Critically Periodic Cubic Polynomials

John Milnor

Stony Brook University (www.math.sunysb.edu)

IN MEMORY OF ADRIEN DOUADY

Paris, May 26 2008
THE PROBLEM: To study cubic polynomial maps F with a marked critical point which is periodic under F.

—work in progress with Araceli Bonifant—

Any cubic polynomial map with marked critical point is affinely conjugate to one of the form

$$F(z) = F_{a,v}(z) = z^3 - 3a^2z + (2a^3 + v).$$

Here a is the marked critical point, $F(a) = v$ is the marked critical value, $-a$ is the free critical point.

The set of all such maps $F = F_{a,v}$ will be identified with the parameter space, consisting of all pairs $(a, v) \in \mathbb{C}^2$.

Parameter Space
Definition: the period p curve $S_p \subset \mathbb{C}^2$, consists of all maps $F = F_{a,v}$ such that the marked critical point a has period exactly p.

Assertion. S_p is a smooth affine curve in \mathbb{C}^2.

Complication: The genus of S_p increases rapidly with p.

- S_1 has genus zero with one puncture ($\cong \mathbb{C}$),
- S_2 has genus zero with two punctures,
- S_3 has genus one with 8 punctures,
- S_4 has genus 15 with 20 punctures, ...

We can simplify a little by passing to the moduli space S_p/I of holomorphic conjugacy classes. Here I is the involution $F(z) \leftrightarrow -F(-z)$, so that $F_{a,v} \leftrightarrow F_{-a,-v}$.

The genus of S_p/I is smaller, but still increases with p.
Picture of Part of S_3
Part of S_3, labeled
Let \overline{S}_p be the smooth compact surface obtained from S_p by filling in each puncture point.

Conjecture. There is a canonical cell subdivision of each \overline{S}_p. For $p \geq 2$, the 1-skeleton can be identified with the union of all simple closed regulated curves.

Sketch of a regulated curve:
Let $\mathcal{C}(S_p)$ be the **connectedness locus** in S_p.

Each connected component \mathcal{E} of the complement $S_p \setminus \mathcal{C}(S_p)$ will be called an **escape region** in S_p.

Theorem. For each \mathcal{E}, there is a canonical covering map

$$\mathcal{E} \to \mathcal{C} \setminus \mathbb{D}.$$

The degree of this covering map will be called the **multiplicity** $\mu \geq 1$ of the escape region.

We can talk about **equipotentials** and **parameter rays** in each escape region.

Notation: A parameter ray in the escape region \mathcal{E} will be denoted by $\mathcal{R}_\mathcal{E}(t)$. Here $t \in \mathbb{R}/\mu \mathbb{Z}$.

If $\mu > 1$, then t will be called a **generalized angle**.
For F in the escape region \mathcal{E}, the equipotential through $2a$ and $-a$ is a figure eight curve. Here $2a$ is the free \textbf{cocritical point}, with $F(2a) = F(-a)$.

The Böttcher coordinate $\beta(2a) \in \mathbb{C} \setminus \overline{D}$ of the escaping cocritical point is well defined, and the correspondence $F \mapsto \beta(2a)$ is the required covering map

$$\mathcal{E} \rightarrow \mathbb{C} \setminus \overline{D}.$$
Let U_0 and U_1 be the two bounded regions cut out by the figure eight curve, with $a \in U_0$. Any bounded orbit $z_1 \mapsto z_2 \mapsto \cdots$ determines a sequence $\sigma_1, \sigma_2, \ldots$ of zeros and ones with

$$z_j \in U_{\sigma_j}.$$

Now take z_1 equal to the marked critical value $v = F(a)$. The associated sequence $\{\sigma_j\}$ will be called the kneading sequence of the escape region \mathcal{E}. Thus

$$F^{\circ j}(a) \in U_{\sigma_j} \quad \text{for } j \geq 1.$$
The Associated Quadratic Map.

The kneading sequence of any escape region $E \subset S_p$ is clearly periodic: its period p_1 divides p.

Theorem (Branner and Hubbard). Suppose that F belongs to the escape region $E \subset S_p$. Then the Julia set $J(F)$ consists of countably many copies of a quadratic Julia set $J(Q)$, together with uncountably many single point components. Here the quadratic polynomial $Q = Q_E$ is critically periodic of period p_2 where

$$p = p_1 p_2.$$

In other words:

Period of marked critical point

$= \text{(kneading period)} \times \text{(associated quadratic period)}$.
Here the kneading sequence is 00, and the associated quadratic map is $z^2 - 1$ (the “basilica”).

Kneading sequence 10, with associated quadratic z^2.
Canonical Coordinates for S_p.

Consider the function

\[H_p : \mathbb{C}^2 \to \mathbb{C}, \quad H_p(a, v) = F_{a,v}^p(a) - a \]

which vanishes everywhere on S_p. Think of H_p as a “complex Hamiltonian function”, and consider the Hamiltonian differential equation

\[
\frac{da}{dt} = \frac{\partial H_p}{\partial v}, \quad \frac{dv}{dt} = -\frac{\partial H_p}{\partial v}.
\]

There are holomorphic local solutions

\[t \mapsto (a, v) = \Phi(t). \]

These lie in curves $H_p = \text{constant}$, parallel to S_p. Those solutions which lie in S_p provide a local holomorphic parametrization, unique up to translation of the t-coordinate.

Equivalent description: There is a canonical 1-form dt which is well defined and non-zero throughout S_p.
Part of S_4 in canonical coordinates
Kneading sequence 1010 ⋯, with period $p_1 = 2$. $Q(z) = z^2 - 1$ with critical period $p_2 = 2$.
Example in the Double-Basilica Region.

Kneading sequence $0000 \cdots$, with period $p_1 = 1$. $Q(z) = z^2 - 1.3107 \ldots$ with critical period $p_2 = 4$.
Quadratic Julia sets:

Double-Basilica

Worm
Two More Quadratic Julia Sets

Kokopelli

(1/4)-Rabbit
Comparing Rays in the Mandelbrot Set

$H(1/3)$

$1/5$

$1/7$

$4/15$

$2/7$
Parameter Rays

Let $\mathcal{E} \subset S_p$ be any escape region.

Theorem. If the generalized angle t_0 is rational, then the ray $\mathcal{R}_\mathcal{E}(t_0)$ lands at a well defined point F_0 in the boundary $\partial \mathcal{E}$. Furthermore, F_0 is either critically finite, or parabolic.

Define $t \in \mathbb{Q}/\mathbb{Z}$ to be **co-periodic** if:

$t \pm 1/3$ is periodic under angle tripling,

\Leftrightarrow $3t$ is periodic but t is not periodic,

\Leftrightarrow t has the form $\frac{m}{3n}$ where m and n are not divisible by 3.

Theorem. If $t_0 \pmod{\mathbb{Z}}$ is co-periodic, then the landing point of $\mathcal{R}_\mathcal{E}(t_0)$ is parabolic.

We believe that this should be an if and only if statement:

t_0 co-periodic \Leftrightarrow the landing point is parabolic.
If \(t \pm 1/3 \) has period \(q \), we say that \(t \) has \textbf{co-period} \(q \).

Note that any angle of co-period \(q \) can be written as a fraction

\[
 t = \frac{m}{3(3^q - 1)}.
\]

For example,

\[
 q = 1 \quad \Rightarrow \quad t = m/6,
\]

\[
 q = 2 \quad \Rightarrow \quad t = m/24.
\]

\textbf{Period} \(q \) \textbf{decomposition:} The collection of all rays of co-period \(q \), together with their landing points, decomposes the parameter curve \(S_p \) into a finite number of connected open sets \(U_j \).
Example: The Period 1 Decomposition of S_2.

20.
Period 2 Decomposition of S_2.
Stability of Periodic Orbits.

Let \(U_j \) be any connected component of

\[S_p \setminus \bigcup \text{rays of coperiod } q, \]

and let \(t_0 \in \mathbb{Q}/\mathbb{Z} \) have period \(q \).

As \(F \) varies over \(U_j \), the dynamic ray \(R_F(t_0) \) varies smoothly:

Theorem. For each \(F \in U_j \), and each angle \(t_0 \in \mathbb{Q}/\mathbb{Z} \) of period \(q \), the ray \(R_F(t_0) \) lands at a repelling periodic point \(z_F \in J(F) \subset \mathbb{C} \).

Furthermore, the correspondence \(F \mapsto z_F \) defines a holomorphic function \(U_j \to \mathbb{C} \).

The pattern of which dynamic rays of period \(q \) have a common landing point is the same for all \(F \in U_j \).

Corollary. Every parabolic map \(F_0 \in S_p \) is the landing point of at least one co-periodic ray.
Orbit Portraits for $F \in S_2$ (Periods 1 and 2).
A Small Mandelbrot Set in S_4
Detail of $J(F_0)$ near $2a$
(Empirical Claims)

Every Mandelbrot component $M \subset S_p$ has a well defined root point F_0, and every parabolic point $F_0 \in S_p$ is the root point of a unique Mandelbrot component $M \subset S_p$.

For $F \in M$, let r_0 be the root point of the Fatou component $U(2a)$ containing the cocritical point $2a$. Then a neighborhood of F_0 in S_p is closely related to a neighborhood of r_0 in the dynamic plane for F. More precisely:

- The two closest parameter rays at F_0 which enclose M have the same angles (modulo \mathbb{Z}) as the two closest dynamic rays at r_0 which enclose $U(2a)$.

- Furthermore, any parameter ray landing at F_0 has the same angle (modulo \mathbb{Z}) as some dynamic ray landing at r_0.

Comparing Parameter Space and Julia Set
A Small Mandelbrot Set in S_5
Detail of corresponding Julia Set