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Examples of Spheres: 2.

The standard sphere Sn ⊂ Rn+1 is the locus

x 2
1 + x 2

2 + · · ·+ x 2
n+1 = 1 .

The standard 1-sphere S1.

A topological 1-sphere.

A smooth 1-sphere.



Standard, Topological, and Smooth 2-spheres 3.

Asteroid Itokawa,
Japan Aerospace Agency

Dancing Bear by Anita Issaluk,
Chesterfield Inlet, Nunavut



Topological Characterization of Spheres 4.

Poincaré’s Question in 1904
(Oevre VI, p.498):

“Est-il possible que le groupe fondemental de
V se réduise à la substitution identique, et que
pourtant V ne soit pas simplement connexe?”

It took 100 years to find the answer:

Theorem GPH. A closed n-dimensional manifold Mn is homeo-
morphic to Sn ⇐⇒ it has the same homotopy type as Sn

⇐⇒ any proper subset can be shrunk to a point within Mn.

This is a compilation of work by many different people over 150 years!

For dimensions n ≤ 2 it is classical.
(Compare: Francis and Weeks, 1999.)



High Dimensional Cases. 5.

Steve Smale made the first breakthrough in 1961,
giving a proof for smooth n-manifolds with n > 4.

John Stallings and E. C. Zeeman,
using a different method, proved this
for Piecewise Linear manifolds with
n > 4.

Max Newman and E. H. Connell
modified the Stallings argument to
cover all topological manifolds of
dimension n > 4.



The case n = 4 is much harder. 6.

Mike Freedman proved the 4-dimensional
theorem in 1982, using wildly non-differ-
entiable methods.

In fact, he classified all possible closed, oriented,
simply-connected topological 4-manifolds, using just two
invariants:

• the quadratic form x 7→ x ∪ x , where

x ∈ H2(M4) ∼= Z⊕ · · · ⊕ Z , x ∪ x ∈ H4(M4) ∼= Z ,

• and an invariant in Z/2 which is zero when M4 is smooth.

(Note: I will always use homology or cohomology with
integer coefficients.)



The hardest case: n = 3 7.

Bill Thurston’s Geometrization Conjecture
suggested an effective description of all possi-
ble closed 3-manifolds.

Richard Hamilton introduced the Ricci flow
method in an attempt to prove the Geometriza-
tion Conjecture.

Grisha Perelman managed to overcome all of
the many difficulties with this method !

QED for Theorem GPH.



Smooth Spheres 8.

Suppose we translate Poincaré’s question somewhat differently:

Consider a smooth manifold Mn, and ask whether
it is diffeomorphic to the standard sphere Sn.

We might try to use the following:

Lemma. Any homeomorphism f : Mn → Sn can be
uniformly approximated by a smooth map Mn → Sn.

Question: Can a homeomorphism between smooth manifolds
always be approximated by a diffeomorphism?

The answer is No !



Sphere Bundles over Spheres 9.

In the middle 1950s, I was completely stunned by an apparent
contradiction in mathematics.
Consider 3-sphere bundles over the 4-sphere:

S3 ⊂ M7

↓
S4 .

I found examples where M7 was a sphere by a topological
argument; but couldn’t be by a differentiable argument.

The only way out of this apparent contradiction was to assume
that M7 was homeomorphic to S7, but not diffeomorphic to S7.
To understand such examples, we need methods for

proving homeomorphism;
and for disproving diffeomorphism.



Proving Homeomorphism: George Reeb’s Criterion 10.

Theorem: Let Mn be a smooth closed manifold. If there is a
Morse function Mn → R with only two critical points,
then M is a topological n-sphere.



Disproving Diffeomorphism: The Signature Formula 11.

We want to prove that certain S3-bundles over S4 are not
diffeomorphic to S7.
The proof will be based on a linear equation

45 σ(M8) = 7 p2〈M8〉 − p 2
1 〈M8〉 .

relating three different integer invariants for a smooth closed
oriented 8-manifold.

I Must Answer Three Questions:

I What are these three invariants?

I How does one prove such a relation between them?

I What does this have to do with 7-dimensional manifolds?



The Signature σ(M4k). 12.

For any closed oriented 4k -dimensional manifold we can form
the signature σ(M4k ) of the quadratic form

x 7→ x2 = x∪x from H2k (M4k )/(torsion) to H4k (M4k )
∼=−→ Z .

Simply diagonalize this form over the real numbers, and count
the number of positive diagonal entries minus the number of
negative ones.

This is an integer valued topological invariant.

The definition of the Pontrjagin numbers p2〈M8〉 and
p 2

1 〈M8〉 is more complicated, and requires several steps.



Some Classical Constructions 13.

Hassler Whitney showed that any smooth
Mn has an essentially unique embedding
Mn ⊂−→ RL provided that the dimension L
is large enough (L > 2n + 1).

Hermann Grassmann studied the manifold
Gn(RL) consisting of all n-dimensional planes
through the origin in RL.

Let Gn be the limit as L→∞,

Gn(Rn+1) ⊂ Gn(Rn+2) ⊂ · · · ⊂ Gn .



The (Generalized) Gauss Map 14.

For a smooth manifold Mn ⊂ RL, the “Gauss map”

g = g
Mn : Mn → Gn(RL) ⊂ Gn

sends each x ∈ Mn to the tangent n-plane TxMn, translated to
the origin.

0

x

Mn

TxMn

g(x)RRL



The Characteristic Homology Class 15.

Every closed oriented Mn has a fundamental homology class

µ ∈ Hn(Mn) .

For any smooth Mn ⊂ Rn+L, the Gauss map g : Mn → Gn
induces a homomorphism

g∗ : Hn(Mn)→ Hn(Gn) .

If Mn is closed and oriented, then the fundamental homology
class µ ∈ Hn(Mn) is defined,

and maps to a “characteristic homology class”

〈Mn〉 = g∗(µ) ∈ Hn(Gn) .



When is a manifold a boundary? 16.

René Thom’s Question: Given a smooth
oriented closed manifold Mn, when does
there exist a smooth oriented compact
manifold-with-boundary En+1 such that
∂En+1 = Mn ?

Theorem. Mn is a boundary if and only if its characteristic
homology class 〈Mn〉 ∈ Hn(Gn) is zero.

(Proved by Thom up to elements of finite order. C. T. C. Wall took care of 2-primary

elements; Sergei Novikov and I took care of elements of odd order.)



The Cobordism Group Ωn 17.

Two closed oriented n-manifolds are oriented cobordant
if their disjoint union, suitably oriented, is the boundary of a
compact oriented (n + 1)-manifold.
The set of all cobordism classes of smooth oriented closed
n-manifolds forms an abelian group Ωn,

with the disjoint union as sum operation.

Corollary. The correspondence

(cobordism class of Mn) 7→ 〈Mn〉 ∈ Hn(Gn)

embeds Ωn as a subgroup Ωn
⊂−→ Hn(Gn) of finite index.



Pontrjagin Numbers 18.

Lev Pontrjagin had introduced what we would
now describe as cohomology classes

pi ∈ H4i(Gn) .

Modulo elements of finite order, these gen-
erate the cohomology ring H∗(Gn).

In particular, the cohomology group H8(G8) is generated by
the two elements p2 and p 2

1 = p1 ∪ p1 (together with
elements of finite order).

For any smooth oriented closed manifold M8, we can evaluate
these two cohomology classes on the characteristic homology
class 〈M8〉 ∈ H8(G8) .
This yields the two Pontrjagin numbers

p2〈M8〉 , p 2
1 〈M8〉 ∈ Z .



The Signature Formula 19.

Lemma (Thom). If M4k is a closed, smooth, oriented
4k -manifold, then the signature σ(M4k ) is a cobordism
invariant; yielding a homomorphism

σ : Ω4k → Z .

Corollary. The signature of M4k can be expressed as a linear
combination of Pontrjagin numbers, with rational coefficients,

σ(M4k ) =
∑

a(i1, . . . , ih) pi1 · · · pih〈M
4k 〉 ,

to be summed over all 0 < i1 ≤ i2 ≤ · · · ≤ ih with sum k .

Hirzebruch computed these
rational coefficients
in terms of

Bernoulli numbers



From 8-Manifolds to Exotic 7-Spheres. 20.

Let En be a smooth compact n-manifold, bounded by a smooth
manifold homeomorphic to Sn−1 = ∂Dn.
Choosing a homeomorphism f : Sn−1 → ∂En, we can paste Dn

onto En to obtain a closed topological manifold
Mn = En ∪f Dn .

If f is a diffeomorphism, then
Mn = En ∪f Dn can be made into a smooth manifold.



The Obstruction to Smoothness. 21.

Now consider the case n = 8.

The signature of M8 = E8 ∪f D8 can be computed from the
cohomology of the pair (E8, ∂E8).

Similarly, the Pontrjagin number p 2
1 〈M8〉 can be computed

from knowledge of E8 as a smooth manifold.

We can then solve for

p2〈M8〉 =
45σ(M8) + p 2

1 〈M8〉
7

.

Whenever this quotient is not an integer, we have proved
that ∂E8 cannot be diffeomorphic to S7 .



Higher Dimensions: The Connected Sum 22.

If M1 and M2 are smooth, oriented, connected n-manifolds,
then the connected sum M1#M2 is a new smooth, oriented,
connected n-manifold.

This operation is well defined up to orientation preserving
diffeomorphism. Thus we obtain a commutative, associative
semigroup Mn of oriented diffeomorphism classes;
with the class of Sn as identity element, Mn#Sn ∼= Mn.



Invertibility: Is Mn#Nn ∼= Sn for some Nn ? 23.

Barry Mazur:
(1) Mn is invertible

⇔ (2) Mnr{point} ∼= Rn

⇒ (3) Mn is a topological sphere.

Proof that (1) =⇒ (2),
using “infinite connected sums”.

First consider the sum Sn#Sn#Sn# · · · ∼= Rn

(M#N)#(M#N)# · · · ∼= Sn#Sn# · · · ∼= Rn

∼= M#(N#M)#(N#M)# · · · ∼= M#Rn ∼= Mr{point} .

Thus (1) =⇒ (2). The proof that (2) =⇒ (1) is not difficult.
Since (2) =⇒ (3), this proves the Lemma.



Work with Michel Kervaire: the semigroup Sn 24.

The oriented diffeomorphism
classes of smooth manifolds
homeomorphic to Sn form a
sub-semigroup Sn ⊂Mn .
For example

S1 = S2 = S3 = 0 .

Theorem. This semigroup Sn is a finite abelian group for
n > 4, with

S5 = S6 = 0 ,

but:

S7 S8 S9 S10 S11 S12 S13 · · ·
Z/28 Z/2 Z/2⊕ Z/2⊕ Z/2 Z/6 Z/992 0 Z/3 · · ·



Three Necessary Ingredients for our Work 25.

Witold Hurewicz introduced higher homotopy
groups.

Jean-Pierre Serre developed the algebraic
machinery needed to compute these groups

Raoul Bott computed the homotopy groups of
the infinite rotation group SO.



Further Developments by Many People. 26.

Frank Adams Greg Brumfiel Bill Browder Mark Mahowald
and for the latest developments:

Mike Hill, Doug Ravenel and Mike Hopkins
The group Sn is now completely known for n ≤ 64,

EXCEPT FOR THE CASE n = 4 !



Dimension Four: The Big Mystery. 27.

Simon Donaldson: If M4 is smooth, simply-
connected, with positive definite quadratic
form, then its quadratic form

Z⊕ · · · ⊕ Z 7→ Z

can be diagonalized =⇒
M4 is homeomorphic to a connected sum

CP2 # · · · # CP2 .

But there are many unimodular quadratic forms which cannot
be diagonalized; hence there are many topological
4-manifolds which cannot be given any differentiable
structure.

The combination of Donaldson’s methods and
Freedman’s methods had amazing consequences:



The Four Dimensional Jungle. 28.

Robert Friedman and John
Morgan: A closed topolog-
ical 4-manifold can have in-
finitely many essentially dis-
tinct differentiable structures.

Cliff Taubes: The topological space R4

has uncountably many essentially distinct
differentiable structures.

All other dimensions are better behaved:

For n 6= 4, a compact topological n-manifold can have only
finitely many essentially distinct differentiable structures;

and the topological space Rn has a unique differentiable
structure up to diffeomorphism.

(Proved by putting together results from Moise, Stallings, Cerf, Kirby and

Siebenmann, Munkres, Hirsch, Smale, Kervaire and Milnor.)



The Semigroup S4 of Smooth Topological 4-Spheres 29.

Recall that S n is a finite abelian group for n 6= 4.

What is known about S4 ?
It is a commutative, associative semigroup with unit,

and has at most countably many elements.

What isn’t known? Everything else:

Is S4 trivial?
Is it finite?

Finitely generated?
Is it a group?

? ? ? ? ?



For further information: 30.

J. Milnor, “Differential Topology, 46 years later”,
Notices AMS, June-July 2011.

J. Milnor, “Introduction to Part 1, Exotic Spheres”,
in Collected Papers III, AMS 2007.

Both available in:
http://www.math.sunysb.edu/∼jack/PREPRINTS


