MAT514 - Analysis for Teachers II - Summer II 2019

Homework 3

Due Tuesday July 30
Chapter 3 Problems: 3.30; 3.31(b); 3.33; 3.34 (the ones not covered in class); 3.35 (the ones not covered in class, aka the second column) 3.37; 3.40 (Find the principle values means using the definition of the Logarithm in class); 3.41(cdef, any logarithm taken should be the principle logarithm.) $3.44(\mathrm{bd})$ (Be as lazy as possible in b; try the Cauchy-Riemann equations for d); 3.53 (parts abc) (For part c, it is never a bad idea to test the boundary of the region and fill in like we have in class).

Additional Problems

1. Let

$$
f(z)=\frac{a z+b}{c z+d}
$$

be a Mobius transformation. Let z_{1}, z_{2}, z_{3} be distinct points in \mathbb{C}. Prove that $\left[z, z_{1}, z_{2}, z_{3}\right]=\left[f(z), f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right)\right]$. Put succinctly, the cross ratio is invariant under Mobius transformations.

