is an iterated preimage of b, then x is biaccessible. Otherwise, x

18 uniaccessible.
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Proof. Suppose 1B = {P[]?k,tk]}zil and IIB = {PB

[uk,

Uk]}zozl are two maximal puzzle sequences whose
external angles are both equal to ¢t € R/Z. If TIP and 1:ItB are nonequivalent, then there exists k € N

such that (sg,tx) N (ug, vy) = &. However, since t is contained in both [sy, tx] and [uk, vk], we must have
t =t = uy or t = s, = vg. In either case, t must be a dyadic rational.
The result now follows from Proposition and OJ

1.6.2 For the Siegel polynomial

Consider the Siegel polynomial fs discussed in Section By definition, the infinite bubble ray R
for fs with external angle ¢ € R/Z has the same landing point as the external ray R°. The following

result is a direct analog of Lemma [1.6.1] and can be proved in the same way.

Lemma 1.6.8. Let Rfl and ’Rtsz be two infinite bubble rays for fs, and define

S A
XP ;, =Ry URPURE URY.

Then C \ X3P ,, has exactly two connected components: C(Sthtz) and C(Stz’tl). Ift € (t1,t2) C R/Z, then

R C C’(Sthm. Similarly, if t € (t2,t1) C R/Z, then R° C C&,tl)'

The bubble ray RE and the external ray R both land at the same repelling fixed point kg € C.
A puzzle partition PS, a puzzle piece P[i ta]’ and a nested puzzle sequence I for fs are defined in the

same way as their counterparts for fg.

Figure 1.10: The puzzle pieces of level 2 (left) and 3 (right) for fs.

The following four results are analogs of Proposition [1.6.2] [1.6.4] [1.6.6] and [1.6.7] The proofs are
identical, and hence, they will be omitted here.

Proposition 1.6.9. Let x € Js, and let n € N. If x is not contained in OPS, or there is a unique
bubble S contained in PS such that x € dS, then there is a unique puzzle piece of level n that contains

x. Otherwise, x is contained in exvactly two puzzle pieces of level n.
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Proposition 1.6.10. Let I1$ := {PS o ote] }gozl be a nested puzzle sequence. Then
L(IIP) = R{®.

Proposition 1.6.11. Let x € Jg. If x is an iterated preimage of O or kg, then there are exactly two
mazimal nested puzzle sequences whose limit contains x. Otherwise, there is a unique mazximal nested

puzzle sequence whose limit contains x.

Proposition 1.6.12. Let x € Js. If x is an iterated preimage of 0, then x is biaccessible. Otherwise, x

s uniaccessible.

1.6.3 For the candidate mating

Consider the quadratic rational function R, constructed in Theorem [1.4.5] The following result is an

analog of Lemma [T.6.1] and [1.6.8]

Lemma 1.6.13. Let RtBl and Rg be two infinite bubble rays in B, and let R‘Ssl and Ri be two infinite
bubble rays in S. Suppose RE and Rfl land at the same point x1, and ’Rg and ’sz land at the same
point xo. Define

Xt =REURS URE URS,.

51,52

Then C\ X!t has exactly two connected components: C (t:12) g 0120 guch that

51,82 9?) (s2,81)7

ep(BNCE ) =Bn OW?) ep(BNCE, ) =Bn C(tz’tl

(s1,82)’ (s2,51)

Ps(SNCE, ) =SNCLE) and  ds(SNCE, ) =Snci

(81 52 52 51)7
where &g : B — B and &5 : S — S are the maps given in Theorem @
Proof. Consider the bubble rays RP ~ {B}}2,, RE ~ {B?}2, RS ~ {S}}:2,, and RS, ~ {S2}2,

for fg and fs. Let N > 0 and M > 0 be the numbers given in PI"OpOblthIl and respectively.
Define

oo o0 oo oo
B . ni n2 S . Q1 Q2
vB, = U BlU U B? and YS = U Ty U 52
=N =N =M =M

Recall the definition of C’(Et‘l’tz) and C'&th) for fg given in the proof of Lemma Let CSS 52) and

C(SSQ s1) be the analogous structures for fg. Define
B ._vB AB B ._ B AB
7(t1,t2) T }/t17t2 n 6C(t1,t2)’ and 7(t27t1) T Ytl7t2 N aC(t’z,tl)'

The sets *y(ss &y and Ving.sy) are defined analogously.

The maps ®p and Pg extend continuously to Y; '+, and Y, 81 s, Define

Xie = 0n(YD,) Uds(YS L) U e, o).

It follows from Proposition |1.5.12| and |1.5.15| that the complement C \ X tl’tg has exactly two connected

81,8

components. Since g and Pg are orientation preserving, the boundary of one of these components con-

tains (I)B(V(t tz)) and ®g (S Vo, )) and the boundary of the other contains ®g (2 Vitartr) ) and (I)S(’Y(SSQ,Sl))'

(t1,t2) (ta,t1)

Denote the former component by C e (52.50)"

) and the latter component by C
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Now, given a bubble U C B, let RE ~ {U;}"_, be the unique finite bubble ray such that U,, = U.
Since ®p extends to a homeomorphism on RE U RE U Rg, it follows from the above definitions together
with Proposition [1.5.12] and [1.5.15( that ®g(U) ¢ C(%2) if U ¢ CB , . and dp(U) C €[22 if

(s1,82) (s2,81)

UcC C'& ) A completely symmetric argument shows that the analogous statement is true for bubbles
in S.
The rest of the proof is similar to that of Lemma and hence, will be omitted here. O

In order to construct the puzzle partitions for R,,, we need to prove that every infinite periodic bubble
ray lands at a repelling periodic orbit point. This requires the following classical result in holomorphic

dynamics (see e.g. [M1]).

Lemma 1.6.14 (Snail’s Lemma). Let V. C C be a neighbourhood of 0, and let f : V. — C be a
holomorphic function. Suppose there exists a path 7 : [0,00) = V' \ {0} which is mapped into itself by f
in such a way that f(y(t)) =~v(t+1) and v converges to 0. Then 0 is a fized point for f, and f'(0) =1
or |f(0)] < 1.

Proposition 1.6.15. Let R; = R or RS be an infinite bubble ray. If t is rational, then Ry lands. If t

s p-periodic, then R: lands at a repelling p-periodic point.

Proof. Let Q) be the set of cluster points for R;. Define
A= QU {0, R,(c0)}USy.

Observe that
RP:C\ R;P(A) - C\A

is a regular 2P-fold covering of connected hyperbolic spaces. Moreover, since A C R, ?(A), the inclusion
map

t:C\R;P(A) = C\ A

is a strict contraction in the hyperbolic metric. Hence, the map ¢ o R, ? lifts to the universal cover D of
C\ A to a map
R;»:D—D

which is also a strict contraction in the hyperbolic metric.

Now, choose a bubble U C R; such that gen(U) > 1, and let 2o be a point contained in U. For every
k > 0, there exists a unique point x;, € Ry such that REP(x)) = x¢. Let 79 C Ry be a curve from zg to
x1, and let 4 be the unique component of R, *?(y) whose end points are z3 and xj1.

By the strict contraction property of R{i, the hyperbolic lengths of v, must go to zero as n goes
to infinity. Hence, if z € Q, then for any neighbourhood N of z, there exists a smaller neighbourhood
N’ C N such that if v, N N’ # &, then 7, C N. In other words, RE(N) N N # &. Since this is true for
all neighbourhood of z, the map R? must fix z.

The set of fixed points for RP is discrete. Since (2 is connected, this implies that €2 must be equal to
the single point set {z}. By Lemma we conclude that z is a repelling fixed point.

If ¢ is strictly preperiodic, then R; is the preimage of some periodic infinite bubble ray. The result
follows. [

Proposition 1.6.16. The bubble rays RE and R§ land at the same repelling fized point € C.
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Proof. The quadratic rational map R, has exactly three fixed points, two of which must be the Siegel
fixed point 0 and the repelling fixed point §. Clearly, a bubble ray cannot land at 0, so it suffices to
prove that a fixed bubble ray cannot land at 3.

Let D be a sufficiently small disc centered at 3 such that R, is conformal on D. The set D N (C\
m} has two connected components D; and Dy such that Dy C R,(D3) and Do C R, (D1).
Suppose R is a bubble ray that lands at 5. Then R must be disjoint from either D; or Dy. Hence, R
cannot be fixed. O

Proposition 1.6.17. Let t € R/Z be a dyadic rational. Then RP and RY land at the same iterated

preimage of K.

Proof. Define D,, := {5 1-2;51 C R/Z, and let t € D,, for some n > 0. Note that the case n = 0 is
proved in Proposition Proceeding inductively, assume that n > 0, and that the result is true for
the dyadic rationals in D,,_1.
Ift € D, \ Dy,—1, then ¢ can be expressed as
i 1 . n—1
t= oot T 5n for some i€ {0,...,2"7" —1}.

Observe that ¢ is the unique member of D,, contained in the interval (7=, ;;L 11 ). Tt follows from Lemma

T gaeT)

L, et . .
o2t . Likewise, Rf
(ga=Tr3n1)

1.6.13|that R? is the only member of {RZ},cp, whose landing point lies in C

i i+1
is the only member of {RS }sep, whose landing point lies in C’(( ot ’2[;1)). By Proposition |1.6.16] R¥

on—T'5n—1

and RY must land at the same point. O

For n € N, define the puzzle partition of level n for R, by

Pni=R,"(REURF) = URB URS .

=0

By Lemma [1.6.13] and [1.6.17] the complement of the puzzle partition of level n is equal to

(g, 5) . n
P :C(;’iﬁ) for i€{0,...,2" —1}.
The interval [55, ] C R/Z is referred to as the angular span of P iy

Proposition 1.6.18. Let Py, 1, be a puzzle piece with angular span [ti,t2] C R/Z. If Ry = RE or RY

is an infinite bubble ray with external angle t € [t1,t2], then the accumulation set of Ry is contained in

P[tl,tz] .

The following result is an analog of Proposition The proof is very similar, and hence, it will

be omitted here.
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Figure 1.11: The puzzle pieces of level 2 (left) and 3 (right) for R,. Compare with Figure and

[L10}

Proposition 1.6.19. Let x € J(R,), and let n € N. If x is not contained in P, or there is a unique
bubble U contained in P, such that x € OU, then there is a unique puzzle piece of level n that contains

x. Otherwise, x is contained in exvactly two puzzle pieces of level n.
A nested puzzle sequence Il; for R, is defined in the same way as its counterpart for fg.

Proposition 1.6.20. Let x € J(R,). If x is an iterated preimage of k, B or 1, then there are exactly
two mazximal nested puzzle sequences whose limit contains x. Otherwise, there is exvactly one mazimal

nested puzzle sequence whose limit contains x.
Proof. This is an immediate consequence of Proposition [L.6.19 O

Proposition 1.6.21. Let II; be a nested puzzle sequence for R,. Its limit L(Il;) cannot intersect the
boundary of bubbles from both B and S.

Proof. 1t is easy to see that the limit set of any nested puzzle sequence is closed, connected, and contained
in J(R, ). Moreover, it must be either pre-periodic or non-recurrent.

Now, suppose that L(II;) intersects the boundary of bubbles from both B and S. We may assume
that L(II;) contains a point z € 0Sy. Note that the orbit of x is dense in Sy. Hence, if L(II;) is periodic,
then L(II;) must contain 0Sy, which is clearly impossible. Therefore, L(II;) must be non-recurrent. This
contradicts Lemma [[.5.111 O

Let IT; be a nested puzzle sequence. We say that II; shrinks to x if its limit L(IL;) is equal to {z}.

Proposition 1.6.22. Let [I; = { P, +,1}72, be a nested puzzle sequence, and let I, = { Py un) 72 be
the unique mazimal nested puzzle sequence containing Iy. Then 1y shrinks to a point x € J(R,) if and

only if 1L, does.
The following result is proved in the next two sections.

Theorem 1.6.23 (the Shrinking Theorem). FEvery nested puzzle sequence for R, shrinks to a point.
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1.7 A Priori Bounds for Critical Circle Maps

A C? homeomorphism f : S' — S is called a critical circle map if it has a unique critical point ¢ € S!
of cubic type. Let p = p(f) be the rotation number of f. In this section, f will be analytic, and p will
be irrational.

The rotation number p can be represented as an infinite continued fraction:

p:[a/laa/Qaa?n"'] =
a1 +
as +

1
as+ ...

The nth partial convergent of p is the rational number

Pn
- = [ala"'aan}'
dn

The sequence of denominators {q, }>2; represent the closest return times of the orbit of any point to

itself. It satisfies the following inductive relation:

Qn+1 = GnGn + qn—1-

Let D,, C S! be the closed arc containing ¢ with end points at f7(c) and fi+i(c). The arc D,
can be expressed as the union of two closed subarcs A, and A,41, where A, has its end points at ¢
and f(c). The subarc A4, is called the nth critical arc. The g,th iterated preimage of A,, under f is
denoted by A_,,. The set of closed arcs

PS5 = {An, F(An), o, £ A U { A1, F(Anst)s oy £ (Ang) T

which are disjoint except at the end points, is a partition of S'. The collection 7351 is called the
dynamical partition of level n. The following is an important estimate regarding dynamical partitions

due to Swiatek and Herman (see [Sw]):

Theorem 1.7.1 (Real a priori bounds). Let f : S* — S be a critical circle map with an irrational
rotation number p. Then for all n sufficiently large, every pair of adjacent atoms in Pfl have K-

commensurate diameters for some universal constant K > 1.

Below, we present an adaptation of complex a priori bounds of [Yal] (see also [YaZ]) to our setting.
Consider the quadratic rational function R, discussed in Section and Denote the Siegel
disc for R, by Sy. By Theorem [I.4.5] there exist a Blaschke product F, and a quasiconformal map
¢ : C — C such that
R (z)=¢oF,0¢ ' (z) forall zeC\S,.

Recall that {oo, F,(c0)} and {0, F,(0)} are superattracting 2-periodic orbits for F,. Denote the
bubble (the connected component of the Fatou set) for F,, containing 0 and oo by Ag and A respectively.
By Theorem the restriction of F, to S is a critical circle map.

A puzzle piece of level n for F, is the image of a puzzle piece of level n for R, under ¢~'. The nth

critical puzzle piece, denoted PS™ is defined inductively as follows:
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(i) P§"it is the puzzle piece of level 1 which contains the first critical arc A;.

(ii) PS is the puzzle piece which contains the preimage arc A_,,, and is mapped homeomorphically
onto PS¢t by Fin.

Observe that Heven 1= {Psp"}o2 and Hoqq := {Psi't1 102, form two disjoint nested puzzle sequences

for F, at the critical point 1.

Figure 1.12: The Oth and 1st critical puzzle piece for F),.

Lemma 1.7.2. Let Ax U F,(Ax) be the immediate attracting basin of the superattracting 2-periodic
orbit {oo, F,(00)} for F,. Then there exists N > 0 such that for all n > N, the nth critical puzzle piece
Perit s disjoint from the closure of Aso U F(Aso)-

Proof. The result follows immediately from Proposition [1.6.21 O

Theorem 1.7.3. For all n sufficiently larger than the constant N in Lemmal[1.7.3, we have the following
inequality:
diam(PS") <O diam(Pcrit)

Tam(A ) = O Gam(a ) T O

where C1 and Cy are universal constants.

Proof. Similarly to [YZ], we first lift a suitable inverse branch of F, to the universal covering space.

Define the exponential map Exp : C — C by

2miz

Exp(z) :==e¢
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Let I = (7 — 1,7) C R be an open interval such that 0 € I, and
Exp(r) = Exp(r — 1) = F,(1).

Let
Log: S"\{F, ()} =TI

be the inverse of Exp restricted to I. The nth critical interval is defined as
I, := Log(A,).

Denote the component of Exp ™ (P<*) intersecting I by P<"it.
Define

A=Ay UF,(Ay) U A U, (Ax),

and let S C C be the universal covering space of C \ A with the covering map Exp|s : S — ¢ \ A. For
any given interval J C R, we denote
Sy:=(S\R)UJ.

The restriction of the map F, to S' is a homeomorphism, and hence, has an inverse. We define a
lift ¢ I — I of (Fy|a]m)_1 by
#(z) := Log o F, ! o Exp(x).

Note that ¢ is discontinuous at Log(F2(1)), which is mapped to 7 — 1 and 7 by ¢. Let n € N. By the

combinatorics of critical circle maps, the kth iterate of ¢ on I, is continuous for all 1 < k£ < ¢,,. By

monodromy theorem, ¢* extends to a conformal map on S, .

For z € Sy, let [, and r, be the line segment connecting z to 7 — 1 and z to 7 respectively. The

smaller of the outer angles formed between I, and (—oo, 7 — 1), and r, and (7, 400) is denoted m

Denote the hyperbolic distance in S; by distg,. A hyperbolic neighbourhood {z € S; | dists,(z,J)}
of J forms an angle § € (0,7) with R. Denote this neighbourhood by Gy(J). Observe that Gg(J) C
{z€8; | (zJ) > 6}

For n € N, define E,, C S! as the open arc containing 1 with end points at F,,"** (1), and F,/"~ ' (1).

Observe that F, contains the critical arcs A, and A, ;. Define
Gy = Go(Log(Ey,)).

Consider the constant N in Lemma Since Pg™ U Pt is disjoint from the closure of A, it is
contained in some annulus E € C \ A. Let S € S be the universal cover of E with the covering map
Exp|g. Choose 6 such that Pgi%, U Pgrit, ¢ GY'. Then we have P& G/ for all n > N + 3.

Now, suppose we are given n > N + 3. Let
Jo=1,, Joi:=0¢(N), ..., J_g,:=¢"(1,), (1.5)
be the orbit of I,, under ¢. Given any point zg € Sy,, let

20, z—1:=0(20), ..., Z_q, =" (20), (1.6)
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Figure 1.13: Illustration of m = min(6y, 03).

be the orbit of zy under ¢.

The following three lemmas are adaptations of lemma 2.1, 4.2 and 4.4 in [Yal] and lemma 6.1, 6.2
and 6.3 in [YaZ]:

Lemma 1.7.4. Consider the orbit (1.6). Let k < g, — 1. Assume that for some i between 0 and k, we
have z; € S and (z—i,J_i) > €. Then

dist(z_k, J_k) < dist(z—;, J_;)
k] - [T

for some constant C = C(e, S) > 0.

Lemma 1.7.5. Let J and J' be two consecutive returns of the orbit (1.5) of Jo to I, for 1 <m < n,
and let ¢ and ¢’ be the corresponding points of the inverse orbit (L.6). If ¢ € Gy, then either (' € Gy
or (¢, J") > € and dist(¢', J') < C|L|, where the constants € and C are independent of m.

Lemma 1.7.6. Let J be the last return of the orbit to the interval I, preceding the first return
to Imaq for 1 <m <n—1, and let J' and J" be the first two returns to I,11. Let ¢, ¢’ and (" be the
corresponding points in the inverse orbit (L.6)), so that ¢/ = ¢9(¢) and (" = ¢?+2({’). Suppose that
¢ € Gy*. Then either (C’ﬁ;l) > ¢ and dist(¢",J") < C|Iyt1|, or ¢" € G, where the constants ¢
and C are independent of m.

The interested reader can follow the proofs of Lemma|l.7.4] [1.7.5]and [1.7.6] and the rest of the proof
of Theorem in [YaZ] mutatis mutandis. O
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Figure 1.14: Tllustration of the hyperbolic neighbourhood Gy (J).

Corollary 1.7.7. For all n sufficiently larger than the constant N in Lemma diam(PSrit) s
K -commensurate to diam(A_,,) for some universal constant K > 1. Consequently, diam(PS™) — 0 as

n — O0.

Proof. Tt suffices to show that any sequence of positive numbers {a, }°2 , satisfying the relation
anp <C1¥a,_1+Cy forall n>1

is bounded.
Consider the sequence {b, }52, defined inductively by

i) by = max(1, ag),

i) by =C /by 1,

where C' is chosen so that
CVk>CVk+Cy forall k>1.

It is easy to see that b, > a,, for all n.

A straightforward computation shows that

1 _1 —1 3
by = O3t A noee, o

Hence, {b,}22, and therefore, {a,}52, are bounded. O

The following result we record for later use:
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Lemma 1.7.8. For all n sufficiently large, the nth critical puzzle piece PS™ contains a Euclidean disc

D,, such that diam(D,,) is K-commensurate to diam (P for some universal constant K > 1.

Proof. Let D; be a disc centered at 1 such that Fi»(1) € 9D;. The map F2"|4, has a well defined
inverse branch which extends to D;. Denote this inverse branch by 1,,. As a consequence of real a priori

bounds, we have the following estimate:

ﬁ < W4 (D)) < K,
where K is some universal constant independent of n.

Observe that the preimage of D under F, consists of two connected components U;, C D and
Uout € C\ D. Moreover, Uy, N Uy, = {1}. It is not difficult to see that 1, extends to Usyg, and that
P (Uout) C PETEL

Now, choose a subdisc Dy C D; N Uyy such that the annulus A = D; \ Dy satisfies the following
estimate

1
—— <mod(A) < |Ks|,
|K2|_ ()—|2|

for some universal constant K5 independent of n. By Koebe distortion theorem, 1, has uniformly
bounded distortion on Ds. Since 1, (D2) C ¥n (Uout) C P, the result follows. O

1.8 The Proof of the Shrinking Theorem

We are ready to prove the shrinking theorem stated at the end of Section [I.6l The proof will be split

into three propositions.

Proposition 1.8.1. IfII; is a nested puzzle sequence such that L(I1;) contains B or k, then I; shrink

to a point.

Proof. We prove the result in the case where L(II;) contains k. The proof of the other case is similar.

Since L(II;) contains &, it follows that ¢ = 0. Observe that L(IIy) is invariant under R,. Hence,
L(IIy) N 08y = &.

Let D, be a disc of radius r > 0 centered at k. Since k is a repelling fixed point, if r is sufficiently
small, then D,. is mapped into itself by an appropriate inverse branch of R,,. This inverse branch extends
toamap g: N — N, where N is a neighbourhood of L(IIy) which is disjoint from 0Sy and therefore,
the closure of the post critical set for R,,.

Any set compactly contained within N converges to k under iteration of R,,. It follows that L(Ily) =

{k}. O

For the proof of the remaining two propositions, it will be more convenient for us to work with the
Blaschke product F), rather than R, itself. It is clear from the definition that a nested puzzle sequence

for R, shrinks if and only if the corresponding nested puzzle sequence for F, shrinks.
Proposition 1.8.2. IfII; is a nested puzzle sequence such that 1 € L(I1;), then I shrink to 1

Proof. Recall the definition of critical puzzle pieces {Pff”}%":o for F,, in Section Let Hoyen and Iloqq

be the maximal nested puzzle sequence containing {Ps,*}o° o and {Ps%,}o2 ) respectively. Corollary
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and Proposition [1.6.22| imply that ﬂeven and f[odd both shrink to 1. By Proposition |1.6.20} there

is no other maximal nested puzzle sequence at 1. O

For the proof of the final proposition, we need the following lemma.

Lemma 1.8.3. Let f : C — C be a rational map of degree d > 1. Let {(flov) "2, be a family of
univalent inverse branches of f restricted to a domain U. Suppose UNJ(f) # @. If V € U, then

diam((f|o)™"(V)) = 0

as n — Q.

Proposition 1.8.4. Let wy be a point in the Julia set J(R,) which is not an iterated preimage of k,
or 1. IfII; is a nested puzzle sequence such that wy € L(I;), then II; shrinks to wy.

Proof. Let zg := ¢~ (wp), and consider the forward orbit
O = {zn}720

of zg under F,,. The proof splits into two cases.

Case 1. Suppose there exists some critical puzzle piece P§r® such that
ONPt =o.

Let zo be an accumulation point of O, and let P°° be the puzzle piece of level M containing z.
Observe that the orbit of the critical point 1 is dense in OD. Hence, P°° must be disjoint from 0D, since
otherwise, P> would map into P{;* by some appropriate inverse branch of F,.
Let U C C\ D be a neighbourhood of P>, and choose a subsequence of orbit points {zy, }3°, from
O such that z,, € P*°. For each k, let
g :U—C

be the inverse branch of F'* that maps z,, to zp. Since P* intersects the Julia set for F),, the nested

puzzle sequence
IT:= {gr(P>)}iZ0

must shrink to zy by Lemma [T.8:3]

Case 2. Suppose the critical point 1 is an accumulation point of 0. Then there exists an increasing

sequence of numbers {n;}%2, such that
it
ONP" # 2.

Fix k, and let z,,, be the first orbit point that enters the critical puzzle piece Pﬁ:“. Let
P~ C F (P
be the nth pull back of Pﬁ;“ along the orbit

20> 21 2y (1.7)
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Suppose that P~"™ intersects 1 for some n > 0. Then for all m < n, the puzzle piece P~ must
intersect JD. Recall that Pﬁ:“ contains the the preimage arc A_,,, . Hence, for every m < n, the puzzle
piece P~™ contains the mth preimage of A_,, under F,|sp. By the combinatorics of critical circle
maps, it follows that P~9x must be the first puzzle piece in the backward orbit {P~1, P=2 ... P~™mx}
to intersect 1.

Since there are exactly two maximal nested puzzle sequences whose limit contains 1, all puzzle pieces
of level n > ny + ¢y, which intersect 1 must be contained in either Pﬁzit or P79, Either case would
contradict the fact that z,,, is the first orbit point to enter Pﬁ:“. Therefore, P~™ does not intersect 1
for all n > ¢y, .

Let m < my, be the last moment when the backward orbit of P = P¢r intersect OD. By The-
orem Corollary and combinatorics of critical circle maps, the distance between P~™ and
F,(1) is commensurate to diam(P~™). Hence, the distance between P~™~! and 1 is commensurate to
diam(P~™~1). Therefore, by Theorem and Koebe distortion theorem, the inverse branch of F}**
along the orbit can be expressed as either

—Mmg L —
E; ‘Pﬁ;” =N

if1¢ P, foralln>0,or
F;mk|P;;“ =GoQoG

if 1 € P79 where 7, (; and (o are conformal maps with bounded distortion, and @ is a branch of the
cubic root.

Now, by Lemma m Pgrit contains a Euclidean disc Dy, such that diam(D,,, ) is commensurate
to diam(P,f;”). The above argument implies that the puzzle piece P~ must also contain a Euclidean
disc D such that diam(D) is commensurate to diam(P~"*). Hence, diam(P~"*) — 0 as k — oo, and

the nested puzzle sequence
= {P7"™ }2,

must shrink to zg. O]

As an application of the shrinking theorem, we prove that every infinite bubble ray for R, lands.
Proposition 1.8.5. Every infinite bubble ray for R, lands.

Proof. Let R; be an infinite bubble ray, and let €2 be its accumulation set. If ¢ is a dyadic rational, then
R: lands at an iterated preimage of k. Otherwise, there exists a unique nested maximal puzzle sequence
Iy = {Ps, 4,172, with external angle equal to ¢. By Proposition [1.6.18} € must be contained in Py, 4,

for all k > 1. The result now follows from the shrinking theorem. O

1.9 The Proof of Conformal Mateability

We are ready to prove that R, is a conformal mating of fg and fs. Recall the maps &g and ®g in
Theorem [1.5.16] defined on the union of the closure of every bubble in B and S respectively. Our first
task is to continuously extend ®g and ®g to the filled Julia sets Kg = B and Kg = S. For brevity, we

will limit our discussion to ®g. The map ®g can be extended in a completely analogous way.
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Let g : Js — J(R,) be the map defined as follows. For = € Jg, let TI$ = {P[Sk,tk]}zo=1 be a maximal

S

nested puzzle sequence whose limit contains . By the shrinking theorem, the corresponding maximal

nested puzzle sequence II; = { Py, ;,1}72, for R, must shrink to a single point, say y € J(R,). Define

Sk

dg () :=y. We claim that dg is a continuous extension of &g on Js.

Proposition 1.9.1. Let S C S be a bubble. If z € S, then ®g(zx) = dg(z).

Proof. Let z := ®g(x). It is easy to see from the proof of Lemma [1.6.13|that z € C’((j:f:)) for all £ > 1.
It follows immediately that z € Py, ;,) for all £ > 1, and hence, {z} = L(II;) = {y}. O

Proposition 1.9.2. The map ®s : Js — J(R,) is well defined.

Proof. Suppose there are two maximal nested puzzle sequences at x € Jg. By Proposition [1.6.11} = is
either an iterated preimage of kg or 0. The first case follows from Proposition [1.6.18] The second case

follows from Proposition [1.9.1 O

Proposition 1.9.3. Define ®g(x) := i)s(x) for all x € Js. The extended map ®s : Ks — C is

continuous.

Proof. It suffices to show that if {z;}°, C Kg is a sequence converging to = € Jg, then the sequence of

image points {y; = ®g(z;)}32, converges to y = Pg(x). The proof splits into four cases:
i) The point z is an iterated preimage of 0.
ii) There exists a unique bubble S C S such that = € 9S.
iii) The point x is an iterated preimage of kg.

iv) Otherwise.

Case i) By Proposition there exist exactly two bubbles S; and S; which contain z in their boundary.
Moreover, we have {z} = S; N S2. By Proposition any subsequence of {x;}3°, contained in S; USy
is mapped under g to a sequence which converges to y. Hence, we may assume that x; is not contained
S1US, for all i > 0.

By Proposition there are exactly two maximal nested puzzle sequences II$ = {P[i’k_’ th }72, and
I3 = {P5, . 172, whose limit contains z. Let D, (x) be a disc of radius 7 > 0 centered at z. For every
k, we can choose i, > 0 sufficiently small such that D, (z)NPS = D,, (v)N(S1US2). Let Ny > 0 be large
enough such that {z;}{2, is contained in D, (x). This implies that {z;}{2y C P[Ek,tk] U Pﬁwh]. It is
easy to see that the sequence of image points {y; = Pg (:Cl)}fiNk must be contained P, ¢,1U Py, v,]- By
Proposition I = { P, 172, and I, = { Py, 4,] 172 both converge to y, and the result follows.

Case i) The proof is very similar to Case i), and hence, it will be omitted.

Case iii) Since x is an iterated preimage of ks, it must be the landing point of some bubble ray RY,
where t € R/Z is a dyadic rational. By Proposition y is the landing point of the corresponding
bubble ray RY. Any subsequence of {z;}22, contained in RS is mapped under ®g to a sequence in Ry
which converges to y. Hence, we may assume that z; is not contained R? for all i > 0.

The remainder of the proof is very similar to Case i), and hence, it will be omitted.
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Case iv) By Proposition|1.6.11] there exists a unique maximal nested puzzle sequences I1$ = {P[i,tk] it}
whose limit contains z. Let D, (x) be a disc of radius r > 0 centered at x. Since x is not contained the
puzzle partition PS of any level n € N, it follows that for every k > 1, there exists r, > 0 sufficiently small
such that D,(z) C P[iwk]. Thus, there exists Ny > 0 such that {z;}3°, is contained in P[Ekatk]. It is
easy to see that the sequence of image points {y; = ®g(x;)}5° N, must be contained in the corresponding
puzzle piece Py, ;,1 for R,. Since the nested puzzle sequence Iy = { P, ;,1}72,; must shrink to y, the

result follows. 0

Proposition 1.9.4. Lett € R/Z, and let x € Jg and y € Jg be the landing point of the external ray
for fs and fs with external angle —t and t respectively. Then Pg(x) = Pg(y).

Proof. Consider the nested puzzle sequences I12 = {P[?k,tk]}l?;lv n$ = {P[fk’tk]}z‘;l and Iy = { P, 41,1102, -
By Proposition and [1.6.10} we have L(ITB) N Jg = {2} and L(II?) N Js = {y}. Let z be the point

that II; shrinks to. By definition, ®g(z) = z = ®g(y). O
Proof of Main Theorem 1B.

We verify the mating criterion given in Proposition Let fo, = fB, feo = fs, A1 = OB, Ay = g,
and R = R,,. Clearly, conditions (ii) and (iii) are satisfied. It remains to check condition (i).

Let 78 : R/Z — Jp and 75 : R/Z — Js be the Carathéodory loop for fg and fs respectively (refer
to Section for the definition of Carathéodory loop). Define og(t) := 78(—t). By Proposition

the following diagram commutes:
R/Z —22— Jg

lTs lch
Js —— J(R,)
It follows that if z ~;.qy w, then z and w are mapped to the same point under &g or ®s.
To check the converse, it suffices to prove that for z,w € Jg, if ®g(z) = Pg(w) = = € J(R,), then
Z ~pqy w. First, observe that ®g maps iterated preimages of 0 homeomorphically onto the iterated
preimages of 1. Similarly, ®g maps iterated preimages of kg homeomorphically onto the iterated preim-
ages of k. Now, by Proposition two distinct maximal nested sequences for R, shrink to x if and

only if x is an iterated preimage of 1, k or 8. If = is an iterated preimage of 1 or x, then z must be equal

to w. If z is an iterated preimage of §, then z ~yqy w. O

1.10 Further Thoughts

We finish this chapter with a brief discussion about possible generalizations of our results. The following

are the conditions we assumed in our main theorem.
i) The rotation number of the Siegel disk is of bounded type.
ii) The Siegel disk is fixed.
iii) The super-attracting orbit of the hyperbolic polynomial has period 2.

As we explain below, (i) and (ii) are integral to the methods used in our proof, while (iii) can easily be

replaced with a more general condition that allows for attracting orbits of any period.
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In the proof of the main theorem, we modelled the dynamics of the candidate mating R, by a Blaschke
product F, (see Section . This allowed us to consider chains of iterated preimages of the Siegel disk
joined together at the iterated preimages of the critical point to form bubble rays. Moreover, it gave
us a way to adapt Yampolsky’s complex a priori bounds to prove that the puzzle pieces that are cut
out by these bubble rays shrink to points at the Siegel boundary (see Section . Without condition
(i), the conjugacy between the critical circle map F,|sp and rigid rotation by angle v cannot extend
quasiconformally to I, and hence, we no longer can define the quasiconformal surgery that transforms
F, to R,.

For quadratic polynomials, any result about a fixed Siegel disk tends to generalize to Siegel disks of
period greater than one. This is due to the fact that a quadratic polynomial with a periodic Siegel disk
can be renormalized to a quadratic-like map with a fixed Siegel disk using external rays. However, no
such renormalization technique is known to exist for the basilica family R,. As a result, we are unable
to remove condition (ii).

On the other hand, it is not necessary for us to restrict ourselves to matings of Siegel quadratic
polynomials with the basilica polynomial fg. Indeed, the only property of fg that was used in our
proof is the fact that the Fatou components in the filled Julia set for fg are joined together at discrete
points (namely, the iterated preimages of the a-fixed point b). Hence, fg can be replaced with any
hyperbolic quadratic polynomial that satisfies this same property. For example, consider a parameter ¢
which is contained in a satellite component of the main cardioid of the Mandelbrot set M. For such ¢,
the quadratic polynomial f. is said to be starlike. With only a slight adjustment to the construction of
the Blaschke product F), in Section and to the definition of bubble rays in Section the argument
presented in this chapter can be used to prove the following more general result.

Main Theorem 1B’. Suppose v € R\ Q is of bounded type. Let fs be the unique member of the
quadratic family that has a Siegel fixed point with rotation number v, and let f. be a starlike polynomial.

Then fs and f. are conformally mateable.



Chapter 2

The Siegel Disk of a Dissipative
Hénon Map Has Non-Smooth
Boundary

2.1 Introduction to Semi-Siegel Hénon Maps

In several complex variables, the archetypical class of examples are given by the following two-dimensional

extension of the quadratic family
Hc,b(xay) = (fc(x) - by,l’) = (.’E2 +c— byax) force Cand be C \ {0}

called the (complex quadratic) Hénon family.
Since )
e = (E70),
a Hénon map H., 4 is a polynomial automorphism of C?. Moreover, it is easy to see that H.; has constant
Jacobian:
JacH., = b.

Note that for b = 0, the map H.; degenerates to the following embedding of f.:

(@, y) = (fe(x), ).

Hence, the parameter b can be viewed as a measure of how far H.; is from being a degenerate one-
dimensional system. We will always assume that H, is a dissipative map (i.e. [b] < 1).

As usual, we let KT be the sets of points in C2 that do not escape to infinity under forward /backward
iterations of the Hénon map respectively. Their topological boundaries are J* = 9K*. Let K =
KTNK~ and J = J~ NJ7T. The sets J* and K* are unbounded and connected (see [BSI]), while .J
and K are compact (see [HOVI]). In analogy to one-dimensional dynamics, the set J is called the Julia
set of the Hénon map.

A Hénon map H. is determined uniquely by the multipliers ;1 and v at a fixed point pg. In particular,

45
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we have

b= puv,

c=(1+0) (ng;;)(ng;L)?

When convenient, we will write H,, ,, instead of H,; to denote a Hénon map.

and

A dissipative Hénon map H,, , has a semi-Siegel fized point po if p = e?™ for some 6 € (0,1)\ Q,
and there exist neighbourhoods N of (0,0) and N of pg, and a biholomorphic change of coordinates

¢: (N, (0,0)) = (N, po)
such that
Hy,op=¢olL,

where L(z,y) := (px,vy). A classic theorem of Siegel states, in particular, that H,, , is semi-Siegel

whenever 0 is Diophantine. That is, for some constants C and d, we have

dn+1 < ngw

where p,, /¢, are the continued fraction convergents of 6 (see Section for a more detailed discussion

of Diophantine numbers). In this case, the linearizing map ¢ can be biholomorphically extended to
¢ : (]D) X (Ca (070)) - (Cap0)

so that the image C := ¢(D x C) is mazimal (see [MNTU]). The set C is a connected component of the
interior of K, and its boundary coincides with J* (see [BS2]). Let

D = ¢(D x {0}).

Then clearly, C = W*(D) and D C K. We call C and D the Siegel cylinder and the Siegel disk of the
Hénon map respectively.

Remark 2.1.1. The Siegel disk D must be contained in the center manifold W¢(py) of the semi-Siegel
fixed point pg (see e.g. [S] for the definition of center manifolds). The center manifold is not unique
in general, but all center manifolds of py must coincide on the Siegel disk. This phenomenon is nicely
illustrated in [O], Figure 5.

The geometry of Siegel disks in one dimension is a challenging and important topic, studied by
numerous authors; including Herman [He], McMullen [Mc3|, Petersen [P], Inou and Shishikura [ISh|,
Yampolsky [Ya3], and others. In the two-dimensional Hénon family, the corresponding problems have

been wide open until a very recent work of Gaidashev, Radu, and Yampolsky [GaRYa], who proved:

Theorem 2.1.2 (Gaidashev, Radu, Yampolsky). Let 0, = (v/5 —1)/2 be the inverse golden mean, and
let p1, = €>™%. Then there exists € > 0 such that if |v| < ¢, then the boundary of the Siegel disk D of

H,, . is a homeomorphic image of the circle. In fact, the linearizing map

¢:Dx{0} D
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extends continuously and injectively (but not smoothly) to the boundary.

Theorem raises a natural question whether the boundary 9D can ever lie on a smooth curve.

In the present note we answer this in the negative:

Main Theorem 2. Let € > 0 be as in Theorem and let |v| < €. Then the boundary of the Siegel
disk of H,, , is not C'-smooth.

2.2 Renormalization of Almost-Commuting Pairs

In this section we give a summary of the relevant statements on renormalization of almost-commuting

pairs; we refer the reader to [GaYa] for further details.

2.2.1 One-dimensional renormalization

For a domain Z C C, we denote A(Z) the Banach space of bounded analytic functions f : Z — C
equipped with the norm

If[I = sup | f ()] (2.1)
T€Z

Denote A(Z, W) the Banach space of bounded pairs of analytic functions ¢ = (f,g) from domains
Z C C and W C C respectively to C equipped with the norm

1<l =5 (A + Mgl - (2.2)

1
2
Henceforth, we assume that the domains Z and W contain 0.

For a pair ¢ = (f, g), define the rescaling map as
AQ) = (5710 foscysit 0gose), (2.3)
where
se(z) ==Xz and  A¢ :=g(0).
Definition 2.2.1. We say that { = (1,£) € A(Z, W) is a critical pair if
(i) n and £ have a simple unique critical point at 0, and
(i) £(0) = 1.
The space of critical pairs in A(Z, W) is denoted by C(Z, W).

Definition 2.2.2. We say that { = (n,&) € A(Z,W) is a commuting pair if
no&=¢gon.

It turns out, requiring strict commutativity is too limiting in the category of analytic functions.

Hence, we work with the following less restrictive condition:
Definition 2.2.3. We say that ( = (n,£) € C(Z, W) is an almost commuting pair (cf. [Burl [Stir]) if

d'(no& —£&on)

g (0)=0 for i=0,2.
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The space of almost commuting pairs in C(Z, W) is denoted by B(Z, W).

Proposition 2.2.4 (cf. [GaYa]). The spaces C(Z, W) and B(Z,W) have the structure of an immersed
Banach submanifold of A(Z, W) of codimension 3 and 5 respectively.

Denote

c(z) = =.

Definition 2.2.5. Let { = (n,&) € B(Z,W). The pre-renormalization of ¢ is defined as:

PR(C) = pR((1,€)) := (no&,m).

The renormalization of  is defined as:
R(C) = R((n,8)) := A((conooc,conoc)).

We say that ¢ is renormalizable if R(¢) € B(Z, W).
The following is shown in [GaYal:

Theorem 2.2.6. There exist topological disks 757 and W > W, and a commuting pair ¢, = (., &) €
B(Z, W) such that the following holds:

(i) There exists a neighbourhood N of (. in the submanifold B(Z, W) such that
R:N = B(Z,W)

is an anti-analytic operator.
(i1) The pair . is the unique fized point of R in N.

(i11) The differential D¢, R is a compact anti-linear operator. The operator
L:=D¢;Roc

has a single, simple eigenvalue with modulus greater than 1. The rest of its spectrum lies inside
the open unit disk D (and hence is compactly contained in D by the spectral theory of compact

operators).

2.2.2 Two-dimensional renormalization

For a domain 2 C C?, we denote A2(Q) the Banach space of bounded analytic functions F : Q — C?
equipped with the norm

|F|l = sup [F(z,y)|. (2.4)
(z,y)€Q
Define
[l == sup [0,F(z,y)l. (2.5)
(z,y)€Q

Moreover, for

F=

fi
fo|’
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define
[ Fllaiag == sup [fi(z,y) — fa(z,y)|. (2.6)

(z,y)EQ

Denote A3(€2,I") the Banach space of bounded pairs of analytic functions ¥ = (F, G) from domains
Q) C C? and T’ C C? respectively to C? equipped with the norm

1
IZl =5 AEN+ G - (2.7)
Define )
IZlly = 5 UEly +1EG1y)- (2.8)
Moreover,
1
Ellaiag := 5 (1Flldiag + G laiag) - (2.9)

Henceforth, we assume that
ON=Zx7Z and T =WxW,
where Z and W are subdomains of C containing 0. For a function

F(x,y) — [fl(xvy)]

fa(z,y)

from Q or I' to C2, we denote
mF(x) = fi(z,0) and wF(x):= fa(z,0).
For a pair ¥ = (F, G), define the rescaling map as
A(D) = (s5' 0 Fosy,s5" 0Gosy), (2.10)

where
se(z,y) == (Asz, Agy)  and Ay = mG(0).

The following definitions are analogs of Definition R:2.1] 2.2.2] and 2.2:3}

Definition 2.2.7. For k > 0, we say that ¥ = (A, B) € Ay(Q,T) is a k-critical pair if

(i) m A and 71 B have a simple unique critical point which is contained in a k-neighbourhood of 0,

and
(ii) mB(0) = 1.
The space of k-critical pairs in A3(Q2,T') is denoted by Co(2, T, k).
Definition 2.2.8. We say that ¥ = (A, B) € A2(Q, ) is a commuting pair if

AoB=DBoA.
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Definition 2.2.9. We say that ¥ = (A, B) € C2(, T, k) is an k-almost commuting pair if

diﬂ'l [A, B]

o dimi(AoB — Bo A)
Iai (0)’ = .

dx?

0) <k for i=0,2.

The space of k-almost commuting pairs in C2(Q, T, k) is denoted by B2(Q2, T, k).

Proposition 2.2.10 (cf.[GaYal). The space B2(2,T', k) has the structure of an immersed Banach sub-
manifold of A2(Q,T) of codimension 1.

For 0 < €, < oo, let A2(2,T,€,6) be the open subset of A3(Q,T) consisting of pairs ¥ = (A, B)
such that the following holds:

1. ||X]ly <€, and

2. |Z||diag < 9.
Note that
AQ(Q, F, o0, OO) = AQ(Q7 F)
We denote
Co(,Tye, 0, k) := A2(Q,T,€,0) NCo(Q, T, k), (2.11)
and
B2(Q, e, 6,k) = A2(Q, Ty e, 0) N Bo(Q, T, k). (2.12)

Proposition 2.2.11 (cf. [GaYal). If €, §, and k are sufficiently small, then there exists an analytic
projection map MW, : Co(, T, €,0,k) — Ba(, T €,0, k) such that

Waclpy(@re6m) = 1d. (2.13)

We define an isometric embedding ¢ of the space A(Z) to A3(2) as follows:

vy 7@
U@ y) = o(f)(x) = fz) (2.14)
We extend this definition to an isometric embedding of A(Z, W) into A3(2,T') as follows:
u((1,€)) = (e(n), (8))- (2.15)

Note that
u(B(Z,W)) = B2(Q,T,0,0,0).

Notation 2.2.12. Let Z be the space of all finite multi-indexes
w = (ag,...,an) € {0 UN)"  for some n € N,
with the partial ordering relation < defined as follows. We have

(ag,a1,...,a5,b) < (ag,a1,...,0n,ani1)
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if either k¥ < m and b < agy1, or Kk = n and b < anq1. For a pair ¢ = (1,€) and a multi-index
@ = (ag, ..., an) € Z, denote
szqsano.” Ogalonao

where ¢ is either 1) or £, depending on whether n is even or odd. Lastly, define a sequence {&g, ay,...} CZ
such that

PR™(C) = (¢, (™),
where pR is the pre-renormalization operator defined in Definition [2.2.5

Lemma 2.2.13. Let Z € Z and W € W be domains in C. For any four-times 1D renormalizable pair
Co = (no,&) € B(Z, W), there exists a neighbourhood N((y) C A(Z, W) of (o such that if { = (n,£) €
N (o), then the pair

RY(C) = A(C™,¢™)
is a well-defined element of A(Z,W).

Let Do(2, T €) C Ax(2, T, €,00) be the open set consisting of pairs ¥ = (A4, B) such that the following
conditions hold.

(i) The pair A(X;) is a well-defined element of Ay (€2, T), where
31 =(A1,By) = (A_l oY% o A,A_l oY% o A),

and

Q:=(1-eQ and T:=(1-¢T.
(ii) The map mB; is conformal on 1B~ 1o A; 0 A=Y(V) and 1B~ o By 0 A=1(V), where

V=g, ZUW CC.

We define the renormalization of 3 € Dy (€, T, €) in several steps.

Write
a b
()
and denote
ni(z) :=mA(x) and &(z):=mB(x) , forie{l,2}.
Let

ay(x) = a(a:, y)v

and consider the following non-linear changes of coordinates:

T = a;l(x) an T,y) = v
Himy): l y ] 4 Vi) [62051107711(11)]' (216)
Observe that
AOH(x’y)layoayl(x)]l T ]
g9(a; ' (z),y) g9(a; " (z),y)
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Moreover,

V3ieH 'oB=

agob
mo&o&log|’
Thus, we have

[AcHl, <O(e) and [[VioHoB—umo&)|<O(e)

where defined.

Let
Ay:=V1oH oA 0cHOV,

and
By:=V 'oH 'oBjoHoV.

Define the pre-renormalization of 3 as

PR(D) := (As, By). (2.17)

Let
C = (nlagl)'

From the above inequalities, it follows that
IPR(Z) = e(@RY () < O(e)  and  [|pR(Z)[|, < O(e?) (2.18)

where defined.

By the argument principle, if € is sufficiently small, then the function 71 By o A; has a simple unique
critical point ¢, near 0. Set
To(z,y) := (z + ca,y), (2.19)

Likewise, the function w7, ! o A; o By o T, has a simple unique critical point ¢, near 0. Set
Ty(@.) = (@ + 0, y). (2:20)

Note that if ¥ is a commuting pair (i.e. Ao B = Bo A), then T, = Id.

Define the critical projection of pR(X) as
Mesig 0 pR(E) = (A3, B3) == (T, ' o T, ' 0 Ay o T, T, P o Boo T, 0 Ty). (2.21)

Note that
0= 7T1(Bg o Ag)/(O) = (7T1A3)/(0) + 0(62),

and likewise
0= 7T1(A3 @) Bg)/(O) = (7T1B3),(O) + 0(62).

Hence,
(m1A3)'(0) = 0(62) and (w1 B3)(0) = 0(62). (2.22)

It follows that there exists a uniform constant C' > 0 such that the rescaled pair A o Iy o pR(X) is
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contained in C2(€2, T, Ce?, Ce, Ce?) (recall that this means A o Il o pR(Y) is a Ce3-critical pair with
Ce? dependence on y that is C'e away from the diagonal; see (2.11])).

Finally, define the 2D renormalization of X as
R(Y) :=1,c 0 A oI5 0 pR(Y), (2.23)
where the projection map II,. is given in Proposition 2:2.11]

Proposition 2.2.14. If ¥ = (A, B) € D3(Q,T,€) is a commuting pair (i.e. AoB = BoA), then R(X)
is a conjugate of (X% ¥%3).

Theorem 2.2.15. Let (. be the fized point of the 1D renormalization given in Theorem [2.1.3 For
€ >0, let N(1(¢)) @ Do(2,T,€) be a neighbourhood of 1(C.) with compact closure. Then there exists a
uniform constant C > 0 depending on N (1((.)) such that the 2D renormalization operator

R:Dy(2,T¢e) = A(Q,T),
is a well-defined analytic operator satisfying the following properties:
1. Ry, (¢ s Ne(U(G)) = Ba(Q, T, Ce?, Ce, Ce?).
2. If ¥ = (A, B) € No(1(¢)) and ¢ := (m1 A, m B), then
IR(E) = «(R*¢))I| < Ce.
Consequently, if N'(¢.) C B(Z,W) is a neighbourhood of (. such that t(N((.)) C Ne(1(Ch)), then

Ro i) =to R nc):

3. The pair 1(y) is the unique fizved point of R in Nc(¢(¢y)).

4. The differential D, R is a compact linear operator whose spectrum coincides with that of De, RA.
More precisely, in the spectral decomposition of D, )R, the complement to the tangent space

T,c.)(t(N(C))) corresponds to the zero eigenvalue.

We denote the stable manifold of the fixed point ¢({,) for the 2D renormalization operator R by
We((Cx)) C D2(Q, T e).

Let H,, , be the Hénon map with a semi-Siegel fixed point q of multipliers . = €27

* and v, where
0. = (v/5—1)/2 is the inverse golden mean rotation number, and |v| < e. We identify H,, , as a pair
in Do(Q, T, €) as follows:

Su, i =AH2 , H,. ). (2.24)

P,V Mos V7

The following is shown in [GaRYa]:

Theorem 2.2.16. The pair Xy is contained in the stable manifold W*(((.)) C D2(Q,T,€) of the
fized point L({i) for the 2D renormalization operator R.

Hose sV
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2.3 The Renormalization Arc

Let

be the fixed point of the 1D renormalization operator R given in Theorem By Theorem [2.2.15
the diagonal embedding ¢({,) of (. is a fixed point of the 2D renormalization operator R. Hence, we

have

R(1(G)) = (55 0u(Q)™ 054,571 01(¢)™ 054) = 1(C),

where
se(myy) = (A, Awy) A < L

Let ¥ = (A, B) be a pair contained in the stable manifold W?*(¢(¢,)) of the fixed point ¢((,). Assume
that ¥ is commuting, so that
AoB=BoA.

Write
Gp

and let
77n(T/) = 71—1An(x) = an(xa 0) and gn(x) = ﬂan(Z) = bn(xa 0)

By Theorem We may express
A, =t(nn)+E, and B, =u&,)+F, (2.25)
where the error terms F,, and F,, satisfy
|E.| < Ce""  and |F,| <Ce¥ . (2.26)

Hence, the sequence of pairs {X,,}22, converges to B2(£2,T',0,0,0) super-exponentially.
Denote

(an)y(x) = an(7,y).
Let

an); Nz
H,(z,y) == [( n)z ( )] and  V,(x,y) :=

X
ma B o &t o nnl(y)]

be the non-linear changes of coordinates given in , let
To(z,y) := (z + dn, y),
be the translation map given in 7 and let
sn(zyy) = Az, A\ny) Al <1

be the scaling map so that if
G = H, oV, 0T, 0s,, (2.27)
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then by Proposition we have

An+1 :¢;10A;102§40An0¢n

and
Bhy1 = gi);l o A;l o Egs oA, od,.
Denote
OF =g 0bpi10... 0pp_100r , QF:=dF(Q) and TF.=okD).
Define
Up= |J =5@F) and V= |J 5T
WL —n W<k —n—1

It is not hard to see that {UX UV 12 form a nested sequence. Define the renormalization arc of ¥,

as

o= (| UFUVE. (2.28)

k=n
Proposition 2.3.1. The renormalization arc v, is invariant under the action of ¥,,. Moreover, if
pri= J EN@wnQ) and qy:= |J  EN(@5(wnD),
G<hn G<h—n—1

then
Y =pE UGk

Let 6, = (v/5—1)/2 be the golden mean rotation number, and let
I, :=[-0,,0] and Ig:=][0,1].
Define L:I;, > Rand R:Ir - R as
L(t):=t+1 and R(t):=t—0..

The pair (R, L) represents rigid rotation of R/Z by angle 0,.
The following is a classical result about the renormalization of 1D pairs.

Proposition 2.3.2. Suppose |||, = 0. Then for every n > 0, there exists a quasi-symmetric homeo-
morphism between I, U Ir and the renormalization arc v, that conjugates the action of ¥, = (A, By)
and the action of (R, L). Moreover, the renormalization arc vy, contains the unique critical point ¢, = 0
of Nn.-

The following is shown in [GaRYa].
Theorem 2.3.3. Let ¥ = (A, B) be a commuting pair contained in the stable manifold W*(.((y)) of
the 2D renormalization fized point 1((.). Then for every n > 0, there exists a homeomorphism between

I, Ui and the renormalization arc v, that conjugates the action of ¥, = (A,, B,) and the action of

R, L). Moreover, this conjugacy cannot be C* smooth.
(R, , jugacy
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Theorem follows from the above statement and the following;:

Theorem 2.3.4 ([GaRYal). Suppose
X=Xy

P, )

where Y.p,, ., 18 the renormalization of the Hénon map given in Theorem . Then the linear rescaling
of the renormalization arc so(7yo) is contained in the boundary of the Siegel disc D of H,, .. In fact, we

have
9D = so(70) U H.v 0 50(70)-

Henceforth, we consider the renormalization arc of ¥,, as a continuous curve vy,, = v, (t) parameterized

by I, U Ig. The components of v, are denoted

Lastly, denote the renormalization arc of ¢({.) by

O E®)
0= [vf(t)l |

The following are consequences of Theorem [2.2.15

Corollary 2.3.5. Asn — oo, we have the following convergences (each of which occurs at a geometric

rate):
1. np = Ny,
2. Ap = A (hence s, — $.),

3. ¢n — Vs, where

4. Yn = v« (hence |¥E(0)| — 0).

2.4 Normality of the Compositions of Microscope Maps

Define

Yn(,y) = [ngl(Anx)l :

Mt (Any)
For n < k, denote
Uk =1, 0hpp10... 0ty 0ty

Let

Proposition 2.4.1. The family {cEWF}e is normal.
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Proof. By Corollary there exists a domain U C C? and a uniform constant ¢ < 1 such that for all
k sufficiently large, the map ), is well defined on U, and

QuU Ak+1(Q) ul'u Bk+1(F) € cU.

Thus, by choosing a smaller domain U if necessary, we can assume that 1, and hence, ¥¥ extends to a

strictly larger domain V' 3 U. It follows from applying Koébe distortion theorem to the first and second

coordinate that {c¥Wk}% is a normal family. O

Proposition 2.4.2. There exists a uniform constant M > 0 such that
n—1
l|dn — Ul < Me* .

Proof. The result follows readily from (2.25) and (2.26)). O

Proposition 2.4.3. There exists a uniform constant K > 0 such that
ok||®k — Wk < K"
Proof. By Proposition we have

Gr1=Vk 1+ B, and ¢ =y + By,

2k—2 2k—1

where ||Ey_1|| < Me and ||Ex|| < Me* . Observe that

Pr—10 Pk = Pr—10 (Vi + E)
= ¢p_1 0Py + Ey,
= (k-1 + Ex—1) o g + Ep
= Yp—1 0% + Ex_y 0ty + B,

where ||Ey|| < Le?"™" for some uniform constant L > 0 by Corollary Let
Eyo1 = Ep_1 + Epoy .
By Corollary 1/},;1 is uniformly bounded, and hence, we have
|Ex_s]] < Me2 " +2Le2" " < 2Me"

Thus, we have
Gr—10 Pk = V10 Yk + Ep_1 0 g

Proceeding by induction, we obtain
), = Up + By 01 0. 04y,

where
2n —1

[|Enl| < 2Me
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By definition, we have

o (Y 0 Ppyr0... 0hy) (0) = 1.

Factor the scaling constant as

T = O,
so that
|oxn (ns1 0. 0 (0)] = 1,
and
|05+1(7/)n+1 o...oty)(0) = 1.
Let

M := supn,, ().
T€EZ

Observe that ¢¥ is uniformly bounded by A;; 1 M. Moreover, by Proposition we have that 0% | (¢, 410

. 01y)" is also uniformly bounded. Therefore,

ok (Bn o tni1... on) |l = 168 E, (@ns1 - 0 W)l - llon i1 (Yni1 ... ohn)|
= K||E},(Yn+1--- otn)l|
< Keznil

for some universal constant K > 0. O
By Proposition and we have the following theorem.

Theorem 2.4.4. The family {cE®k}2° is normal.

2.5 The Proof of Non-Smoothness.

Let [t;,t,] C R be a closed interval, let W be a domain in either C or C?, and let C : [t;,t,] — W be a
smooth curve. For any N C W, we define the angular deviation of C on N as

9p(C, N) := oD | arg(C”(t)) — arg(C'(s))], (2.29)

where the function arg is defined as
arg(re*™%) .= 270 (2.30)

Lemma 2.5.1. Let § € R/Z, and let Cy : [0,1] — C be a smooth curve such that Cy(0) = 0 and
Co(1) = 2™, Then for some t € [0, 1], we have

arg(Cy(t)) = 276.

Lemma 2.5.2. Let
@(x) =22 and AF.={2ecC|r<|z|<R}. (2.31)

Suppose C : [t;,t,] = Dg is a smooth curve such that |C(t;)| = |C(t,)| = R, and |C(to)| < 7 for some
to € [ti,t,]. Then for every § > 0, there exists M > 0 such that if mod(AR) > M, then either 0p(C, AF)
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or 0p(q2(C), g2 (AE)) is greater than 7 /3 — 6.

Proof. Without loss of generality, assume that R = 1, and C(t,.) = 1. We prove the case when r = 0, so
that C(tg) = 0. The general case follows by continuity.
Suppose that 9yp(C, D) < w/3. Then by Lemma we have

27 /3 < arg(C(t;)) < 4m/3.

This implies that

—2m/3 < 2arg(C(t1)) < 27/3.
Hence, by Lemma we have 0y(g2 0 C, D) > 7/3. O
Lemma 2.5.3. Let W C C be a domain, and let C : [t;,t,] — W? be a smooth curve given by

= (t)

O Jen

Let f: W — f(W) and F : W? — F(W?) be smooth functions such that
F=uf)+F

and ||E|| < €. Suppose

. /

Inf |£(2)] > m.
Then

larg((c(f) o C*)") —arg((F o C))|| < Ke/m

for some uniform constant K.

Let U C Z C C be a simply-connected domain containing the origin. For all k sufficiently large, the
unique critical point ¢ of 7 is contained in U. Let Vi := 1 (U). Then there exists conformal maps

ug : D — U and v : D — V}, such that the following diagrams commutes:

D —— U

B [

D —*— V
By Corollary 2.3:5] we have the following result:

Proposition 2.5.4. The maps up, : D — U and vi : D — Vi converge to conformal maps us : D — U

and v, : D — 1, (U). Moreover, the following diagram commutes:

D%, U

b

D —=— n,(U)

Proof of Main Theorem 2. By Theorem the sequence {Jlg@’g}zo:o has a converging subsequence.

By replacing the sequence by this subsequence if necessary, assume that {of®%}2°  converges. Consider
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the following commutative diagrams:

D - U Q —= Q
N N I
D — Vi Au(©) —2 40()

Let 6 > 0. Then by Proposition we can choose R > 0 sufficiently small so that if
Xk = uk(DR), and Yk = ’Uk(]D)Rz),
then the following uniform estimates on the angular deviation hold:

1. For any smooth curve C' C D, we have

09(C,DR) < Og(ur o C, X))+ and  9p(C,Dr2) < 9g(vg 0 C,Yy) + 0.

2. For any smooth curves C; C  and Cy C Ag(Q), we have
Kk0p(C1, X7) < Og(@f 0 C1, OF(X}))

and
K09 (Ca, Yy?) < 0p(®f 0 Ca, B (V7))

for some uniform constant s > 0.

Consider the renormalization arc of X,,:

Let
Xk = uy ot (2.32)

Now, choose r > 0 is sufficiently small so that the annulus AZ satisfies the condition of Lemma m
Next, choose K sufficiently large so that for all £k > K, we have

Xk (0)] <.
Let
= inf / > 0.
mii= _inf - ih(a)

Then my is uniformly bounded below by m, > 0. Lastly, denote
Wi == vg 0 2(AR) C V3.

Now, suppose towards a contradiction that ~y, and hence 7y is smooth for all £ > 0. By the above
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estimates, we can conclude:

o (0, ®5(X7)) = 0o (@G © i, PG (X))
> k0 (Y, X7)
> K0p (v, Xk)
> kg (xk, DR) — KO
> kdp(x, AF) —

and

30 (0, ®5(YyZ)) = Do (DG © vk, DG (Y))
> K0y (’VkakQ)

> k0o (v, WE)
= k0 (Ak (k), W)
> k0 (L(m) 0 7E, W2) — 2K e /m, (2.33)
> k0 (e 0 YE, Wi) — 26K €2 /m*
> k(g2 © Y, a2(AR)) — k6 — 26K e m,.

where in (2.33), we used Lemma [2.5.3]
By Lemma either 9y (xx, AF) or 9y(q2 o X, q2(ALR)) is greater than 7/3 — 6. Hence,

max{ag(’yo, (I)’S(Xlz)), 80(707 (Dg(Ykz))} > 1

for some uniform constant [ > 0. Since ®&(X?) and ®§(Y;?) both converge to a point in v as k — oo,
this is a contradiction. O

2.6 Further Thoughts

It is natural to wonder if our results can be extended to rotation numbers other than the inverse-golden
mean 0, = (v/5 —1)/2. In fact, our proof is quite general and largely independent of which specific
rotation number we are considering. The key geometric observation we make is that in the presence of
a critical point (or a “near-critical” point for dissipative diffeomorphisms of two variables), there cannot
be an invariant smooth curve, since any such curve would have to contain corners. The same argument
would apply to, for example, any rotation number of bounded type, since for these rotation numbers,
the Siegel boundary of a quadratic polynomial is guaranteed to contain a critical point (see [Do2]).
The real obstruction that prevents us from generalizing our results lies in the fact that the renor-
malization hyperbolicity theorem in one-dimension (Theorem has only been established for the
inverse golden-mean rotation number. Gaidashev and Yampolsky gave a computer-assisted proof of this
result in [GaYal]. From a conceptual point of view, it is expected that the same result should hold for
a more general class of rotation numbers. However, in [GaYal, a specific rotation number was used in

order to carry out the necessary computations.
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