MAT 514 Summer II 2019, SAMPLE FINAL 1, Actual midterm is 3:30-4:30, August 1st in Earth and Space 181

Name	ID	

THIS EXAM IS WORTH 50 POINTS. EACH QUESTION IS WORTH 1 POINT, EXCEPT FOR THE QUESTIONS 31-35, IS WORTH 1 POINT. QUESTIONS 31-35 ARE WORTH TWO POINTS EACH. NO BOOKS, NOTES OR CALCULATORS ARE ALLOWED.

1-5 Calculate the order of the zero or the pole at the given point. Write 0 if the function does not have a zero at the given point
(1) \square $f(z)=\exp (z)-1-z^{2} / 2$ when $z=0$
(2) \square $f(z)=1+z+z^{2}+\ldots$ when $z=0$.
(3) \square $f(z)=\frac{1}{\sin (z)-z}$ when $z=0$.
(4) \square $f(z)=\sum_{k=5}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ when $z=z_{0}$.
(5) \square $f(z)=\sin (z)-1$ at $z=\pi / 2$.

6-10: Calculate the residue of each function at the given point.
(6)

(7) \square $f(z)=\ldots \frac{1}{z^{2}}-\frac{1}{z}+1-z+z^{2}+\ldots$ when $z=0$.
(8) \square $f(z)=\frac{1}{z\left(z^{2}+1\right)}$ when $z=-i$.
(9) \square $f(z)=\frac{1}{z^{2}}$ when $z=0$.
(10) \square $f(z)=\frac{1}{\sin (z)}$ when $z=0$.

11-15 Match each function with its power series expansion.
(11)

A. $\sum_{k=0}^{\infty} z^{k}$
H. $\sum_{k=0}^{\infty} 2^{-k-1} z^{k}$
(12)

B. $\sum_{k=1}^{\infty} k z^{k-1}$
I. $\sum_{k=0}^{\infty} 2^{-k} z^{k}$
C. $\sum_{k=1}^{\infty} k z^{k}$
J. $\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k}}{(2 k+1)!}$
(13)
$\square \exp \left(z^{2}\right)$
D. $\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k+2}}{(2 k+1)!}$
K. $\sum_{k=0}^{\infty} \frac{z^{\left(k^{2}\right)}}{k!}$
E. $\sum_{k=0}^{\infty}(-1)^{k} \frac{z^{2 k+1}}{(2 k)!}$
L. $\sum_{k=0}^{\infty} \frac{z^{2 k}}{k!}$
(14)

F. $\sum_{k=0}^{\infty} 4^{-k} z^{k}$
M. $\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$
G. $\sum_{k=0}^{\infty} 4^{-k-1} z^{k}$

N . none of the above

16-20: Identify the radius of convergence of the following power series
\square
(17) \square $\sum_{k=1}^{\infty} k z^{k-1}$
(18) \square
(19)
$\square \sum_{k=0}^{\infty} 6^{k}(z-1)^{k}$
(20)
$\square \sum_{k=0}^{\infty} k^{2}(z+1)^{k}$

21-30 TRUE/FALSE: Write T (for true) or F (for false) in each box.

\square Cauchy's theorem implies that if γ is a smooth simple closed curve, and f is holomorphic on a domain U containing γ, then $\int_{\gamma} f=0$.
(22) \square The function $f(z)=1 / z$ has an antiderivative on the domain $\mathbb{C} \backslash\{0\}$
\square If U is a simply connected region. and f is a holomorphic function, f has an antiderivative on U.
(24) \square A power series centered at z_{0} with radius of convergence R is holomorphic on $D\left(z_{0}, R\right)$.
\square If $\sum_{k=0}^{\infty} c_{k} z^{k}$ has radius of convergence 1 , the series $\sum_{k=0}^{\infty} c_{k}$ always converges.
\square The function $\exp (1 / z)$ has a pole of infinite order at $z=0$.
(27) \square A function is holomorphic if and only if it is analytic.
\square When integrating a function f along a smooth path γ, the orientation of γ does not effect the result.
(29) \square If $f(z)$ is not an entire function, and γ is a smooth, simple, closed path, then
$\int_{\gamma} f$ can never be 0 .
\square Suppose $f(z)$ has a pole of order two at z_{0}. Then the residue of $f(z)$ at $z=z_{0}$ is $\lim _{z \rightarrow z_{0}} \frac{d}{d z}\left(\left(z-z_{0}\right)^{2} f(z)\right)$

31-35: Give a precise statement of each definition or result. Each question is worth two points
(31) Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a smooth path, and let f be continuous. Define "integral of f with respect to γ.
(32) State Cauchy's Theorem. Include all hypotheses.
(33) Let $f: U \rightarrow \mathbb{C}$ be a continuous function. Define " F is the antiderivative of f "
(34) Define "power series centered at $z_{0}=-1$ ".
(35) State the Cauchy Integral formula. Include all hypotheses

36-45: Calculate the following integrals. Unless otherwise stated, assume the path is oriented counter clockwise (i.e, positively oriented.)
(36) \square $\int_{\gamma} z d z$.

(37) \square $\int_{\gamma}(\bar{z})^{2} d z$.

(38) \square $\int_{\gamma} \cos (z) d z$.

\square $\int_{\gamma} \frac{\cos (z)}{z-1} d z$.

(40) \square $\int_{\gamma} \frac{1}{(z-i)(z+1)} d z$.

(41)

$$
\square \int_{\gamma} \frac{1}{(z+i)(z+1)} d z
$$

(42) \square $\int_{\gamma} \frac{1}{z(z+i)(z+1)} d z$

(43) \square $\int_{\gamma} \frac{1}{z^{3}} d z$.

(44) \square $\int_{\gamma} \sum_{k=-\infty}^{0} \frac{1}{(-k+1)!} z^{k} d z$.

(45) \square $\int_{\gamma} \frac{\cos (z)-1}{z^{3}} d z$.

Additional Page 1

Additional Page 2

Additional Page 3

