1. Complex orientable theory

Let h be a multiplicative cohomology theory, i.e. h is a generalized cohomology theory and has a cup product. In particular, $h^*(pt)$ is a ring.

Definition 1.1. We say h is complex orientable if there is an isomorphism

$$h^*(\mathbb{C}P^\infty) \simeq h^*(pt)[[t]].$$

This isomorphism is called a complex orientation of h. Or equivalently the map induced by inclusion $h^2(\mathbb{C}P^\infty) \to h^2(\mathbb{C}P^1)$ is surjective.

Note that h might have more than one complex orientations. Once the orientation is fixed, we say h is complex oriented.

Exercise 1.2. Show that h is complex orientable if and only if for any complex vector bundle ξ over base X we have Thom isomorphism $h^*(\xi) \simeq h^*(X)$.

Example 1.3. Ordinary cohomology (with any coefficient) is complex orientable.

2. Formal group law

Definition 2.1. Let R be a commutative ring, a formal group law over R is a formal power series $f(u, v) \in R[[u, v]]$ such that

1. $f(u, 0) = u = f(0, u)$
2. $f(u, f(v, w)) = f(f(u, v), w)$
3. $f(u, v) = f(v, u)$

Let E be a complex orientable cohomology theory, then the isomorphism $E(\mathbb{C}P^\infty) \simeq E^*(pt)[[t]]$ permits us to define Chern class by pull-back of t combining splitting principle. Then $\mathbb{C}P^\infty \times \mathbb{C}P^\infty \to \mathbb{C}P^\infty$ induced by $O = \pi_1^1 O(1) \otimes \pi_2^2 O(1)$ gives a formal group law

$$c_1^E(O) = f(u, c_1^E(\pi_1^1 O(1)), v = c_1^E(\pi_2^2 O(1))) \in E^*(\mathbb{C}P^\infty \times \mathbb{C}P^\infty) \simeq E^*[[u, v]]$$

(last isomorphism by Atiyah-Hirzebruch spectral sequence) over the coefficient ring.

For example, $c_1(L \otimes L') = c_1(L) + c_1(L')$ for ordinary Chern class, hence the formal group law is the additive group law \mathbb{G}_a over \mathbb{Z}.

3. K-theory is complex orientable

It suffices to show K-theory admits Thom isomorphism for complex vector bundles.

Let $\xi \to X$ be a $U(n)$-bundle, let $M(\xi)$ be the Thom space of ξ, we are to construct a map $K(X) \to \tilde{K}(M(\xi))$ which is an isomorphism, analogous to the Thom isomorphism $H^*(X) \to \hat{H}^*(M(\xi))$. So similarly, we start by defining a Thom class $T(\xi) \in \tilde{K}(M(\xi))$.

1
3.1. Thom class in K-theory.

- Thom class $T(\xi)$ is a relative class in $K(D(\xi), \partial D(\xi))$.
- The exterior algebra of ξ, $\wedge(\xi) = \wedge^{ev}(\xi) \oplus \wedge^{od}(\xi)$.
- Pull back ξ to a bundle ξ' over $D(\xi)$, then $\wedge(\xi') = \wedge^{ev}(\xi') \oplus \wedge^{od}(\xi')$.
- Moreover, there is a map $\phi : \wedge^{od}(\xi) \to \wedge^{ev}(\xi')$.

Let $(x, v, Y) \in (X, D^{2n}, \wedge^{od}(\xi)) \mapsto (x, v, (v \wedge (v^*)^*) Y) \in (X, D^{2n}, \wedge^{ev}(\xi))$.

Notice that ϕ is an isomorphism away from zero section of $D(\xi)$.

Thus, we define $T(\xi) := (\wedge^{ev}(\xi'), \wedge^{od}(\xi'), \phi) \in K(D(\xi), \partial D(\xi))$.

3.2. Thom class in KO-theory. Let $\xi \to X$ be an $SU(n)$-bundle

- If $n \equiv 0 \pmod{4}$, then $\wedge \xi = R(\xi) \oplus R_{-}(\xi)$ and $R(\xi) = R^{ev}(\xi) \oplus R^{od}(\xi)$. Pull back to $D(\xi)$ get $t(\xi) = (R^{ev}(\xi'), R^{od}(\xi'), \phi) \in KO(D(\xi), \partial D(\xi))$

- If $n \equiv 2 \pmod{4}$, then $s(\xi) = (\wedge^{ev}(\xi'), \wedge^{od}(\xi'), \phi) \in K\tilde{S}P(M(\xi))$

3.3. Thom isomorphism. To prove the Thom isomorphism in K-theory, we use the following theorem of Dold.

Theorem 3.1. Suppose h^* is a multiplicative cohomology theory. Let ξ be an $O(n)$-bundle over a finite CW complex X. Let $t \in h^n(D(\xi), \partial D(\xi))$ be such that inclusion $i : (D_2^0, \partial D_2^0) \to (D(\xi), \partial D(\xi))$, where D_2^0 is the cell over $x \in X$, has $h^n(D_2^0, \partial D_2^0)$ a free $h^*(pt)$-module with generator $i^*(t)$. Then there is an isomorphism

$$h^k(X) \cong h^{k+n}(D(\xi), \partial D(\xi)), a \mapsto \pi^* a \cdot t$$

Sketch of Proof. The proof is basically the same as the proof of standard Thom isomorphism, which is an induction on cell and an application of five lemma. \Box

Applying this theorem, one only needs to check that $i^*T(\xi)$ is the generator of $K(D_2^{2n}, \partial D_2^{2n}) = K(S^{2n})$, and is the generator of the free $K^*(pt)$-module $K^*(S^{2n})$. By Bott periodicity, splitting principle and the fact that $M(\xi \oplus \eta) = M(\xi) \wedge M(\eta)$, one suffices to check $n = 1$. We then explicitly compute the Thom class of the universal line bundle.

Proposition 3.2. The tautological $U(1)$-bundle ρ_{n-1} over $\mathbb{C}P^{n-1}$ has Thom space $\mathbb{C}P^n$, and $T(\rho_{n-1}) = 1 - \rho_n \in K(\mathbb{C}P^n)$.

Proof. First of all, the projection

$$\mathbb{C}P^n - [0, 0, \ldots, 1] \to \mathbb{C}P^{n-1}, [z_0, \ldots, z_{n-1}, z_n] \mapsto [z_0, \ldots, z_{n-1}]$$

is the tautological ρ_{n-1} (one can see this by explicitly writing down the bundle transition function), so $M(\rho_{n-1}) \cong \mathbb{C}P^n$. From the view of Thom isomorphism, we have $H^*(M(\rho_{n-1})) = \wedge(u, ux)/(u^2 - ux) = \wedge(u)$ where u is the Thom class, this agrees with the cohomology of $\mathbb{C}P^n$.

This is a combination of several facts.

- For any $U(1)$-bundle ξ, $M(\xi)$ is canonically isomorphic to $E(\xi) \circ U(1)/U(1)$, where $E(\xi) \circ U(1)$ is the join of $E(\xi)$ and $U(1)$.
- $S^{2n-1} = U(1) \circ \cdots \circ U(1)$, $\mathbb{C}P^{n-1} = S^{2n-1}/U(1) = U(1) \circ \cdots \circ U(1)/U(1)$.

• \(M(\rho_{n-1}) = E(\rho_{n-1}) \circ U(1)/U(1). \)

Recall that
\[
T(\rho_{n-1}) = (\wedge^e(\rho_{n-1}), \wedge^o(\rho_{n-1}), \phi) \in K(D(\rho_{n-1}), \partial D(\rho_{n-1}))
\]
and notice that since \(\rho_{n-1} \) is a line bundle, we have
\[
\wedge^e(\rho_{n-1}) = \wedge^0 = \text{trivial bundle},
\]
and
\[
\wedge^o(\rho_{n-1}) = \wedge^1 = \rho_{n-1}.
\]
Thus
\[
T(\rho_{n-1}) = (\varepsilon, [\pi^*\rho]_{n-1}) = 1 - \pi^*\rho_{n-1}. \]
We claim that \(\pi^*\rho_{n-1} \) on \(M(\rho_{n-1}) \) is the tautological bundle \(\rho_n \), indeed one easily sees this by looking at bundle transition function.

\[\square\]

Remark 3.3. For \(n = 1 \), \(1 - \rho_1 \in \tilde{K}(\mathbb{C}P^1) = \tilde{K}(S^2) \) is exactly the generator.

Corollary 3.4 (Thom isomorphism in \(K \)-theory). For any \(U(n) \)-bundle \(\pi : \xi \to X \), we have an isomorphism \(K(X) \simeq K(D(\xi), \partial D(\xi)) = \tilde{K}(M(\xi)), \eta \mapsto \pi^*\eta \otimes T(\xi) \).

Similarly we have Thom isomorphisms for \(SU(4k) \) and \(SU(4k+2) \) bundles

- \(KO(X) \simeq \tilde{KO}(M(\xi)) \) for \(SU(4k) \)-bundle
- \(KO(X) \simeq \tilde{KS}(M(\xi)) \) for \(SU(4k+2) \)-bundle

4. Complex cobordism theory is complex orientable

This is purely tautologous.

4.1. Computation of universal formal group law on \(\Omega_+^U(pt) \).

Suppose
\[
F^\Omega(u, v) = \sum a_{rs}u^rv^s,
\]
then since \(\mathbb{C}P^\infty \times \mathbb{C}P^\infty \to \mathbb{C}P^\infty \) is the limit of Segre map \(\mathbb{C}P^n \times \mathbb{C}P^m \to \mathbb{C}P^{n+m} \), the pull-back of a hyperplane in \(\mathbb{C}P^{n+m} \) is Milnor manifold \(H_{nm} \),
so we have
\[
[H_{nm}] = \sum_{r=0}^n \sum_{s=0}^m a_{rs}[\mathbb{C}P^{n-r}][\mathbb{C}P^{m-s}].
\]
Therefore one has
\[
H(u, v) = \sum H_{nm}u^nv^m = F^\Omega(u, v)CP(u)CP(v).
\]