MAT 514 Summer II 2019, SAMPLE MIDTERM 1,
Actual midterm is 3:30-4:30, August 1st in Earth and Space 181

Name	ID	

THIS EXAM IS WORTH 50 POINTS. QUESTIONS 1-40 ARE WORTH 1 POINT EACH. CHOOSE AND ANSWER 2 OF 41-44. EACH IS WORTH 5 POINTS. NO BOOKS, NOTES OR CALCULATORS ARE ALLOWED.

1-10 TRUE/FALSE: Write T (for true) or F (for false) in each box.
(1) \square $(2-3 i)-(4+2 i)=-2-5 i$

(2) \square $(2+i)(3+i)=5+5 i$ \square $\frac{i}{2-i}=\frac{1+2 i}{3}$
(3) \square $(1-i)^{3}=-1-i$.
(8) \square $\log (-1)=\pi$
(4) \square $1 / i=i$
(5)

(9) \square $\operatorname{Arg}(1+i)=\frac{9 \pi}{4}$

$\square e^{i}=\cos (1)+i \sin (1)$

11-15 Place the letter of the corresponding point in the box. The same letter might be used more than once.
\square $|z|=\sqrt{5}$
\square $\operatorname{Re}(z)=-1$.
(13) \square $z^{2}=-2 i$
\square $z=\bar{F}$
\square $\operatorname{Arg}(z)=-\pi / 4$.

16-20 Match each function with its definition. Assume $z=x+i y$.
(16) \square $\sinh (z)$
A. $\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)$
H. $e^{x} \cos (y)$
(17) \square $\exp (z)$
B. $\frac{1}{2}\left(e^{i z}+e^{-i z}\right)$
I. $e^{x} \cos (y)+i e^{x} \sin (y)$
C. $(-i) \frac{e^{i z}-e^{-i z}}{e^{i z}+e^{-i z}}$
J. $e^{z \log i}$
(18) \square $\sin (z)$
D. $\frac{e^{i z}+e^{-i z}}{e^{i z}-e^{-i z}}$
K. $\frac{1}{2}\left(e^{z}-e^{-z}\right)$
E. $\frac{1}{2}\left(e^{z}+e^{-z}\right)$
L. $\frac{1}{2} \log \frac{1+z}{1-z}$
F. $e^{y}(\cos x+i \sin x)$
M. $e^{i \log z}$
(19) \square $\tan (z)$
G. $e^{x}(\cos x-i \sin x)$

N . none of the above
(20)

21-25 Draw the following points or regions as accurately as you can.
(21) Draw the point $z=2-2 i$.

(22) Draw the point $\overline{i z}$, where $z=1+i$.

(23) Draw the region $|z+1-2 i| \leq 1$.

(24) Draw the region $|\operatorname{Im}(z)| \leq 1$.

(25) Draw all solutions of $z^{4}=i$

\square The function e^{z} is entire.
\square If $f=u+i v$ is holomorphic and real valued, then f must be constant.
\square The path $\gamma(t)=t^{3}+i t^{2}$ is a smooth path.
(29) \square Any Mobius transformation is the composition of translations and inversions.
\square The function $f(z)=(\bar{z})^{2}$ is holomorphic at 0 .
\square The function $\tan (z)$ is holomorphic on $\{z:|z|<1\}$.
\square For any complex numbers z and $w,|z-w| \geq|z|-|w|$.
\square $f(x+i y)=2 x y+i\left(x^{2}-y^{2}\right)$ is an entire function. \square Suppose $f=u+i v$. If the partials of u and v exist at a point z_{0} and satisfy the Cauchy-Riemann equations at z_{0}, then f is differentiable at z_{0}.
\square An accumulation point for a set G can never be an interior point of G.

36-40: Give a precise statement of each definition or result.
(36) Define "Mobius transformation".
(37) Define " $f: \mathbb{C} \rightarrow \mathbb{C}$ is complex differentiable at z_{0} ".
(38) State De Moivre's Theorem
(39) Define "smooth path".
(40) Define " $z \in \mathbb{C}$ is a boundary point of G "

41-44: Answer two of the following questions. Mark clearly which questions you are answering
(41) Give an example of a Mobius transformation taking $1 \mapsto 5, \infty \mapsto i$, and $0 \mapsto 0$.
(42) Suppose f is entire and the image of f is contained inside of the imaginary axis. Prove that f must be constant.
(43) Find a piecewise smooth parameterization of a triangle with vertices $1,-1$, and i begininng at 1 oriented clockwise.
(44) Sketch the set of points z so that $|z|=R e(z)+1$. Describe your sketch in terms of a familiar geometric object, and prove that your sketch is correct.

Additional Page 1

Additional Page 2

Additional Page 3

