§15. Denjoy's Theorem

This section will prove a basic result due to Arnaud Denjoy (1884-1974). We will state his result in three equivalent forms.

Theorem 15.1. Let f be a C^{2}-smooth orientation preserving circle diffeomor-

 phism with irrational rotation number. Then:(1) f is topologically conjugate to a rotation; furthermore
(2) every orbit is dense, and
(3) for any non-trivial interval $I \subset \mathbb{R} / \mathbb{Z}$ there exists a forward image $f^{\circ q}(I), q \geq 1$, which intersects I. (In other words, the non-wandering set $\Omega(f)$ is the entire circle.)

Here most of the hypotheses are essential. Clearly the hypothesis of irrational rotation number is essential, and we will see in 15.5 that C^{1}-smoothness would not be enough. (However, the hypothesis that $f^{\prime}(\xi)>0$ everywhere can be weakened. Compare [Yoccoz, 1984], [Swiatek, 1991].) Note that we must assume C^{2}-differentiability for f, but obtain only a continuous conjugacy. It took almost fifty years until Michel Herman (1942-2000) was able to solve the more difficult problem of obtaining a smooth conjugacy under suitable hypotheses. Compare the discussion in $\S 16 \mathrm{D}$.

The proof begins as follows. According to 14.13 , there is a monotone map g, semiconjugating f to an irrational rotation. Thus each pre-image $g^{-1}(\eta) \subset \mathbb{R} / \mathbb{Z}$ is either a point or a closed interval. If all of these pre-images are points, then g is a homeomorphism, and f is actually topologically conjugate to an irrational rotation. In this case, it follows from 14.14 that every forward orbit under f is dense. On the other hand, if some $g^{-1}(\eta)$ is a non-trivial interval \bar{I}, then evidently \bar{I} is a wandering interval. That is, the successive images $f^{\circ k}(\bar{I})$ are pairwise disjoint.

Thus, if we can prove (3), then (1) and (2) will follow. To complete the proof of Denjoy's Theorem, we must show that a C^{2}-diffeomorphism with irrational rotation number cannot have any wandering interval. The proof will be based on the following ideas. (Compare [de Melo and van Strien].)
$\S 15 \mathrm{~A}$. Distortion Estimates. Let I be a closed interval of real numbers, and suppose that the real valued function F is defined and C^{1}-smooth on I, with derivative $F^{\prime}(x)>0$. By the non-linearity (or the distortion) of F on I we will mean the non-negative real number

$$
\operatorname{nonlin}(F, I)=\log \max _{x} F^{\prime}(x)-\log \min _{x} F^{\prime}(x)=\log \frac{\max _{x} F^{\prime}(x)}{\min _{x} F^{\prime}(x)}
$$

where x varies over I. Note that nonlin $(F, I)=0$ if and only if F is linear on I.
Lemma 15.2. If $F: I_{0} \rightarrow I_{1}$ and $G: I_{1} \rightarrow I_{2}$ are C^{1}-smooth with positive derivative, then

$$
\operatorname{nonlin}\left(G \circ F, I_{0}\right) \leq \operatorname{nonlin}\left(F, I_{0}\right)+\operatorname{nonlin}\left(G, I_{1}\right)
$$

Proof. This follows easily from the chain rule:

$$
\log (G \circ F)^{\prime}(x)=\log F^{\prime}(x)+\log G^{\prime}(y)
$$

where $y=F(x)$.

Now suppose that F is smooth of class C^{2}. If F^{\prime} on the interval I takes its maximum at $x_{\text {max }}$ and its minimum at $x_{\text {min }}$, then evidently

$$
\begin{align*}
\operatorname{nonlin}(F, I) & =\log F^{\prime}\left(x_{\max }\right)-\log F^{\prime}\left(x_{\min }\right)=\int_{x_{\min }}^{x_{\max }}\left(\log F^{\prime}\right)^{\prime}(x) d x \\
& =\int_{x_{\min }}^{x_{\max }} \frac{F^{\prime \prime}(x)}{F^{\prime}(x)} d x \leq \int_{I}\left|\frac{F^{\prime \prime}(x)}{F^{\prime}(x)}\right| d x . \tag{15:1}
\end{align*}
$$

Next consider an orientation preserving circle diffeomorphism f which is C^{2}-smooth. Let $I_{0} \subset \mathbb{R} / \mathbb{Z}$ be an interval, and let $I_{n}=f^{\circ n}\left(I_{0}\right)$ be its image under n-fold iteration of f. Since the map f is invertible, this notation makes sense not only for $n \geq 0$ but also for $n<0$. Note that the first derivative f^{\prime} is a well defined continuous function from \mathbb{R} / \mathbb{Z} to the positive reals. Hence the non-linearity nonlin $\left(f, I_{0}\right) \geq 0$ is defined.

Lemma 15.3. There exists a constant $K=\int_{\mathbb{R} / \mathbb{Z}}\left|f^{\prime \prime}(\xi) / f^{\prime}(\xi)\right| d \xi$ with the following property. For any interval $I_{0} \subset \mathbb{R} / \mathbb{Z}$ and any $n>0$, if the first n forward images $I_{0}, I_{1}, \ldots, I_{n-1}$ are pairwise disjoint, then the non-linearity of the n-fold iterate satisfies

$$
\operatorname{nonlin}\left(f^{\circ n}, I_{0}\right) \leq K<\infty
$$

Proof. By Lemma 15.2 this non-linearity is less than or equal to the n-fold sum $\operatorname{nonlin}\left(f, I_{0}\right)+\cdots+\operatorname{nonlin}\left(f, I_{n-1}\right)$, and by inequality (15:1) this is less than or equal to the integral over $I_{0} \cup I_{1} \cup \cdots \cup I_{n-1}$ of $\left|f^{\prime \prime} / f^{\prime}\right|$, which is less than or equal to K.

Next let f be any orientation preserving circle homeomorphism with irrational rotation number, and let $f: \cdots \mapsto \xi_{-1} \mapsto \xi_{0} \mapsto \xi_{1} \mapsto \xi_{2} \mapsto \cdots$ be any orbit.

Figure 48. The points $\xi_{1}, \xi_{3}, \xi_{7}, \ldots$ are closest returns to ξ_{0} for the irrational rotation $\quad \xi \mapsto \xi+\sqrt{2} / 2(\bmod 1)$, while $\xi_{2}, \xi_{4}, \xi_{5}, \xi_{6}$ are not.

Definition: We will say that ξ_{q} is a closest return to ξ_{0} if all of the points ξ_{j} with $0<|j|<q$ belong to the same component of the complement $\mathbb{R} / \mathbb{Z} \backslash\left(\left\{\xi_{0}\right\} \cup\left\{\xi_{q}\right\}\right)$.

It is easy to see that there are infinitely many closest returns, as long as the rotation number is irrational. (According to 14.11, it suffices to consider the case of a rigid rotation.

15A. DISTORTION ESTIMATES

In the case of a rotation, one can check that ξ_{q} is a closest return if and only if the distance $\mathbf{d}\left(\xi_{0}, \xi_{q}\right)$ is strictly less than $\mathbf{d}\left(\xi_{0}, \xi_{n}\right)$ for all $0<n<q$.)

Proof of Theorem 15.1. Suppose that the circle homeomorphism f has a "wandering interval", that is an interval $I_{0} \subset \mathbb{R} / \mathbb{Z}$ such that the iterated images $I_{n}=f^{\circ n}\left(I_{0}\right)$ satisfy $I_{0} \cap I_{n}=\emptyset$ for $n>0$, and therefore $I_{m} \cap I_{m+n}=\emptyset$ for all $m \in \mathbb{Z}$ and all $n \neq 0$. Choose a base point $\xi_{0} \in I_{0}$ and let $\xi_{n}=f^{\circ n}\left(\xi_{0}\right) \in I_{n}$. Evidently the cyclic ordering of the various disjoint intervals $I_{n} \subset \mathbb{R} / \mathbb{Z}$ is precisely the same as the cyclic ordering of these representative points ξ_{n}. If the rotation number $\mathbf{r n}(f)$ is irrational, then we have shown that there exist infinitely many integers q so that ξ_{q} is a closest return to ξ_{0}. Since all of the intervals I_{k} are pairwise disjoint, with total length less than or equal to one, it follows that we can choose such a closest return so that the lengths $\ell\left(I_{q}\right)$ and $\ell\left(I_{-q}\right)$ are arbitrarily close to zero.

With this choice of q, we will enlarge the intervals $I_{0} \mapsto \ldots \mapsto I_{q-1}$ so as to obtain disjoint intervals $\hat{I}_{0} \mapsto \ldots \mapsto \hat{I}_{q-1}$ such that $f \mid \hat{I}_{0}$ is extremely nonlinear. To construct \hat{I}_{0}, consider the two points ξ_{-q} and ξ_{0}. These points cut the circle into one interval J which contains all of the intervals I_{j} with $0<|j|<q$ and a complementary interval J^{\prime} which is disjoint from all of them. Let \hat{I}_{0} be the interval $I_{-q} \cup J^{\prime} \cup I_{0}$. Then it is not difficult to check that \hat{I}_{0} is disjoint from its forward images $\hat{I}_{j}=f^{\circ j}\left(\hat{I}_{0}\right)$ for $0<j<q$.

Figure 49. Construction of the interval \hat{I}_{0}. Here $q=5$, and the rotation number is $(\sqrt{5}-1) / 2(\bmod \mathbb{Z})$.

Let us apply the Mean Value Theorem to the smooth mapping $h=f^{\circ q}$, which carries I_{-q} onto I_{0}, and carries I_{0} onto I_{q}. According to this theorem, there exists a point $\alpha \in I_{-q}$ so that $h^{\prime}(\alpha)=\ell\left(I_{0}\right) / \ell\left(I_{-q}\right)$ and a point $\beta \in I_{0}$ so that $h^{\prime}(\beta)=\ell\left(I_{q}\right) / \ell\left(I_{0}\right)$. Since $I_{-q} \cup I_{0} \subset \hat{I}_{0}$, it follows that the non-linearity of h on \hat{I}_{0} satisfies

$$
\operatorname{nonlin}\left(h, \hat{I}_{0}\right)=\max _{\xi \in I_{0}} \log h^{\prime}(\xi)-\min _{\xi \in I_{0}} \log h^{\prime}(\xi) \geq \log h^{\prime}(\alpha)-\log h^{\prime}(\beta)
$$

Now, as the choice of closest return q tends to infinity, the length $\ell\left(I_{0}\right)$ remains fixed but $\ell\left(I_{-q}\right)$ and $\ell\left(I_{q}\right)$ tend to zero. Hence $h^{\prime}(\alpha) \rightarrow \infty, h^{\prime}(\beta) \rightarrow 0$, and it follows that $\operatorname{nonlin}\left(f^{\circ q}, \hat{I}_{0}\right) \rightarrow \infty$. This is impossible; for by Lemma 15.3 there is a fixed upper bound $K<\infty$ for the non-linearities of all such compositions. This completes the proof that a
C^{2}-circle diffeomorphism with irrational rotation number has no wandering interval, and hence completes the proof of Theorem 15.1.

Here is a interesting consequence.
Corollary 15.4. If a non-monotone circle map f is C^{2}-smooth, with only finitely many critical points, and if the first derivative $f^{\prime}(\xi)$ changes sign as we pass through any critical point, then f must have at least one periodic orbit.

Proof. If the degree of f is different from +1 , then the conclusion is clear since f must have a fixed point. In the degree one case, it follows by 14.13 that f is semiconjugate to an irrational rotation under some degree one monotone semiconjugacy g. Clearly any critical point of f, or any interval on which $f^{\prime}(x) \leq 0$, must be contained in the interior of some wandering interval $I=g^{-1}(\eta)$. There can be only finitely many such wandering intervals I on which f is non-monotone. Evidently f must carry the left [respectively right] endpoint of each such I to the left [respectively right] endpoint of $f(I)$. Hence we can choose a new map \widehat{f} which coincides with f outside of these special wandering intervals, and is a C^{2}-diffeomorphism of the circle. Now the same map g will semiconjugate \widehat{f} to an irrational rotation. This contradicts Denjoy's Theorem, and completes the proof of 15.4.
$\S 15 B$. Denjoy Counterexamples. Denjoy also proved the following result, which shows that the hypothesis of C^{2}-smoothness is essential in 15.1

Theorem 15.5. For any irrational number α there exists a C^{1}-circle diffeomorphism f which has a wandering interval, and which has rotation number equal to α (modulo \mathbb{Z}).

Proof. We will first construct a circle homeomorphism, and then show how to make it a C^{1}-diffeomorphism. Start with the rotation $\eta \mapsto \eta+\alpha$, and consider the orbit

$$
\cdots \mapsto \eta_{-1} \mapsto \eta_{0} \mapsto \eta_{1} \mapsto \cdots
$$

where $\eta_{k} \equiv k \alpha$. We will thicken this orbit, replacing each point η_{n} by an interval $I_{n}=$ $\left[a_{n}, b_{n}\right]$ of length $\ell_{n}=b_{n}-a_{n}$. Evidently these lengths $\ell_{n}>0$ must satisfy $\sum_{-\infty}^{\infty} \ell_{n} \leq 1$. In fact, to simplify the construction, let us choose lengths $\ell_{n}>0$ with sum precisely equal to 1 . For each $n \in \mathbb{Z}$ let x_{n} be the unique number in the half-open interval $[0,1)$ which is congruent to $n \alpha(\bmod \mathbb{Z})$. Now define the endpoints of the required intervals $I_{n}=\left[a_{n}, b_{n}\right]$ by the formula $a_{n}=a\left(x_{n}\right), b_{n}=b\left(x_{n}\right)$, where

$$
a(x)=\sum\left\{\ell_{k} ; x_{k}<x\right\}, \quad b(x)=\sum\left\{\ell_{k} ; x_{k} \leq x\right\}
$$

for every $x \in[0,1)$. Thus the interval $[a(x), b(x)]$ has length $\ell_{n}>0$ if $x=x_{n}$, but is degenerate with length zero if x is not one of the x_{n}. These intervals are disjoint, with union $[0,1)$. Then it is easy to see that there is one and only one continuous monotone $\operatorname{map} G: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies $G([a(x), b(x)])=x$ for every $x \in[0,1)$, and with $G(x+1)=G(x)+1$.

In particular, these intervals $[a(x), b(x)] \subset[0,1)$ are ordered in the same way as the points x. For each $x \in[0,1)$ with image ξ in the circle \mathbb{R} / \mathbb{Z}, let $I(\xi) \subset \mathbb{R} / \mathbb{Z}$ be the image of the corresponding interval $[a(x), b(x)]$. Evidently these images are disjoint, with union \mathbb{R} / \mathbb{Z}, and are arranged in the same cyclic order as the points ξ themselves. In fact the map G is the lift of a monotone degree one circle map g with $g(I(\xi))=\xi$. Thus

Figure 50. The bottom line, representing the circle \mathbb{R} / \mathbb{Z}, is mapped to itself by the irrational rigid rotation $t \mapsto t+\alpha(\bmod \mathbb{Z})$. Each label n on the bottom line, standing for the point $n \alpha(\bmod \mathbb{Z})$, corresponds to an entire interval $I(n \alpha)$ of length ℓ_{n} in the top line, which also represents the circle \mathbb{R} / \mathbb{Z}. Here $\sum_{n} \ell_{n}=1$ so that the union of these intervals has full measure. The map f on the top circle, which carries $I(n \alpha)$ onto $I((n+1) \alpha)$, is monotonely semiconjugate to the rigid rotation on the bottom circle.
we can construct a degree one circle homeomorphism f which maps each $I(\xi)=g^{-1}(\xi)$ to $I(\xi+\alpha)$. In fact, if $I(\xi)$ reduces to a single point, then $f(I(\xi))$ is uniquely defined, while if $I(\xi)$ is a non-degenerate interval then we can choose any orientation preserving homeomorphism from $I(\xi)$ onto $I(\xi+\alpha)$. This f is the required map, which is monotonely semiconjugate to rotation by α.

If we want f to be a C^{1}-diffeomorphism, then we must be a little more careful with this construction. First, we must choose the lengths $\ell_{n}>0$ so that

$$
\lim _{|n| \rightarrow \infty} \ell_{n+1} / \ell_{n}=1
$$

For example let $\ell_{n}=c /\left(n^{2}+1\right)$, where the constant c is chosen so that $\sum_{-\infty}^{+\infty} \ell_{n}=1$. Next we must choose each homeomorphism from $I_{n}=\left[a_{n}, b_{n}\right]$ to I_{n+1} to be a diffeomorphism, with derivative equal to +1 at the two endpoints, and with derivative converging uniformly to +1 as $|n| \rightarrow \infty$. As an example, we can define this diffeomorphism by the formula

$$
a_{n}+x \quad \mapsto \quad a_{n+1}+\int_{0}^{x} \exp \left(c_{n} t\left(\ell_{n}-t\right)\right) d t
$$

It is not difficult to check that there is a unique value of the parameter $c_{n} \in \mathbb{R}$ so that the image of I_{n} will have the required length

$$
\int_{0}^{\ell_{n}} \exp \left(c_{n} t\left(\ell_{n}-t\right)\right) d t=\ell_{n+1}
$$

Furthermore, c_{n} converges to zero, and hence the derivative converges uniformly to 1 as $\ell_{n+1} / \ell_{n} \rightarrow 1$. It is now reasonably straightforward to check that the map f which is constructed using these diffeomorphisms is C^{1}-smooth with derivative identically equal to +1 , except within the interiors of the non-degenerate intervals $I(\xi)$.

Remark 15.6. Instead of mapping $I_{n}=\left[a_{n}, b_{n}\right]$ to I_{n+1} by a homeomorphism, we could also choose some arbitrary continuous map $I_{n} \rightarrow I_{n+1}$ which carries left endpoint

15. DENJOY'S THEOREM

to left endpoint and right endpoint to right endpoint. In this way, we could construct a degree one circle map f which is not monotone, even though it has a well defined irrational rotation number. (Compare 14.13.) This shows also that the hypothesis of C^{2}-smoothness is essential in 15.4.
$\S 15 C$. Differential equations on the torus. The title of Denjoy's original paper referred to differential equations on the torus, rather than to circle maps. In fact there is a very close relationship between these two subjects. (Compare §1C.) Suppose that we are given a doubly periodic C^{1}-smooth real valued function of two variables.

$$
s(t, x)=s(t+1, x)=s(t, x+1) .
$$

Solving the differential equation

$$
d x / d t=s(t, x)
$$

we obtain a family of smooth functions $x=\Phi_{h}(t)$, parametrized by the initial height $\Phi_{h}(0)=h \in \mathbb{R}$, and satisfying the required equation $d \Phi_{h}(t) / d t=s\left(t, \Phi_{h}(t)\right)$ for all $t \in \mathbb{R}$. In particular, if we follow the solution from time $t=0$ to $t=1$, then we obtain a C^{1}-smooth diffeomorphism of \mathbb{R},

$$
x \mapsto F(x)=\Phi_{x}(1),
$$

which commutes with integer translations, and therefore corresponds to a circle diffeomorphism $f: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$. (If we followed the solution from time t_{0} to $t_{0}+1$, then we would obtain a topologically conjugate circle map.)

Figure 51. Trajectory curves for a flow on the (universal covering of the) torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$. Here the integer lattice points are marked by heavy dots. The corresponding circle map has a wandering interval containing the origin, hence this example cannot be made C^{2}-smooth.

Here are some basic properties of this construction:
(1) The k-fold iterate of the map f (or F) corresponds to the map obtained by following the solutions from time $t=0$ to $t=k$. That is, $F^{\circ k}(x)=\Phi_{x}(k)$.
(2) If we think of these curves as lying on the torus

$$
\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}=(\mathbb{R} / \mathbb{Z}) \times(\mathbb{R} / \mathbb{Z})
$$

then a solution curve is closed (ie., comes back to itself after finite time) if and only if the corresponding orbit under the circle map f is periodic.
(3) The translation number $\operatorname{tn}(F)$ can be described as the "average slope" $\lim _{t \rightarrow \infty}\left(\Phi_{h}(t)-\Phi_{h}(0)\right) / t \quad$ associated with any solution curve $x=\Phi_{h}(t)$.

Figure 52. Construction of the mapping torus of f.
Any orientation preserving circle diffeomorphism can be obtained by this construction. Given a circle diffeomorphism f, form the mapping torus $\operatorname{Torus}(f)$ as follows. Start with the cylinder $[0,1] \times(\mathbb{R} / \mathbb{Z})$, and glue the right hand boundary $1 \times(\mathbb{R} / \mathbb{Z})$ onto the left hand boundary $0 \times(\mathbb{R} / \mathbb{Z})$ by the diffeomorphism

$$
(1, \xi) \leftrightarrow(0, f(\xi))
$$

The resulting identification space is the required mapping torus. The horizontal curves $\xi=$ constant in this mapping torus play the same role as the family of curves $x=\Phi_{h}(t)$ in the discussion above. For if we follow such a curve to the right from the point $(0, \xi)$ then we arrive at $(1, \xi)$, which is identified with $(0, f(\xi))$.

We can identify this mapping torus with the standard torus \mathbb{T}^{2} as follows. Let F be a lift of f, and let $\tau(t)$ be a C^{∞} function which takes the value zero for t close to zero and the value one for t close to one. Then the required diffeomorphism $\operatorname{Torus}(f) \rightarrow \mathbb{T}^{2}$ is constructed by mapping each point $(t, x) \in[0,1] \times \mathbb{R}$ to the point

$$
(t,(1-\tau(t)) x+\tau(t) F(x)) \in[0,1] \times \mathbb{R}
$$

Evidently two points $(1, x)$ and $(0, F(x))$ which are identified in \mathbb{T}^{2} correspond to two points $(1, F(x))$ and $(0, F(x))$ which are identified in \mathbb{T}^{2}. Now the family of horizontal curves in the mapping torus corresponds to a suitable family of curves in \mathbb{T}^{2}, and differentiating these curves we obtain a corresponding differential equation $d x / d t=s(t, x)$ on \mathbb{T}^{2}. If f is C^{r}-smooth, then the resulting function $s(t, x)$ is also.

