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1. Spectra

Let K∗ be a generalized cohomology theory, that is a (sequence of) functor(s) satisfying all
Eilenberg-Steenrod axioms except the dimension axiom. For any generalized cohomology theory,
there is a corresponding reduced theory K̃∗ defined on spaces-with-basepoint.

K∗(X,pt) = K̃∗(X) +K∗(pt).

All the axioms for K∗ can be translated to axioms for K̃∗, one of which is the suspension isomor-
phism:

K̃i+1(SX) = K̃i(X).

Assume K∗ further satisfies the wedge axiom of Milnor and Brown, then K∗ is representable.
That is, there exists connected En with basepoint for each i such that for connected X we have
K̃n(X) = [X,En]. Then using the suspension-baseloop adjoint, we see the suspension isomorphism
corresponds to a weak equivalence

ϵ′n : En → Ω0En+1

The sequence of spaces En together with the weak equivalences ϵ′n is an Ω0-spectrum. A similar
discussion for K∗ yields (not necessarily connected) Fn representing Kn with weak equivalences
ϕn : Fn → ΩFn+1. The data of {Fn, ϕn} is that of an Ω-spectrum. We now make a general
definition.

Definition 1.1. A spectrum E is a sequence of spaces En with basepoint, provided with structure
maps, either

ϵn : SEn → En+1

or
ϵ′n : En → ΩEn+1.

The two definitions are the same since S and Ω are adjoint. If we choose to work with connected
En then ϵ′n automatically maps into Ω0.

Note that we do not require the structure maps to be weak equivalences. This flexibility allows
us to include some important examples. We shall see later that every spectrum is equivalent to an
Ω-spectrum.
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Definition 1.2. We say E is an Ω-spectrum if ϵn or ϵ′n’s are weak equivalences. We say E is an
S-spectrum or suspension spectrum if ϵn is an equivalence for n sufficiently large.

Example 1.3. (1) (singular cohomology) The Eilenberg-MacLane spectrum HZ that represents
the singular cohomology. The n-th Eilenberg-MacLane space K(Z, n) is characterized by that

H̃n(Sm;Z) = [Sm,K(Z, n)]. It is clear that K(Z, n) = ΩK(Z, n + 1) from the path space
fibration and the long exact sequence of homotopy groups.

(2) (complex K-theory) KU2n = Z×BU and KU2n+1 = U . By Bott periodicity, there exists weak
equivalences KUn = ΩKUn+1. The spectrum KU represents the complex K-theory. Note that
K0(X) = [X,Z×BU ] classifies complex vector bundles on X up to stable equivalences. There
is a spectrum KO for real K-theory and KSp for quaternionic K-theory.

(3) (Thom spectrum) Let MSOn be the Thom space of the universal bundle over BSOn, then there
is a natural map S1 ∧MSOn → MSOn+1 induced by the canonical inclusion SOn ⊂ SOn+1.
MSO is called the Thom spectrum for SO (or oriented cobordism). Note that MSO is not an
Ω-spectrum.

(4) (suspension spectrum of a space) Let X be a CW-complex, define En to be SnX for n ≥ 0 and
pt otherwise. Then En is an S-spectrum, called the suspension spectrum of X.

(5) (sphere spectrum) Sn = Sn for n ≥ 0 and pt otherwise, is naturally a spectrum, called the
sphere spectrum. It is clear the sphere spectrum is the suspension spectrum of S0.

(6) (Ω-spectrification) For any spectrum E, we may define a new Ω-spectrum LE by

(LE)n = lim
k

ΩkEn+k.

It is clear there is a natural map E → LE. It will turn out that L(−) is left adjoint to the
forgetful functor from Ω-spectra to spectra.

As homotopy theory studies algebraic invariants of spaces, stable homotopy theory studies alge-
braic invariants of spectra, where spaces are replaced by their corresponding suspension spectra.

Even though spaces are used in the definition of spectra, we urge the reader to view spectra
as algebraic objects instead of geometric objects. One should constantly compare the category of
spectra to the category of chain complexes of abelian groups.

However, there does exist a beautiful (yet often overlooked) geometric discussion which we prob-
ably will not delve into. The punch line for the geometric discussion is that every spectrum is like a
Thom spectrum and every generalized cohomology theory is like a cobordism theory. We will revisit
this geometric point when discussing Anderson duality and universal coefficients theorem.

For the moment, let us simply play with algebra. The most important algebraic invariants for a
topological space, without doubts, are homotopy and homology. We shall define homotopy groups
for spectra, and we will see that (generalized) homology can be defined using homotopy as well.
Further, generalized homology can be computed from singular homology plus a spectral sequence.

Definition 1.4 (homotopy group). Let E be a spectra, for each r we have the following sequence

πn+rEn → πn+r+1(SEn)→ πn+r+1(En+1).

Define πrE := limn→∞ πn+rEn. It is clear πrE is abelian for all r ∈ Z.
Example 1.5. (1) If E is an Ω-spectrum then the direct limit is attained. More precisely, the

homomorphism πn+r(En)→ πn+r+1(En+1) is an isomorphism for n+ r ≥ 1. This follows from

Theorem 1.6 (Freudenthal suspension). Suppose Y is (n − 1)-connected, then S : [X,Y ] →
[SX, SY ] is onto if dimX ≤ 2n− 1 and 1-1 if dimX < 2n− 1.

(2) If E is the suspension spectrum of X, then πr(E) = limn πn+r(S
nX) is the stable homotopy

group of X. This limit is attainted for n > r + 1.
(3) By the Pontryagin-Thom argument, we have πr(MSO) = ΩSO

r is the cobordism group of r-
dimensional oriented manifolds.

(4) (Bott periodicity) Unlike spaces, the homotopy groups for spectra can be non-zero in negative
degrees.

πnKU =

{
Z if n is even;

0 if n is odd.
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For KO, π∗KO is 8-fold periodic, one full period is

Z2,Z2, 0,Z, 0, 0, 0,Z.
As for KSp, it shares the same homotopy groups with KO, except for a degree shift by 4.

(5) (sphere spectrum) π∗S = Z,Z2,Z2,Z24, 0, 0,Z2,Z240, . . . . All higher homotopy groups of S are
torsion due to Serre. One should treat S as derived integers.

(6) (Ω-spectrification) Exercise: show that the map E → LE induces isomorphism on homotopy.

It turns out defining (generalized) homology for a spectrum is much harder than defining ho-
motopy. The best we to achieve that goal is to introduce smash product of two spectra. In this
direction, we now introduce many constructions within the category of spectra, including smash
product of course.

But before that, we make a dictionary, comparing the category of spectra to the category of chain
complexes of abelian groups.

Ch(Ab) Spectra

the ring of integers Z the sphere spectrum S
abelian group G Moore spectrum SG

direct sum wedge sum
tensor product smash product
hom complex function spectrum

hom-tensor adjunction function-smash adjunction
suspension suspension

mapping cone mapping cone
exact triangle cofiber sequence
homology homotopy

quasi-isomorphism homotopy equivalence
truncation truncation

base change spectral sequence Atiyah-Hirzebruch spectral sequence
localization localization
completion completion

derived category homotopy category
. . . . . .

More than often, it is not the explicit constructions but the above comparison that is really useful
for understanding the category of spectra.

Now let us spell out these constructions, modulo technicalities. Just like when dealing with
spaces, it is more convenient to work with a spacial class of spaces–CW-complexes; when dealing
with spectra, it is more convenient to work with

Definition 1.7 (CW-spectrum). (1) We say a spectrum E is a CW-spectrum if all En’s a re CW-
complexes and all structure maps are cellular embeddings.

(2) A subspectrum A of a CW-spectrum is a CW-spectrum with An ⊂ En being a subcomplex for
each n.

(3) Let Cn be the set of cells in En other than the basepoint, then we get a function Cn → Cn+1 by
suspension, this function is by definition an injection. Let C be the direct limit limn→∞ Cn; an
element of C is called a stable cell of E. The stable dimension of a cell in Cn is its (geometric)
dimension minus n. Stable dimension passes to a well-defined Z-valued function on C, which
can take negative value.

(4) A subspectrum E′ of E is said to be cofinal in E is C ′ → C is a bijection.
(5) A CW-spectrum is finite if it has finitely many stable cells.

Example 1.8. For X a CW-spectrum, let X ′ be the subspectrum defined by X ′
n = Xn for n ≥ 0

and X ′
n = pt otherwise. Then X ′ is cofinal in X. For this, there is no real different in considering

spectra indexed by Z or N.
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Unless otherwise specified, we will always work with CW-spectra. Recall a theorem of Milnor
asserts that the space of maps from a finite CW-complex to any CW-complex is homotopy equivalent
to a CW-complex. Thus taking loop space does not leave the category. We now define morphisms.

Definition 1.9 (functions, maps). Assume E is a CW-spectrum and F is an Ω-spectrum.

(1) A function f from E to F of degree r is a sequence of maps fn : En → Fn−r compatible with
the structure maps, namely the following diagram (strictly, not up to homotopy) commutes:

SEn En+1

SFn−r Fn−r+1

ϵn

Sfn fn+1

ϕn−r

(2) Take all cofinal E′ ⊂ E and all functions f ′ : E′ → F . Say that two functions f ′ : E′ → F
and f ′′ : E′′ → F are equivalent if there is a cofinal E′′′ contained in E′ and E′′ so that
the restrictions of f ′, f ′′ to E′′′ coincide. A map from E to F is an equivalence class of
functions.

A morphism will be a homotopy class of maps, thus we must define homotopy between maps.

Definition 1.10 (cylinders, homotopy). (1) Let I+ be the union of the unit interval and a disjoint
basepoint. If E is a spectrum, we define the cylinder spectrum Cyl(E) to hava terms I+ ∧ En

with canonical structure maps. It is clear Cyl(−) is a functor: a map f : E → F induces a map
Cyl(E)→ Cyl(F ). Note that we have obvious injection functions:

i0, i1 : E → Cyl(E).

(2) We say that two maps f0, f1 : E → F are homotopic if there is a map h : Cyl(E) → F such
that f0 = hi0, f1 = hii.

Exercise 1.11. Define Susp(E), Cone(E) for spectrum E.

Definition 1.12 (morphism). A morphism f from E to F is a homotopy class of maps. Denote
the set of degree r morphisms by [E,F ]r.

It will follow from a stable version of Freudenthal suspension theorem that [E,F ]r is an abelian
group for all r. This allows us to define:

Definition 1.13 (cohomology). Let E,X be spectra, we define the E-cohomology of X to be

E∗(X) = [X,E]−∗.

Lemma 1.14. Let K be a finite CW-complex and identified with its suspension spectrum. Let F
be any spectrum. Then

[K,F ]r = lim
n→∞

[Sn+rK,Fn].

In particular, [S, F ]r = πr(F ).

Proof. Exercise. ■

Theorem 1.15 (stable Freudenthal suspension). Susp : [X,Y ]∗ → [Susp(X), Susp(Y )]∗ is a 1-1
correspondence.

One can also define morphisms between pairs (X,A) and (Y,B), as well as relative homotopy
classes of maps [X,A;Y,B]. A version of homotopy extension can be proved:

Lemma 1.16. Suppose that π∗(Y ) = 0, andX,A is a pair of CW-spectra. Then any map f : A→ Y
can be extended over X.

Consequently we have:

Theorem 1.17 (Whitehead theorem for spectra). Let f : E → F be a function such that f∗ :
π∗E → π∗F is an isomorphism, then for any CW-spectrum X,

f∗ : [X,E]∗ → [X,F ]∗

is a 1-1 correspondence. Assume further E,F are CW-spectra, then f is an equivalence.
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Corollary 1.18. Every CW-spectra is equivalent to an Ω-spectrum.

Proof. E → LE is an equivalence. ■

Definition 1.19 (Wedge sum/coproduct). Given spectra Xα for α ∈ A, we form X =
∨

α Xα by
Xn =

∨
α(Xα)n with the obvious structure maps

Xn ∧ S1 = (
∨
α

(Xα)n) ∧ S1 =
∨
α

(Xα) ∧ S1 →
∨
α

(Xα)n+1.

Wedge sum has the property:

[
∨
α

Xα, Y ] ∼=
∏
α

[Xα, Y ].

Recall finite direct sum and finite direct product are the same. Similarly we have:

Proposition 1.20. Arbitrary products of CW-spectra exists and finite sums (i.e. finite coproducts)
are finite products.

Proof. Omitted. ■

Theorem 1.21 (Smash product). For X,Y CW-spectra, there is a CW-spectrum X ∧ Y called
smash product of X and Y so that

(1) X ∧ Y is functorial in both X and Y .
(2) ∧ is commutative, associative, and has the sphere spectrum S as a unit, up to coherent equiva-

lences.
(3) The smash product is distributive over the wedge sum.
(4) Let X → Y → Z be a cofibering, then

W ∧X →W ∧ Y →W ∧ Z

is also a cofibering.

Using smash product, we can define generalized homology for spectra.

Definition 1.22 (homology). Let E,X be spectra, we define the E-homology of X to be

E∗(X) = π∗(E ∧X).

The last assertion involves an important notion: cofibering.

Definition 1.23 (mapping cone, cofiber sequence). Let f : X → Y be a morphism between CW-
spectra, we may represent it by a function f ′ : X ′ → Y where X ′ is a cofinal subspectrum of X.
Then we can form the mapping cone Y ∪f ′ CX by Yn ∪f ′

n
CX ′

n and the canonical structure maps.
It is easy to verify that the equivalence class of Y ∪f ′ CX only relies on the morphism f . So we may
write Y ∪f CX for the mapping cone. We have the sequence of morphisms:

X
f−→ Y

i−→ Y ∪f CX.

This sequence, or anything equivalent to it, is called a cofiber sequence or Puppe sequence.

Example 1.24. Let X be a CW-spectrum, A a subspectrum. We say A is closed if for every
finite subcomplex K ⊂ Xn, SmK ⊂ Am+n implies K ⊂ An. For the inclusion i : A → X of
closed subspectrum, we can form X/A. the canonical map X ∪i CA → X/A is an equivalence by
Whitehead’s theorem. That is to say,

A→ X → X/A

is a cofiber sequence.

Proposition 1.25. For each Z the sequence

[X,Z]
f∗

←− [Y,Z]
i∗←− [Y ∪f CX,Z]

is exact.

Proof. Same as for CW-complexes. ■
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Proposition 1.26. Cofiber sequences can be continued to the right.

X
f−→ Y

i−→ Y ∪f CX
j−→ Susp(X)

−Susp(f)−−−−−−→ Susp(Y )

Corollary 1.27 (Key feature). The sequence

[W,X]
f∗−→ [W,Y ]

i∗−→ [W,Y ∪f CX]

is exact.

Proof. Consider the following diragram

X Y Y ∪f CX Susp(X) Susp(Y )

W W CW Susp(W ) Susp(W )

f i j −Susp(f)

1 i

g

j

h

−1

k Susp(g)

■

This means cofiber sequences are fiber sequences!. It follows quickly from definition and
the extending-cofiber-sequence argument that cofibering sequences induce long exact sequences in
homology and cohomology.

We conclude this lecture with a computational tool for generalized homology and cohomology for
finite CW-complexes. Let X be a finite-dimensional CW-complex. The finite assumption can be
removed, but then one has to worry about taking limits.

Theorem 1.28 (G.W.Whitehead, Atiyah-Hirzebruch). For each CW-spectrum F there exist spec-
tral sequences

Hp(X;πq(F )) =⇒ Fp+q(X)

Hp(X;π−q(F )) =⇒ F p+q(X).

This spectral sequence is essentially induced by the skeleton filtration of X:

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X.

Applying F∗ we obtain an Massey exact couple, written in a triangle as follows.∑
p F∗(Xp−1)

∑
p F∗(Xp)

∑
p Fp(Xp, Xp−1)

i∗

j∗∂

Explicit description of this spectral sequence is possible, we define

Zr
p,q = ker{Fp+q(Xp, Xp−1)

∂−→ Fp+q−1(Xp−1,Xp−r
)}

= im{Fp+q(Xp, Xp−r)
j∗−→ Fp+q(Xp, Xp−1)},

Br
p,q = im{Fp+q+1(Xp+r−1, Xp)

∂−→ Fp+q(Xp, Xp−1)}

= ker{Fp+q(Xp, Xp−1)
i∗−→ Fp+q−1(Xp+r−1, Xp−1)}.

It is a routine exercise to verify Br
p,q ⊂ Zr

p,q and ∂ induces a differential dr on Er
p,q = Zr

p,q/B
r
p,q

whose homology is Er+1
p,q . The E∞-page of course is the associated group of Fm(X) with respect to

the filtration from the image of

Fm(Xp)→ Fm(X).

Now we calculate E1 and E2-page. From construction,

E1
p,q = Fp+q(Xp, Xp−1) = F̃p+q(Xp/Xp−1)

= F̃p+q(
∨
α

Sp) =
∑
α

πq(F ) = Cp(X;πq(F )).
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We leave it as an exercise for the reader to verify d1 is the boundary map on cellular chain complex.
Therefore, we obtain

E2
p,q = Hp(X;πq(F )).

The same argument works for cohomology.

Exercise 1.29. Calculate KU∗(CPn).

There is an even more general spectral sequence that combines the Atiyah-Hirzebruch spectral
sequence and the Serre spectral sequence.

Theorem 1.30. Let F → E → B be a Serre fibration with trivial monodromy, and K a CW-
spectrum. Then there is a spectral sequence

Hp(B;Kq(F )) =⇒ Kp+q(E).

2. Dualities

We introduce several dualities, concerning spectra, generalized homology and cohomology and
manifolds.

• Spanier-Whitehead duality. This is a special case of the hom-tensor adjunction for spectra.
• (Pontryagin-)Anderson duality. This is a generalization of universal coefficients theorem.
This is also the analog of Serre-Grothendiec-Verdier duality for coherent sheaves over SpecZ.

• Poincaré duality. This requires discussing products and orientability with respect a given
spectrum.

2.1. Spanier-Whitehead duality. Let X be a spectrum, its Spanier-Whitehead dual is supposed
to be a spectrum X∗ so that E∗(X

∗) = E−∗(X).
The classical Spanier-Whitehead duality is the Alexander (or sphere) duality.

Theorem 2.1 (Alexander duality). Let K be a compact polyhedron embedded in SN . Then

H̃∗(K) ∼= H̃N−∗−1(S
N −K)

An interesting application of Alexander duality is when L is a link in S3. The Spanier-Whitehead
dual takes a special form for suspension spectra of compact smooth manifolds. Let M be a closed
manifold, then its Spanier-Whitehead dual is the Thom spectrum of its stable normal bundle. This
is usually referred to as Atiyah duality. Details will be given later.

Form our analogy between spectra and chain complexes, X∗ should be nothing but F (X,S),
which is analogous to taking the dual cochain complex C• = Hom(C•,Z). Therefore, X∗ must
satisfy the adjunction property that

[W ∧X,S] = [W,X∗].

We can take this as a definition of X∗.

Proposition 2.2. Let X be a CW-spectrum, then the functor W 7→ [W ∧X,S]0 is representable
by some CW-spectra X∗.

Proof. One checks the functor satisfies the conditions of Brown representability theorem, which I
shall not discuss. ■

We give an explicit construction for the suspension spectrum of a finite CW-complex K. Choose
an embedding K ⊂ Sn and let L ⊂ Sn be the cell complex which is a deformation retraction of
Sn−K. We identify L with its suspension spectrum and define K∗ = Σ−(n−1)L. It is clear that the
stable homotopy type of Σ−n−1L replies only on the homotopy type of L ≃ Sn−K. We would like to
argue that the stable homotopy type of Σ−(n−1)L is independent of choice of embeddings of K into
Sn and also only relies on the stable homotopy type of K. First of all, we observe that Sn+1 − SK
deformation retracts to Sn − K. So if somebody gives me X ⊂ Sn and Y ⊂ Sm with homotopy
equivalence f : SpX → SqY , then I can consider SpX ⊂ Sp+n and SqY ⊂ Sq+m with homotopy
type of complements unchanged. Thus I can assume f : X → Y is a homotopy equivalence with
embedding X ⊂ Sn and Y ⊂ Sm. In this case, consider the join Sn ∗ Sm = Sm+n+1 where both
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X,Y embeds into. Also note that the mapping cylinder M of f embeds into X ∗ Y ⊂ Sn ∗ Sm. In
this large sphere we have

Sm+n+1 −X = Sm+1(Sn −X),

Sm+n+1 − Y = Sn+1(Sm − Y ),

and two maps

Sm+n+1 −X
f←− Sm+n+1 −M

g−→ Sm+n+1 − Y.

Notice that the injections X → M ← Y induce isomorphisms of cohomology, and the Alexander
duality is natural for inclusions. Therefore f and g induces isomorphisms of homology. Now I
can suspend things further to make them all simply connected, so that by Whitehead’s theorem
we conclude f, g are stable homotopy equivalences. Thus we’ve proved the assignment K 7→ L is
well-defined, up to stable equivalence, for the suspension spectrum of K. The desuspension is made
so that degrees are as expected.

Example 2.3. The sphere spectrum is Spanier-Whitehead self-dual, and the Sn is Spanier-Whitehead
dual to S−n.

Now we examine this construction for closed manifolds to obtain Atiyah duality. Say we have a
closed smooth manifold M . Let M+ be M disjoint union with a base point. Then embed M into a
large sphere and thus giving an embedding M+ ⊂ Sn, with basepoint of M+ being mapped to, say,
the north pole of Sn. Then the compliment Sn−M+ = Rn−M . Since Rn is contractible, from the
cofiber sequence

Rn −M → Rn → Rn/(Rn −M)

we conclude Rn −M = Σ−1(Rn/Rn −M) = Σ−1Th(NM ). Therefore

M∗
+ = Σ−(n−1)(Sn −M+) = Σ−nTh(NM ).

Recall that NM ⊕TM = Rn, hence NM = Rn−TM and it follows that Th(NM ) = ΣnTh(−TM ). So
finally we have

Theorem 2.4 (Atiyah duality). If M is a closed manifold, then M∗
+ = Th(−TM ).

Now let us discuss properties of Spanier-Whitehead duality. Assume again X is a finite CW-
spectrum. By definition there is a natural isomorphism

[W ∧X,S]0
T←− [W,X∗]0.

Taking W = X∗ and 1 : X∗ → X∗ on the right, we see there is a ”evaluation” map

e : X∗ ∧X → S.

Using that T is natural, we see that T carries f : W → X∗ into W ∧X
f∧1−−→ X∗ ∧X

e−→ S, which
yields:

T : [W,X∗]r → [W ∧X,S]r
And by applying the canonical isomorphism suspensions and desuspensions of W shows T is an
isomorphism for all r.

Now consider a third spectrum Z, we can make a map

[W,Z ∧X∗]∗
T−→ [W ∧X,Z]∗

induced by evaluation.

Proposition 2.5. If W and X are CW-spectra1, then T : [W,Z ∧ X∗]∗ → [W ∧ X,Z]∗ is an
isomorphism for any CW-spectrum Z.

Proof. This is easy to show for Z being the suspensions of the sphere spectrum. Then an induction
using cofiber sequence and five lemma proves the statement holds for all finite spectrum Z. Finally
pass to direct limits from the finite case to complete the proof. ■

1Adams requires both to be finite, but I don’t see why finiteness is needed.
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Corollary 2.6. For any CW-spectrum E, we have E∗(X
∗) = E−∗(X)2.

Remark 2.7. If X is the suspension spectrum of a CW-complex, then E∗(X) coincides with the
usual E-homology of X. Same for cohomology.

Proof. Take Z = E and W = S in the previous proposition. ■

Now let us revisit Atiyah duality. Using that M∗
+ = Σ−nTh(NM ), we have

E−∗(M) = Ẽ−∗(M+) = Ẽ∗(Σ
−nTh(NM )) = Ẽ∗+n(Th(NM )).

Suppose there is a Thom isomorphism in E∗ for NM , then we have

Ẽ∗+n(Th(NM )) = E∗+d(M).

Putting these together we have

Theorem 2.8 (Poincaré duality). Assume Md is orientable for E, then E∗(M) ∼= Ed−∗(M). In
particular, if M is orientable then H∗(M ;Z) ∼= Hd−∗(M ;Z).

There are versions of Atiyah duality for manifold with boudary which gives the corresponding
Poincaré duality as well.

We list some other properties of X∗ without proof.

(1) if X is finite, then so is X∗.
(2) if X is finite, then (X ∧ Y )∗ ≃ X∗ ∧ Y ∗.
(3) S-dual coverts a cofibering of finite spectra into another cofibering.
(4) X∗∗ = X if X is finite.

2.2. Anderson duality. Let us collect several facts from different fields. First of all, there is the
Pontryagin duality for abelian topological group which asserts that G → Ĝ = Homc(G,R/Z) is
reflexive, i.e. the double dual of G is G. This duality has a well-known discrete form for torsion
groups, which asserts that T → HomZ(T ;Q/Z)3 is reflexive.

We here describe a even more general version, assuming some compactness. Let A be a finitely
generated abelian group, i.e. a coherent sheaf over Spec(Z), then the functor

A→ Hom(A,Q→ Q/Z)

is reflexive. We note that Hom(A,Q → Q/Z) should be thought of as a discrete version of
Homc(−,R/Z) where continuity is replaced by requiring maps into Q/Z can be lifted to its “universal
cover” Q. More precisely, we mean the natural evaluation map

A→

{ Hom(A,Q) Q

Hom(A,Q/Z) Q/Z

}

is an isomorphism4. The conceptual way to see this is that Z is the dualizing sheaf over Spec(Z)
and Q → Q/Z is an injective resolution of Z. One can also check it by hand, it suffices to verify
for A = Z and A = Zn using the structure theorem of finitely generated abelian groups. The above
isomorphism is a consequence of the coherent duality over Spec(Z).

Turing to topology, there is a well-known isomorphism

H∗(X;Q) ∼= Hom(H∗(X;Q),Q),

and a less known isomorphism

H∗(X;Zn) ∼= Hom(H∗(X;Zn),Zn).

Putting the two together, one can show

2Again Adams assumes X is finite.
3Hom(T,Q/Z) is profinite.
4This seems to fail if A is not finitely generated, and I recall Yoonjoo gave me a counter-example once. This is

somewhat expected, as coherent duality don’t(?) usually extend to quasicoherent sheaves.
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H∗(X;Z) ev−→

{ H∗(X;Q) Q

H∗(X;Q/Z) Q/Z

}

is an isomorphism. This isomorphism was used by Morgan and Sullivan to “glue” L-class and Wu
class to a 2-local cohomology class.

We would like to have the same for any generalized cohomology theory. Unfortunately if one
simply replace H∗ and H∗ by E∗ and E∗ this won’t hold, the way to fix this is to introduce certain
dual IZE of E, called Anderson dual.

Theorem 2.9 (J. Hu). Let E be a spectrum of finite type, and X a finite CW-complex. Then

E∗(X)
ev−→

{ IZE∗(X;Q) Q

IZE∗(X;Q/Z) Q/Z

}

is an isomorphism.

Remark 2.10. The meaning of this theorem is that E-cohomology classes are completely determined
by their evaluations over IZE-homology classes. The finiteness assumptions are needed for coherent
duality to work.

I haven’t introduced homology with coeffients yet, but let us analyze what it takes for this
theorem to work. We easily observe that if IZE∗(X;Q/Z) = Hom(E∗(X),Q/Z) and IZE∗(X;Q) =
Hom(E∗(X),Q). Then this theorem follows from the coherent duality over SpecZ.

So we simply define IZE to fulfill this purpose as follows. Consider the functorX 7→ Hom(E∗(X),Q).
Since Hom(−;Q) is exact, this functor defines a generalized homology theory, whose representing
spectrum is denoted by IQE. Similarly since Hom(−,Q/Z) is exact, we obtain IQ/ZE. There is a
canonical map

IQE → IQ/ZE

induced by Q→ Q/Z. We take IZE to be the fiber (i.e. desuspension of cofiber) of this map.

Definition 2.11 (Anderson dual). We call IZE the Anderson dual of E and IQ/ZE the Brown-
Comenetz dual of E.

Recall that the evaluation diagram above is a coherent way of packing universal coefficient theo-
rem, we can unwrapp it. Indeed, Anderson showed

Theorem 2.12 (universal coefficient theorem). Let E be a spectrum of finite type and X a finite
CW-complex, then the following sequence is exact:

0→ Ext
(
(IZE)∗−1 (X) ,Z

)
→ E∗(X)→ Hom ((IZE)∗ (X) ,Z)→ 0.

Example 2.13. The Anderson duals of HZ,KU,KO, Tmf are HZ,KU,Σ4KO and Σ21Tmf re-
spectively.

I must now define (co)homology with coefficients, this has to do with Moore spectrum. Let G be
an abelian group. By axiom of choice5, there is a short resolution of G by free Z-modules:

0→ ZA i−→ ZB → G→ 0

Then take a map

f :
∨
α∈A

S→
∨
β∈B

S

so that π0(f) = i. We define SG (sometimes denoted by MG) the Moore-spectrum of G to be
the cofiber of f . The Moore spectrum for G is characterized, up to equivalence, by the properties

5if G is finitely generated, then axiom of choice is not needed.
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HZ0(SG) = G and all other homology groups vanish. If 0→ A→ B → C → 0 is an exact sequence
of abelian groups, then

SA→ SB → SC

is a cofibering.

Definition 2.14. For any spectrum E we define the corresponding spectrum with coefficients in G
to be EG = E ∧ SG. We also define E∗(−;G) = EG∗(−) and E∗(−;G) = EG∗(−).

It follows immediately from definition that we have long exact sequence induced from short exact
sequence of coefficients. We also have universal coefficient theorem:

Proposition 2.15. There exist exact sequences

0→ E∗(X)⊗G→ E∗(X;G)→ Tor(E∗−1(X), G)→ 0,

and (if X is a finite spectrum or G is finitely generated)

0→ E∗(X)⊗G→ E∗(X;G)→ Tor(E∗+1(X), G)→ 0.

Proof. Follow your nose. ■

Corollary 2.16. i : S → HZ induces an equivalence SQ ≃ HQ. Consequently π∗(X) ⊗ Q ∼=
H∗(X)⊗Q.

Proof. The above universal coefficient theorem shows SQ→ HQ induces isomorphism on homotopy.
■

Finally we are ready to prove Hu’s theorem. As I pointed out, it suffices to check that IZE(X;Q) =
Hom(E∗(X),Q) and same for Q/Z. They follows from the following lemma.

Lemma 2.17. Let E be a spectrum, then IZE ∧ SQ ≃ IQE and IZE ∧ SQ/Z ≃ IQ/ZE.

Proof. 6 Smash the cofiber sequence

IZE → IQE → IQ/ZE

with SQ, we obtain the cofiber sequence

IZE ∧ SQ→ IQE ∧ SQ→ IQ/ZE ∧ SQ.

Since π∗(IQE)⊗Q = π∗(IQE), we conclude that IQE∧SQ ≃ IQE. Similarly since π∗(IQ/ZE)⊗Q = 0,
we conclude that IQ/ZE ∧ SQ is contractible. Therefore IZE ∧ SQ ≃ IQE is proved.

On the other hand, smashing with SQ/Z yields a cofiber sequence

IZE ∧ SQ/Z→ IQE ∧ SQ/Z→ IQ/ZE ∧ SQ/Z.

I claim that IQE∧SQ/Z is contractible. This follows from IQE ≃ IQE∧SQ and the cofiber sequence

IQE → IQE ∧ SQ→ IQE ∧ SQ/Z.

It then follows that IZE ∧ SQ/Z ≃ Σ−1IQ/ZE ∧ SQ/Z. Now consider smashing SZ = S → SQ →
SQ/Z with IQ/ZE, we can dedude that IQ/ZE ≃ Σ−1IQ/ZE∧SQ/Z. Therefore IZE∧SQ/Z ≃ IQ/ZE
as desired. ■

We conclude this section with

Proposition 2.18. If E is a spectrum of finite type, then IZIZE = E.

Proof. The idea is to build a natural map E → IZIZE and show this is an isomorphism on homotopy
using the definition of IZ and the coherent duality over SpecZ. ■

Remark 2.19. IZ = IZS is the dualizing object for spectra.

6Here’s a short proof: this lemma follows immediately from that IQE and IZE are rationally equivalent.



12 STABLE HOMOTOPY THEORY

2.3. Poincaré duality. We have seen that the Poincaré duality for closed smooth manifolds follows
from Atiyah duality and Thom isomorphism for the stable normal bundle. In order to discuss Thom
isomorphism, we need to talk about products (cup, cap, slant, slash). We would also like to have
Poincaré duality for topological manifolds, where one does not have tangent/normal bundle. An
appropriate notion of orientability has to be used. Once everything is set up, the proof for Poincaré
duality proceeds in the usual way. The desired statement is the following:

Theorem 2.20 (Poincaré duality). Let E be a spectrum on which cup product and cap product can
be defined. Assume Md is a topological manifold which is orientable in certain sense with respect
to E. Then Ed−∗(M) ≃ E∗(M).

We point out that, even if M is orientable in the usual sense, it might fail to be orientable for
a generalized cohomology theory. Recall that when M is smooth, the orientability should require
the normal bundle of M to admit Thom isomorphism in E. If E = KU , then a vector bundle has
a Thom isomorphism for KU if and only if the bundle is Spinc7. Therefore, only Spinc manifolds
are orientable for KU .

Now in order to talk about products, we introduce the notion of ring spectrum. Roughly speaking,
a ring spectrum is a ring object in the category of spectrum.

Definition 2.21 (ring spectrum, module spectrum). A spectrum E is said to be a ring spectrum if
it has given maps µ : E ∧ E → E, η : S→ E (of degree 0) such that certain diagrams commute. A
ring spectrum is commutative if further cµ = µ where c : E ∧ E → E ∧ E is switching factors. One
can also define module spectrum F by requiring there is a map ν : E ∧ F → F subject to certain
conditions.

If E is a ring spectrum, then one can define cross product. Informally, this is

Ẽ∗(X)⊗ Ẽ∗(Y ) = [X,E]∗ ⊗ [Y,E]∗ = [X ∧ Y,E ∧ E]∗
µ−→ [X ∧ Y,E]∗ = Ẽ∗(X ∧ Y ).

Using the plus construction, one can obtain a basepoint-free cup product

E∗(X)⊗ E∗(Y )→ E∗(X × Y ).

The cross product combined with the diagonal map X → X ∧X yields cup product:

Ẽ∗(X)⊗ Ẽ∗(X)→ Ẽ∗(X).

Similarly one has a basepoint-free version. Cap product can also be defined.

Lemma 2.22. If E is a ring spectrum, then E∗(X) is a graded ring; in particular π∗(E) = E∗(pt)
is a graded ring. If F is a module spectrum over F , then F ∗(X) is a module over E∗(X).

Example 2.23. (1) If R is a commutative ring, then HR the Eilenberg-MacLane spectrum with
R-coefficients is a ring spectrum. Note that HQ/Z is not a ring spectrum since π∗HQ/Z = Q/Z
is not a ring.

(2) KU,KO are ring spectra, whose cup products correspond to tensor products over C and R
respectively. But KSp is not a ring spectrum, KSp is a module spectrum over KO.

(3) The Thom spectrum MSO is a ring spectrum. In particular π∗MSO = ΩSO
∗ is a graded ring,

called the cobordism ring whose multiplication corresponds to Cartisian products of oriented
manifolds.

(4) MU,MSp,MSpin,MSpinc are ring spectra. But MSpinh is not a ring spectrum.

Finally, orientation.

Definition 2.24 (orientation). Let M be a compact topological manifold without boundary. By
an orientation of M over E, we mean a class ω ∈ E∗(M ×M,M ×M −∆) such that

i∗xω ∈ E∗(x×M,x×M − x× x) ∼= E∗(M,M − x)

is a generator for each x ∈M .

7This is not trivial.
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In the case E = HZ it is clear what generator means, in general this needs extra explanation.

The pair (M,M−x) is by excision equivalent to (Rn,Rn−0). We say φ ∈ F ∗(Rn,Rn−0) ∼= F̃ ∗(Sn)
is a π∗(F )-basis for F ∗(Rn,Rn − 0).

Remark 2.25. If M is smooth, then using tubular neighborhood theorem and that the normal bundle
of ∆M in M ×M is diffeomorphic to TM , the above orientability can be rephrased as the tangent
bundle of M admits a Thom class U ∈ E∗(TM, TM −M) which restricts to each point x ∈M is a
generator for E∗(TxM,TxM − x).

Remark 2.26. Orientations are usually not unique. For E = HZ, if orientation exists, there are two
choices. In general, different choices of orientations are differed by a unit in π0E.

Theorem 2.27 (Poincaré duality). Let M be a compact topological manifold without boundary,
oriented over E and F is a module spectrum over E. Then we have an isomorphism

Fp(M)
≃−→ F d−p(M).

Proof. The proof proceeds in the same way as for singular cohomology. Firstly, there is a local
duality for Rn and the global duality follows from Mayer-Vietoris sequence and five-lemma. ■

Example 2.28. (1) All topological manifolds are orientable over HZ2. Orientability in the usual
sense is the same as orientable over HZ.

(2) Conner and Folyd showed stably almost complex manifolds and stably special unitary manifolds
are orientable over KU,KO respectively. Later Atiyah, Bott and Shapiro showed orientablity
over KU,KO precisely means Spinc and Spin respectively (at least in the smooth case). Their
construction of orientation classes involve Clifford algebras and their modules.

(3) Stably almost complex manifolds are orientable over MU . In fact, Quillen noticed MU is the
universal theory over which stably almost complex manifolds are orientable.

(4) If M is orientable over the sphere spectrum, then it admits Poincaré duality for any generalized
cohomology theory. Question: can we find all such M? Examples of M are spheres Sn.

(5) (Sullivan) PL-manifolds are orientable over KO at odd primes. This orientation is tied up to
signature, L-class and Adams Ψ2 operation, the last of which morally explains why one has to
localize at odd primes.

Exercise 2.29. Find an explicit formula for the fundamental class of CPn for KU .

We conclude this lecture with the following remark.

Proposition 2.30. Let E be a ring spectrum, then the cohomology Atiyah-Hirzebruch spectral
sequence for E is multiplicative.

3. Localization and Adams spectral sequence

Many important geometric-topology questions can be solved by calculating the homotopy groups
of some spectra. For example, Thom showed ΩSO

∗ = π∗(MSO); Kervaire and Milnor showed exotic
spheres are related to π∗(S). Also, the homotopy groups of a spectrum is required as an input for
the Atiyah-Hirzebruch spectral sequence. Therefore, we would love to have a method for calculating
π∗(X) in general.

Recall that π∗(X) = [S, X]−∗. We shall address a more general question: how can we calculate
[X,Y ]∗? As we know, it is often easier to calculate (co)homology, so we can ask, how much can we
tell about [X,Y ]∗ if we know about H∗(X) and H∗(Y )? One can replace H∗ by any generalized
homology E∗ and ask the same question.

Theorem 3.1 (Adams). Let E be a ring spectrum, under certain conditions on X,Y,E, there is a
spectral sequence

Ep,∗
2 = Extp,∗E∗(E)(E∗(X), E∗(Y )) =⇒p [X,Y ]E∗ .

Since E is assumed to be a ring spectrum E∗(E) is a coalgebra and E∗(X), E∗(Y ) are comodules
over E∗(E). Extp,∗ is the higher derived Hom∗ as usual. The notation [X,Y ]E∗ means the local-
ization of [X,Y ]∗ with respect to E. This should be expected, since from E∗(X) and E∗(Y ), no
information undetectable by E can be obtained.
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3.1. Localization and completion. Let E be a spectrum. We would like to localize a spectrum
with respect to E. Recall one can localize a Z-module with respect to a set of primes by inverting
all other primes. And localizing at prime p is the same as tensoring with Z(p). Further, localization
is exact. We will see, in good cases, E-localization also has these properties.

Definition 3.2. A map f : X → Y is an E-(homology) equivalence if f∗ : E∗X → E∗Y is an
isomorphism. We say Z is E-acyclic (or E-trivial) if E∗Z = 0. We say W is E-local if for all
E-equivalence f : X → Y the induced map

f∗ : [Y,W ]∗ → [X,W ]∗

is an isomorphism. We say f : X → LEX is a E-localization of X if f is an E-equivalence and LEX
is E-local.

It is an easy exercise to see f is an E-equivalence if and only if the cofiber of f is E-trivial. It
is also clear that any two E-localization X → LEX and X → (LEX)′ are equivalence under X.
Therefore, it is reasonable to call LEX the localization of X if exists.

Theorem 3.3 (Bousfield). Let Ho(Sp)8 be the homotopy category of CW-spectra. Then each E ∈
Ho(Sp) gives rise to a E-localization functor LE : Ho(Sp)→ Ho(Sp) and a natural transformation
η : 1→ LE

The techniques Bousfield used to show the existence of localization is applicable in many other
situations, but we will not need them.

Proposition 3.4. If E is a ring spectrum and F an E-module, then F is E-local. In particular
E ∧X is E-local.

Proof. Any map f : Z → F factors as

Z
i∧1−−→ E ∧ Z

1∧f−−→ E ∧ F
µ−→ F.

So if Z is E-acyclic, then [Z,F ] = 0. This proves F is E-local. ■

Example 3.5. E ∧MG is E-local.

Definition 3.6 (E-completion). Let E be a ring spectrum, with j : I → S the fiber of i : S → E.
From the inverse system

· · · → I∧3 j∧1−−→ I∧2 j∧1−−→ I
j−→ S

we can form the inverse system
(S/I∧n) ∧X.

Define the E-nilpotent completionX∧
E to be the direct limit of this direct system, with mapX → X∧

E

induced by S→ S/I∧n.

Proposition 3.7. The E-nilpotent completion is always E-local. If E is a finite spectrum, or X
and I are connective (i.e. bounded below) and E is of finite type, then the map X → X∧

E is an
E-localization.

Proof. The cofiber sequence I → S → E, after smashing with I∧(n−1), becomes a cofiber sequence
I∧n → I∧(n−1) → E ∧ I∧(n−1), and so there are cofiber sequences

S/I∧n ∧X → S/I∧(n−1) ∧X → E ∧ I∧(n−1) ∧X.

By induction on n, we find S/I∧n∧X is E-local, and so the homotopy (inverse) limit X∧
E is E-local.

Now after smashing with E, the cofiber sequence

E ∧ I∧n ∧X → E ∧ I∧(n−1) ∧X → E ∧ E ∧ I∧(n−1) ∧X

has a retraction of the second map via the multiplication of E, and so the first map is nullhomotopic.
Therefore the homotopy limit limE ∧ (I∧n ∧X) is trivial, and from the cofiber sequences

E ∧ (I∧n ∧X)→ E ∧X → E ∧ (S/I∧n ∧X)

8Objects are CW-spectra and morphisms are homotopy classes of maps.
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we find that E ∧X → limE ∧ (S/I∧n ∧X) is an equivalence.
This reduces to proving that the map

E ∧ lim(−)→ lim(E ∧ −)
is an equivalence. This is always true if E is finite or if E is of finite type and the homotopy limits
is of connective objects. ■

Example 3.8. For X connective (i.e. bounded below), and E = HFp, HFp-localization coincides
with p-completion.

The following result allows us to compute [X,Y ]E∗ , and in particular π∗(LEY ). Let E be a ring
spectrum, that πr(E) = 0 for r < 0 and Y is connective (i.e. bounded below).

Theorem 3.9. (i) Suppose π0(E) is a subring R of the rationals. Then LEY = Y ∧MR.
(ii) Suppose π0(E) = Z/m and πr(Y ) is finitely generated for all r. Then LEY = Y ∧MZ∧

m.
(iii) Suppose π0(E) = Z/m and the identity morphism 1 : Y → Y satisfies me · 1 = 0. Then

LEY = Y .

Proof. Omitted. ■

It might be surprising at first glance that π0E determines E-localization. Roughly speaking, one
can prove if f is an E-equivalence, then f induces isomorphism on H(π0E)-homology. Conversely,
if f yields an isomorphism on H∗(−;π0E), then by universal coefficient theorem, f induces isomor-
phism on H∗(−;π∗E). Hence by Atiyah-Hirzebruch spectral sequence and Zeeman comparison, we
conclude f is an E-equivalence.

This proves, provided E is connected and everything is connective, then E-equivalence is the
same as H(π0E)-equivalence. So [X,Y ]E∗ relies only on π0(E). In particular, for example, [X,Y ]E∗
is the same whether E = MU(p) or bu(p).

However, of course, the MU(p)-localization and bu(p)-localization are different.

Example 3.10. Let E = HFp, and X connective of finite type, then π∗(X
∧
HFp

) = π∗(X)∧p is the

p-adic completion of π∗(X).

We finish the discussion of Bousfield localization with an arithematic square.

Proposition 3.11. Suppose that E and K are spectra such that LKLEX is always trivial. Then,
for all X, there is a homotopy pullback diagram

LE∨KX LEX

LKX LELKX.

Proof. The objects in the diagram

LKX → LELKX ← LEX

are either E-local or K-local, and hence automatically E∨K-local; therefore the homotopy pullback
is E ∨K-local. It suffices to show

X LEX

LKX LELKX.

becomes a homotopy pullback after smashing with E ∨K; which is easy to see. ■

Example 3.12 (Sullivan). For all X, there are homotopy pullback diagrams

X(p) XQ

X∧
p (X∧

p )Q.

This corresponds to the Hensel’s principle 0→ Z(p) → Zp ⊕Q→ Qp → 0.



16 STABLE HOMOTOPY THEORY

3.2. Base change. We now address the question of recovering [X,Y ]∗ from E∗X and E∗Y in a
special case: assume Y is a E-module. In this case, denote Y by F , then [X,Y ]∗ = [X,F ]∗ =
F−∗(X). So the question becomes, given an E-module spectrum F and E∗X, can we compute
F ∗(X)? First of all, we must know π∗(F ). It turns out, under suitable assumptions, knowing π∗F
is enough.

Proposition 3.13. Suppose E satisfies certain conditions, and suppose E∗(X) is projective over
π∗(E). Then for all E-module spectrum F , we have an isomorphism

F ∗(X)
≃−→ Hom∗

π∗E(E∗X,π∗F ).

Remark 3.14. The assumption E∗X is automatically satisfied by X = S. Another example is if
E = HFp, then all π∗HFp = Fp-modules are projective.

A particularly easy case is when X is E-acyclic, in that case no assumption for E is needed.

Lemma 3.15. Let F be a E-module spectrum. If E∗X = 0, then F∗X = 0 and F ∗X = 0.

Proof. E∗X = 0 means E ∧X is contractible. Now any morphism S→ F ∧X can be factored as

S→ S ∧ F ∧X → E ∧ F ∧X → F ∧X.

Since E ∧F ∧X = F ∧ (E ∧X) is contractible, we see all morphisms S→ F ∧X are null-homotopic,
hence F ∧X is contractible. This proves F∗X = 0.

Similarly, for any morphism f : X → F can be factored as

X = S ∧X → E ∧X
1∧f−−→ E ∧ F → F.

Therefore all morphisms f : X → F are null-homotopic, and F ∗X = 0. ■

We note, for any X (not necessarily E-acyclic) and f : X → F , we have a E-module morphism

E ∧X
1∧f−−→ E ∧ F → F . Applying π∗ we get a π∗E-module morphism

E∗X → π∗F.

So we always get a homomorphism

F ∗(X)→ Homπ∗E(E∗X,π∗F ).

For this lecture, we say X is perfect for E if the above homomorphism is an isomorphism for all
E-module F . Now we must spell out our assumptions on E, in order for the Proposition to hold.

Assumption. E is a direct limit of finite spectra Eα for which E∗(DEα) is projective over π∗E
and DEα is perfect for E.

Example 3.16. The assumption is satisfied by the following spectra:

S, HFp,MO,MU,MSp,K,KO.

Instead of proving the Proposition directly, we prove a more general statement.

Theorem 3.17 (base change spectral sequence). Suppose E satisfies the assumption above, then
there is a spectral sequence

Extp,∗π∗E
(E∗X,π∗F ) =⇒p F ∗(X)

whose edge-homomorphism is the homomorphism

F ∗(X)→ Hom∗
π∗E(E∗X,π∗F ).

Proof of Proposition from Theorem. If E∗X is projective over π∗E, then Extp,∗π∗E
(E∗X,π∗F ) = 0 for

p > 0. Therefore, the spectral sequence collapses to its edge homomorphism. ■

In order to construct this spectral sequence, we must “resolve” X by spectra with π∗E-projective
E-homology. In fact, we will construct a resolution of X of the following form, with X = X0 and
with the properties listed below.
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Xr Xr+1

Wr

xr

gr

(i) The triangles are cofiber triangles; more precisely Wr → Xr → Xr+1 is a cofibering and
Xr+1 →Wr has degree −1.

(ii) For each r, (xr)∗ : E∗(Xr)→ E∗(Xr+1) is zero.
(iii) For each r, E∗(Xr) is projective over π∗E.
(iv) For each r, the map F ∗(Wr)→ Hom∗

π∗E
(E∗(Wr), π∗F ) is an isomorphism.

As usual, the most difficult step is in the construction of W0, the rest will be taking cofibers and
inductively applying the same construction. The problem now becomes, for X we need to construct
W together with f : W → X so that the map X → cofiber(f) induces zero after applying E∗.

Recall E is the direct limit of finite spectra Eα. The injection Eα → E corresponds to a coho-
mology class iα ∈ E0(Eα) or to a homology class gα ∈ E0(DEα).

Lemma 3.18. For any spectrum X and any class e ∈ Ep(X) there is an Eα and a morphism
f : DEα → X of degree p such that e = f∗(gα).

Proof. Take a class e ∈ Ep(X). Then there is a finite subspectrum i : X ′ ⊂ X and a class e′ ∈ Ep(X
′)

such that i∗(E
′) = e. Indeed, X = limX ′ and E∗(X) = limE∗(X

′). So we may interprete e′ as
a morphism DX ′ → E of degree p. By assumption, this morphism factors through some Eα since
Dx′ is a finite spectrum:

DX ′ φ−→ Eα
iα−→ E

and φ∗iα = e′, considered as an element of E−p(DX ′). Dualizing back,

(Dφ)∗gα = e′ ∈ Ep(X
′).

Take f to be DEα
Dφ−−→ X ′ i′−→ X. ■

Lemma 3.19. For any spectrum X there exists a spectrum of the form

W =
∨
β

Sp(β) ∧DEα(β)

and a morphism g : W → X (of degree 0) such that g∗ : E∗W → E∗X is an epimorphism.

Proof. Represent E-homology classes by maps from DEα into X. ■

Note that since E∗(DEα) is projective over π∗(E), E∗W is automatically projective over π∗(E)
as well. Moreover, since DEα is perfect for E, so is W . That is,

F ∗(W )
≃−→ Hom∗

π∗E(E∗W,π∗F )

for all E-module F .

Proof of Theorem. We can inductively construct Xr and Wr as discussed. Then applying F ∗ we
obtain an exact couple ⊕

r F
∗(Xr)

⊕
r F

∗(Xr+1)

⊕
r F

∗(Wr)

By using mapping cylinder and a telescoping construction, we may assume X = X0 ⊂ X1 ⊂ · · · .
Define X∞ = ∪rXr = limXr. The spectral sequence should converge to F ∗(X∞, X0). But we
note that E∗(Xr) → E∗(Xr+1) is zero by construction, so E∗(X) = limE∗(Xr) = 0. Therefore
F ∗(X∞) = 0 and F ∗(X∞, X0) = F ∗(X).

The first page of the spectral sequence is Ep,∗
1 = F ∗(Wp) = Hom∗

π∗E
(E∗Wp, π∗F ) and the

boundary is induced by the boundaries in the projective resolution

0← E∗X ← E∗(W0)← E∗(W1)← · · ·
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Therefore the second page is Ep,∗
2 = Extp,∗π∗E

(E∗X,π∗F ) as claimed.
■

3.3. Adams spectral sequence. The construction of the spectral sequence is quite easy, but the
recognition of the first and second pages are hard. The actual computation, of course, is even more
painful.

3.3.1. The construction. Let E be a ring spectrum. We construct an exact couple Yp,Wp inductively.
Put Y0 = Y . Suppose we have constructed Yp we define Wp = E ∧Yp and Yp+1 the fiber of the map
Yp →Wp. That is, we have a cofibering

Yp+1 → Yp →Wp
∂−→ Yp+1

where ∂ has degree −1.
Therefore inductively we obtain

Yp−1 Yp Yp+1

Wp−1 Wp

Applying the functor [X,−]E∗ , we an exact couple⊕
p [X,Yp+1]

E
∗

⊕
p [X,Yp]

E
∗

⊕
p [X,Wp]

E
∗

∂

So we obtain a spectral sequence which, if convergent, converges to [X,Y ]E∗ . The (decreasing)
filtration on [X,Y ]E∗ is given by the images of [X,Yp]

E
∗ → [X,Y ]E∗ .

Note we have the following cofibering

I → S→ E.

It is not hard to see Yp = Ip ∧ Y and Wp = E ∧ Ip ∧ Y . So the spectral sequence we just obtained
is functorial. This is the Adams spectral sequence.

3.3.2. The first and second page. In order to recognize the first and second page, we assume E satisfy
the assumption for the base change spectral sequence and E∗X is projective over π∗E. We further
assume

Assumption. E∗E is a flat right π∗E-module.

Remark 3.20. There are two actions from π∗E on E ∧E. The left one is induced by E ∧E ∧E µ∧1−−→
E ∧ E and the right one induced by 1 ∧ µ. The two actions, of course, commute.

Lemma 3.21. Suppose E∗E is flat over π∗E (as a right-module). Then for all X, the product map

E∗E ⊗π∗E E∗X → E∗(E ∧X)

induced by (E ∧ E) ∧ (E ∧X)
1∧µ∧1−−−−→ E ∧ E ∧X is an isomorphism of E∗E-comodules.

Proof. This is obviously true for Sp, and use five lemma and induction this is true for finite spectra.
Finally a direct limit argument proves the general case. Note that the flatness is used in the second
step as we require E∗E ⊗π∗E − to be exact. ■

Since Wp is E-local, we have [X,Wp]
E
∗ = [X,Wp]∗ = [X,E ∧ Yp]∗. Further, observe that Wp =

E ∧ Yp is an E-module, applying base change we get

[X,Wp]∗ = Hom∗
π∗E(E∗X,π∗(E ∧ Yp)) = Hom∗

π∗E(E∗X,E∗Yp).

By base change (for comodules), we have

Hom∗
E∗E(E∗X,E∗Wp) = Hom∗

E∗E(E∗X,E∗E ⊗π∗E E∗Yp) = Hom∗
π∗E(E∗X,E∗Yp).
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So the first page of the Adams spectral sequence is

Ep,∗
1 = [X,Wp]

E
∗ = Hom∗

E∗E(E∗X,E∗Yp).

Now to obtain the second page, recall the differential on the first page is induced by the compo-
sition Wp → Yp+1 →Wp+1 (of degree −1). From the commutative diagram

[X,Wp−1]∗ [X,Wp]∗ [X,Wp+1]∗

Hom∗
E∗E

(E∗X,E∗Wp−1) Hom∗
E∗E

(E∗X,E∗Wp) Hom∗
E∗E

(E∗X,E∗Wp+1)

∼= ∼= ∼=

The second page of the Adams spectral sequence is identified with the cohomology of the second
row.

Lemma 3.22. E∗Wp is a resolution of E∗Y by extended comodules over E∗E.

Proof. Consider the cofibering Yp → E∧Yp → Yp+1 where the second map has degree −1. Smashing
this with E we get

E ∧ Yp
µ∧1−−⇀↽−−
1∧i

E ∧ E ∧ Yp → E ∧ Yp+1

But µ ∧ 1 is left inverse to 1 ∧ i, so we have the following short exact sequence, split as a sequence
of π∗E-modules.

0→ E∗Yp → E∗(Wp)→ E∗(Yp+1)→ 0

Hence, the sequence

0→ E∗Y → E∗W0 → E∗W1 → E∗W2 → · · ·
is indeed a resolution of E∗Y . ■

Recall that the usual prescription for computing Ext∗∗C (L,M) demands a resolution of M be
injectives. However, in the case L is projective over R, it will be sufficient to resolve M by relative
injectives. More precisely, if L is projective over R and

0→M →M0 →M1 →M2 → · · ·

is a resolution of M by extended comodules Mi = C ⊗R Ni. Then the cochain complex

HomC(L,M•) = HomR(L,N•)

computes Ext∗∗C (L,M) correctly, since HomR(L,−) is exact. From here we conclude:

Proposition 3.23. The second page of the Adams spectral sequence is Ep,∗
2 = Extp,∗E∗E

(E∗X,E∗Y ).

Example 3.24 (classical Adams spectral sequence). Let E = HFp, then E∗E = HFp∗HFp = A∗
is the dual mod p Steenrod algebra. Take X = S, then E∗X = Fp, the Adams spectral sequences
now reads:

Es,∗
2 = Exts,∗A∗

(Fp, H∗(Y ;Fp)) =⇒ π∗(Y )ˆp.

Assume Y is a finite spectra, then Exts,∗A∗
(Fp, H∗(Y ;Fp)) = Exts,∗A (H∗(Y ;Fp),Fp). In particular, we

have

Es,∗
2 = Exts,∗A (Fp,Fp) =⇒ π∗(S)ˆp.

Example 3.25 (Thom’s work on unoriented cobordism). Take Y = MO in the previous example.
Thom showed H∗(MO;F2) is a free A-module using Thom isomorphism and Wu-formula and Serre’s
thesis. (A modern simply proof of this fact employs the Milnor-Moore theorem.) It follows that the
Adams spectral sequence collapses on the second page, and π∗(MO)ˆ2 as F2-module is spanned by
an A-basis of H∗(MO;F2).

Example 3.26 (Adams-Novikov spectral sequence). Let E = BP the Brown-Peterson spectrum.
Take X = Y = S. We get

E2 = ExtBP∗BP (BP∗, BP∗) =⇒ π∗(S)(p)
where BP∗ = Z(p)[v1, v2, . . . ] is the universal ring for p-local, p-typical formal group laws.
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3.3.3. Adams-Margolis trick. The coalgebra A∗ involved in the classical Adams spectral sequence
is infinite dimensional, so the computation of the second page of the Adams spectral sequence is
already very hard. We introduce a trick for reducing the problem to a finite dimensional coalgebra.

Let ku be the connected KU , so that π∗(ku) = π≥0KU . Let us try to compute π∗(ku∧X) using
the classical Adams spectral sequence. Then

E2 = ExtA∗(Fp, H∗(ku ∧X;Fp)).

For the moment, assume X is a finite spectrum, therefore

E2 = ExtA(H
∗(ku ∧X;Fp),Fp).

By Künneth formula, we have H∗(ku ∧ X;Fp) = H∗(ku;Fp) ⊗Fp
H∗(X;Fp). For simplicity of

notation, we write H∗ for H∗(−;Fp). The action of A on H∗(ku)⊗H∗(X) is through ∆ : A→ A⊗A.

Lemma 3.27. We have

H∗(ku;F2) = A/A(Sq1 +ASq01)

where Sq01 = Sq1Sq2 + Sq2Sq1 dual to ξ2; and

H∗(ku;Fp) =

p−1∑
1

A/(AQ0 +AQ1)

for p odd. In fact, ku(p) =
∑p−1

1 BP ⟨1⟩.

We note that as A-module, H∗(ku;F2) = A ⊗B F2 where B is the exterior subalgebra of A
generated by Sq1 and Sq01. Therefore, by applying change-of-rings, we have a spectral sequence

ExtB(H
∗(X;F2);F2) =⇒ π∗(ku ∧X)ˆ2

One can remove the remove the finiteness assumption on X if we use comodule language.

Proposition 3.28. Let X be a bounded-below spectrum, then we have a spectral sequence

E2 = ExtB∗(F2, H∗(X;F2)) =⇒ π∗(bu ∧X)ˆ2.

A similar result holds, replacing ku by ko and B by the subalgebra generated by Sq1 and Sq2

respectively.

4. Complex cobordism ring

The goal of this lecture is to determine the structure of complex cobordism ring. The first part
is to determine its group structure–we show it is torsion-free. Two proofs are presented: one is due
to Milnor, by applying Adams spectral sequnece; the other is due to Bouncristiano and Hacon, by
a surgery argument. The second part is to determine its rings structure following Quillen.

4.1. Milnor’s theorem on complex cobordism. Following Milnor, we base our calculation of
π∗MU on the Adams spectral sequence.

Proposition 4.1. H∗(MU ;Fp) is a free module over A/(Q0), where (Q0) is the two-sided ideal
generated by the Bockstein Q0.

This proposition follows from the following two lemmas.

Lemma 4.2. The A-module map A/(Q0)→ H∗(MU ;Fp) induced by the Thom class is monic.

Proof. Using splitting principle, we write the Thom class U = x1x2 . . . . For any admissible P I , its

action on the Thom class can be computed and reduces to P ixps

= xps

, xps+1

or 0 as i = 0, ps or
any other. ■

Lemma 4.3. Let A be a connected Hopf algebra over a field F. Let M be a connected coalgebra over
F with counit 1 ∈ M0 and a left module over A such that the diagonal map is a map of A-module.
Suppose ν : A→M : a 7→ a · 1 is a monomorphism. Then M is a free left A-module.
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Proof. Let A+ ⊂ A be the augmentation ideal of A. Let π : M → N = M/A+M be the projection.
Let f : N →M be any vector space splitting and define ϕ : A⊗N →M : a⊗ n 7→ af(n). We show
ϕ is an isomorphism of A-modules.

(i)ϕ is epic. Suppose ϕ is epic in degrees < k. Then for c imMk, consider c − ϕ(1 ⊗ πc). This
element by induction is in the image of ϕ and therefore c is in the image of ϕ.

(ii)ϕ is monic. Consider

A⊗N
1⊗f−−−→ A⊗M →M

∆−→M ⊗M
1⊗π−−−→M ⊗N.

The injectivity of ν implies the injectivity of the above composition and therefore ϕ being the
composition of the first two maps is monic. ■

Proposition 4.4 (Milnor). Suppose Y is a connective spectrum of finite type. If H∗(Y ;Fp) is a
free A/(Q0)-module with even dimensional generators, then π∗Y contains no p-torsion.

The idea of the proof is to apply the Adams spectral sequence

Ext∗,∗A (H∗(Y ;Fp), H
∗(X;Fp)) =⇒ [X,Y ]∧p,∗

in which X is chosen to be the Spanier-Whitehead dual of the Moore spectrum MFp. First let us
analyze [X,Y ]∗ when X = DMFp.

[DMFp, Y ]−∗ = Y ∗(DMFp) = Y∗(MFp) = π∗(Y ∧MFp) = π∗(Y ;Fp).

By universal coefficient theorem, we have

0→ π∗(Y )⊗ Fp → π∗(Y ;Fp)→ Tor(π∗−1(Y ),Fp)→ 0.

Therefore if π∗Y contains p-torsion, then [X,Y ]m must be nontrivial for two consecutive values of
m. On the other hand, assuming H∗(Y ;Fp) is free over A/(Q0) with even generators, we will see
[X,Y ]m is zero for m even.

Second, note that H∗(DMFp;Fp) = H∗(MFp;Fp). Then by universal coefficient theorem, the
only non-zero groups are

H0(DMFp;Fp) = Fp H1(DMFp;Fp) = Fp

Further, Q0 : H0 → H1 is an isomorphism. That is to say, H∗(X;Fp) is the exterior algebra
generated by Q0. Finally to compute Ext∗,∗A (H∗(Y ;Fp), H

∗(X,Fp)), we need to resolve A/(Q0) by
free A-modules.

Prelimiaries concerning Steenrod algebra.
Let R be the set of sequences of integers (r0, r1, r2, . . . ) such that ri ≥ 0 and ri = 0 for almost

all i. If R = (r0, r1, r2, . . . ), let dimR =
∑

2ri(p
i − 1) and l(R) =

∑
ri. Let Vs be the graded free

abelian group generated by R ∈ R such that l(R) = s.
Milnor defined elements Qi and PR in the mod p Steenrod algebra A for i = 0, 1, 2, . . . and

R ∈ R and proved the following facts about them.
If U, V ∈ R, U − V ∈ R is defined if ui ≥ vi and is equal to (u1 − v1, u2 − v2, . . . ). ∆j denotes

the sequence with 1 in the jth place and zeros elsewhere.

(i) dimQi = 2pi − 1, dimPR = dimR. Note Q0 = β is the Bockstein.
(ii) {Qi} is the basis for a Grassmann subalgebra, Ao of A, i.e. QiQj = 0 if and only if i = j and

QiQj +QjQi = 0.
(iii) A is a free right Ao-module and {PR} is a Fp-basis for A/(Q0) = A/(AβA).
(iv) (Q0) = AQ0 +AQ1 +AQ2 + · · · .
Let Ms = A⊗ Vs and let ds : Ms →Ms−1 be the A-homomorphism of degree +1 given by

ds(1⊗R) =
∑

Qj ⊗ (R−∆j).

Let α : M0 → A/(Q0) be given by
α(1⊗ (0, 0, . . . )) = 1.

Lemma 4.5. The following is exact:

→Ms
ds−→Ms−1 → · · · →M0

α−→ A/(Q0)→ 0.
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Proof. It is well-known (cf. Cartan) the following is a Ao-free acyclic resolution of Fp:

→ Ao ⊗ Vs
ds−→→ Ao ⊗ Vs−1 → · · · → Ao ⊗ V0 → Fp.

Note

A⊗Ao Fp = A/
∑

AQi = A/(Q0).

Applying A⊗Ao to the above exact sequence yields the desired sequence. But A is free over Ao and
hence A⊗Ao

is exact. ■

Remark 4.6. In order for the ds to be of degree 0, we should add s to the dimension of each element
in Ms.

With this, we can prove:

Corollary 4.7. Ext∗,∗A (A/(Q0), H
∗(X;Fp)) is concentrated in odd degrees.

Proof. Homt
A(Ms, H

∗(X;Fp)) = Homt
Ao

(Ao ⊗ Vs, H
∗(X;Fp)) has a basis consisting of:

• for each R of dimension t, the homomorphism hR that carries 1⊗R to 1 and zero elsewhere;
• for each R of dimension t + 1, the homomorphism h′

R that takes 1 ⊗ R to Q0 and zero
elsewhere.

The differential, induced by ds, takes hR to h′
R+∆0

and h′
R to 0. Hence Ext∗,∗A has as basis the set

of elements h′
R with total r0 = 0, which has total dimension t− s equals to

∑
2ri(p

i − 1)− 1. ■

Proof of Proposition. Since H∗(Y ;Fp) is assumed to be free over A/(Q0) with even degree gen-
erators, then Ext∗,∗A (H∗(Y ;Fp), H

∗(X;Fp)) is concentrated in odd degrees. Therefore, by Adams
spectral sequence the p-completion of [X,Y ]∗ is concentrated in odd degrees and so π∗(Y ) contains
no p-torsion. ■

Theorem 4.8. π∗MU is torsion free and the Hurewicz homomorphism π∗MU → H∗MU is a
monomorphsim.

4.2. The geometry of Chern numbers, following Buoncristiano and Hacon. We assume the
reader is familiar with surgery theory. We aim to inductively prove that if Mn has all Chern numbers
zero, then {M} = 0. The strategy is to show, assuming the statement is proved in dimensions< n,
that if Mn is such a manifold then {M, tM} = {N, c} in ΩU

n (BU) where tM : M → BU defines the
weakly-complex structure on M and c is a constant map. For each prime p ≥ 2, this leads to a
relation in ΩU

∗ (BZ/p), whence p divides {M} in ΩU
n . It then follows that {M} = 0.

To begin with, let f : M → X be a map from M into X, a finite dimensional Grassmannian.
Assume f maps into the k-skeleton Xk of X. We can perturb f so that it is transversal to all the k-
cells of X. Fix a prior a cellular structure of X, say by Schubert cells. Assume e is a Schubert k-cell
of X and ê its center. Then V (e) = f−1(ê) is a (n − k)-dimensional normally framed submanifold
of M and locally near V (e), M is diffeomorphic to V (e)× e with f behaves like a projection onto e.

Now let f be induced by tangent bundle of M and assume all Chern numbers of M vanish.
Then it follows all Chern numbers of V (e) vanish, indeed f∗[V (e)] = f∗[M ] ∩ z where z is the dual
cohomology class of the Schubert cell e. Then by induction hypothesis f can be cobordant to a
map g : N → Xk−1. Then make g to be transverse to all (k − 1)-cells of Xk−1. We observe that
the preimages of centers of (k − 1)-cells are cobordant to normally framed submanifolds in M by
making F transverse to all (k − 1)-cells. Therefore we conclude all Chern numbers of preimages by
g of (k−1)-cells in N are zero. And we can proceed to cobord g into Xk−2 and so forth. So we have
{M, tM} = {N, c} in ΩU

n (BU) where c is a constant map. Geometrically, we have built a cobordism
F : W → X and the bundle ξ = F ∗(universal) over W has the property that ξ|M = τM ⊕ Ra and
ξ|N is trivial.

Before we move on to the key construction in Buoncristiano and Hacon’s geometric argument, let
us observe the above surgery process applies to many other occasions, such as unoriented manifold
and BO, weakly symplectic manifold and BSp. We will illustrate their idea by a warm-up exercise–
prove Thom’s theorem that if all Stiefel-Whitney numbers ofM vanish, thenM bounds an unoriented
manifold.
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Again, we construct an unoriented cobordism F : W → BO with F |M = tM and F |N is the
constant map. Since W is (n + 1)-dimensional, we can assume F maps into BO(n + 1), thus
ξ|M = τm ⊕ R and ξ|N = Rn+1. The sphere bundle S(ξ) of ξ is a 2n-dimensional manifold with
boundary S(τM ⊕ R) and the trivial Sn-bundle over N . Next, we identify, in a neighborhood of
M , M ⊂ τM ⊕ R with ∆M ⊂ M ×M × R. The antipodal map on τM ⊕ R is transferred into the
action (x, y, t) 7→ (y, x,−t) on M ×M × R. Then cut out a tubular neighborhood of ∆M and glue
M ×M × [−1, 1] to S(ξ) along the identified common boundary component S(τM ⊕ R). This way,
we obtain a manifold Q whose boundary is the disjoint union of the trivial Sn-bundle over N and
M ×M × {±1}.

Now observe that Q carries a natural free Z/2-action, therefore Q′ = Q/Z/2 is a smooth manifold
(with boundary) with a map Q′ → RPq classifying the double cover Q → Q′. Restricting the map
Q′ → RPq to its boundary, we see, on the N -side, we have N × RPn → RPn ⊂ RPq; and on the
other side we have the constant map. Finally, choose a RPq−n in RPq transversal to RPn and misses
the image of constant map, then the transverse preimage of RPq−n is a submanifold of Q′ with
boundary N . This proves N is a boundary and therefore M is a boundary.

The passage from the unoriented case to the complex case is like moving from the orthogonal
group to the unitary group, where Z/2 = O(1) should be replaced by S1 = U(1). So in principle,

one should replace RPq in the previous argument by CPq and M ×M = MZ/2 by LM = MS1

.
However, since LM no longer is finite dimensional, to avoid this technical difficulty, we approximate
LM by MZ/n = M × · · · ×M ; and as usual it suffices to consider n = p for all p prime. Then RPq

should be replaced by Lens spaces approximating BZ/p.
We now walk through the construction in the stably almost complex case. To begin with, assume

ξ|M = τM ⊕ R2a−n and ξ|N = Ca. We construct, from a complex vector bundle, a fiber bundle
by Lens spaces as follows. First of all, for a complex vector space Ca, we consider the hyperplane
H(Ca) in the p-fold direct sum Ca⊕· · ·⊕Ca defined by

∑
vi = 0. Then H is a (p−1)a-dimensional

complex vector space carrying a Z/p-action. This action restricted to the unit sphere SH of H is
free, thus the quotient is a Lens spaces L(Ca) of real dimension 2(p − 1)a − 1. This construction,
applied fiberwise, yields a bundle L(Ca)→ L(ξ)→W and L(ξ) admits a p-fold covering SH(ξ).

Similar to the real case, we can identify M ⊂ H(ξ|M ) with ∆M ⊂ Mp × H(R2a−n) with the
Z/p-action on Mp × (R2a−n)p given by the canonical cyclic permutation. Then again, we cut out
the corresponding neighborhood and glue Mp ×DH(R2a−n) to SH(ξ) to obtain a manifold Q with
boundary N × SH(Ca) and Mp × SH(R2a−n). Note Q carries a free Z/p-action whose quotient is a
manifold Q′ with boundary. Then the map Q′ → L(Cq) ⊂ BZ/p classifying Q→ Q′ has the property
that, when restricted to the N -side, it is the composition of the projection N × L(Ca) → L(Ca)
together with an inclusion; whilst when restricted to the M -side, it is factors through L(R2a−n)→
L(Cq). Since dimL(R2a−n) < dimL(Ca), we see the image of the M -side can be made to avoid the
Z/p-Poincaré dual, say P , of L(Ca) in L(Cq). Therefore, the transverse preimage of P in Q′ is a
Z/p-manifold with boundary N . This means, {N} reduced mod p is zero. We must confess that
we haven’t checked that all the constructions respect weakly complex structures, I leave it to the
reader; once this is done, we can conclude p divides {N} in ΩU

∗ . Since p can be arbitrary and ΩU
n is

finitely generated, we conclude {N} = 0 and thus {M} = 0.

Theorem 4.9. ΩU
∗ is torsion-free.

Proof. Suppose M is a torsion, then all Chern numbers of M , after multiplied by some positive
integer, are zero, and thus all Chern numbers of M are zero. Therefore M is a boundary. ■

4.3. The Lazard ring.

Definition 4.10. A (1-dim commutative) formal group law f over a commutative ring R is a power
series f(x, y) ∈ R[[x, y]] satisfying

(1) (asscociativity) f(x, f(y, z)) = f(f(x, y), z);
(2) (unit) f(x, 0) = x = f(0, x);
(3) (inverse) there exists g(x) ∈ R[[x]] such that f(x, g(x)) = f(g(x), x) = x;
(4) (commutativity) f(x, y) = f(y, x).
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It is an easy exercise to show the existence of g follows from the other axioms and

f(x, y) = x+ y +
∑

ai,jx
iyj .

The covariant functor R 7→ FGL(R) is representable by the Lazard ring L = Z[ai,j ]/relations.
That is, FGL(R) = HomRings(L,R). The Lazard ring is naturally graded, with deg x = deg y =
deg f = −2.

Example 4.11. (1) (additive group) Ga(x, y) = x+ y can be defined over any ring.
(2) (multiplicative group) Gm(x, y) = x+ y + xy.
(3) (group laws isomorphic to additive group law) Suppose g(x) = x+

∑
bix

i then g−1 exists and

g(g−1(x) + g−1(y))

is a formal group law isomorphic to the additive group law. It is also clear every formal group
law isomorphic to Ga has this form. Therefore, the functor R 7→ Ga(R) classifying group laws
isomorphic to the additive group law is representable by Z[b1, b2, . . . ]. There is a canonical
graded ring homomorphism

ϕ : L→ Z[b1, b2, . . . ].
sending ai,j to the coefficient of xiyj in g(g−1(x) + g−1(y)).

Proposition 4.12. If Q ⊂ R then every formal group law over R is isomorphic to Ga. In particular,
ϕ⊗Q : L⊗Q ∼= Q[b1, b2, . . . ].

Proof. Define the logarithmic differential ω(x) to be

ω(x) = dx/
d

dy
|y=0f(x, y).

It is easy to see all coefficients of ω are in R. Now since Q ⊂ R, we can integrate ω to a power series
log(x), which satisfies

log(f(x, y)) = log(x) + log(y).

The series log(x) = logf (x) is called the logarithm of f . ■

Theorem 4.13 (Lazard). The Lazard ring is a polynomial ring over Z with generators of dimension
2, 4, 6, . . . . Further, the morphism ϕ is monomorphic and

Q2n(ϕ) : Z→ Z

is multiplication by p if n+ 1 is a power of p and multiplication by 1 otherwise.

Let E be any complex orientable ring spectrum, that is complex vector bundles admit Thom
classes in E yielding Thom isomorphisms. This is equivalent, by splitting principle, to saying
complex line bundles are orientable for E. Suppose we have chosen a Thom class for O(1):

x = c1(O(1)) ∈ E2(CP∞).

Then one can show E∗(CP∞) = E∗(pt)[[x]] using that CP∞ is the Thom space of O(1) over CP∞.
The map CP∞ × CP∞ → CP∞ induced by O(1)⊗O(1) yields a formal group law fE(x, y) over

E∗(pt). This formal group law reflects how the first Chern class of the tensor of two line bundles
can be written in terms of Chern classes of factors.

Therefore, there is a natural ring homomorphism L→ π∗E classifying fE . We note that fE relies
on the choice of x = c1(O(1)). Two different choices are differed by a change of coordinate. For
E = MU , there is a tautological choice: Ω2(CPn) ∼= Ω2n−2(CPn) is represented by CPn−1 ⊂ CPn.
This way, we have a natural map

θ : L→ π∗MU.

Theorem 4.14 (Quillen). θ is an isomorphism.
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Proof. Myshcenko showed the logarithm of fMU is given by

logMU (x) =
∑
n≥0

CPn xn+1

n+ 1
.

If logL =
∑

pn
xn+1

n+1 is the logarithm of fL, then θ sends pn to CPn. Since π∗MU ⊗Q is generated
by CPn and pn generates L ⊗ Q, we conclude θ ⊗ Q is an isomorphism. Then since both L and
π∗MU are torsion free, we see θ is injective.

It remains to show θ is surjective. From the identity

H(x, y) =
∑

[Hij ]x
iyj = fMU (x, y)(

∑
CPnxn)(

∑
CPmym),

we deduce the Milnor hypersurfaces Hij are in the image of θ. But according to Milnor, they
generate π∗MU . ■


	1. Spectra
	2. Dualities
	2.1. Spanier-Whitehead duality
	2.2. Anderson duality
	2.3. Poincaré duality

	3. Localization and Adams spectral sequence
	3.1. Localization and completion
	3.2. Base change
	3.3. Adams spectral sequence

	4. Complex cobordism ring
	4.1. Milnor's theorem on complex cobordism
	4.2. The geometry of Chern numbers, following Buoncristiano and Hacon
	4.3. The Lazard ring


