Curvature and Résidu Itératif

John Milnor

Stony Brook University

(work with Araceli Bonifant)

Cancun, May 30, 2016
Example: The Rounded Mandelbrot Set

Connectedness locus for the family of maps

\[g_\lambda(z) = z^2 + \lambda z \]
Two Fixed Point Invariants.

Consider an isolated fixed point \(z_0 = f(z_0) \) of a holomorphic map \(f : \mathbb{C} \to \mathbb{C} \).

One basic invariant is the **multiplier** \(\lambda = f'(z_0) \).

Another is the **holomorphic index**

\[
\text{ind}(f, z_0) = \frac{1}{2\pi i} \oint_{z_0} \frac{dz}{z - f(z)}.
\]

For a fixed point with \(\lambda \neq 1 \), it is not hard to check that

\[
\text{ind}(f, z_0) = \frac{1}{1 - \lambda}.
\]

If \(\lambda = 1 \), then for any small \(\epsilon \neq 0 \), the one local fixed point for \(f \) will split into \(n \) nearby fixed points \(z_1, \ldots, z_n \) for \(f + \epsilon \), where \(n \geq 2 \) is called the **fixed point multiplicity**.

Furthermore:

\[
\lambda_j = (f + \epsilon)'(z_j) \neq 1.
\]

Assertion: \(\text{ind}(f, z_0) = \lim_{\epsilon \to 0} \sum_{j=1}^{n} \text{ind}(f + \epsilon, z_j) = \lim_{\epsilon \to 0} \sum_{j=1}^{n} \frac{1}{1 - \lambda_j} \).
Résidu Itératif (Jean Écalle, 1976).

Definition. If \(\lambda = 1 \), the difference

\[
\text{résit}(f, z_0) = \frac{n}{2} - \text{ind}(f, z_0)
\]

is called the résidu itératif.

Theorem. For any integer \(k \geq 1 \):

\[
\text{résit}(f^{\circ k}, z_0) = \frac{1}{k} \text{résit}(f, z_0).
\] (1)

Proof. For \(\epsilon \approx 0 \) the fixed point with multiplier one for \(f \) splits into \(n \) fixed points for \(f + \epsilon \) with multipliers \(\lambda_1, \ldots, \lambda_n \approx 1 \).

Therefore

\[
\text{résit}(f^{\circ k}, z_0) = \lim_{\epsilon \to 0} \sum_{j=1}^{n} \left(\frac{1}{2} - \frac{1}{1 - \lambda_j^k} \right).
\]

Lemma. \(\left(\frac{1}{2} - \frac{1}{1 - \lambda^k} \right) = \frac{1}{k} \left(\frac{1}{2} - \frac{1}{1 - \lambda} \right) + o(1) \) as \(\lambda \to 1 \).

Equation (1) then follows easily. \(\Box \)
Extended definition (Buff and Epstein, 2002).

The résidu itératif can be defined at any parabolic fixed point, so that

\[\text{résit}(f^\circ k, z_0) = \text{résit}(f, z_0)/k. \]

If \(\lambda_0 = f'(z_0) \) is a \(p \)-th root of unity, simply define:

\[\text{résit}(f, z_0) := p \cdot \text{résit}(f^\circ p, z_0), \]

using the Ecalle definition on the right.

We want to relate the résidu itératif to curvature in parameter space.

In the family \(\{ z \mapsto z^2 + \lambda z \} \), each root of unity \(\lambda_0 = e^{2\pi i q/p} \) is a common boundary point for the main hyperbolic component \(H \), and for a satellite component \(S(q/p) \).

Theorem. The real part \(\Re(\text{résit}(g_{\lambda_0}, 0)) \) is equal to the average of the two curvatures:

\[K(\partial H, \lambda_0) = +1 \quad \text{and} \quad K(\partial S(q/p), \lambda_0). \]
Examples:

<table>
<thead>
<tr>
<th>q/p</th>
<th>$\text{résit}(g_{\exp(2\pi i q/p)})$</th>
<th>K_S</th>
<th>K_S/p^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1/6</td>
<td>$18.283 + 1.182i$</td>
<td>35.585</td>
<td>.988</td>
</tr>
<tr>
<td>1/5</td>
<td>$13.065 + .677i$</td>
<td>25.130</td>
<td>1.005</td>
</tr>
<tr>
<td>1/4</td>
<td>$8.748 + .316i$</td>
<td>16.497</td>
<td>1.031</td>
</tr>
<tr>
<td>1/3</td>
<td>$5.320 + .094i$</td>
<td>9.639</td>
<td>1.071</td>
</tr>
<tr>
<td>2/5</td>
<td>$12.962 - .058i$</td>
<td>24.924</td>
<td>.997</td>
</tr>
<tr>
<td>1/2</td>
<td>2.75</td>
<td>4.5</td>
<td>1.125</td>
</tr>
</tbody>
</table>

Here

\[
\Re(\text{résit}) = \frac{(1 + K_S)}{2} \iff K_S = 2 \Re(\text{résit}) - 1.
\]
A Convenient Notation.

Let \(\alpha \mapsto \beta \) be a twice differentiable (or holomorphic) map with \(\frac{d\beta}{d\alpha} \neq 0 \).

Define the **nonlinearity** of \(\alpha \mapsto \beta \) to be the ratio

\[
((\alpha, \beta)) = \frac{\frac{d^2 \beta}{d\alpha^2}}{\frac{d\beta}{d\alpha}}.
\]

Thus \(((\alpha, \beta)) = 0 \iff \beta = c_1\alpha + c_2 \).

The Chain Rule for \(\alpha \mapsto \beta \mapsto \gamma \):

\[
((\alpha, \gamma)) = ((\alpha, \beta)) + ((\beta, \gamma)) \frac{d\beta}{d\alpha}.
\]

This follows from the identity

\[
\log \frac{d\gamma}{d\alpha} \equiv \log \frac{d\beta}{d\alpha} + \log \frac{d\gamma}{d\beta} \quad \text{(mod } 2\pi i)\),
\]

by differentiating with respect to \(\alpha \).
A Simple Example.

The chain rule for the composition $c\alpha \mapsto \alpha \mapsto \beta$ yields

$$(((c\alpha, \beta)) = (((c\alpha, \alpha)) + ((\alpha, \beta)) \frac{d\alpha}{dc\alpha}$$

$$= 0 + (((\alpha, \beta))/c.$$
Curvature.

For a curve $s \mapsto w(s)$ parametrized by arclength, we have $|w'| = |dw/ds| = 1$, and

$$(s, w) = w''/w' = iK, \quad \text{hence} \quad K = \Im((s, w)).$$

For an arbitrary smooth parametrization $t \mapsto s \mapsto w$, it follows that $((t, w)) = ((t, s)) + iK \, ds/dt$, hence

$$\Im((t, w)) = 0 + K \frac{ds}{dt} = K \left| \frac{dw}{dt} \right|.$$
Again let \(g_\lambda(z) = z^2 + \lambda z \).

Thus \(g_\lambda \) has a fixed point at \(z = 0 \) with multiplier \(\lambda \). If \(\lambda \approx \lambda_0 = e^{2\pi i q/p} \), then \(g_\lambda \) has a period \(p \) orbit near zero.

Let \(\mu \) be its multiplier. Then \(\text{ind}(g^o_\lambda, 0) = \left(\frac{1}{1-\lambda^p} + \frac{p}{1-\mu} \right) \).

\[
\implies \text{ind}(g^o_\lambda, 0) = \lim_{\lambda \to \lambda_0} \left(\frac{1}{1-\lambda^p} + \frac{p}{1-\mu} \right) .
\]

Corollaries:

1. \(\mu = 1 \) if and only if \(\lambda^p = 1 \).

2. \(\mu \) is locally a holomorphic function of \(\lambda \), or of \(\lambda^p \).

3. The derivative at \(\lambda_0 \) is \(d\mu/d\lambda^p = -p \),

\[
\iff \quad d \log \mu / d \log \lambda = -p^2 .
\]

4. \(\text{ind}(f^o_{\lambda_0}) = ((1 - \lambda^p, 1 - \mu))/2 \) evaluated at \(\lambda_0 \),

\[
= -((\lambda^p, \mu))/2 .
\]
Computation of the résidu itératif.

Theorem: For any $k \geq 1$ we have

$$\text{résit}(f_{\lambda_0}^k, 0) = \frac{((\log \lambda, \log \mu))}{2k}.$$

Proof outline: Start with $-\text{ind}(f_{\lambda_0}^p, 0) = (\lambda^p, \mu)/2$.

First express $((\lambda^p, \mu))$ as a linear function of $((\log \lambda, \mu))$, using the chain rule for the composition $\log \lambda^p \mapsto \lambda^p \mapsto \mu$ (where $\log(\lambda^p) = p \log(\lambda)$).

Then express $((\log \lambda, \mu))$ as a function of $((\log \lambda, \log \mu))$, using the chain rule for the composition $\log \lambda \mapsto \log \mu \mapsto \mu$.

The result will be

$$-\text{ind}(f_{\lambda_0}^p, 0) = \frac{((\log \lambda, \log \mu))}{2p} - \frac{p + 1}{2}.$$

Adding $\frac{p + 1}{2}$ to both sides, we obtain

$$\text{résit}(f_{\lambda_0}^p, 0) = \frac{((\log \lambda, \log \mu))}{2p}. \quad \square$$
For a holomorphically parametrized family of maps

\[F_\xi : \mathbb{C} \to \mathbb{C}. \]

Suppose that:

(1) each \(F_\xi \) has a specified fixed point \(z_0(\xi) \) which varies holomorphically with \(\xi \),

(2) the multiplier \(\lambda = \lambda(\xi) \) of this fixed point satisfies \(d\lambda/d\xi \neq 0 \), and

(3) \(\xi_0 \) is a parameter for which \(z_0(\xi_0) \) is a fixed point of \textit{parabolic multiplicity} \(m = 1 \).

parabolic multiplicity \(m = 1 \) \hspace{5cm} \text{parabolic multiplicity} \(m = 2 \)
Cubic Examples

\[f(z) = z^3 + iz, \quad \text{parabolic multiplicity} \quad m = 1 \]

\[z \mapsto z^3 + iz^2 - z, \quad \text{parabolic multiplicity} \quad m = 2 \]
Recall the conditions for a family of maps $F_\xi : \mathbb{C} \to \mathbb{C}$.

Suppose that:

1. Each F_ξ has a specified fixed point $z_0(\xi)$ which varies holomorphically with ξ,

2. The multiplier $\lambda = \lambda(\xi)$ of this fixed point satisfies $d\lambda/d\xi \neq 0$, and

3. ξ_0 is a parameter for which $z_0(\xi_0)$ is a fixed point of parabolic multiplicity one.

Theorem. Then

$$\text{résit}(F_{\xi_0}, z_0) = \frac{((\log \lambda, \log \mu))}{2}$$

$$= \frac{((\log \lambda, \xi)) + p^2((\log \mu, \xi))}{2} .$$
Curvature Again.

Make the substitutions \(\lambda = e^{i\phi} \) and \(\mu = e^{i\theta} \).

Thus real values of \(\phi \) (or \(\theta \)) parametrize \(\partial H \) (or \(\partial S \)).

Then

\[
\text{résit}(F_{\xi_0}) = \frac{((\log \lambda, \xi)) + p^2((\log \mu, \xi))}{2} = \frac{((\phi, \xi)) + p^2((\theta, \xi))}{2i}
\]

Corollary.

\[
\Re(\text{résit}(F_{\xi_0})) = \frac{K(\partial H, \xi_0) + K(\partial S, \xi_0)}{2} \left| \frac{d\xi}{d\lambda} \right|.
\]
Limiting Shape?

What can one say about the “sizes” and “shapes” of the various satellites $S(q/p)$ of the rounded Mandelbrot set?

Question: Given a sequence of fractions q_j/p_j tending to a limit, when do the $S(q_j/p_j)$ have a limiting shape? Each $S(q/p)$ has a preferred center point $c = c(q/p)$, defined by the equation $\mu = 0$.

Define the “radius” $r = r(q/p)$ to be the distance $|c - \lambda_0|$, where $\lambda_0 = e^{2\pi i q/p}$ is the root point.

Then the product $r K_S$ associated with a given satellite is scale invariant measure of distortion, equal to one for a round disk.
Approximating 1/3 by Farey Neighbors

<table>
<thead>
<tr>
<th>q/p</th>
<th>$2 , \text{résit}/p^2$</th>
<th>$r_S K_S$</th>
<th>q/p</th>
<th>$2 , \text{résit}/p^2$</th>
<th>$r_S K_S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1.094 + .039i</td>
<td>1.014</td>
<td>1/2</td>
<td>1.375</td>
<td>1.062</td>
</tr>
<tr>
<td>3/10</td>
<td>.944 - .017i</td>
<td>.965</td>
<td>3/8</td>
<td>.963 + .015i</td>
<td>.973</td>
</tr>
<tr>
<td>5/16</td>
<td>.926 - .047i</td>
<td>.959</td>
<td>5/14</td>
<td>.927 + .046i</td>
<td>.958</td>
</tr>
<tr>
<td>7/22</td>
<td>.926 - .063i</td>
<td>.959</td>
<td>7/20</td>
<td>.924 + .063i</td>
<td>.957</td>
</tr>
<tr>
<td>9/28</td>
<td>.930 - .072i</td>
<td>.960</td>
<td>9/26</td>
<td>.927 + .072i</td>
<td>.959</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100/301</td>
<td>.964 - .082i</td>
<td>.978</td>
<td>100/299</td>
<td>.962 + .081i</td>
<td>.977</td>
</tr>
<tr>
<td>370/1111</td>
<td>.967 - .081i</td>
<td>.980</td>
<td>370/1109</td>
<td>.966+ .080i</td>
<td>.980</td>
</tr>
<tr>
<td>550/1651</td>
<td>.968 - .081i</td>
<td>.981</td>
<td>550/1649</td>
<td>.966+ .079i</td>
<td>.979</td>
</tr>
<tr>
<td>1000/3001</td>
<td>.968 - .081i</td>
<td>.980</td>
<td>1000/2999</td>
<td>.966+ .079i</td>
<td>.979</td>
</tr>
<tr>
<td>3700/11101</td>
<td>.968 - .080i</td>
<td>.981</td>
<td>3700/11099</td>
<td>.967+.079i</td>
<td>.980</td>
</tr>
<tr>
<td>9100/27301</td>
<td>.970 - .081i</td>
<td>.980</td>
<td>9100/27299</td>
<td>.968+.080i</td>
<td>.981</td>
</tr>
</tbody>
</table>
Approximating $(\sqrt{5} - 1)/2$.

(Illustrating an ongoing project by D. Dudko, M. Lyubich and N. Selinger.)

<table>
<thead>
<tr>
<th>q/p</th>
<th>$2 \text{résit}/p^2$</th>
<th>r_SK_S</th>
<th>q/p</th>
<th>$2 \text{résit}/p^2$</th>
<th>r_SK_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1.375</td>
<td>1.062</td>
<td>2/3</td>
<td>1.182-.021i</td>
<td>1.034</td>
</tr>
<tr>
<td>3/5</td>
<td>1.037+.009i</td>
<td>.997</td>
<td>5/8</td>
<td>.963-.016i</td>
<td>.973</td>
</tr>
<tr>
<td>8/13</td>
<td>.921+.009i</td>
<td>.956</td>
<td>13/21</td>
<td>.898-.013i</td>
<td>.946</td>
</tr>
<tr>
<td>21/34</td>
<td>.886+.011i</td>
<td>.944</td>
<td>34/55</td>
<td>.879-.012i</td>
<td>.937</td>
</tr>
<tr>
<td>55/89</td>
<td>.876+.011i</td>
<td>.935</td>
<td>89/144</td>
<td>.874-.012i</td>
<td>.935</td>
</tr>
<tr>
<td>144/233</td>
<td>.873+.011i</td>
<td>.934</td>
<td>233/377</td>
<td>.872-.012i</td>
<td>.933</td>
</tr>
<tr>
<td>377/610</td>
<td>.872-.012i</td>
<td>.933</td>
<td>610/987</td>
<td>.872-.012i</td>
<td>.933</td>
</tr>
<tr>
<td>987/1597</td>
<td>.872+.012i</td>
<td>.933</td>
<td>1597/2584</td>
<td>.872-.012i</td>
<td>.933</td>
</tr>
<tr>
<td>2584/4181</td>
<td>.872+.011i</td>
<td>.933</td>
<td>4181/6765</td>
<td>.872-.012i</td>
<td>.933</td>
</tr>
<tr>
<td>6765/10946</td>
<td>.872+.012i</td>
<td>.933</td>
<td>10946/17711</td>
<td>.872-.012i</td>
<td>.933</td>
</tr>
</tbody>
</table>