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Abstract. Through a systematic study of quaternionic Clifford algebras and their modules, we
extend some of the fundamental algebraic and topological results related to spin and spinc man-
ifolds to their quaternionic counterpart–spinh manifolds. On the algebraic side, we obtain an
Atiyah-Bott-Shapiro type isomorphism relating quaternionic modules over the Clifford algebras to
symplectic K-theory of a point. On the topological side, we define a natural transformation from
spinh cobordism theory to symplectic K-theory, which in particular assigns to each spinh manifold
an integer or mod 2 valued cobordism invariant. These invariants can be expressed in terms of
differential geometrical data using a quaternionic version of the index theorem. We also offer a
complete description of the cohomology of the stable spinh group, which, combined with the afore-
mentioned invariants, allows us to show the spinh cobordism groups are non-zero in dimensions
5, 6 mod 8 and determine low dimensional groups with explicit generators.
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Introduction

This note grew out of the observation that the notion of spinh manifold is closely related to
symplectic K-theory, analogous to the way spin and spinc manifolds are related to real and complex
K-theories respectively.
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The algebraic and topological theories related to spin and spinc manifolds are well-developed and
successfully applied to solve geometric problems, such as Gromov-Lawson theory and Seiberg-Witten
theory, just to name a few. Compared to its real and complex siblings, the theory of spinh manifolds
appears to be less discussed in the past but has been attracting more attentions in geometry and
physics in recent decades.

We plan to explain the above analogy and set up some foundation stones for studying spinh

manifolds. We focus mainly on the algebraic and topological sides, however index theory (Dirac
operators etc.) will be used along the way.

Our major goal is to define and study a natural transformation from spinh cobordism theory to
symplectic K-theory. In particular, we shall obtain cobordism invariants for spinh manifolds with
values in Z and Z2. These invariants will be expressed in terms differential-geometrical data. It will
then be clear that they are analogous to those for spin manifolds which obstruct the existence of
positive scalar curvature metrics. To define this natural transformation, we must construct Thom
classes in symplectic K-theory (in an appropriate sense) for spinh vector bundles, which of course
should arise from representations of the spinh group. Since the spinh group is contained in the
quaternionic Clifford algebra (Definition 1.1), the desired representations will be obtained through
the study of the quaternionic Clifford algebras and their modules. This will be treated in §1.1−§1.3.
Main results therein is a fully classification of the quaternionic Clifford algebras and their modules.
The structure among these modules is best revealed by an Atiyah-Bott-Shapiro type isomorphism
(Theorem 1.26) relating quaternionic Clifford modules to symplectic K-theory. We also present
necessary algebraic discussions in preparation for studying the indices of Dirac operators on spinh

manifolds, this will be the content of §1.4 and §1.5.
In Section 2, we present a topological discussion for spinh vector bundles. Using the representa-

tions obtained in Section 1, Thom classes are constructed for spinh vector bundles in appropriate
K-theories. Readers familiar with cobordism theories should see immediately the Thom classes con-
structed therein give rise to the desired natural transformation from spinh cobordism to symplectic
K-theory. We however suppress this point until a better differential-geometrical understanding of
the previously mentioned cobordism invariants of spinh manifolds is obtained. The integer valued
invariants are integrations of certain characteristic class that is analogous to the Â-class for spin
manifolds. A Riemann-Roch theorem for spinh maps (Theorem 2.23) is developed in order to pick
out such characteristic class for spinh manifolds. The integrality of the corresponding characteristic
number is thus an easy consequence of Bott’s theory. To complete the understanding of character-
istic classes for spinh vector bundles and to provide an input for analyzing spinh cobordism groups
in the future, we offer at the end of Section 2 a complete description of the cohomology of (the
classifying space of) the stable spinh group. Somewhat surprisingly, all but one of the Wu classes
for spinh vector bundles in degrees power of 2 admit lifts in integral cohomology.

In Section 3, we employ index theory to study invariants for spinh manifolds. Due to the quater-
nionic nature of the problem, the principle symbol of the elliptic operator we concern lands in the
Quaternionic K-theory which is a quaternionic analog of Atiyah’s Real K-theory defined on the
category of spaces with involution. The corresponding algebraic results needed to define topological
index are contained in §1.5. A quaternionic version of index theorem for families must be used to deal
with the more refined Z2-valued invariants and to identify the topological index with the analytic
index. In order to compute the analytic index, results in §1.4 are used. These considerations are
all parallel to the spin case. The invariants extracted from this index theoretical discussion are as
expected (Theorem 3.9): the integer valued ones are indices of certain Dirac operators, and coincide
with the characteristic numbers obtained in Section 2; the mod 2 invariants are parities of the dimen-
sions of appropriately defined harmonic spinors. The fact that these geometrically defined invariants
are spinh cobordism invariants is a (non-trivial) consequence of the index theory. Furthermore these
invariants are identified with the evaluation at a point of the aforementioned natural transformation
from spinh cobordism to symplectic K-theory. Near the end of Section 3, we use all the information
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gathered to study spinh cobordism groups. A non-trivial fact we reveal, without doing any heavy
homotopy-theoretical calculation, is that the spinh cobordism group is always nonzero in degrees
5, 6 mod 8. We also obtain and describe explicit generators for low dimensional spinh cobordism
groups. A complete determination (especially the torsion) should be interesting but looks to be very
difficult since the spinh cobordism theory is not multiplicative.

Finally we will indicate how the natural transformation relating spinh cobordism to symplectic
K-theory can be applied to study real vector bundles over an arbitrary compact (possibly with
boundary) manifold. A detailed discussion towards this direction will appear elsewhere. Roughly
by considering mappings from spinh manifolds into the given compact manifold, one can attach
numerical invariants (with Z- and Z2- values) to the real vector bundle in question, and one expects
these numerical invariants to completely determine the bundle up to stable equivalence. A quick
thought on odd primary torsion in real K-group shows these invariants are unfortunately not enough,
the way to fix it is to include mappings from spinh manifolds with boudary. For this, we need the
index theory for spinh manifolds with boudary discussed in §3.6.

We should point out, many aspects herein have appeared in math and physics literature. [AM21]
contains a nice survey on where the spinh structures appeared in the literature. Nagase [Nag95]
discussed Dirac operators on spinh manifolds and found a Lichnerowicz-Weitzenböck type formula.
The index of such a Dirac operator is known to Mayer [May65], and also discussed in Bär [Bär99].
The natural transformation we shall construct is studied by Freed and Hopkins [FH21].

Acknowledgements. The author would like to thank Michael Albanese for introducing to him the
notion of spinh manifold and for useful conversations. The author also benefited from interesting
discussions with Simon Donaldson, Aleksandar Milivojević and Dennis Sullivan.

1. Quaternionic Clifford modules

1.1. Quaternionic Clifford algebras. We will write R, C and H respectively for the real, complex
and quaternion number-fields. If K is any one of these fields, K(n) will be the full n × n matrix
algebra over K. The following identities are well-known [ABS64]:

(1)

R(n)⊗R K ∼= K(n),R(n)⊗R R(m) ∼= R(nm) for all n,m

C⊗R C ∼= C⊕ C
H⊗R C ∼= C(2)
H⊗R H ∼= R(4)

Let Cln be the real Clifford algebra associated to Rn with quadratic form given by square of the
Euclidean norm. If e1, . . . , en is an orthonormal basis of Rn then Cln is the universal associative R-
algebra generated by a unit and the symbols e1, . . . , en subject to the relations e2i = −1; eiej+ejei =
0, i ∕= j. As a R-vector space, Cln is of dimension 2n with a basis given by

{ei1ei2 · · · eik |i1 < i2 < · · · < ik, 0 ≤ k ≤ n}.

The complex Clifford algebra Cln is the associative C-algebra Cln ⊗RC. The real and complex
Clifford algebras are “periodic”:

(2)
Cln+8

∼= Cln ⊗R Cl8 ∼= Cln ⊗RR(16)
Cln+2

∼= Cln ⊗C Cl2 ∼= Cln ⊗CC(2)

Definition 1.1. We define the (n-th) quaternionic Clifford algebra Cln,H to be the associative R-
algebra Cln ⊗RH and define the (n-th) complexified quaternionic Clifford algebra Cln,H to be the
associative C-algebra Cln,H ⊗RC.

Proposition 1.2. For n ≥ 0, there are isomorphisms of associative R-algebras

Cln+4
∼= Cln,H ⊗RR(2), Cln+4,H ∼= Cln ⊗RR(8);

and isomorphisms of associative C-algebras

Cln,H ∼= Cln ⊗CC(2).
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Proof. The complex case directly follows from definition and (1):

Cln,H = Cln,H ⊗RC = Cln ⊗RH⊗R C ∼= Cln ⊗RC(2) ∼= Cln ⊗CC(2).
In the real case, we shall first prove Cln+4

∼= Cln ⊗RH(2), or equivalently Cln+4
∼= Cln ⊗R Cl4

since H(2) ∼= Cl4. Let e1, e2, . . . , en+4 be an orthonormal basis of Rn+4. Let e′1, . . . , e
′
n and e′′1 , . . . , e

′′
4

denote standard generators of Cln and Cl4 respectively. Define a linear map f : Rn+4 → Cln ⊗R Cl4
by

(3) f(ei) =

!
1⊗ e′′i for 1 ≤ i ≤ 4

e′i−4 ⊗ e′′1e
′′
2e

′′
3e

′′
4 for 5 ≤ i ≤ n+ 4

It is straightforward to check that f(ei)
2 = −1 and f(ei)f(ej) + f(ej)f(ei) = 0 for i ∕= j. Therefore

f extends to an algebra morphism Cln+4 → Cln ⊗R Cl4. Now notice f maps onto a set of genera-
tors and the two algebras in question have the same dimension, we conclude Cln+4

∼= Cln ⊗R Cl4.
Combining this isomorphism with (1) we get:

Cln+4
∼= Cln ⊗RH(2) ∼= Cln ⊗RH⊗R R(2) ∼= Cln,H ⊗RR(2),

Cln+4,H = Cln+4 ⊗RH ∼= Cln ⊗RH(2)⊗R H ∼= Cln ⊗RR(8).
!

Remark 1.3. In particular, Cln+4 is a matrix algebra over Cln,H, thus Cln+4 is Morita equivalent
to Cln,H. This means, V *→ V ⊗R R2 is an equivalence between the category of (left) R-modules
of Cln,H and that of Cln+4, where V ⊗R R2 is realized as a Cln+4-module through the isomorphism
Cln+4

∼= Cln,H ⊗RR(2) and R(2) acts on R2 by left matrix multiplication. The same comments apply
to Cln+4,H and Cln as well.

Corollary 1.4. There are “periodicity” isomorphisms

Cln+8,H ∼= Cln,H ⊗R Cl8, Cln+2,H ∼= Cln,H ⊗C Cl2 .

Proof. These isomorphisms are obtained by applying Proposition 1.2 twice. !
Using the classification of the real Clifford algebras and Proposition 1.2, all the quaternionic

Clifford algebras Cln,H and their complexifiations Cln,H can be easily deduced from the following
table.

Table 1. Clifford algebras

n Cln Cln Cln,H Cln,H
0 R C H C(2)
1 C C⊕ C C(2) C(2)⊕ C(2)
2 H C(2) R(4) C(4)
3 H⊕H C(2)⊕ C(2) R(4)⊕ R(4) C(4)⊕ C(4)
4 H(2) C(4) R(8) C(8)
5 C(4) C(4)⊕ C(4) C(8) C(8)⊕ C(8)
6 R(8) C(8) H(8) C(16)
7 R(8)⊕ R(8) C(8)⊕ C(8) H(8)⊕H(8) C(16)⊕ C(16)
8 R(16) C(16) H(16) C(32)

The real Clifford algebra Cln admits a canonical automorphism of order 2 extended from the
antipodal map Rn → Rn, e *→ −e. The eigenspace decomposition of this automorphism defines a
Z2-grading

Cln = Cl0n ⊕Cl1n
where Clαn is the eigenspace of eigenvalue (−1)α for α = 0, 1. As a R-vector space Cl0n (resp. Cl1n) is
spanned by products of even (resp. odd) numbers of ei’s. The quaternionic Clifford algebra Cln,H
inherits a natural Z2-grading by setting

Clαn,H = Clαn ⊗RH (α = 0, 1).
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Remark 1.5. Note that the even part (i.e. the degree 0 part) of each quaternionic Clifford algebra
forms a subalgebra. It is known that Rn → Cl0n+1, ej *→ ejen+1 extends to an isomorphism

Cln ∼= Cl0n+1. Consequently this induces an isomorphism Cln,H ∼= Cl0n+1,H.

Recall for Z2-graded vector spaces V = V 0 ⊕ V 1 and W = W 0 ⊕ W 1, their Z2-graded tensor
product V ⊗̂W = (V ⊗̂W )0 ⊕ (V ⊗̂W )1 is defined to be

(V ⊗̂W )0 = (V 0 ⊗W 0)⊕ (V 1 ⊗W 1), (V ⊗̂W )1 = (V 1 ⊗W 0)⊕ (V 0 ⊗W 1).

If further V and W are Z2-graded (associative) algebras, then V ⊗̂W is made into a Z2-graded

algebra with the usual Koszul rule: (v⊗̂w) · (v′⊗̂w′) = (−1)degw deg v′
vv′⊗̂ww′. The following

lemma highlights the importance of the Z2-gradings on Clifford algebras.

Lemma 1.6 (see [LM89, Prop. 1.5]). Let ei, e
′
i, e

′′
i be standard orthonormal base of Rm+n,Rm,Rn

respectively. Then the linear map Rm+n → Clm ⊗̂R Cln given by

ei *→
!
e′i⊗̂1 for i ≤ m

1⊗̂e′′i−m for i > m

extends to an isomorphism of Z2-graded algebras

Clm ⊗̂R Cln ∼= Clm+n

Similarly Clm ⊗̂C Cln ∼= Clm+n. !
Proposition 1.7. For all m,n ≥ 0 there are isomorphisms of Z2-graded algebras

(i) Clm ⊗̂R Cln,H ∼= Clm+n,H;
(ii) Clm,H ⊗̂R Cln,H ∼= Clm+n ⊗RR(4).

In particular, Clm+n is Morita equivalent to Clm,H ⊗̂R Cln,H as Z2-graded algebras. Here the Z2-
grading on Clm+n ⊗RR(4) is given by (Clm+n ⊗RR(4))α = Clαm+n ⊗RR(4) for α = 0, 1.

By Morita equivalence of Z2-graded algebras, we mean the Morita equivalence functors between
the categories of modules preserve the Z2-gradings: the equivalence functor takes Z2-graded modules
to Z2-graded modules.

Proof. (i) follows from Lemma 1.6 by tensoring with H. For (ii), recall the Z2-grading on Cln,H is
given by Clαn,H = Clαn ⊗RH for α = 0, 1. Therefore as Z2-graded algebras

Clm,H ⊗̂R Cln,H ∼= (Clm ⊗̂R Cln)⊗R (H⊗R H) ∼= Cln+m ⊗RR(4).
Since R(4) does not contribute to the Z2-grading of Cln+m ⊗RR(4), the Morita equivalence for Cln+m

and Cln+m ⊗R(4) is a Z2-graded one. !

1.2. Quaternionic Clifford modules.

Definition 1.8. An H-module of Cln is a pair (V,φ) consisting of a left H-module V , i.e. a
quaternionic vector space, together with a morphism of associative R-algebras φ : Cln → EndH(V )
where EndH(V ) is the associative R-algebra consisting of quaternionic linear operators on V .

Lemma 1.9. The category of H-modules of Cln is isomorphic to the category of R-modules of Cln,H.

Proof. Given an H-module (V,φ) of Cln, we construct a R-module of Cln,H as follows. Let VR be
the underlying R-vector space of V and we define a R-linear action of Cln,H on VR given on simple
elements of form a⊗ z ∈ Cln ⊗RH = Cln,H by

(a⊗ z) · v = φ(a)(z · v).
On the other hand, given a R-module W of Cln,H, we may equip it with a left H-module structure

through the action of 1 ⊗ H ⊂ Cln,H. Denote this left H-module by WH. Then since Cln ⊗1 and
1 ⊗ H commute within Cln,H, the action of Cln ⊗1 ⊂ Cln,H on W becomes an H-linear action on
WH. Thus WH is an H-module of Cln.

The functors V *→ VR and W *→ WH establish the desired isomorphism of categories. !
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For K = R,C or H, let MK
n (resp. M̂K

n) denote the Grothendieck group of equivalence classes of
ungraded (resp. Z2-graded) finite dimensional K-modules of Cln with respect to direct sum. Since

Cln is semi-simple (from Table 1), MK
n (resp. M̂K

n) is a free abelian group generated by inequivalent
irreducible ungraded (reps. Z2-graded) K-modules.

The ungraded and Z2-graded modules are related as follows. Given an ungraded K-module V of
Cln and a Z2-graded K-module W = W 0 ⊕W 1 of Cln+1, by identifying Cln ∼= Cl0n+1 as mentioned
in Remark 1.5, the functors

V *→ V ⊗Cln Cln+1 = (V ⊗Cln Cl0n+1)⊕ (V ⊗Cln Cl1n+1), W *→ W 0

are inverses to each other, implying the category of ungraded K-modules of Cln is isomorphic to the
category of Z2-graded K-modules of Cln+1. Therefore we have:

Lemma 1.10. For K = R,C or H and n ≥ 0, there are isomorphisms MK
n
∼= M̂K

n+1. !

Remark 1.11. In the special case n = 0, Cl0 = R is concentrated in degree 0. So Cl0 has two
inequivalent irreducible Z2-graded K-modules, each of which is of dimension one, concentrated in
degree 0 and 1 respectively. Hence M̂K

0
∼= Z+ Z.

For the purpose of building Atiyah-Bott-Shapiro isomorphism, let us consider the isometric em-
bedding i : Rn → Rn+1, e *→ (e, 0). This induces an inclusion i∗ : Cln → Cln+1 of Z2-graded
algebras, which in turn yields restriction homomorphisms

i∗ : M̂K
n+1 → M̂K

n , i∗ : MK
n+1 → MK

n .

For K = R,C or H, we denote the cokernel of i∗ by N̂K
n := M̂K

n/i
∗M̂K

n+1.

Proposition 1.12. For n ≥ 0, there are isomorphisms

(i) MR
n+4

∼= MH
n and MH

n+4
∼= MR

n

(ii) M̂R
n+4

∼= M̂H
n and M̂H

n+4
∼= M̂R

n

(iii) N̂H
n
∼= N̂R

n+4 and N̂R
n
∼= N̂H

n+4.

Proof. (i) follows from the Morita equivalences built in Proposition 1.2. For n ≥ 1, (ii) follows
from (i) by applying Lemma 1.10. And (iii) follows from (ii) by first observing the following square
commutes

M̂K
n M̂K

n+1

MK
n−1 MK

n

∼=

i∗

∼=

i∗

where K = R or H (also true for K = C). As such we have N̂K
n
∼= MK

n−1/i
∗MK

n . Second, we note the
linear map f in the proof of Proposition 1.2 is compatible with the isometric embedding i, that is,
the following diagram commutes

Rn+3 Rn+4

Cln−1 ⊗RH(2) Cln ⊗RH(2)

i

f f

i∗⊗1

Therefore the isomorphisms in (i) commute with i∗, this completes the proof of (ii) and (iii) for
n ≥ 1. In the special case n = 0, one can easily verify (ii) and (iii) hold using the classification in
Table 1. !

Using Lemma 1.10 and Proposition 1.12, we can determine all the groups M̂H
n , N̂H

n from the

knowledge of M̂R
n, N̂

R
n.
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Table 2. real and quaternionic Clifford modules

n 0 1 2 3 4 5 6 7 8

M̂R
n Z+ Z Z Z Z Z+ Z Z Z Z Z+ Z

M̂H
n Z+ Z Z Z Z Z+ Z Z Z Z Z+ Z

N̂R
n Z Z2 Z2 0 Z 0 0 0 Z

N̂H
n Z 0 0 0 Z Z2 Z2 0 Z

We shall now describe the generators of M̂R
n and M̂H

n more concretely. From Table 1, whenever
n ∕≡ 3 mod 4, Cln and Cln,H are of form K(N). It is well known that K(N) has a unique (equivalence
class of) irreducible R-module, given by the left matrix multiplication onKN . In view of Lemma 1.10,

we have described generators of M̂R
n and M̂H

n for all n ∕≡ 0 mod 4.
When n ≡ 0 mod 4, the following lemma is the key to our analysis in these dimensions.

Lemma 1.13 (see [LM89, Prop. 3.3]). Let ωn = e1e2 · · · en be the (oriented) volume element of
Cln. Then

(i) ω2
n = (−1)n(n+1)/2.

(ii) eωn = (−1)n−1ωne for all e ∈ Rn.

!
Let Cl4 = H(2) act on H2 by left matrix multiplication. Then since (ω4)

2 = 1, H2 splits into a
direct sum of ±1 eigenspaces (1 ± ω4)H2 of ω4, denoted by H±. Since eω4 = −ω4e, multiplication
by any e ∈ R4 − 0 yields an isomorphism of real vector spaces H+

∼= H−. So each of H± is of real
dimension 4. Further, since ω4 commutes with Cl04, H± are invariant under the action of Cl04

∼= Cl3.
Thus we may treat H± as Cl3-modules. Notice now ω3 is in the center of Cl3 and the action of
ω3 on H± is through ω4, we conclude H± are inequivalent as Cl3-modules. The two inequivalent
Z2-graded R-modules of Cl4 corresponding to the two inequivalent Cl3-modules H±, denoted by
∆±

4,R, are tautologous: the underlying vector spaces of ∆±
4,R are both simply H2, with Z2-gradings

given by
∆±,0

4,R = H±,∆
±,1
4,R = H∓.

As H2 is an irreducible ungraded Cl4-module, ∆±
4,R are irreducible Z2-graded Cl4-modules. It follows

H± are irreducible ungraded R-modules of Cl3.
Observe that H2 carries a natural right H-multiplication which commutes with the left matrix

multiplication from Cl4. Since Hop ∼= H by conjugation, left and right modules of H are no different.
We can thus view H2 as a left H-module and therefore an H-module of Cl4. Equipped with this
H-module structure, ∆±

4,R are enhanced into two inequivalent irreducible Z2-graded H-modules of

Cl4, denoted by ∆±
4,H.

Similarly by considering the eigenspace decomposition of the volume element ω8 through the
matrix multiplication of Cl8 = R(16) on R16, we obtain two inequivalent irreducible Z2-graded
R-modules ∆±

8,R with

∆±,0
8,R = R16

± ,∆±,1
8,R = R16

∓ .

The two inequivalent irreducible Z2-graded H-modules of Cl8, denoted by ∆±
8,H, can be obtained

by considering the eigenspace decomposition of the volume element ω8 ⊗ 1 through the matrix
multiplication of Cl8,H = H(16) on H16 as before. It is not hard to see

∆±
8,H = ∆±

8,R ⊗R H.

Using periodicity, we now have a complete description of irreducible Z2-graded (and ungraded)
R- and H-modules for the Clifford algebras.

Definition 1.14. For K = R or H, let ∆n,K denote the unique (up to equivalence) irreducible
Z2-graded K-module of Cln for n ∕≡ 0 mod 4. For n ≡ 0 mod 4, let ∆±

n,K denote the two inequivalent

irreducible Z2-graded K-module of Cln, so that ωn acts on ∆±,0
n,K by ±1. We call these modules the

fundamental Z2-graded K-modules of the Clifford algebras.
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Next we consider complex modules of the quaternionic Clifford algebras. First of all, since C is
commutative, C-modules of Cln,H is no different from C-modules of Cln,H ⊗RC = Cln,H. Second,
from Proposition 1.2, Cln,H is isomorphic to Cln ⊗CC(2) as associative C-algebras. This isomorphism
can be enhanced into a Z2-graded one if we grade Cln ⊗CC(2) by

(Cln ⊗CC(2))α = Clαn ⊗CC(2) (α = 0, 1).

This implies Cln,H is Morita equivalent to Cln as Z2-graded C-algebras. As such, if V is a Z2-graded
C-module of Cln, then V ⊗C C2 is a Z2-graded C-module of Cln ⊗CC(2) ∼= Cln,H, with the natural
Cln,H-action induced from the Cln-module structure of V and the left matrix multiplication of C(2)
on C2; conversely every Z2-graded C-module of Cln,H, up to equivalence, arises in this way.

Therefore we denote the Grothendieck group of finite dimensional ungraded (resp. Z2-graded) C-
modules of Cln,H byMC2

n (resp. M̂C2

n ). Similar to the real case, for each n ≥ 0 we haveMC2

n
∼= M̂C2

n+1,
and −⊗C C2 induces a group isomorphism

M̂C
n

∼=−→ M̂C2

n

which in turn yields a group isomorphism

N̂C
n

∼=−→ N̂C2

n

where N̂C2

n := M̂C2

n /i∗M̂C2

n+1.

Explicit generators of M̂C
n, and consequently generators of M̂C2

n , can be constructed in a similar
way as did in real case. For instance, consider the left matrix multiplication of Cl2n = C(2n) on
C2n and observe the complex volume element ωC

2n = (
√
−1)nω2n satisfies (ωC

2n)
2 = 1, we obtain

Z2-graded C-modules ∆±
2n,C for Cl2n by

∆±,0
2n,C = (1± ωC

2n) · C2n, ∆±,1
2n,C = (1∓ ωC

2n) · C2n.

Consequently we have Z2-graded C-modules ∆±
2n,C2 = ∆±

2n,C ⊗C C2 for Cl2n,H. We remark that if

n ≡ 4 (mod 8) then ωC
n = −ωn and if n ≡ 0 (mod 8) then ωC

n = ωn.
We now explain how C-modules are related to R- and H-modules.

Definition 1.15. If K ⊂ L are two of the number-fields R,C,H. We will let εLK denote the field
extension morphism induced by −⊗KL. We let ρKL denote the forgetful morphism induced by taking
the underlying K-vector space of an L-vector space. Whenever it is clear in the context, we will
simply write ε and ρ for εLK and ρKL respectively.

Proposition 1.16. (i) The composition MC
n

−⊗C2

−−−−→∼=
MC2

n

ρR
C−→ MH

n

ρC
H−→ MC

n is multiplication by 2.

(ii) The composition MH
n

εCR−→ MC2

n

ρR
C−→ MH

n is multiplication by 2. Moreover,

(a) if n ≡ 2, 3, 4 mod 8, then εCR : MH
n → MC2

n is an isomorphism;

(b) if n ≡ 6, 7, 8 mod 8, then ρRC : MC2

n → MH
n is an isomorphism.

Proof. The first two assertions are obvious. For (ii)(a) and (ii)(b), by periodicity we may assume
n ≤ 8, then (ii)(a) and (ii)(b) follow case by case from Table 1 by dimension counts. For instance,

for n = 3 there are two inequivalent irreducible R-modules ∆±,0
4,H of Cl3,H, each of which is of

real dimension 4. Then each of εCR(∆
±,0
4,H ) is of complex dimension 4, distinguished by the action

of the volume element. Hence they must be the two inequivalent irreducible complex modules of
Cl3,H = C(4) + C(4); indeed εCR(∆

±,0
4,H ) = ∆∓,0

4,C ⊗C C2. The other cases are similar. !

Corollary 1.17. (i) The composition N̂C
n

−⊗C2

−−−−→∼=
N̂C2

n

ρR
C−→ N̂H

n

ρC
H−→ N̂C

n is multiplication by 2.

(ii) The composition N̂H
n

εCR−→ N̂C2

n

ρR
C−→ N̂H

n is multiplication by 2. Moreover,

(a) if n ≡ 4 mod 8, then εCR : N̂H
n → N̂C2

n is an isomorphism;

(b) if n ≡ 0 mod 8, then ρRC : N̂C2

n → N̂H
n is an isomorphism.
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Proof. This follows from Proposition 1.16. We only prove (ii)(a) and the rest is similar. From

Proposition 1.16 we have εCR : M̂H
n

∼=−→ M̂C2

n for n ≡ 3, 4, 5 mod 8. Then from the commutative
square

M̂H
n M̂C2

n

M̂H
n+1 M̂C2

n+1

εCR

εCR

i∗ i∗

we conclude εCR : N̂H
n

∼=−→ N̂C2

n for n ≡ 4 mod 8. The same holds for n ≡ 3 mod 8, but in that case

both N̂H
n and N̂C2

n are zero. !

So far we have determined the groups M̂K
n and described their generators. We now consider the

graded group

M̂K
∗ :=

"

n≥0

M̂K
n .

For K = R or C, let V and W be Z2-graded K-modules of Clm and Cln respectively. Then V ⊗̂KW
is made into a Z2-graded K-module of Clm+n

∼= Clm ⊗̂R Cln by linearly extending the action given
on simple elements via

(x⊗̂y) · (v⊗̂w) = (−1)deg y deg v(x · v)⊗̂(y · w),
where x, y, v, w are homogeneous elements of Clm,Cln, V,W respectively. The Z2-graded tensor
product then induces a natural pairing

M̂K
m ⊗Z M̂K

n → M̂K
m+n.

For K = R or C, (M̂K
∗ ,⊕, ⊗̂K) is a commutative graded ring with unit. Moreover, i∗M̂K

∗ is a

homogenenous ideal, and therefore (N̂K
∗ ,⊕, ⊗̂K) is a graded ring.

In contrast, since H is not commutative, there is no good notion of tensor product in the category
of left H-modules, so M̂H

∗ does not form a ring. Nevertheless we have:

Lemma 1.18. The natural pairing

M̂R
m ⊗Z M̂H

n → M̂H
m+n

induced by the Z2-graded tensor product makes M̂H
∗ into a graded M̂R

∗ -module. Moreover this
pairing descends to a pairing

N̂R
m ⊗Z N̂H

n → N̂H
m+n

making N̂H
∗ into a graded N̂R

∗ -module.

Proof. The first assertion is obvious. That the paring descends follows from the commutative dia-
gram

M̂R
m+1 ⊗Z M̂H

n M̂R
m ⊗Z M̂H

n M̂R
m ⊗Z M̂H

n+1

M̂H
m+n+1 M̂H

m+n M̂H
m+n+1

i∗⊗1 1⊗i∗

i∗ i∗

which is induced from the commutative square

Clm ⊗̂R Cln Clm+n

Clm ⊗̂R Cln+1 Clm+n+1

∼=

1⊗̂i∗ i∗

∼=

!
Remark 1.19. One can also interpret elements in M̂H

n as Z2-graded R-modules of Cln,H, and then

use Proposition 1.7(i) to equip M̂H
∗ with a graded M̂R

∗ -module structure. It is clear this is the same
one as discussed in the lemma.
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Lemma 1.20. For K = R or H, in M̂K
∗ we have

∆+
8,R⊗̂∆n,K = ∆n+8,K for n ∕≡ 0 mod 4

∆+
8,R⊗̂∆±

n,K = ∆±
n+8,K for n ≡ 0 mod 4.

Proof. For n ∕≡ 0 mod 4, ∆+
8,R⊗̂∆n,K must be irreducible by dimension counts, but ∆n+8,K is the

unique equivalence class of irreducible Z2-graded K-modules of Cln+8. The proof is similar for n ≡ 0
mod 4 by observing (ω8⊗̂1) · (1⊗̂ωn) = ωn+8 in Cl8 ⊗̂Cln ∼= Cln+8. !

Proposition 1.21. For K = R or H, ∆+
8,R⊗̂R− induces “periodicity” isomorphisms of graded M̂R

∗ -

and N̂R
∗ -modules

M̂K
∗

∼=−→ M̂K
∗+8, N̂K

∗
∼=−→ N̂K

∗+8.

Proof. The first isomorphism follows from Lemma 1.20. The second isomorphism follows from the
first one and the commutative square

M̂K
n+1 M̂K

n+9

M̂K
n M̂K

n+8

∆+
8,R⊗̂−

i∗ i∗

∆+
8,R⊗̂−

!

This 8-fold periodicity splits into two 4-fold periodicities, interchanging R and H.

Lemma 1.22. (i) In M̂H
∗ we have

∆n,R⊗̂∆+
4,H = ∆n+4,H for n ∕≡ 0 mod 4

∆±
n,R⊗̂∆+

4,H = ∆±
n+4,H for n ≡ 0 mod 4

(ii) As equivalence classes of Z2-graded R-modules of Cln,H ⊗̂R Cl4,H ∼= Cln+4 ⊗RR(4), we have

∆n,H⊗̂∆+
4,H = ∆n+4,R ⊗R R4 for n ∕≡ 0 mod 4

∆±
n,H⊗̂∆+

4,H = ∆±
n+4,R ⊗R R4 for n ≡ 0 mod 4

Proof. The proof is similar to that of Lemma 1.20. Note under the isomorphism Cln,H ⊗̂R Cl4,H ∼=
Cln+4 ⊗RR(4), (ωn⊗̂1) · (1⊗̂ω4) is identified with ωn+4 ⊗ 1. !

Proposition 1.23. (i) −⊗̂R∆
+
4,H induces isomorphisms of graded M̂R

∗ - and N̂R
∗ -modules

M̂R
∗

∼=−→ M̂H
∗+4, N̂R

∗
∼=−→ N̂H

∗+4.

(ii) By identifying equivalence classes of Z2-graded R-modules of Cln+4 ⊗RR(4) with those of Cln+4

through Morita equivalence, −⊗̂R∆
+
4,H induces isomorphisms of graded M̂R

∗ - and N̂R
∗ -modules

M̂H
∗

∼=−→ M̂R
∗+4, N̂H

∗
∼=−→ N̂R

∗+4.

Proof. This follows from Lemma 1.22. !

Remark 1.24. Since ∆+
4,H⊗̂R∆

+
4,H = ∆+

8,R ⊗R R4, the composition of the two 4-fold periodicity
isomorphisms in Lemma 1.22 recovers the full 8-fold periodicity.
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1.3. Atiyah-Bott-Shapiro isomorphism. For any Z2-graded R-module V = V 0 ⊕ V 1 of Cln, we
associate to it an element ϕ(V ) ∈ KO(Dn, ∂Dn) by setting

ϕ(V ) := [V0,V1;µ]

where Dn is the unit disk in Rn, Vα = Dn × V α for α = 0, 1, and µ is the Clifford module
multiplication. That is

µ : Rn × V → V, (e, v) *→ µe(v) = e · v
We note the Clifford multiplication µe : V → V interchanges V 0 and V 1, and satisfies µ2

e = −‖e‖2 ·1
for e ∈ Rn. In particular, when restricted to ∂Dn, µ is a skew-adjoint isomorphism.

It is clear ϕ(V ) only depends on the isomorphism class of Clifford modules, thus we have a
homomorphism

ϕ : M̂R
n → KO(Dn, ∂Dn) ∼= KO−n(pt).

If the Z2-graded module V arises by restriction of some Z2-graded module of Cln+1, then the
isomorphism µ extends to Dn by identifying Dn with the upper hemisphere of Sn = ∂Dn+1 ⊂
Rn+1 ⊂ Cln+1. Therefore, ϕ descends to a (graded) homomorphism

ϕ : N̂R
∗ → KO−∗(pt).

Similar constructions apply to C- and H-modules as well, yielding graded homomorphisms:

ϕc : N̂C
∗ → KU−∗(pt),

ϕh : N̂H
∗ → KSp−∗(pt).

It is a celebrated theorem of Atiyah, Bott and Shapiro [ABS64] that ϕ and ϕc are isomorphisms
of graded rings. In analogy, we will prove ϕh is an isomorphism. For this, we need

Lemma 1.25. The following square commutes.

N̂R
∗ ⊗ N̂H

∗ N̂H
∗

KO−∗(pt)⊗KSp−∗(pt) KSp−∗(pt)

⊗̂

ϕ⊗ϕh ϕh

⊠

Here ⊠ is the module multiplication of KO on KSp.

Proof. The proof is the same as that of [ABS64, Proposition 11.1]. !

Theorem 1.26. ϕh : N̂H
∗ → KSp−∗(pt) is an isomorphism of graded KO−∗(pt)-modules.

Proof. We identify N̂R
∗ with KO−∗(pt) through ϕ. From Lemma 1.25, ϕh is a morphism of KO−∗(pt)-

modules. Since both N̂H
∗ and KSp−∗(pt) are free KO−∗(pt)-modules of rank one in degrees ≥ 4, it

suffices to prove ϕh is an isomorphism in degree 0 and 4. In degree 0, KSp0(pt) is generated by
H → pt, and ϕh(∆+

0,H) hits this generator. In degree 4, consider the commutative square

N̂H
4 KSp−4(pt)

N̂R
4 KO−4(pt)

ϕh

ρ ρ

ϕ

By construction, ρ(∆+
4,H) = ∆+

4,R, hence ρ : N̂H
4 → N̂R

4 is an isomorphism. From [ABS64, Theorem

11.5], ϕ : N̂R
4 → KO−4(pt) is an isomorphism. Finally thanks to [Bot59, 3.14], ρ : KSp−4(pt) →

KO−4(pt) is an isomorphism. We conclude ϕh is an isomorphism in degree 4. This completes the
proof.

!
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From now on whenever it is clear in the context, we will identify N̂R
∗ , N̂

C
∗ and N̂H

∗ with the
corresponding K groups of a point through ϕ,ϕc and ϕh respectively.

Further, we fix a set of (additive) generators for N̂K
∗ . For K = C or C2, let ∆n,K denote the

residue class of ∆n,K or ∆+
n,K in N̂K

n . For K = R or H, we choose generators more carefully. If n ∕≡ 0
mod 4 we let ∆n,K denote the residue class of ∆n,K. If n ≡ 0 mod 8, we let ∆n,K denote the residue
class of ∆+

n,K and for n ≡ 4 mod 8, we let ∆n,H denote the residue class of ∆−
n,K. Our choice for

n ≡ 4 mod 8 is so made that εCR(∆8k+4,H) = ∆8k+4,C2 and ρRC(∆8k+4,C) = ∆8k+4,R. When the
degree n is clear in the context, we will simply write ∆K for ∆n,K.

1.4. Right modules and bimodules. We now briefly discuss right and bi-modules of the quater-
nionic Clifford algebras. They will be used in computing Clifford index later on.

Let us begin by observing the category of right Cln,H-modules is naturally isomorphic to the
category of left Cln,H-modules. Consider the transpose endomorphism (−)t : Cln → Cln given on
basis by

(ei1ei2 · · · eik)t := eik · · · ei2ei1 (i1 < · · · < ik).

It is easy to see that (at)t = a and (ab)t = btat for all a, b ∈ Cln. Therefore the transpose (−)t is an

isomorphism of algebras (−)t : Cln
∼=−→ Clopn .

We extend the transpose to Cln,H by setting on simple elements

(a⊗ z)t := at ⊗ z̄ for a ∈ Cln, z ∈ H

and then linear extension. The extended transpose is an isomorphism of algebras (−)t : Cln,H
∼=−→

Clopn,H, which in turn induces an isomorphism between the category of left and right modules of Cln,H
as follows.

Given a left module V of Cln,H, we can define a right module #V whose underlying vector space is
V , on which the right Cln,H-multiplication is given by

v · a := (at) · v

where a ∈ Cln,H and v ∈ V . Then V *→ #V gives an isomorphism between the category of left and
right modules of Cln,H. Since we have classified all (finite-dimensional) left modules of Cln,H, we
also obtain a classification of right modules.

Next we consider bimodules, i.e. left modules over

Cln,H ⊗R Clopn,H
∼= Cln,H ⊗R Cln,H .

One can easily classify these algebras using Table 1 and consequently classify their left modules.
Of particular interest is the canonical bimodule of Cln,H which is Cln,H itself via left and right
multiplications.

For n = 8k + 4, Cl8k+4,H is of form R(N). From standard representation theory, we have an
isomorphism of real Cl8k+4,H-bimodules

Cl8k+4,H ∼= ∆8k+4,H ⊗R #∆8k+4,H.

Here ∆8k+4,H denotes the underlying ungraded left R-module of Cl8k+4,H obtained from either
∆+

8k+4,H or ∆−
8k+4,H. Since each one of the two inequivalent Z2-gradings on ∆8k+4,H is obtained

from the other by interchanging the grading, either one gives the same Z2-grading on the tensor

product ∆8k+4,H ⊗R #∆8k+4,H, and the bimodule isomorphism above is now a Z2-graded one.
For n = 8k + 5, Cl8k+5,H is of form C(N). Therefore all real modules of Cl8k+5,H are naturally

C-vector spaces, and similarly we have an isomorphism of real (and also complex) Cl8k+5,H-bimodules

Cl8k+5,H ∼= ∆8k+5,H ⊗C #∆8k+5,H.

For n = 8k + 6, Cl8k+6,H is of form H(N), therefore every left (resp. right) real modules of
Cl8k+6,H admits a right (resp. left) H-action that commutes with the Cl8k+6,H-action. In particular,

∆8k+6,H is a right H-module and #∆8k+6,H a left H-module. Thus ∆8k+6,H ⊗H #∆8k+6,H makes sense
and we have an isomorphism of real Cl8k+6,H-bimodules

Cl8k+6,H ∼= ∆8k+6,H ⊗H #∆8k+6,H.
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For n = 8k, let us first consider Cl8k,H. We have Cl8k,H ∼= ∆8k,C2 ⊗C #∆8k,C2 as Cl8k,H-bimodules
and therefore as Cl8k,H-bimodules. Since Cl8k,H ∼= Cl8k,H ⊕R Cl8k,H as real Cl8k,H-bimodules, we
conclude there is an isomorphism of real Cl8k,H-bimodules

Cl8k,H ⊕Cl8k,H ∼= ∆8k,C2 ⊗C #∆8k,C2 .

We will write this as Cl8k,H ∼= 1
2∆8k,C2 ⊗C #∆8k,C2 .

To summarize, we have proved:

Proposition 1.27. For n ≡ 0, 4, 5, 6 mod 8, there are isomorphisms of Z2-graded Cln,H-bimodules:

Cl8k,H ∼=
1

2
∆8k,C2 ⊗C #∆8k,C2

Cl8k+4,H ∼= ∆8k+4,H ⊗R #∆8k+4,H

Cl8k+5,H ∼= ∆8k+5,H ⊗C #∆8k+5,H

Cl8k+6,H ∼= ∆8k+6,H ⊗H #∆8k+6,H

!
1.5. KQ-theory and (1,1)-periodicity. So far we have been restricting our attention to Clifford
algebras associated to positive definite quadratic forms. In this subsection we study Clifford algebras
associated to (non-degenerate) indefinite quadratic forms, as well as their modules. Since over C all
non-degenerate quadratic forms look the same, we deal only with R- and H-modules here.

Let Clr,s be the Clifford algebra on Rr+s = Rr×Rs with respect to the quadratic form ‖x‖2−‖y‖2
of signature (r, s) where x ∈ Rr and y ∈ Rs. These algebras are also Z2-graded and there are Z2-
graded algebra isomorphisms (see [LM89, Prop. 3.2])

(4) Clr+r′,s+s′
∼= Clr,s ⊗̂R Clr′,s′

for all r, r′, s, s′ ≥ 0. Denote by Clr,s,H := Clr,s ⊗RH the quaternionification of Clr,s.

Proposition 1.28. There are isomorphisms of Z2-graded R-algebras
Clr+1,s+1

∼= Clr,s ⊗RR(2)
Clr+4,s,H ∼= Clr,s ⊗RR(8)
Clr+4,s

∼= Clr,s,H ⊗RR(2)

Proof. For the proof of the first isomorphism, see [LM89, Theorem 4.1]. We note in particular
Cl1,1 = R(2). The other two isomorphisms follow from (4) and Proposition 1.2. !

For K = R or H, let M̂K
r,s denote the Grothendieck group of (finite dimensional) Z2-graded

K-modules of Clr,s, and set

N̂K
r,s = M̂K

r,s/i
∗M̂K

r+1,s

where i∗ is induced by the inclusion Rr × Rs ↩→ Rr+1 × Rs, (x, y) *→ (x, 0, y). Then naturally

(M̂R
∗,∗ =

$
r,s M̂

R
r,s,⊕, ⊗̂) is a bigraded ring over which M̂H

∗,∗ =
$

r,s M̂
H
r,s is a bigraded module.

These structures descend to make N̂H
∗,∗ =

$
r,s N̂

H
r,s a bigraded module over the bigraded ring

N̂R
∗,∗ =

$
r,s N̂

R
r,s.

In [Ati66], Atiyah showed N̂R
∗,∗ is naturally isomorphic to Real K-theory of a point:

(5) N̂R
∗,∗

∼= KR∗,∗(pt).

Recall the Real K-theory KR is a variant of K-theory defined on the category of real spaces. A real
space is simply a space with involution, for example the set of complex points of a real algebraic
variety with conjugation. Another important example is Rr,s whose underlying space is Rr × Rs

with involution given by (x, y) *→ (x,−y) for all x ∈ Rr and y ∈ Rs. When r = s, we write
Rr,r = Cr where the involution on Cr is the complex conjugation. A Real bundle over a real space
(X, f) is a complex vector bundle E over X together with a involution j : E → E covering the
involution f on the base such that j : Ex → Efx is C-antilinear for all x ∈ X and j2 ≡ 1. For a

real space X, KR(X) is the Grothendieck group of Real bundles over X. The reduced group %KR,
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the compactly supported group KRcpt and the relative group for a pair KR(−,−) are defined in the
usual manner. If the involution on X is trivial, then KR(X) = KO(X). Similar to the KO-theory,
the KR-theory is a multiplicative theory with multiplication induced from tensor product: given
Real bundles (E, j) → X and (E′, j′) → X ′, the bundle π∗E⊗C π

′∗E′ with J = π∗j⊗π′∗j′ is a Real
bundle over X ×X ′, where π,π′ are projections from X ×X ′ onto X and X ′ respectively.

For any compact real pair (X,Y ) we define higher KR groups by

KRr,s(X,Y )1 = KR(X ×Dr,s, X × Sr,s ∪ Y ×Dr,s)

where Dr,s and Sr,s are the unit disk and unit sphere in Rr,s respectively with restricted involutions.
The higher groups have their reduced, compactly supported counterparts as well.

With all these understood, we remark that KRr,s
cpt(X) = KRcpt(X × Rr,s), and that KR∗,∗(pt)

is a bigraded ring. In particular, KRr,0(pt) = KRcpt(Rr) = KOcpt(Rr) = KO−r(pt). We refer the
reader to [Ati66] for more on KR-theory.

Now the isomorphism (5) is in fact a bigraded ring isomorphism. It is established in two steps.
First, consider the algebra-with-involution Cl(Rr,s) whose underlying algebra is simply Clr+s on
which the involution c : Cl(Rr,s) → Cl(Rr,s) is extended from the involution on Rr,s. A Real module
of Cl(Rr,s) is a complex module V of Cl(Rr,s) together with a C-antilinear involution c : V → V
such that

c(a · v) = c(a) · c(v)
for all a ∈ Cl(Rr,s) and all v ∈ V . If V = V 0 ⊕ V 1 is Z2-graded and c(V α) = V α for α = 0, 1, then
V is a Z2-graded Real module for Cl(Rr,s). One can form the tensor product of Real modules as

follows: let V,W be Z2-graded Real modules for Cl(Rr,s) and Cl(Rr′,s′) respectively, then their tensor

product V ⊗̂CW with the induced involution cV ⊗̂cW is a Real module for Cl(Rr,s) ⊗ Cl(Rr′,s′) ∼=
Cl(Rr+r′,s+s′).

Now let M̂Rr,s denote the Grothendieck group of Z2-graded Real modules of Cl(Rr,s) and put

N̂Rr,s = M̂Rr,s/i
∗M̂Rr+1,s. Then there are natural isomorphisms

M̂R
r,s

∼=−→ M̂Rr,s

N̂R
r,s

∼=−→ N̂Rr,s

by assigning to each Z2-graded R-module V of Clr,s, the C-vector space V ⊗R C endowed with the
involution given by complex conjugation and with the Cl(Rr,s)-multiplication given by setting

(x, y) · w := xw + iyw

for all (x, y) ∈ Rr × Rs = Rr,s.
Second, given a Z2-graded Real module V = V 0 ⊕ V 1 for Cl(Rr,s), we construct an element

[V0,V1;µ] in KRcpt(Rr,s) by setting Vα = Rr,s × V α for α = 0, 1 and µ : V0 → V1 is again the
Clifford module multiplication µ(z, v) = (z, z · v) for z = (x, y) ∈ Rr,s and v ∈ V 0. Due to Atiyah,
this turns out yields a bigraded ring isomorphism

N̂R∗,∗
∼=−→ KR∗,∗(pt).

We now analogously consider quaternionic modules of Clr,s and identify N̂H
∗,∗ with the coefficient

groups of certain K-theory. The appropriate K-theory is the Quaternionic K-theory KQ, defined
also on the category of real spaces.

Definition 1.29. Let (X, f) be a real space. A Quaternionic bundle, or simply a Q-bundle, over
X is a complex vector bundle E over X equipped with a map j : E → E covering f such that
j : Ex → Efx is C-antilinear for all x ∈ X and such that j2 ≡ −1. For a real space X, KQ(X) is
the Grothendieck group of Q-bundles over X.

Similar to the case of KR-theory, one can define KQcpt and KQr,s etc. Here we list some features
of KQ.

1our notation KRr,s agrees with [LM89], but differs from Atiyah’s [Ati66] by switching r and s.
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First, KQ is a module theory over KR, i.e. there is an external product

KRr,s(X)⊗KQr′,s′(X ′) → KQr+r′,s+s′(X ×X ′)

which is induced from the tensor product of Real and Quaternionic bundles: given (E, j) → X
a Real bundle over X and (E′, j′) → Y a Quaternionic bundle over X ′, then π∗E ⊗C π′∗E′ with
π∗j ⊗ π′∗j′ is a Quaternionic bundle over X ×X ′, where π,π′ are projections from X ×X ′ onto X
and X ′ respectively.

Second, for any compact real spaceX, multiplication with the generator of KQ4,0(pt) ∼= KSp−4(pt)
yields an isomorphism

(6) KR∗,∗(X)
∼=−→ KQ∗+4,∗(X)

In particular KQ∗+4,∗(pt) is a free module over KR∗,∗(pt) generated by KQ4,0(pt).
Finally, KQ-theory satisfies a (1, 1)-periodicity: multiplication with the generator of KR1,1(pt)

yields an isomorphism

(7) KQ∗,∗(X)
∼=−→ KQ∗+1,∗+1(X)

We remark the same (1,1)-periodicity holds for KR-theory as well (see [Ati66]).
Both (6) and (7) should be known to Dupont (see [Dup69]), but he did not make them explicit

and we fail to find complete proofs in the literature. Since the (1,1)-periodicity is central to our
construction of topological index later on, we decide to supply justifications for (6) and (7) in the
Appendix. The main point is to consider the Z2-graded theory KM = KR⊕KQ where KR and KQ
are put in degree 0 and 1 respectively. Then KM is a multiplicative theory whose multiplication
respects its Z2-grading. Most of the results in [Ati66] can be worked out for KM as pointed out by
Dupont. The corresponding results for KQ follow at once by exploiting the Z2-grading on KM.

We are now one construction away from stating and proving an Atiyah-Bott-Shapiro type iso-
morphism for KQ-theory.

Definition 1.30. By a Quaternionic module, or simply a Q-module, over the algebra-with-involution
Cl(Rr,s) we mean a finite dimensional complex module V for Cl(Rr,s) together with a C-antilinear
map j : V → V so that j2 = −1 and

j(a · v) = c(a) · j(v)
for all a ∈ Cl(Rr,s) and all v ∈ V . If in addition V = V 0 ⊕ V 1 is Z2-graded with the property that
j(V α) = V α for α = 0, 1, then V is called a Z2-graded Q-module for Cl(Rr,s).

Of course one can tensor Z2-graded Quaternionic modules by Z2-graded Real modules to obtain
Quaternionic modules: simply form the Z2-graded tensor product over C and equip it with the
tensor product of the two structures.

Let M̂Qr,s denote the Grothendieck group of Z2-graded Q-modules of Cl(Rr,s) and define N̂Qr,s =

M̂Qr,s/i
∗M̂Qr+1,s.

Theorem 1.31. There are isomorphisms of bigraded KR∗,∗(pt)-modules

N̂H
∗,∗

∼= N̂Q∗,∗ ∼= KQ∗,∗(pt).

Proof. Given any H-module V of Clr,s, let VC be the underlying C-module and j : VC → VC the
multiplication by j ∈ H. Then we may realize (VC, j) as a Q-module for Cl(Rr,s) by setting

(x, y) · v = x · v + iy · v
for all (x, y) ∈ Rr × Rs and then extend to an action of Cl(Rr,s) on VC. It is straightforward to
verify j(z · v) = c(z) · j(v) for all z = (x, y) and all v ∈ VC using ij = −ji. Hence (VC, j) is indeed
a well-defined Q-module for Cl(Rr,s). The functor V *→ (VC, j) is clearly invertible, thus induces
isomorphisms

M̂H
r,s

∼=−→ M̂Qr,s

N̂H
r,s

∼=−→ N̂Qr,s.
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For the second isomorphism, given any Z2-graded Q-module (V, j) of Cl(Rr,s), we define an
element ϕQ(V ) = [V0,V1;µ] in KQcpt(Rr,s) by setting Vα = Rr,s × V α and µ the Clifford multipli-

cation. Given our previous discussions, it is now a routine to check ϕQ(V ) is well-defined and yields
a homomorphism

ϕQ : N̂Qr,s → KQr,s(pt).

The proof of Lemma 1.25 carries through to show ϕQ is a map of N̂R∗,∗ ∼= KR∗,∗(pt)-modules.
Finally to see ϕQ is an isomorphism, we use the Morita equivalences established in Proposi-

tion 1.28. From the first isomorphism in Proposition 1.28, we have (1,1)-periodicities

N̂R∗,∗ ∼= N̂R∗+1,∗+1

N̂Q∗,∗ ∼= N̂Q∗+1,∗+1.

Both are induced by multiplication with the generator of N̂R1,1
∼= KR1,1(pt) = Z. These “period-

icity” isomorphisms are compatible with the (1,1)-periodicities for KR- and KQ-theories: they are
both induced by multiplication with the generator of KR1,1(pt). Therefore, we are reduced to the
case r ≥ 4, i.e. we must show

ϕQ : N̂Q∗+4,∗ → KQ∗+4,∗(pt)

is an isomorphism. Now from the second isomorphism in Proposition 1.28, we can deduce N̂Q∗+4,∗
is a free N̂R∗,∗-module generated by N̂Q4,0 = N̂H

4,0 = N̂H
4 = Z. Since KQ∗+4,∗(pt) is a free module

over KR∗,∗(pt) generated by KR4,0(pt) = KSp−4(pt) and ϕQ : N̂Q4,0 → KQ4,0(pt) coincides with

ϕh : N̂H
4 → KSp−4(pt) which we have proved to be an isomorphism, we conclude ϕQ : N̂Q∗,∗ →

KQ∗,∗(pt) is an isomorphism as desired. !

2. Spinh vector bundles

2.1. Spinh structures on vector bundles. Recall the group Spin(n) can be viewed as a subgroup
of the multiplicative group Cl×n of the real Clifford algebra Cln. Let Sp(1) be the group of unit
quaternions, then we have a natural group homomorphism

Spin(n)× Sp(1) → Cl×n,H = (Cln ⊗RH)×,

whose kernel is the “diagonal” Z2 generated by (−1,−1). By modding out the kernel, we obtain the
group

Spinh(n) := Spin(n)× Sp(1)/Z2 ⊂ Cl×n,H .

Since Spin(n) ⊂ Cl0n, we see Spinh(n) ⊂ Cl0n,H. From here, the representation theory of Spinh(n) is

closely related to that of Cln,H. For V = V 0⊕V 1 a Z2-graded R-module (resp. C-module) of Cln,H,

we see V 0 is invariant under the Cl0n,H-action, hence by restricting the action of Cl0n,H to Spinh(n),

V 0 becomes a real (resp. complex) representation of Spinh(n).

Proposition 2.1. Let V be an irreducible Z2-graded real (resp. complex) module of Cln,H. Then

V 0 is an irreducible real (resp. complex) representation of Spinh(n).

Proof. Since V is an irreducible Z2-graded module of Cln,H, V
0 must be an irreducible module of

Cl0n,H, otherwise V
0 contains a non-trivial proper submodule W 0 which then extends to a non-trivial

Z2-graded proper submodule W = W 0 ⊗Cl0n,H
Cln,H ⊂ V . Now we note Spin(n) contains a set of

generators of Cl0n, namely ei1ei2 · · · eik for k even, and meanwhile Sp(1) contains a set of generators

of H. Therefore Spinh(n) contains a set of generators of Cl0n,H. This implies V 0, irreducible over

Cl0n,H, is an irreducible representation of Spinh(n). !

But Spinh(n) owns more irreducible representations than Cln,H. For instance, through projections

onto its two factors, Spinh(n) admits two natural orthogonal representations

(8)
Spinh(n) → Spin(n)/Z2 = SO(n)

Spinh(n) → Sp(1)/Z2 = SO(3)
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Thus irreducible representations of SO(n) and SO(3) also become irreducible representations of

Spinh(n). By contrast, Cln,H has only one or two irreducible representations from Table 1.
Now putting the two projections in (8) together, we obtain a short exact sequence of groups:

(9) 1 → Z2 → Spinh(n) → SO(n)× SO(3) → 1

The Z2 corresponds to ±1 in Cln,H. So Spinh(n) is a central extension of SO(n) × SO(3) by Z2.
Group extensions of this type are classified by

H2(BSO(n)×BSO(3);Z2) = {0, w2, w
′
2, w2 + w′

2}
where w2 ∈ H2(BSO(n);Z2) and w′

2 ∈ H2(BSO(3);Z2) stand for the corresponding second Stiefel-

Whitney classes. Clearly Spinh(n) is the extension that corresponds to w2 + w′
2; the other three

elements 0, w2, w
′
2 correspond to Z2×SO(n)×SO(3), Spin(n)×SO(3) and SO(n)×Sp(1) respectively.

We note w2 = 0 for n < 2, nevertheless the above assertion still holds. It is therefore convenient for
us to make the following definition:

Definition 2.2. Let E be an oriented vector bundle of rank n furnished with a metric, and PSO(E) is
the oriented frame bundle of E. We say E admits a spinh structure if one of the following equivalent
conditions is satisfied:

(i) there is a rank 3 oriented vector-bundle-with-metric hE such that w2(hE) = w2(E).

(ii) there is a principal Spinh(n)-bundle PSpinh(E) and a map of principal bundles PSpinh(E) →
PSO(E) which is equivariant respect to Spinh(n) → SO(n) in (8).

With a fixed choice of hE or PSpinh(E), we say E is a spinh vector bundle. The bundles hE and

PSpinh(E) are then called the canonical bundle and the structure bundle of the spinh vector bundle
E respectively.

Even though we used metrics in our definition, the existence of spinh structures is really a topo-
logical (in fact homotopy-theoretical) question. The primary obstruction to the existence spinh

structures is the fifth integral Stiefel-Whiney class W5 [AM21]; there are non-trivial secondary ob-
structions as well. We insist on including metrics in our discussion for it will be convenient for us
later to construct Dirac operators.

Definition 2.3. We say a smooth manifold M a spinh manifold if its tangent bundle is equipped
with a spinh structure. Spinh manifolds with boundary and spinh cobordism relations are defined
in the usual way.

Example 2.4. Every closed oriented riemannian manifold of dimension ≤ 7 admits spinh structures
[AM21]. Every oriented riemannian 4-manifold (including non-compact ones) admits two natural
spinh structures whose canonical bundles are the bundle of self-dual two forms and the bundle of
anti-self-dual two forms.

Example 2.5. Let F be a spin vector bundle of rank m on Y and E a spinh vector bundle of rank
n on X, then F × E is a spinh vector bundle on Y ×X with the canonical bundle hF×E = π∗

XhE
where πX : Y × X → X is the projection onto X. Let PSpin(F ) denote the structural principal
Spin(m)-bundle associated to F , then the structure bundle PSpinh(F ×E) of F ×E is derived from
the principal bundle PSpin(F )× PSpinh(E) through the natural homomorphism

Spin(m)× Spinh(n) → Spinh(m+ n)

induced from the isomorphism given in Proposition 1.7.

2.2. Quaternionic Clifford and hspinor bundles. Recall for a spin vector bundle F → Y of
rank m, its Clifford bundle is defined to be the bundle of Z2-graded R-algebra

Cl(F ) = PSpin(F )×Ad Clm

with the natural inherited Z2-grading, where PSpin(F ) is the principal Spin(m)-bundle associated
to F and Spin(m) acts on Clm through the adjoint representation

Ad : Spin(m) → Aut(Clm), g *→ Adg(x) := gxg−1, for x ∈ Clm .
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Since −1 ∈ kerAd, the adjoint representation descends to a representation Ad : SO(m) →
Aut(Cln). As such, the Clifford bundle in fact only relies on the metric on F . Alternatively Cl(F )
can be described as

Cl(F ) =

& ∞"

r=0

'r
F

()
I(F ),

where I(F ) is the bundle of ideals, whose fibre at y ∈ Y is the two-sided ideal I(Fy) in
$∞

r=0

*r
Fy,

generated by elements e⊗ e+ ‖e‖2 for e ∈ Fy. In particular Cl(Fy) is the Clifford algebra generated
by Fy with respect to the inner product on Fy.

Definition 2.6. The quaternionic Clifford bundle of a spinh vector bundle E → X of rank n is the
bundle of Z2-graded R-algebra over X

ClH(E) = PSpinh(E)×Adh Cln,H

with the natural inherited Z2-grading, where Spinh(n) acts on Cln,H through the adjoint represen-
tation

Adh : Spinh(n) → Aut(Cln,H), g *→ Adhg (x) := gxg−1, for x ∈ Cln,H .

Since (1,−1) ∈ kerAdh, ClH(E) depends only on the metrics on E and hE . In fact

Lemma 2.7. ClH(E) = Cl(E)⊗R Cl0(hE).

Proof. Adh descends to a representation SO(n)×SO(3) → Aut(Cln,H) which is clearly induced from
tensoring the adjoint representation of Spin(n) on Cln and the adjoint representation of Sp(1) =
Spin(3) on H = Cl03. !

So the construction of the quaternionic Clifford bundle does not really require a spinh structure.
However, the presence of the spinh structure will allow us to construct interesting bundles of modules
over the quaternionic Clifford bundle.

Definition 2.8. Let E → X be a spinh vector bundle of rank n. A real hspinor bundle of E is a
bundle of the form

SH(E, V ) := PSpinh(E)×µ V,

where V is a R-module of Cln,H and µ is the composition Spinh(n) ⊂ Cl×n,H → GLR(V ).

Similarly a complex hspinor bundle of E is a bundle of the form

SC2(E, VC) := PSpinh(E)×µ VC,

where VC is a C-module of Cln,H.
If the module V (or VC) is Z2-graded, the corresponding bundle is said to be Z2-graded.

Example 2.9 (fundamental Z2-graded
hspinor bundle). We denote the corresponding Z2-graded

real hspinor bundle constructed from the Z2-graded modules ∆n,H (resp. ∆±
n,H if n ≡ 0 mod 4) by

/SH(E) (resp. /S
±
H (E)). Similarly, /SC2(E) (resp. /S

±
C2(E) if n even) denotes the Z2-graded complex

hspinor bundle that corresponds to ∆n,C2 (resp. ∆±
n,C2). We call them the fundamental Z2-graded

(real or complex) hspinor bundles of E.

Lemma 2.10. Let SH(E) be a real hspinor bundle of a spinh bundle E. Then SH(E) is a bundle
of modules over the bundle of algebras ClH(E).

The corresponding facts hold in the complex and Z2-graded cases.

Proof. The diagram

PSpinh(E)× Cln,H ×V PSpinh(E)× V

PSpinh(E)× Cln,H ×V PSpinh(E)× V

µ

σg σ′
g

µ
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given by

(p, x, v) (p, xv)

(pg−1, gxg−1, gv) (pg−1, gxv)

clearly commutes. Therefore µ descends to a mapping µ : ClH(E)⊗RSH(E) → SH(E) which is easily
seen to have the desired properties. The corresponding argument goes through in the complex and
Z2-graded case. !

We say that two (real or complex, graded or ungraded) hspinor bundles of E are equivalent if
they are equivalent as bundles of ClH(E)-modules. A (real or complex, graded or ungraded) bundle
of ClH(E)-module is called irreducible if at each x ∈ X the fibre is irreducible as a module over
ClH(Ex).

It is clear every hspinor bundle of E can be decomposed into a direct sum of irreducible ones.
With the assumption that X is connected, the number of equivalence classes of irreducible (real or
complex, graded or ungraded) ClH(E)-modules is exactly the number of irreducible (real or complex,
graded or ungraded) modules of Cln,H; further the irreducible ones are exactly the fundamental ones.

2.3. Thom classes and Thom isomorphisms. In [ABS64], ϕ is upgraded, for each spin vector
bundle F → Y of rank m, to a homomorphism

ϕF : N̂R
m → KO(D(F ), ∂D(F )) = %KO(Th(F ))

where Th(F ) = D(F )/∂D(F ) is the Thom space of F . If F ′ → Y ′ is another spin vector bundle of
rank m′, then we have a commutative diagram

(10)

N̂R
m ⊗ N̂R

m′ N̂R
m+m′

%KO(Th(F ))⊗ %KO(Th(F ′)) %KO(Th(F × F ′))

⊗̂

ϕF⊗ϕF ′ ϕF×F ′

⊠

where ⊠ is the external product in KO.
Depending whether we treat representatives of elements in N̂H

∗ as Z2-graded R-modules of the
quternionic Clifford algebras or as Z2-graded H-modules of the real Clifford algebras, we may anal-
ogously upgrade ϕh in two different directions:

• for each spinh vector bundle, we obtain a homomorphism from N̂H
∗ to the reduced KO-group

of its Thom space;
• for each spin vector bundle, we obtain a homomorphism from N̂H

∗ to the reduced KSp-group
of its Thom space.

We now spell out our construction in the spinh case. Let E → X be a spinh vector bundle of
rank n, let D(E), ∂D(E) denote the (closed) unit disk and sphere bundle of E respectively. Let
π : D(E) → X be the bundle projection.

For any Z2-graded R-module V of Cln,H, we have the associated Z2-graded
hspinor bundle

SH(E, V ). Then the pull-backs of the degree 0 and degree 1 parts of SH(E, V ) are canonically
isomorphic on ∂D(E) via the map

µe :
+
π∗SH

+
E, V 0

,,
e
→

+
π∗SH

+
E, V 1

,,
e

given at e ∈ ∂D(E) by
µe(σ) = e · σ.

That is, Clifford multiplication by e itself. Since e ·e = −‖e‖2 = −1, each map µe is an isomorphism.
This defines a difference element

ϕh
E(V ) :=

-
π∗SH

+
E, V 0

,
,π∗SH

+
E, V 1

,
;µ

.
∈ KO(D(E), ∂D(E)) ∼= %KO(Th(E)).

Clearly ϕh
E(V ) depends only on the equivalence class of V . If V is restricted from a Z2-graded

module of Cln+1,H, i.e. [V ] belongs to i∗M̂H
n+1, then we may embed E into E ⊕ R, where R is the

trivialized bundle with a nowhere zero cross-section en+1 and a metric so that en+1 is of norm one.
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This way the hspinor bundle SH(E, V ) is contained in SH(E ⊕ R, V ) and π∗/SH(E, V ) extends to a
bundle over D(E ⊕ R). Then

µ̃e(σ) = (e+ (
/
1− ‖e‖2)en+1) · σ for e ∈ D(E) ⊂ D(E ⊕ R)

extends the isomorphism µ on ∂D(E) to an isomorphism on D(E). This means ϕh
E descends to a

group homomorphism

ϕh
E : N̂H

n → %KO(Th(E)).

Remark 2.11. ϕh
E is functorial with respect to pull-backs of spinh vector bundles. That is, if f :

X ′ → X is a continuous map, let Th(f) : Th(f∗E) → Th(E) denote the map between Thom spaces
induced from the bundle map f∗E → E covering f , then we have a commutative diagram:

N̂H
n

%KO(Th(E)) %KO(Th(f∗E))

ϕh
E

ϕh
f∗E

Th(f)∗

For F → Y a spin vector bundle of rank m, the same construction carries over to give two
homomorphisms

ϕF : N̂R
m → %KO(Th(F )), ϕh

F : N̂H
m → %KSp(Th(F )).

We note ϕF coincides with the one obtained in [ABS64]; moreover if F is the trivial bundle over a
point, then ϕF and ϕh

F coincide with ϕ and ϕh respectively. Despite the similarity in notation, ϕh
E

and ϕh
F are very different: they are defined for different types of vector bundles and they land in

different types of K-groups.
The following proposition shows, through the morphisms we constructed above, the module struc-

ture of N̂H
∗ over N̂R

∗ is compatible with the external product in real K theory.

Proposition 2.12. Let E → X be a spinh vector bundle of rank n and F → X a spin vector
bundle of rank m. Suppose F ×E is given the spinh structure as in Example 2.5. Then the following
diagram commutes:

(11)

N̂R
m ⊗ N̂H

n N̂H
m+n

%KO(Th(F ))⊗ %KO(Th(E)) %KO(Th(F × E))

⊗̂

ϕF⊗ϕh
E ϕh

F×E

⊠

Proof. The proof is the same as that of [ABS64, Prop. 11.1]. !

As applications of these upgraded homomorphisms, we have:

Theorem 2.13. Let F → Y be a spin vector bundle of rank 8k + 4 over a finite CW-complex Y .
Then multiplication with the class

ϕh
F (∆H) ∈ %KSp(Th(F ))

induces a Thom isomorphism

KO&(Y )
∼=−→ %KSp

&
(Th(F ))

where + means summing over all integers.

Proof. Restricted to the fibre over each y ∈ Y we have ϕh
F (∆H)|y = ϕh

Fy
(∆H) = ϕh(∆H) is the

generator of KSp(D(Fy), ∂D(Fy)) ∼= KSp−8k−4(pt) by Theorem 1.26. Since KSp−8k−4(pt) generates

KSp&(pt) as a free KO&(pt)-module, then a standard argument using Mayer-Vietoris sequence and
five-lemma proves the desired Thom isomorphism. !

Theorem 2.14. Let E → X be a spinh vector bundle of rank 8k + 4. Then

ϕh
E(∆H) ∈ %KO(Th(E))
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restricts to each fibre over x ∈ X generates %KO(Th(Ex)) ∼= KO−8k−4(pt) ∼= Z. Moreover, multipli-
cation with the class ϕh

E(∆H) induces a Thom isomorphism

KO&(X)[
1

2
]

∼=−→ %KO
&
(Th(E))[

1

2
].

We emphasize it is necessary to invert 2 in order to obtain an isomorphism. Indeed, when X is

a point the map KO&(pt) → %KO
&
(S8k+4) = KO&−8k−4(pt) ∼= KO&−4(pt) is never an isomorphism

since the 2-torsions on both sides are placed in different degrees.

Proof. Restricted to the fibre at x ∈ X, Ex → {x} is a trivial bundle and ϕh
Ex

coincides with the
composition

ρϕh : N̂H
8k+4

ϕh

−−→ KSp−8k−4(pt)
ρ−→ KO−8k−4(pt).

Then the first assertion follows from ρ(∆8k+4,H) = ∆8k+4,R and ρϕh = ϕρ. The second assertion

follows from that KO−8k−4(pt)[ 12 ] generates KO&(pt)[ 12 ] as a free KO&(pt)[ 12 ]-module. !

Remark 2.15. For E → X spinh vector bundle of rank 8k, the KO-class ϕh
E(∆H) in fact lifts to a

KSp-class, using the intrinsic quaternionic structure of ∆8k,H. Then similarly ϕh
E(∆H) induces an

isomorphism KO&(X)[ 12 ]
∼=−→ %KSp

&
(Th(E))[ 12 ]. Again 2 must be inverted for this homomorphism to

be an isomorphism. It is for this Thom isomorphism that we mentioned in the introduction one can
define Thom classes for spinh vector bundles in symplectic K-theory, however we will prefer to work
with the KO-class for rank 8k + 4 spinh vector bundles in this paper.

One can apply the same construction to complex modules. In [ABS64] it is shown:

Theorem 2.16 ([ABS64]). Let F → Y be a spin vector bundle of rank 2m, then there is a
homomorphism

ϕc
F : N̂C

2m → %KU(Th(F ))

so that multiplication with the class ϕc
F (∆C) induces a Thom isomorphism

KU&(Y )
∼=−→ %KU

&
(Th(F )).

!
Analogously for spinh vector bundles, we have:

Theorem 2.17. Let E → X be a spinh vector bundle of rank 2n, then there is a homomorphism

ϕc
E : N̂C2

2n → %KU(Th(E))

so that ϕc
E(∆C2) ∈ %KU(Th(E)) restricted to each fibre over x ∈ X is twice the generator of

%KU(Th(Ex)) ∼= KU−2n(pt). Moreover, multiplication with the class ϕc
E(∆C2) induces a Thom

isomorphism

KU&(X)[
1

2
]

∼=−→ %KU
&
(Th(E))[

1

2
].

Proof. It suffices to show ϕc
E(∆C2) restricted to each fibre is twice the generator. Indeed, restricted

to the fibre over x ∈ X, ϕc
Ex

(∆C2) = ϕc(∆C2) = ϕc(2∆C) = 2ϕc(∆C); and ϕc(∆C) generates

KU−2n(pt) by [ABS64]. !
These Thom isomorphisms motivate the following definition.

Definition 2.18. Let E be a spinh vector bundle of rank n. If n ≡ 4 (mod 8), then

ΘE := ϕh
E(∆H)

is called the weak KO-Thom class of E. If n ≡ 0 (mod 2), then

ΛE := ϕc
E(∆C2)

is called the weak KU-Thom class of E.
We point out from Corollary 1.17 we have εCR(ΘE) = ΛE for n ≡ 4 (mod 8).

The weak KO-Thom class enjoys a nice multiplicative property.
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Proposition 2.19. Let E be a spinh vector bundle of rank 8k + 4 and F a spin vector bundle of
rank 8l. Denote by ΞF = ϕF (∆R) the KO-Thom class of F . Then

ΘF×E = ΞF ·ΘE

Proof. This follows from Proposition 2.12. !
The Chern character of the weak KU-Thom class is calculated below. Then using ε(ΘE) = ΛE

for n ≡ 4 mod 8, the Pontryagin character of ΘE is obviously given by ph(ΘE) = ch(ΛE).

Proposition 2.20. Let E → X be a spinh vector bundle of rank 2n. Then

ch(ΛE) = (−1)nUE ·
&
2 cosh

&/
p1 (hE)

2

(
Â(E)−1

(

where UE ∈ #H2n(Th(E);Z) is the singular cohomology Thom class of E and Â(E) is the total

Â-class of E.

Proof. We prove this for the universal spinh vector bundle E2n → BSpinh(2n). Consider the pull-
back diagram

F2n E2n

BSpin(2n)×BSp(1) BSpinh(2n)

f∗

f

induced by the quotient map Spin(2n)× Sp(1) → Spinh(2n), where F2n is the universal spin vector
bundle on BSpin(2n). Let F3 be the universal 3-plane bundle on BSpin(3) = BSp(1). Then we
claim f∗ ClH(E2n) ∼= Cl(F2n) ⊗R Cl0(F3). Indeed, note that f∗E2n = F2n and f∗hE2n

= F3. Since
the action of SU(2) = Sp(1) ⊂ H ⊂ H⊗RC = C(2) on C2 through the matrix multiplication of C(2)
on C2 is the canonical representation SU(2) → U(2). It follows that

Th(f)∗ϕc
E2n

(∆C2) = ϕc
F2n

(∆C) · [U]
where U is the tautological complex 2-plane bundle on BSU(2) = BSp(1). From [Hir95] we have

chϕc
F2n

(∆C) = (−1)nUF2n
· Â(F2n)

−1. We shall prove ch(U) = 2 cosh

0√
p1(F3)

2

1
in the lemma

below. Then the proposition follows from applying Chern character and using that f , Th(f) induce
isomorphisms on rational cohomology. !
Lemma 2.21. Let F3 → BSU(2) and U → BSU(2) be as in the proof of Theorem 2.23. Then

ch(U) = 2 cosh

0√
p1(F3)

2

1
.

Proof. The natural representation SU(2) → U(2) is irreducible with weights 1,−1. By applying
spitting principle, we may write c(U) = (1 + x)(1 − x) = 1 − x2. Since F3 is induced from the
rotation representaion SU(2) → SO(3), F3⊗RC corresponds to the adjoint representation of SU(2),
which is irreducible with weights 2, 0,−2. Therefore by splitting principle we can write c(F3⊗RC) =

(1 + 2x)(1 − 2x) = 1 − 4x2. Now p1(F3) = −c2(F3 ⊗R C) = 4x2, hence symbolically x =

√
p1(F3)

2 .

So ch(U) = ex + e−x = 2 cosh(x) = 2 cosh

0√
p1(F3)

2

1
. This expression makes sense since cosh is an

even function. !
2.4. Riemann-Roch theorem for spinh maps. In this subsection, we prove a Riemann-Roch
theorem for spinh maps. Along the way, we pick out a special characteristic class for spinh manifolds,
whose role is analogous to the Â-class for spin manifolds.

Definition 2.22. Let X and Y be closed oriented smooth manifolds. A continuous map f : X → Y
is called a spinh map if there exists an oriented rank 3 real vector bundle hf on X so that

w2(X) + f∗w2(Y ) = w2(hf ).

The bundle hf is called the canonical bundle of the spinh map f .
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Theorem 2.23. (i) Let dimX ≡ dimY mod 2. Then a spinh map f : X → Y induces a group
homomorphism f! : KU(X) → KU(Y ) such that

ch f!(ξ) · Â(TY ) = f∗

&
ch ξ · 2 cosh

&/
p1 (hf )

2

(
Â(TX)

(

where TX, TY are the tangent bundles of X,Y respectively, f∗ is the umkehr homomorphism.
(ii) If moreover dimX − dimY ≡ 4 mod 8, then there is a group homomorphism f̃! : KO(X) →

KO(Y ) so that the following diagram commutes.

KO(X) KO(Y )

KU(X) KU(Y )

f̃!

ε ε

f!

Proof. Since only the homotopy class of f is relevant to the theorem, we may assume f is smooth.
Let g : X → S2n be a smooth embedding of X. Then f : X → Y can be factored into smooth
embedding ι : f × g : X → Y ×S2n followed by the projection π : Y ×S2n → Y . Since w2(S

2n) = 0,
ι is a spinh map with hι = hf ; meanwhile π is a spin map, that is π∗w2(Y ) = w2(Y × S2n).

Suppose we have proved (i) for F . Then since π is spin, by Riemann-Roch theorem for spin
maps (from [Hir95], enhanced in [ABS64]), π incudes a homomorphism π! : KU(Y ×S2n) → KU(Y )

satisfying chπ!(−) · Â(TY ) = π∗(ch(−) · Â(T (Y × S2n)). Hence f! = π!ι! is as desired. So we can
assume f is an embedding. Let E be the normal bundle of X in Y whose rank is 2n = dimY −dimX,
then w2(E) = w2(Y ) + f∗w2(X) = w2(hf ). So E is spinh with canonical bundle hE = hf . Identify
a closed tubular neighborhood of X with D(E), then we have KU(D(E), ∂D(E)) ∼= KU(Y, Y −X)
and H∗(D(E), ∂D(E);Q) ∼= H∗(Y, Y −X;Q) by excision. Recall the umkehr homomorphism f∗ is
the composition

f∗ : H∗(X;Q)
×UE−−−→ H∗(D(E), ∂D(E);Q) ∼= H∗(Y, Y −X;Q)

restrict−−−−→ H∗(Y ;Q).

Define f! to be the composition

f! : KU(X)
×ΛE−−−→ KU(D(E), ∂D(E)) ∼= KU(Y, Y −X)

restrict−−−−→ KU(Y ).

Using Proposition 2.20 and the multiplicative property of the Â-class: f∗Â(TY ) = Â(TX ⊕ E) =

Â(TX) · Â(E), we conclude f! satisfies (i).
For (ii), by using the same embedding trick as before so that π has relative dimension divisible

by 8, and noticing from [Hir95] and [ABS64] π! in this case lifts to a homomorphism between KO-
groups, we may assume f is an embedding. Now E is of rank 8k + 4, as such ΛE = ε(ΘE). Define

f̃! to be the composition

f̃! : KO(X)
×ΘE−−−→ KO(D(E), ∂D(E)) ∼= KO(Y, Y −X)

restrict−−−−→ KO(Y ).

Then f̃! clearly is as required. !

Remark 2.24. Even though when defining f!, we made a choice of embedding X ↩→ S2n, f! in fact
does not depend on such a choice due to the multiplicative property Proposition 2.19 of the weak
KO-Thom class. Indeed had we chosen two different embeddings, we may find a common larger
embedding. So we can assume Xd ⊂ Rd+8k+4 ⊂ Rd+8k+8l+4, then the normal bundle of Rd+8k+4

in Rd+8k+8l+4 is spin of rank 8l. By Proposition 2.19 and that ∆8l,R ∈ KO−8k(pt) is the Bott
generator, we conclude f! is independent of the choice of the embedding.

Corollary 2.25. (i) Let X be a closed spinh manifold of dimension n ≡ 0 mod 2 with canonical
bundle hX . Suppose ξ is a complex vector bundle on X. Then the (rational) number

〈ch ξ · 2 cosh
&/

p1 (hX)

2

(
Â(TX), [X]〉

is an integer, where 〈−, [X]〉 means pairing with the fundamental class of X.
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(ii) If further n ≡ 0 mod 8 and γ is a real vector bundle on X, then the (rational) number

〈ph γ · 2 cosh
&/

p1 (hX)

2

(
Â(TX), [X]〉

is an even integer, where ph γ = ch(γ ⊗R C) is the Pontryagin character of γ.

Proof. For (i), apply Theorem 2.23(i) to the spinh-map f : X → pt. Then we have

〈ch ξ · 2 cosh
&/

p1 (hX)

2

(
Â(TX), [X]〉 = 〈ch f!ξ, [pt]〉 ∈ Z.

For (ii), apply Theorem 2.23(ii) to the spinh-map f : X → pt ↩→ S4. Then we have

〈ph γ · 2 cosh
&/

p1 (hX)

2

(
Â(TX), [X]〉 = 〈ph f̃!γ, [S4]〉 ∈ 2Z.

The asserted integralities follows from Bott’s theory (see [Hir95]). !

Remark 2.26. These integrality results are first obtained by Mayer [May65] in studying immersions
of manifolds into spin manifolds. They are also used to construct non-spinh 8-manifolds [AM21].

Definition 2.27. Let X be a closed spinh manifold of even dimension. We define its Âh-genus
twisted by a complex vector bundle ξ to be the integer

Âh(X, ξ) := 〈ch ξ · 2 cosh
&/

p1 (hX)

2

(
Â(TX), [X]〉

We define the Âh-genus of X to be the integer

Âh(X) := 〈2 cosh
&/

p1 (hX)

2

(
Â(TX), [X]〉.

Remark 2.28. It follows from Corollary 2.25 that Âh(X) is further an even integer when the dimen-

sion of X is divisible by 8. This is the spinh counterpart of Rokhlin’s theorem.

Example 2.29. Let M be a closed oriented riemannian 4-fold. We furnish M into a spinh manifold
by setting hM = Λ+

M (resp. Λ−
M ) where Λ+

M (resp. Λ−
M ) is the bundle of self-dual (resp. anti-

self-dual) two forms, and denote the resulting spinh manifold by M+ (resp. M−). Then since
p1(Λ

±
M ) = p1(M) ± 2e(M) (see e.g. [Wal04, pp. 195]) where e(M) is the Euler class of M , we can

compute

Âh(M±) = 〈(2 + p1(Λ
±
M )

4
)(1− p1(M)

24
), [M ]〉

= 〈p1(M)

6
± e(M)

2
, [M ]〉

=
1

2
(Sign(M)± χ(M)).

Here Sign(M) and χ(M) are the signature and euler characteristic of M respectively. Therefore, as

long as χ(M) ∕= 0, M± are different spinh manifolds. For instance Âh(HP1
±) = ±1 and Âh(CP2

+) = 2

whence Âh(CP2
−) = −1.

2.5. Characteristic classes of spinh bundles. We calculate the cohomology of (the classifying
space of) the stable spinh group, which serves as an input for applying Adams spectral sequence
to analyze the spinh cobordism groups, especially at prime 2. The cohomology for unstable spinh

groups can be obtained using the beautiful method of [Qui71], however we do not persuit it here.
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To begin with, recall that Spinh is a central extension of SO× SO(3) by Z2, which is classified by
w2 + w′

2 ∈ H2(BSO ×BSO(3);Z2). Therefore we have a pull-back diagram

BSpinh PK(Z2, 2)

BSO ×BSO(3) K(Z2, 2)

π

f

where PK(Z2, 2) → K(Z2, 2) is the path space fiberation, and f is induced by w2+w′
2. Let i2 denote

the generator of H2(K(Z2, 2);Z2) ∼= Z2. It is well known the mod 2 cohomology of K(Z2, 2) is a
polynomial algebra generated by i2 and SqI(i2) where I runs over all multi-indices (2r, 2r−1, . . . , 1).
In other words,

H∗(K(Z2, 2);Z2) ∼= Z2[i2, Sq
1(i2), Sq

2Sq1(i2), . . . , Sq
I(i2), . . . ]

where I = (2r, 2r−1, . . . , 2, 1).

Lemma 2.30. f∗ : H∗(K(Z2, 2);Z2) → H∗(BSO × BSO3;Z2) = Z2[w2, w3, . . . ] ⊗ Z2[w
′
2, w

′
3] is

monic.

Proof. For oriented bundles Sq1w2 = w3. Then inductively using Sqn−1wn = w2n−1+decomposables
(see [Sto68, pp. 291]), we get

Sq0(w2 + w′
2) = w2 + w′

2

Sq1(w2 + w′
2) = w3 + w′

3

SqI(w2 + w′
2) = w2r+1+1 + decomposables (r ≥ 1).

It is clear these are algebraically independent, thus proving f∗ is monic. !

Proposition 2.31. π∗ : H∗(BSO ×BSO(3);Z2) → H∗(BSpinh;Z2) maps the subalgebra

Z2[wi|i ≥ 2, i ∕= 2r+1 + 1, r ≥ 1]

isomorphically onto H∗(BSpinh;Z2).

Proof. Let E∗ denote the Serre spectral sequence for π : BSpinh → BSO × BSO(3) and E′∗ that
of PK(Z2, 2) → K(Z2, 2). The map f induces a map f∗ : E′∗ → E∗ between spectral sequences.
Since E∗ is an H∗(BSO ×BSO(3);Z2)-module, one has an induced spectral sequence map

Z2[wi|i ≥ 2, i ∕= 2r+1 + 1, r ≥ 1]⊗ E′∗ → E∗

by means of f∗ and module multiplication. This is an isomorphism on the second page by the
calculations done in the proof of Lemma 2.30. Therefore by Zeeman’s comparison theorem, this
map is an isomorphism on ∞-page. Therefore the proposition follows from that the path space
PK(Z2, 2) is contractible. !

Remark 2.32. The classes w2r+1+1 are not identically zero, but decomposable in H∗(BSpinh;Z2).
For instance, using Theorem 2.34 below one can prove w9 = w2w7 + w3w6.

Our next step is to apply the Bockstein spectral sequence to recover the 2-local cohomology of
BSpinh, so first of all we must understand the action of Sq1. Recall for oriented bundles Sq1(w2i) =
w2i+1, so Z2[w2i, w2i+1] is a subalgebra invariant under Sq1. However, in the mod 2-cohomology
of BSpinh, the class w2r+1+1 is not an algebraic generator, so we would like to replace w2r+1 by
another indecomposable class of the same degree, i.e. a class of the form (w2r+1 + decomposables),
on which Sq1 vanishes.

The Wu class ν2r+1 is known to be indecomposable (see [Sto68, pp. 315]), we shall verify
Sq1ν2r+1 = 0 in H∗(BSpinh;Z2), therefore ν2r+1 is exactly the class we are looking for.

Proposition 2.33. In H∗(BSpinh;Z2) we have Sq1ν2r+1 = 0 for r ≥ 1.
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Proof. Let w, ν denote the total Stiefel-Whitney class, the total Wu class respectively, and let Sq
denote the total Steenrod square. They are related by Wu’s relation Sq(ν) = w. Suppose U is the
Thom class of the stable normal bundle to the bundle in question, then Sq(U) = w · U where w is
the total Stiefel-Whitney class of the stable normal bundle, satisfying w · w = 1.

Applying Sq to ν · U and using Cartan’s formula we get

Sq(ν · U) = Sq(ν) · Sq(U) = w · w · U = U.

Then since χ(Sq) is the inverse to Sq, where χ is the canonical involution of the Steenrod algebra,
we get ν · U = χ(Sq)U .

Now from Adem’s relation Sq2Sq4k−1 = Sq4kSq1 we obtain

(Sq1ν4k) · U = Sq1(ν4kU) = Sq1χ(Sq4k)U = χ(Sq1)χ(Sq4k)U

= χ(Sq4kSq1)U = χ(Sq2Sq4k−1)U = χ(Sq4k−1)χ(Sq2)U

= χ(Sq4k−1)Sq2U = χ(Sq4k−1)(w2U).

Here we used Sq1U = 0 and w2 = w2 since the bundles in question are orientable. Next we note
from [Dav74]

χ(Sq2
r+1−1) = Sq2

r

Sq2
r−1

· · ·Sq2Sq1,
therefore

Sq1ν2r+1 · U = χ(Sq2
r+1−1)(w2U)

= Sq2
r

Sq2
r−1

· · ·Sq2Sq1(w2U)

= Sq2
r

Sq2
r−1

· · ·Sq4(Sq1ν4 · U).

By Thom isomorphism, we are reduced to proving Sq1ν4 = 0. For oriented bundles, ν4 = w4+w2
2

and thus Sq1ν4 = Sq1w4 = w5. But the integral fifth Stiefel-Whitney class vanishes for spinh

bundles [AM21, Corollary 2.5], so its mod 2 reduction w5 must also vanish for spinh bundles. This
completes the proof. !

We now obtain a better description of the mod 2 cohomology of BSpinh.

Theorem 2.34. π∗ : H∗(BSO×BSO(3);Z2) → H∗(BSpinh;Z2) is epic, with kernel generated by
w2 + w′

2, w3 + w′
3, and Sq1ν2r+1 for all r ≥ 1. In particular, π∗ induces an isomorphism

H∗(BSpinh;Z2) ∼= H∗(BSO;Z2)/(Sq
1ν2r+1 , r ≥ 1).

Corollary 2.35. H(H∗(BSpinh;Z2), Sq
1) ∼= Z2[w

2
2, w

2
2k, ν2r+1 |k ∕= 2j , r ≥ 1].

Proof. From the above theorem, the mod 2 cohomology of BSpinh is isomorphic to

Z2[w2, Sq
1w2;w2k, Sq

1w2k; ν2r+1 |k ∕= 2j , r ≥ 1]

whose cohomology with respect to Sq1 can now be easily obtained by applying Kunneth theorem.
The result clearly is as claimed. !
Corollary 2.36. All torsion in H∗(BSpinh;Z) has order 2.

Proof. Since H(H∗(BSpinh;Z2), Sq
1) is concentrated in even degrees, all higher Bocksteins vanish,

hence by Bockstein spectral sequence all 2-primary torsion of H∗(BSpinh;Z) has order 2. At odd
primes, namely with 2 inverted, H∗(BSpinh;Z[ 12 ]) ∼= H∗(BSO×BSO(3);Z[ 12 ]) is torsion-free. The
statement thus follows. !

At this point, we have a rather complete description of the characteristic classes for spinh vector
bundles. Putting torsion aside, the integral characteristic classes are the Pontryagin classes for the
bundle in question together with the first Pontryagin class for the canonical bundle associated to
the spinh structure. The mod 2 characteristic classes are the Stiefel-Whitney classes for the bundle
subject to universal relations generated by Sq1ν2r+1 = 0 for r ≥ 1. Certain mod 2 classes admit
integral lifts. The square of the even Stiefel-Whitney classes are lifted to the Pontryagin classes.
The odd Stiefel-Whitney classes are lifted to their integral counterpart. Finally the Wu classes in
degrees power of two (except for ν2) all have integral lifts.
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3. Spinh Dirac index

3.1. Dirac operator. Let X be a closed spinh manifold of dimension n with canonical bundle
hX . We choose, once and for all, a riemannian connection on PSO(hX). Then PSpinh(TX) admits
a natural connection inherited from the Levi-Civita connection on PSO(TX) and the riemannian
connection on PSO(hX). Suppose S is a hspinor bundle of TX, i.e. S is a bundle of the form
PSpinh(TX)×µV for some Cln,H-module V . Then S is a bundle of ClH(X)-module, and consequently

a bundle of Cl(X)-module. Moreover, S is equipped with a connection∇S induced from PSpinh(TX).
As usual we define the Dirac operator D : Γ(S) → Γ(S) to be the first order elliptic differential
operator

D :=

n"

i=1

ei ·∇S
ei

where {ei}ni=1 is a local orthonormal frame of X, and · means Clifford multiplication.
If S = S0⊕S1 is a Z2-graded one, then D clearly interchanges the two factors. Written in matrix

form

D =

0
0 D1

D0 0

1

where D0 : Γ(S0) → Γ(S1) and D1 : Γ(S1) → Γ(S0). Of course as usual the Dirac operator is
formally self-adjoint, namely (D0)∗ = D1 and (D1)∗ = D0. In particular kerD1 = cokerD0.

Recall all hspinor bundles are direct sums of the fundamental ones.

Definition 3.1. Let X be a closed spinh manifold of dimension n. We define its fundamental
Z2-graded real hspinor bundle to be

/SH(X) :=

2
34

35

/SH(TX) if n ∕= 0 mod 4

/S
+
H (TX) if n ≡ 0 mod 8

/S
−
H (TX) if n ≡ 4 mod 8

and denote the corresponding Dirac operator to be /DH,X . Similarly we define its fundamental

Z2-graded complex hspinor bundle to be

/SC2(X) :=

!
/SC2(TX) if n odd

/S
+
C2(TX) if n even

and denote the corresponding Dirac operator to be /DC2,X .

Theorem 3.2. Let X be a closed spinh manifold of dimension 2n and ξ a complex vector bundle
over X. Then

ind( /D
0
X,ξ) = Âh(X, ξ)

where /DX,ξ is the Dirac operator on /SC2(X)⊗C ξ. In particular ind( /D
0
C2,X) = Âh(X).

Proof. This follows from Atiyah-Singer index theorem. Let x1, . . . , xn be virtual Chern roots of X
then from Atiyah-Singer index theorem we have

ind( /D
0
X,ξ) =

67
ch

7
/S
0
C2 (X)

8
− ch

7
/S
1
C2(X)

88
· ch ξ ·

n9

i=1

xi

1− e−xi
· 1

1− exi
, [X]

:
.

Meanwhile from Proposition 2.20 we have

ch
7
/S
0
C2 (X)

8
− ch

7
/S
1
C2(X)

8
= (−1)n2 cosh

&/
p1 (hX)

2

(
n9

i=1

xi ·
sinh(xi/2)

xi/2
.

The theorem now follows from a straightforward computation. !
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3.2. Clk,H-linear operator.

Definition 3.3. By a Clk,H-Dirac bundle over a riemannian manifold X we mean a real Dirac
bundle S over X, together with a left action Clk,H → Aut(S) which is parallel and commutes with
the multiplication by elements of Cl(X).

Definition 3.4. A Clk,H-Dirac bundle is S is said to be Z2-graded if it carries a Z2-grading S =
S0 ⊕S1 as a Dirac bundle, which is simultaneously a Z2-grading for the Clk,H-action, that is

Clαk,H ·Sβ ⊆ Sα+β

for all α,β ∈ Z2.

Any Clk,H-Dirac bundle S has a canonically associated Dirac operator D, which commutes with
the Clk,H-action. If S is Z2-graded, then D is decomposed as

D =

0
0 D1

D0 0

1

where D0 : Γ(S0) → Γ(S1) and D1 : Γ(S1) → Γ(S0). Then

kerD = kerD0 ⊕ kerD1

is a Z2-graded Clk,H-module.

Definition 3.5. Let S be a Z2-graded Clk,H-Dirac bundle over a closed manifold. The analytic
index of the Dirac operator D of S is the residue class

indh(D) = [kerD] ∈ N̂H
k
∼= KSp−k(pt).

Example 3.6 (Clk,H-ification). Let S be any ordinary real Z2-graded Dirac bundle over a closed
manifold X, and let D be its Dirac operator. We now consider an irreducible Z2-graded module V
over Clk,H, and take the tensor product

S = S⊗̂RV

where V is considered as the trivialized bundle V ×X → X. This bundle is naturally a Z2-graded
Clk,H-Dirac bundle. The associated Dirac operator D on S is simply D⊗̂IdV . Consequently we have
that

kerD = (kerD)⊗̂V

and in particular kerD0 = (kerD0 ⊗ V 0)⊕ (kerD1 ⊗ V 1). To determine the residue class [kerD] in

N̂k,H = M̂k,H/i
∗M̂k+1,H we recall the isomorphism M̂k,H

∼=−→ Mk−1,H by taking the degree zero part.
Since V 0⊕V 1 is a Clk,H-module, we have [V 0]+ [V 1] = 0 in Mk−1,H/i

∗Mk,H. So in Mk−1,H/i
∗Mk,H

[kerD0] = (dimR kerD0 − dimR kerD1)[V ] = (indD0) · [V ].

Now that [V ] generates N̂H
k , we conclude

[kerD] =

2
34

35

indD0 if k ≡ 0 mod 4

indD0 mod 2 if k ≡ 5, 6 mod 8

0 otherwise

Example 3.7 (The fundamental case). Let X be a closed spinh manifold of dimension n. Consider
the hspinor bundle

/S(X) := PSpinh(X)×l Cln,H

whose Dirac operator is denoted by /D, where Spinh(n) ⊂ Cl×n,H acts on Cln,H through the left

multiplication. We remark the principle symbol of /D is σξ( /D) = iξ where tangent vectors ξ act by
left Clifford multiplication. Clearly /S(X) admits a right Cln,H-action that commutes with /D, we
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can turn this into a left one by means of the transpose. This way, /S(X) is a Cln,H-Dirac bundle,
and it follows from Proposition 1.27 that

/S(X) ∼=

2
3334

3335

/SH(X)⊗R ∆n,H if n ≡ 4 mod 8

/SH(X)⊗C ∆n,H if n ≡ 5 mod 8

/SH(X)⊗H ∆n,H if n ≡ 6 mod 8
1
2
/SC2(X)⊗C ∆n,C2 if n ≡ 0 mod 8

Note that the tilde’s are removed for we have turned right Cln,H-actions into left ones. Also we
remark that for n ≡ 6 mod 8, the tensor ⊗H is equating the right H-multiplication on /SH(X) with
the right H-multiplication on ∆n,H.

From here we can extract the analytic index of /D as follows.

For n = 8k + 4, this is exactly the case of Example 3.6 hence indh8k+4( /D) = ind( /D
0
H,X). Now

note that εCR : N̂H
8k+4 → N̂C2

8k+4 is an isomorphism and ε(∆8k+4,H) = ∆8k+4,C2 , we see ind( /D
0
H,X) =

ind( /D
0
C2,X) = Âh(X). So we have

indh8k+4( /D) = Âh(X).

For n = 8k + 5, the situation is similar to Example 3.6, we analogously have

ker /D = ker /DH,X⊗̂C∆8k+5,H.

Note that the volume element ω8k+5 ∈ Cl8k+5,H is central satisfying ω2
8k+5,H = −1. Thus ω8k+5

generates a subalgebra isomorphic to C, and consequently Cl8k+5,H = Cl08k+5,H ⊕ω8k+5 Cl8k+5,H ∼=
Cl08k+5,H ⊗RC. Similarly for any Z2-graded module V of Cl8k+5,H, we have V ∼= V 0 ⊕ ω8k+5V

0 ∼=
V 0 ⊗R C. It follows that ker /DH,X

∼= ker /D
0
H,X ⊗R C and ∆8k+5,H ∼= ∆0

8k+5,H ⊗R C. So we have

ker /D = ker /DH,X⊗̂C∆8k+5,H

∼= (ker /D
0
H,X ⊗R C)⊗̂C(∆

0
8k+5,H ⊗R C)

∼= (ker /D
0
H,X ⊗R ∆0

8k+5,H)⊗R C
∼= ker /D

0
H,X ⊗R ∆8k+5,H.

One easily checks the Z2-grading on ker /D coincides with the one inherited from ∆8k+5,H. Therefore
we conclude

indh8k+5( /D) = dimR ker /D
0
H,X = dimC ker /DH,X (mod 2).

There is a strong analogy in dimensions n = 8k + 6. The volume element ω8k+6 generates a
subalgebra Cω of Cl08k+6,H that is isomorphic to C; moreover ω together with e = e8k+6 generate a

subalgebra Hω,e of Cl8k+6,H that is isomorphic to H. Then we have Cl8k+6,H ∼= Cl08k+6,H ⊗CωHω,e.
Such structure is carried on by its modules as well. Then the same analysis as in the 8k + 5 case
proves

ker /D ∼= ker /D
0
H,X ⊗C ∆8k+6,H

and consequently

indh8k+6( /D) = dimC ker /D
0
H,X = dimH ker /DH,X (mod 2).

Finally for n = 8k, recall the forgetful morphism ε : N̂C2

8k → N̂H
8k is an isomorphism, and ∆8k,C2

generates N̂C2

8k . The argument of Example 3.6 extended to the complex case yields

indh8k( /D) =
1

2
ind( /D

0
C2,X) =

1

2
Âh(X).

In particular Âh(X) is an even integer in the case n = 8k. Of course this also follows from our
Riemann-Roch theorem.

Definition 3.8. We define the Clifford index of a closed spinh manifold X of dimension n twisted by
a real vector bundle γ, denoted by Âh(X, γ), to be the index of the Cln,H-Dirac bundle /S(X)⊗R γ.

If γ is the trivial line bundle R, then we simply call Âh(X,R) =: Âh(X) the Clifford index of X.
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We have proved the following.

Theorem 3.9. Let X be a closed spinh manifold of dimension n. When n ≡ 5 or 6 mod 8, let
H = ker /DH,X denote the space of harmonic hspinors, that is, the kernel of the Dirac operator on

the Z2-graded fundamental real hspinor bundle of X. Then

(12) Âh(X) =

2
3334

3335

Âh(X)/2 if n ≡ 0 mod 8

Âh(X) if n ≡ 4 mod 8

dimC H (mod 2) if n ≡ 5 mod 8

dimH H (mod 2) if n ≡ 6 mod 8

The same argument goes through with /S(X) replaced by /S(X)⊗R γ, so we have:

Theorem 3.10. Let X be a closed spinh manifold of dimension n and γ a real vector bundle over
X whose complexification is denoted by γC. When n ≡ 5 or 6 mod 8, let Hγ = ker( /DH,X ⊗ Idγ)

denote the space of harmonic hspinors in γ, that is, the kernel of the Dirac operator on the Z2-graded
fundamental real hspinor bundle of X twisted by γ. Then

(13) Âh(X, γ) =

2
3334

3335

Âh(X, γC)/2 if n ≡ 0 mod 8

Âh(X, γC) if n ≡ 4 mod 8

dimC Hγ (mod 2) if n ≡ 5 mod 8

dimH Hγ (mod 2) if n ≡ 6 mod 8

!

It is easy to see Âh(X) is a spinh cobordism invariant using Chern-Weil theory and Stokes
theorem. As for the Z2-valued invariants, it appears they rely on a prior choice of the connection on
the canonical bundle, however we will show the Clifford index Âh in all dimensions, including the
more refined 2-torsion part, is a spinh cobordism invariant. This will be achieved by identifying Âh

with the analytic index of certain family of quaternionic elliptic operators.

3.3. Index of a family of quaternionic operators. Recall that a complex vector bundle E is
said to be quaternionic if E is equipped with a real vector bundle automorphism j : E → E which is
C-antilinear in each fiber and j2 = −1. The space of sections Γ(E) is equipped with a quaternionic
structure given by j∗.

Suppose now E,F are quaternionic vector bundles over a closed manifold X and P : Γ(E) →
Γ(F ) is an elliptic differential operator. We say P is quaternionic if Pj∗E = j∗FP . In local terms,

P =
$

Aα(x)∂|α|/∂xα plus lower order terms, where the Aα’s are complex-matrix-valued functions
with AαjE = jFA

α. The principal symbol σξ(P ) =
$

Aα(x)(
√
−1ξ)α of P thus satisfies

(14) σξ(P )jE = jFσ−ξ(P )

for any tangent vector ξ of X. The symbol class of a quaternionic elliptic differential operator
therefore lands in KQ-theory.

Definition 3.11. Given a closed manifold X, consider the tangent bundle π : TX → X to be
equipped with the canonical involution f : TX → TX defined by f(e) = −e, i.e. the fiberwise
antipodal map. Given any quaternionic vector bundle (E, j) over X, π∗E is in a natural way a
Quaternionic bundle over the real space (TX, f) by setting J : π∗E → π∗E to be

J(x, ξ, e) = (x,−ξ, j(e)).

Suppose now E,F are quaternionic vector bundles overX, then for any quaternionic elliptic operator
P : Γ(E) → Γ(F ), the Quaternionic symbol class of P is defined to be the element

[π∗E,π∗F ;σ(P )] ∈ KQcpt(TX).

Note (14) says σ(P ) is an isomorphism of Quaternionic bundles outside the zero section of TX.

To define the topological index of a quaternionic elliptic operator, we need a version of Thom
isomorphism for KQ-theory which is explained in the Appendix.
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Theorem 3.12 (Atiyah, Dupont). Let E be a Real bundle over the locally compact real space X.
Then multiplication by λE induces isomorphisms

KRcpt(X)
∼=−→ KRcpt(E)

KQcpt(X)
∼=−→ KQcpt(E)

where λE ∈ KRcpt(E) is defined by the exterior algebra of E.

Remark 3.13. Locally these Thom isomorphisms are compositions of (1,1)-periodicities.

Now we can define the topological index of a quaternionic elliptic operator P as follows. We
first choose an embedding f : X ↩→ Rm. The associated embedding TX ↩→ TRm is compatible
with involutions, i.e. is a mapping of real spaces. If N is the normal bundle to X in Rm, then
π∗N ⊕ π∗N ∼= π∗N ⊗C is the normal bundle to TX in TRm. We consider this to be a Real bundle
over TX (with complex conjugation as its involution). Then similar to the construction in our
Riemann-Roch theorem, we can define a map

(15) f! : KQcpt(TX) → KQcpt(TRm)

by composing the Thom isomorphism with the map induced by the inclusion of the normal bundle
as a tubular neighborhood of TX in TRm. This inclusion can be easily chosen to be compatible with
involutions. We now identify TRm = Rm,m = Cm, then KQcpt(TRm) ∼= KQn,n(pt) ∼= KQ0,0(pt) ∼=
Z. Therefore we can define the topological index of P to be the integer f!(σ(P )).

As usual, the fact that the topological index is independent of our choice of the embedding follows
from the multiplicative property of the KR-Thom class for Real bundles.

The discussion of symbol class and topological index naturally extends to families of quaternionic
operators.

Definition 3.14. Let P be a family of quaternionic elliptic operators on a closed manifold X
parametrized by a compact Hausdorff space A. Let X → A denote the underlying family of manifolds,
and let σ(P ) ∈ KQcpt(TX) be the symbol class of the family. The topological index of the family P
is defined to be the element

t-ind(P ) = q!f!σ(P ) ∈ KQcpt(A) ∼= KSpcpt(A)

where f! : KQcpt(TX) → KQcpt(A× TRm) is constructed similar to (15) and q! : KQcpt(A× Cn) →
KQcpt(A) is the natural isomorphism given by the Thom isomorphism.

The forgetful morphism KSpcpt(A) → KUcpt(A) is not always injective, so the index we just
defined is more refined than the usual index of P as a family of complex operators.

One can of course define the analytic index for such a family P of quaternionic elliptic operators
by setting

a-ind(P ) = [kerP ]− [cokerP ] ∈ KSp(A).

To be more precise, if the dimensions of kerPa and cokerPa are constant for a ∈ A, then kerP
and cokerP define two quaternionic bundles over A. In this case, a-ind(P ) is defined to be the
difference class [kerP ] − [cokerP ]. In general, kerPa and cokerPa are not constant dimensional,
then we must first “stabilize” the situation as Atiyah and Singer did in the complex case in [AS71a];
we suffice to note the treatment in [AS71a, sec.2] can be easily made to respect the quaternionic
structures.

The analytic index, of course, coincides with the topological index.

Theorem 3.15. Let P be a family of quaternionic elliptic operators on a closed manifold parametrized
by a compact Hausdorff space A. Then

a-ind(P ) = t-ind(P ).

The proof of this quaternionic version of the index theorem proceeds just as in the case of real
and complex families [AS71a, AS71b]. Given that the proof for real and complex cases has become
a common knowledge, we will not attempt to duplicate the proof for the quaternionic case here.
Instead, we will point out the key places where changes must be made to adapt the argument for
real and complex families to quaternionic families.
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Recall that such index theorem for families essentially relies on checking the following three
axioms.

Lemma 3.16. The analytic index

a-ind : KQcpt(TX) → KQ(A)

is a homomorphism of KR(A)-modules, which in the special case X = A = pt is the identity map.

Lemma 3.17 (Excision). Let X → A and X′ → A be two families over A with compact fibers
X,X ′ respectively and let f : O ↩→ X, f ′ : O′ ↩→ X′ be inclusions of open sets, with a smooth
equivalence O ∼= O′ compatible with the maps to A. Then, identifying O′ with O, the following
diagram commutes:

KQcpt(TX)

KQcpt(TO) KQ(A)

KQcpt(TX
′)

a-indf!

f ′
!

a-ind

Lemma 3.18 (Multiplicativity). Let E → X be a family of oriented smooth vector bundles of rank
n, and let S = S(E ⊕ R) be the family of n-sphere bundle compactified from E . Then the following
diagram commutes:

KQcpt(TX) KQcpt(TS)

KQ(A)

i!

a-ind a-ind

where i! is multiplication by the fundamental equivariant symbol b ∈ KRSOn
(TSn)cpt (cf. [AS71b]).

The argument of [AS71a, AS71b] for the excision and multiplicative properties goes through easily
in the quaternionic case, only Lemma 3.16 requires special attention. There are several implicit facts
hidden in our statement of Lemma 3.16. First the analytic index depends only on the homotopy class
of the symbol class, which is a consequence of [Mat71, Main Theorem III]. Second, every element
in KQcpt(TX) can be represented by some symbol class. And finally the homomorphism a-ind is
well-defined, i.e it does not depend on the choice of symbol-class-representatives. The second and
the last points can be proved no differently from the real and complex cases.

3.4. Topological formula of Clk,H-index. Assume E is a Z2-graded Clk,H-bundle over a closed
riemannian manifold X. Further assume E carries a bundle metric for which the Clifford multiplica-
tion by unit vectors in Rk is orthogonal and the multiplication by unit quaternions is orthogonal. Let
P : Γ(E) → Γ(E) be an elliptic self-adjoint operator and assume P is Clk,H-linear and Z2-graded.

Recall we defined the index indh(P ) ∈ KSp−k(pt) in terms of the Clk,H-module kerP . We shall now
give a topological formula for this index.

Since P and (1 + P ∗P )−1/2P have the same kernel, we may assume P has degree zero. With
respect to the splitting E = E0 ⊕ E1, P can be written as

P =

0
0 P 1

P 0 0

1

where P 1 = (P 0)∗. Now we construct a family P of quaternionic elliptic operators parametrized
by Rk by assigning to each v ∈ Rk the operator

P0
v : Γ(E0) → Γ(E1)

defined by the restriction to E0 of the operator

Pv := v + P
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where “v” denotes Clifford multiplication by v. Since both Clifford multiplication and P are H-
linear, so is P. Also since P commutes with Clifford multiplication, there is a “conjugate” family
Pv = v − P satisfying

PvPv = PvPv = −(‖v‖2 + P 2).

Therefore P0
v is invertible for all v ∕= 0. Since the invertible H-linear operators on quaternionic

Hilbert spaces form a contractible set (see [Seg69], [Mat71]), we could pass to a family parametrized
by Sk, however the calculation will be more illustrating if we treat P0 as a family with “compact
support”, whose index lies in KSpcpt(Rk) ∼= KSp−k(pt).

Theorem 3.19. Let P be an elliptic self-adjoint Z2-graded Clk,H-operator on a closed manifold X.
Then

indh(P ) = a-ind(P0).

Proof. Set K0 = kerP 0 ⊂ Γ(E0) and K1 = kerP 1 ∼= coker(P 0) ⊂ Γ(E1). Then K0,K1 are finite
dimensional H-subspaces of Γ(E0) and Γ(E1) respectively. By assumption the quaternionic structure
on E is compatible with the its bundle metric, so there are L2-orthogonal compliments V 0, V 1 to
K0,K1 respectively. Then the family P0

v decomposes as a direct sum of two operators: the first

summand V 0 P0
v−−→ V 1 is an H-isomorphism for all v ∈ Rk, thus can be ignored for the purpose of

computing the index; whilst the second summand is just K0 P0
v=v−−−−→ K1 which is independent of

variables on X. Therefore the analytic index of P0 is

a-ind(P) = [K0,K1; v] ∈ KSpcpt(Rk) ∼= KSp−k(pt).

Under the isomorphism KSp−k(pt) ∼= N̂H
k , this corresponds exactly to the element represented by

kerP = K0 ⊕K1, i.e. it corresponds exactly to indh(P ). !
In view of Theorem 3.15, a-ind(P0) = t-ind(P0). So Theorem 3.19 can be applied to give a

topological formula for the Clifford index of spinh manifolds.

3.5. Cobordism invariance of Clifford index. Let X be a closed spinh manifold of dimension
n. Recall X carries a canonical Cln,H-Dirac bundle /S(X) := PSpinh(X)×lCln,H with Dirac operator

/D. Then by Theorem 3.19, the Clifford index of X, i.e. indh( /D), coincides with the index of the

family /D
0
defined by setting

/D
0
v,x = v + /D

0
x.

To compute the topological index of this family, we must understand its symbol class σ(D0) ∈
KQcpt(Rn × TX). For this we note Rn × TX → X is a Real bundle over X whose fibre at x ∈ X

is Rn × TxX with involution (v, ξ) *→ (v,−ξ). The fibre of the bundle /S(X) at x ∈ X is the
Clifford algebra ClH(TxX) ∼= Cln,H. Tangent vectors ξ ∈ TxX act by right Clifford multiplication

and vectors v ∈ Rn act by left multiplication. The principle symbol of /D
0
is the map σ(D0) :

Γ(π∗ /S
0
) → Γ(π∗ /S

1
) defined by

σv,ξ( /D
0
) = v + iξ = Rv + iLξ

where L,R stand for left and right Clifford multiplications respectively. When restricted to any fibre
Rn × TxX ∼= Rn,n ∼= Cn the symbol class becomes

[Cl0n,H,Cl
1
n,H;Rv + iLξ] ∈ KQcpt(Cn).

We claim this is a generator for KQcpt(Cn) ∼= Z. Indeed when n = 0, Cl0,H = Cl00,H = H and our

claim trivially holds. For n ≥ 1, since [Cl0n,Cl
1
n;Rv + iLξ] ∈ KRcpt(Cn) generates KRcpt(Cn) (see

[LM89, Prop. 10.2]), by (1,1)-periodicity

[Cl0n,H,Cl
1
n,H;Rv + iLξ] = [Cl0n ⊗CH,Cl1n ⊗CH;Rv + iLξ]

generates KQcpt(Cn) as claimed.
Before we proceed, let us make an easy but useful observation. Consider the bundle PSpinh(X) ×r

Cln,H where r : Spinh(X) → Aut(Cln,H) is the transpose of right Clifford multiplication. Through

the transpose isomorphism Cln,H ∼= Clopn,H, l and r are equivalent real representations of Spinh(n).
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Therefore we have a bundle isomorphism /S(X) ∼= PSpinh(X)×r Cln,H under which the symbol class
becomes

σ(D0) = [π∗ /S
0
,π∗ /S

1
;Lv + iRξ].

Now choose a smooth embedding f : X ↩→ Rn+8k+4 and let N denote its normal bundle, which
we identify with the tubular neighborhood of X. This induces an embedding TX ↩→ TRn+8k+4 ∼=
Cn+8k+4 of real spaces with normal bundle TN ∼= π∗

XN ⊕ π∗
XN ∼= π∗

XN ⊗R C where πX : TX → X
is the projection. Then we get the following commutative diagram of bundle maps:

TX π∗
XN ⊗ C

X N

πX

p̄

πN

p

The vertical maps are Real bundles. By taking zero sections, we obtain a diagram of embeddings

X N Rn+8k+4

TX π∗
XN ⊗ C Cn+8k+4

j

iX

k

iN iR

j̄ k̄

We would like to show the following induced diagram commutes:

KR(X) KRcpt(N) KRcpt(Rn+8k+4)

KQcpt(Rn × TX) KQcpt(Rn × (π∗
XN ⊗ C)) KQcpt(Rn × Cn+8k+4)

j!

(iX)!

k!

(iN )! (iR)!

j̄! k̄!

We must explain the definition of each morphism. Staring from the first row, since X,N,Rn+8k+4

carry trivial involutions, KR-groups of these spaces coincide with their KO-groups. With this
understood, j! is the Thom homomorphism induced by the weak KO-Thom class of N , and k!
is the restriction map. The second row is similar, j̄! is the Thom isomorphism induced by the Real
bundle π∗N ⊗ C and k̄! is the restriction map.

The vertical maps are more complicated. (iX)! is the map induced by multiplying the symbol
class σ(D0). To define (iN )!, we note since π∗

XN ⊗C ∼= TN ∼= p∗TX ⊕ p∗N and w2(TX) = w2(N),
the bundle TN → N has structure group

G = Spin(n)× Spin(8k + 4)/Z2

where Z2 is the diagonal {(1, 1), (−1,−1)}. The group G acts on Cln ⊗R #∆8k+4,H via ρ = (r, r),

that is Spin(n) (resp. Spin(8k + 4)) acts on Cln (resp. #∆8k+4,H) through the transpose of right
Clifford multiplication. It is easy to see ρ is a well-defined representation of G: the two factorwise
defined actions commute and descends to a G-representation. Therefore, we obtain a Z2-graded
vector bundle over N :

E = PG(TN)×ρ (Cln ⊗R #∆8k+4,H)

This bundle carries a natural right quaternionic structure inherited from the right H-module struc-

ture on #∆8k+4,H, which we turn into a left one by conjugation. So E is a Z2-graded Q-bundle over
N , and thus pulls back by πN to a Q-bundle on TN . Define (iN )! to be the homomorphism induced
by multiplication with

[π∗
NE0,π∗

NE1;Lv + iRξ] ∈ KQcpt(Rn × TN)

where Lv and Rξ stands for the left Clifford multiplication by Rn and the right Clifford multiplication
by ξ ∈ TN . We similarly define (iR)! using that the structure group of the bundle Cn+8k+4 ∼=
TRn+8k+4 → Rn+8k+4 can be reduced to Spin(n)×Spin(8k+4)/Z2. It clearly follows that k̄!(iN )! =
(iR)!k!.

We now show j̄!(iX)! = (iN )!j!. To elaborate, we replace the name of each morphism by the
Z2-graded bundle inducing it:



QUATERNIONIC CLIFFORD MODULES, SPINh MANIFOLDS AND SYMPLECTIC K-THEORY 35

KR(X) KRcpt(N)

KQcpt(Rn × TX) KQcpt(Rn × (π∗N ⊗ C))

/SH(N)⊗C

S(X) E

Cl(N)

The commutativity of this diagram follows from two facts. First, there is a Z2-graded Q-bundle
isomorphism over N :

p∗S(X)⊗R p∗ Cl(N) ∼= E ⊗R p∗/SH(N).

Indeed both bundles correspond to the Z2-graded representation (r,Ad, r)

Cln,H ⊗R Cl8k+4
∼= Cln ⊗R Cl8k+4,H ∼= Cln ⊗R∆8k+4,H ⊗R #∆8k+4,H

of the group

Spin(n)× Spin(8k + 4)× Sp(1)/{(1, 1, 1), (−1,−1,−1)}
where Spin(n) acts through the transpose of right Clifford multiplication on Cln, Spin(8k + 4)
acts through adjoint representation on Cl8k+4 and Sp(1) acts by conjugate of right multiplication.
Second, keeping track of the isomorphisms (away from zero section) between even and odd parts of
these bundles, the “free” Rn always acts from the left and the tangent vectors acts from the right.

Finally, we assert:

Proposition 3.20. (iR)! : KRcpt(Rn+8k+4) → KQcpt(Rn × Cn+8k+4) is an isomorphism.

Proof. Under the isomorphisms

KRcpt(Rn+8k+4) ∼= N̂R
n+8k+4,0

and

KQcpt(Rn × Cn+8k+4) ∼= N̂H
2n+8k+4,n+8k+4,

(iR)! is identified with multiplication by

Cln ⊗̂R #∆8k+4,H ∈ N̂H
n,n+8k+4

where (x, y, z) ∈ Rn × Rn × R8k+4 acts by Lx + (−1)αRy + (−1)αRz. By (1,1)-periodicity, this
element simply corresponds to

#∆8k+4,H ∈ N̂H
0,8k+4.

The proposition then follows from the algebraic lemma below. !

Lemma 3.21. #∆8k+4,H generates N̂H
0,8k+4 and N̂R

∗,0 ⊗ N̂H
0,8k+4

⊗̂−→ N̂H
∗,8k+4 is an isomorphism.

Proof. We first observe that there is a Z2-graded isomorphism of real algebras Cl0,8k+4
∼= Cl8k+4,0.

Consider the linear map f : R8k+4 → Cl8k+4,0 defined on the standard orthonormal basis {ei : 1 ≤
i ≤ 8k + 4} by

f(ei) = eiω8k+4.

It is easy to verify f(ei)
2 = 1 and f(ei)f(ej) + f(ej)f(ei) = 0 for all i, j. Therefore f extends to

an algebra map f : Cl0,8k+4 → Cl8k+4,0. We note f preserves the Z2-grading and it maps onto a
set of generator. Now since the two algebras in question have the same dimension, we conclude f is
an isomorphism of Z2-graded algebras. By Z2-graded tensoring with Cl∗,0, f induces isomorphisms

Cl∗+8k+4,0
∼= Cl∗,8k+4 for all ∗ ≥ 0. It follows that N̂H

0,8k+4
∼= N̂H

8k+4,0
∼= Z.

We claim #∆8k+4,H generates N̂H
0,8k+4. Indeed since Cl0,8k+4

∼= Cl8k+4,0, the dimensions of irre-

ducible H-modules of these two algebras must be the same, so by a dimension count #∆8k+4,H is the

unique (up to equivalence) irreducible H-module for Cl0,8k+4. Finally the fact that N̂R
∗,0⊗N̂H

∗,8k+4
⊗̂−→

N̂H
∗,8k+4 is an isomorphism now follows from the isomorphism

N̂R
∗,0 ⊗ N̂H

8k+4,0
⊗̂−→ N̂H

∗+8k+4,0

which is a consequence of 8-fold periodicity and Proposition 1.23.
!
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To summarize, we have identified the index of /D
0
with q!k!j!(1) where q! : KOcpt(Rn+8k+4) ∼=

KSp−n(pt) is the periodicity isomorphism.

Theorem 3.22. Let X be a spinh manifold of dimension n. Let f : X ↩→ Rn+8k+4 be a smooth
embedding. Denote by f! : KO(X) → KOcpt(Rn+8k+4) the composition of the Thom homomor-

phism and the restriction map, and denote by q! : KOcpt(Rn+8k+4) ∼= KSp−n(pt) the periodicity
isomorphism. Then

Âh(X) = q!f!(1) ∈ KSp−n(pt).

In particular, Âh is a spinh-cobordism invariant.

Proof. Since Âh does not depend on the choice of the embedding f , we may choose k to be
large enough. The classifying map of the normal bundle to X in Rn+8k+4, by Pontryagin-Thom
construction, induces a map Sn+8k+4 → MSpinh(8k + 4). The universal weak KO-Thom class

Θ8k+4 ∈ %KO(MSpin(8k + 4)) corresponds to a map MSpinh(8k + 4) → BO. From definition
q!f!(1) is exactly the homotopy class of the composition

Sn+8k+4 → MSpinh(8k + 4) → BO.

Now if X bounds a spinh manifold (with the restricted spinh structure), then the homotopy class of
Sn+8k+4 → MSpinh(8k + 4) is trivial by a standard Pontryagin-Thom argument. This proves the
cobordism invariance. !

In fact the spinh-cobordism invariance of Âh follows quickly from that when X bounds a spinh

manifold (in a spinh fashion), the symbol class of /D
0
is trivial since the Clifford multiplications

extend over to the zero section. The proof we present here is more complicated, but has its own
benefit. To elaborate, we assume for the moment the reader is familiar with generalized homology
theories and the language of spectra (see e.g. [Whi62]).

The map induced by the weak-KO-Thom class

Θ8k+4 : MSpinh(8k + 4) → BO ⊂ BO × Z

assembles into a spectrum map from the Thom spectrum of spinh cobordism to the Ω-spectrum of
the symplectic K-theory. This is a consequence of the following commutative square

S8 ∧MSpinh(8k + 4) MSpinh(8k + 12)

S8 ∧ (BO × Z) BO × Z

id∧Θ8k+4 Θ8k+12

Bott

where the top map is induced by the bundle R8 ⊕ E8k+4 and the bottom map is the Bott pe-

riodicity map. The commutativity follows from that ΞR8 ∈ %KO(S8) is the Bott generator and
the multiplicative property Proposition 2.19. Thus we obtain a natural transformation from spinh

cobordism theory to symplectic K-theory. From this point of view, Âh is simply the evaluation of
this natural transformation at a point. Further, using the multiplicative property of the weak-KO-
Thom class, one can show Âh : MSpinh → KSp is a module map over the ring homomorphism
Â : MSpin → KO where Â is the well-known spin-orientation of KO, defined using the KO-Thom
class for spin vector bundles. Indeed, the following square commutes:

MSpin(8l) ∧MSpinh(8k + 4) MSpinh(8l + 8k + 4)

(BO × Z) ∧ (BO × Z) (BO × Z)

Ξ8l∧Θ8k+4 Θ8l+8k+4

⊠

where Ξ8l ∈ %KO(MSpin(8l)) is the universal KO-Thom class of Spin(8l)-bundles and the top map
is induced by the bundle F8l ⊕ E8k+4.

A non-trivial consequence is the following:

Theorem 3.23. Âh : Ωspinh

∗ (pt) → KSp−∗(pt) is epic. In particular Ωspinh

n ∕= 0 for n ≡ 5, 6 mod 8.
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Proof. Since Âh is equivariant with respect to the surjective ring homomorphism Â : Ωspin
∗ (pt) →

KO−∗(pt), and since KSp−∗−4(pt) is a free KO−∗(pt)-module generated by KSp−4(pt), it suffices to

show Âh is onto in degrees 0 and 4. But clearly Âh(pt) = Âh(pt)/2 = 1 and Âh(HP1
+) = Âh(HP1

+) =
1. !

Remark 3.24. With 2 inverted, Spinh ≃ Spin× Sp(1) and consequently

Ωspinh

∗ (pt)[
1

2
] ∼= Ωspin

∗ (HP∞)[
1

2
] ∼= Ωspin

∗ (pt)⊗Z H∗(HP∞;Z[
1

2
]).

This implies Ωspinh

n is a 2-primary torsion group for n ≡ 5, 6 mod 8.

Also, this natural transformation helps determine the generators of the spinh cobordism groups
in low dimensions. The determination of all spinh cobordism groups seems to be considerably hard.

Proposition 3.25. Let F : Ωspinh

∗ (pt) → ΩSO
∗ (pt) be the forgetful homomorphism. Then

(F, Âh) : Ωspinh

n (pt) → ΩSO
n (pt)⊕KSp−n(pt)

is an isomorphism for n ≤ 5.

Sketch of proof. The surjectivity is clear since Âh is surjective by the previous theorem and F
is also surjective: one can enrich oriented manifolds of dimensions ≤ 5 with spinh structures (see
Example 2.4). Meanwhile a formidable computation of the spinh cobordism groups in low dimensions
shows in dimensions ≤ 5 the spinh cobordism groups are abstractly isomorphic to

Z, 0, 0, 0,Z+ Z,Z2 + Z2.

Details will not be given. These groups are also abstractly isomorphic to ΩSO
∗ (pt) ⊕ KSp−∗(pt) in

dimensions ≤ 5. Consequently surjectivity forces isomorphism. !

It is now easy to see Ωspinh

4 (pt) is generated by HP1
+ and CP2

+, since CP2 generates ΩSO
4 and HP1

is zero in ΩSO
4 but Âh(HP1

+) = 1. Similarly Ωspinh

5 (pt) is generated by RP1×HP1
+ and SU(3)/ SO(3).

Here RP1 is viewed as a spin manifold with its non-trivial spin structure and SU(3)/ SO(3) carries
a natural spinh structure whose canonical bundle is the natural principal SO(3)-bundle SO(3) →
SU(3) → SU(3)/ SO(3).

Remark 3.26. In fact, using standard notations for homotopy theorists, with the knowledge of the
cohomology of BSpinh calculated in Section 2.5, one can show the spectrum map

MSpinh → ksp ∨ Σ4HZ ∨ Σ5HZ2

labeled by Âh, p1U and w2w3U induces an isomorphism on 2-local cohomology up to degree 6. In
degree 7, the induced map on mod 2 cohomology is epic with a one-dimensional kernel reflecting
the relation Sq3(w2

2U) = Sq2(w2w3U) = w2
2w3U . It follows that the above spectrum map lifts to

MSpinh → ksp ∨ F where Σ−4F is the fiber of HZ ∨ ΣHZ2 → Σ3HZ2 labeled by Sq3, Sq2. This

lifted map is an isomorphism on 2-local cohomology up to degree 7, hence Ωspinh

6
∼= Z2 + Z2.

3.6. Boundary defect and invariants of real vector bundles. Let X be a spinh manifold with
boundary ∂X of dimension 2n, so that ∂X has dimension 2n − 1. Assume the riemannian metric
on X coincides with a product metric on ∂X × [0, 1] in a neighborhood of the boundary. Recall X

carries a fundamental Z2-graded complex hspinor bundle /SC2(X) = /S
0
C2(X)⊕ /S

1
C2(X) that admits

a Dirac operator

/DC2,X =

&
/D
1
C2,X

/D
0
C2,X

(

where /D
0
C2,X : Γ(X, /S

0
C2(X)) → Γ(X, /S

1
C2(X)) is a first order elliptic operator. The restriction of

the bundle /S
0
C2(X) to ∂X can be identified with the complex hspinor bundle over ∂X

(16) S∂X := PSpinh(∂X)×µ ∆0
2n,C2
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where ∆0
2n,C2 is viewed as a Cl2n−1,H-module through the isomorphism Cl2n−1,H ∼= Cl02n,H. Choose,

in a neighborhood of the boundary, a local framing e1, . . . , e2n for X so that e2n is the inward normal
direction. In local terms

/D
0
C2,X = e2n · (∇e2n +

2n−1"

i=1

eie2n ·∇ei) = e2n · (∇e2n +D)

where D, through the identification /S
0
C2(X)|∂X = S∂X is the Dirac operator on S∂X . In particular D

is a first order self-adjoint elliptic operator. As such, A has a discrete spectrum with real eigenvalues.
Two invariants are attached to SpecD, the spectrum of the operator D: the multiplicity of the

eigenvalue 0
h = dimC kerD

and the eta-invariant η(0) where η is the analytic continuation of

η(s) =
"

λ∈SpecD−0

(signλ)|λ|−s.

If we impose the following global boundary condition for /D
0
C2,X

(17) P (f |∂X) = 0, f ∈ Γ(X, /S
0
C2,X)

where P is the spectral projection of D corresponding to eigenvalues ≥ 0, then the Atiyah-Patodi-
Singer index theorem [APS75] asserts:

ind( /D
0
C2,X) =

;

X

α0(x)−
h+ η(0)

2
.

where α0(x) is certain locally defined differential form on X. To determine α0(x), one suffices to do
a local computation, so we can assume X is a spin manifold and the canonical bundle hX is reduced
from a Sp(1)-bundle through the covering map Sp(1) → SO(3). Now that ∆2n,C2 , when viewed
as a representation of Spin(2n) × Sp(1), is the tensor product ∆2n,C ⊗ C2 where C2 is considered
the 2-dimensional irreducible representation for Sp(1) = SU(2), the Z2-graded complex hspinor
bundle /SC2(X) can be written as /SC(X) ⊗ ξ where /SC(X) is the usual Z2-graded complex spinor
bundle for spin manifolds that corresponds to the complex Clifford module ∆2n,C, and where ξ is the
rank 2 complex vector bundle associated to the 2-dimensional irreducible representation of Sp(1).
This is exactly the twisted situation considered in [APS75, 4.3], therefore α0 is the Chern-Weil

form representative of ch(ξ)Â(X). By Lemma 2.21 this form is identical to 2 cosh(

√
p1(hX)

2 )Â(X).
Therefore we have proved:

Theorem 3.27. Let X be a 2n-dimensional spinh manifold with boundary ∂X. Let /DC2,X be the

Dirac operator on the fundamental Z2-graded complex hspinor bundle. Then the index of /D
0
C2,X

with the global boundary condition (17) is given by

ind( /D
0
C2,X) =

;

X

2 cosh(

/
p1(hX)

2
)Â(X)− h+ η(0)

2

where h is the dimension of the null-space of the Dirac operator D on the complex hspinor bundle
S∂X (defined by (16)) over ∂X, and η(0) is the eta-invariant of D.

The corresponding statement of course holds for Dirac operators with coefficients in a hermitian
vector bundle. Suppose ξ be a hermitian vector bundle with a unitary connection and that, near the
boundary, the metric and connection are constant in the normal direction. Then the above theorem
generalizes to

(18) ind( /D
0
X,ξ) =

;

X

ch(ξ) · 2 cosh(
/
p1(hX)

2
)Â(X)− hξ + ηξ(0)

2

where /D
0
X,ξ is as defined in Theorem 3.2 and hξ, ηξ(0) relate to the Dirac operator Dξ on S∂X ⊗C ξ.

Using the indices discussed above, we can associate a family of numerical invariants to real vector
bundles over an arbitrary compact manifold (with corners). To begin with, let γ → Y be a real
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vector bundle over a compact manifold Y (with corners). Let f : X → Y be a smooth mapping
from a closed n-dimensional spinh manifold X into Y . We define a pairing

〈X f−→ Y, γ → Y 〉 =

2
3334

3335

Âh(X, f∗γ) ∈ Z if n ≡ 0, 4 mod 8

Âh(X, f∗γ) ∈ Z2 if n ≡ 5, 6 mod 8
1
2 (hf∗γC + ηf∗γC (0)) (mod 1) ∈ R/Z if n ≡ 3, 7 mod 8

0 otherwise

We shall state properties of this pairing whose proof will appear elsewhere.

This paring relies only on the spinh cobordism class of the map X
f−→ Y and the stable class of the

real vector bundle γ. Moreover this pairing is additive with respect to both disjoint union of mappings
and Whitney sum of bundles. Therefore this pairing yields, for each n, a group homomorphism

KO(Y ) → Hom(Ωspinh

n (Y ), Rn)

where Rn = Z,Z2,R/Z or 0 depending on the dimension n. It is natural to ask whether or not the
homomorphism

KO(Y ) →
<

n

Hom(Ωspinh

n (Y ), Rn)

is injective, or equivalently, do the above numerical invariants completely determine the bundle γ
up to stable equivalence? Further, due to the differential-geometric nature of these invariants, one
can enhance them to be invariants of real vector bundles with connections. Then the same question
can be asked.

We emphasize that the answer can never be “yes” if one discards the R/Z-valued invariants, since
the Z- and Z2-valued invariants cannot detect odd primary torsions, thus considering manifolds-
with-boundary is necessary. We would like to show, in a separate article that, with appropriate
modifications to these invariants, the answers are affirmative.

Appendix A. KM-theory

Definition A.1. Let (X, f) be a real space. An M-bundle over X is a pair (E, j) consisting of a
complex vector bundle E over X together with a real bundle map j : E → E covering f so that
j : Ex → Efx is C-antilinear and j4 ≡ 1. We say j is the M-structure on E. In the special case X
is a point with trivial involution, we say (E, j) is an M-vector space.

It is clear both Real bundles and Quaternionic bundles are M-bundles. It may be helpful to think
of the Real theory is associated to the group Z2 while the M-theory is associated to the group Z4.
The group Z4 admits a natural even-odd filtration where the even subgroup is isomorphic to Z2.
Even though the sequence 0 → Z2 → Z4 → Z2 → 0 does not split, our KM-theory does. Indeed
with the assumption that X is connected, every M-bundle is a direct sum of a Real one and a
Quaternionic one.

Proposition A.2. Let (E, j) be an M-bundle over the connected real space (X, f). Then there is
a natural M-bundle isomorphism

E ∼= (1 + j2)E ⊕ (1− j2)E

where (1 + j2)E, endowed with j, is a Real bundle and (1− j2)E Quaternionic.

Proof. Notice that j2 : E → E is a complex linear automorphism of E. Since j4 ≡ 1, at x ∈ X, j2

decomposes Ex into a direct sum of eigenspaces

ker(1− j2x)⊕ ker(1 + j2x).

The continuity of j2x with respect to x implies the dimensions of ker(1∓j2x) are upper semi-continuous
with respect to x, whence the sum of the dimensions of ker(1 ∓ j2x) is a constant. As such both
the dimensions of ker(1 ∓ j2x) are locally constant in x. Since X is now assumed to be connected,
we conclude ker(1 ∓ j2) = (1 ± j2)E define complex vector bundles over X. It is easy to see when
equipped with j these two bundles are Real and Quaternionic respectively. The asserted M-bundle
isomorphism follows at once. !
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So KM = KR⊕KQ can be viewed as the Grothendieck group of M-bundles. When dealing
with Quaternionic bundles, it is better to think of them as M-bundles, since the theory KM is
multiplicative while the theory KQ is not. The multiplication on KM is of course induced by tensor
product of complex vector bundles. A special feature for this product is that the product of two
Quaternionic bundles is Real. That said, we see the multiplication in KM-theory respects its Z2-
grading; in particular KR is a subring of KM and KQ is a KR-module

Most of the results in [Ati66] for Real bundles and KR-theory now hold for M-bundles and
KM-theory, one suffices to replace the Real structures therein by the M-structures. In particular,
adopting the notation of [Ati66], we have the following projective bundle formula:

Proposition A.3. Let L be a Real line-bundle (i.e. of complex rank one) over the real compact
spaceX, H is the standard Real line-bundle over the projective bundle P(L⊕1) where 1 is understood
to be the trivialized Real bundle over X. Then as a KM(X)-algebra, KM(P(L⊕ 1)) is generated by
H subject to the single relation

([H]− [1])([L][H]− 1) = 0.

The Thom isomorphism for Real bundles and (1,1)-periodicity follow in a quite formal way.

Theorem A.4. Let E be a Real vector bundle over the real compact space X. Then

φ : KM(X) → KMcpt(E)

is an isomorphism where φ(x) = λE · x and λE is the element of KRcpt(E) defined by the exterior
algebra of E.

Theorem A.5. Let b = [H]− 1 ∈ KR1,1(pt) = KR(CP1). Then the homomorphism

β : KMr,s(X,Y ) → KMr+1,s+1(X,Y )

given by x *→ bx is an isomorphism.

Since the homomorphisms φ and β are both induced by multiplication with Real bundles, they
preserve the Z2-grading KM = KR⊕KQ, i.e. they send KR to KR and KQ to KQ. So the
corresponding theorems hold for KQ-theory as well. This explains (7) and Theorem 3.12.

Recall we have defined KMr,s for r, s ≥ 0 using

KMr,s(X,Y ) = KM(X ×Dr,s, X × Sr,s ∪ Y ×Dr,s),

which in the special case s = 0 coincides with the usual suspension groups KM−r. Now thanks
to the (1,1)-periodicity, we can define KM-groups with positive indices by putting KMr = KM0,r.
Then we have a natural isomorphism KMr,s ∼= KMs−r. This justifies the use of the group KM4 in
[Dup69], in fact this is the main reason why we did not directly quote Dupont’s results.

Now we can quote [Dup69] to prove (6).

Proposition A.6. For r, s ≥ 0, multiplication with the generator of KQ4,0(pt) yields an isomor-
phism

KRr,s(pt)
∼=−→ KQr+4,s(pt).

Proof. From [Dup69, (6)], we know multiplication with the generator of KQ4(pt) ∼= KQ0,4(pt) gives
an isomorphism

KQr+4,s(pt) ∼= KRr+4,s+4(pt).

On the other hand, the (1,1)-periodicity gives

KRr+4,s+4(pt) ∼= KRr,s(pt).

Combining the two isomorphisms and summing over all r, s ≥ 0, we obtain isomorphisms of bigraded-
groups

KR∗,∗(pt) ∼= KR∗+4,∗+4(pt) ∼= KQ∗+4,∗(pt).

Now observe the above isomorphisms are homomorphisms of KR∗,∗(pt)-modules, the proposition
thus follows. !
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