MAT 514 Summer II 2019, SAMPLE FINAL 1, Actual midterm is 3:30-4:30, August 1st in Earth and Space 181

Name

ID

THIS EXAM IS WORTH 50 POINTS. EACH QUESTION IS WORTH 1 POINT, EXCEPT FOR THE QUESTIONS 31-35, IS WORTH 1 POINT. QUESTIONS 31-35 ARE WORTH TWO POINTS EACH. NO BOOKS, NOTES OR CAL-CULATORS ARE ALLOWED.

1-5 Calculate the order of the zero or the pole at the given point. Write 0 if the function does not have a zero at the given point

(1)
$$f(z) = \exp(z) - 1 - z^2/2$$
 when $z = 0$
(2) $f(z) = 1 + z + z^2 + \dots$ when $z = 0$.
(3) $f(z) = \frac{1}{\sin(z) - z}$ when $z = 0$.
(4) $f(z) = \sum_{k=5}^{\infty} c_k (z - z_0)^k$ when $z = z_0$.
(5) $f(z) = \sin(z) - 1$ at $z = \pi/2$.

6-10: Calculate the residue of each function at the given point.

(6)
$$f(z) = \exp(z)$$
 when $z = z_0 \in \mathbb{C}$.
(7) $f(z) = \dots \frac{1}{z^2} - \frac{1}{z} + 1 - z + z^2 + \dots$ when $z = 0$.
(8) $f(z) = \frac{1}{z(z^2+1)}$ when $z = -i$.
(9) $f(z) = \frac{1}{z^2}$ when $z = 0$.
(10) $f(z) = \frac{1}{\sin(z)}$ when $z = 0$.

11-15 Match each function with its power series expansion.

- (21) Cauchy's theorem implies that if γ is a smooth simple closed curve, and f is holomorphic on a domain U containing γ , then $\int_{\gamma} f = 0$.
- (22) The function f(z) = 1/z has an antiderivative on the domain $\mathbb{C} \setminus \{0\}$
- (23) If U is a simply connected region. and f is a holomorphic function, f has an antiderivative on U.
- (24) A power series centered at z_0 with radius of convergence R is holomorphic on $D(z_0, R)$.
- (25) If $\sum_{k=0}^{\infty} c_k z^k$ has radius of convergence 1, the series $\sum_{k=0}^{\infty} c_k$ always converges.
- (26) The function $\exp(1/z)$ has a pole of infinite order at z = 0.
- (27) A function is holomorphic if and only if it is analytic.
- (28) When integrating a function f along a smooth path γ , the orientation of γ does not effect the result.
- (29) If f(z) is not an entire function, and γ is a smooth, simple, closed path, then $\int_{\gamma} f$ can never be 0.
- (30) Suppose f(z) has a pole of order two at z_0 . Then the residue of f(z) at $z = z_0$ is $\lim_{z \to z_0} \frac{d}{dz} \left((z z_0)^2 f(z) \right)$

31-35: Give a precise statement of each definition or result. Each question is worth two points

(31) Let $\gamma : [a, b] \to \mathbb{C}$ be a smooth path, and let f be continuous. Define "integral of f with respect to γ .

(32) State Cauchy's Theorem. Include all hypotheses.

(33) Let $f: U \to \mathbb{C}$ be a continuous function. Define "F is the antiderivative of f"

(34) Define "power series centered at $z_0 = -1$ ".

(35) State the Cauchy Integral formula. Include all hypotheses

36-45: Calculate the following integrals. Unless otherwise stated, assume the path is oriented counter clockwise (i.e, positively oriented.)

Additional Page 1

Additional Page 2

Additional Page 3