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Definitions 1.
Let Sp be the space of all monic centered cubic polynomial
maps F with a marked critical point of period p ≥ 1 .
Setting F (z) = z3 − 3a2z + b, the critical points are ±a.
Here +a will always be the marked critical point.
If v = F (a) is the corresponding marked critical value,
we can solve for b = 2a3 + v .

Identify Sp with the smooth affine curve
consisting of all pairs (a, v) ∈ C2 such that
a has period exactly p under iteration of F .

Theorem of Arfeux and Kiwi: Every Sp is connected.

p : 1 2 3 4 5 6
genus 0 0 1 15 93 393

# punctures 1 2 8 20 56 144

The connectedness locus, consisting of all F ∈ Sp such that
J(F ) is connected, is a compact and connected subset of Sp.

Its complement consists of finitely many
escape regions, each biholomorphic to CrD.



Cartoon of the dynamic plane for a map F in any
escape region E . 2.
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By definition, θ is the parameter angle for the parameter
ray which passes through this map F .

Definition. If either θ+ 1/3 or θ− 1/3 has period q
under tripling, then we will say that θ is co-periodic of
co-period q.

Theorem. A parameter ray of angle θ lands at a parabolic
map if and only if θ is co-periodic. The cycle of parabolic
basins has period q if and only if θ has co-period q.



The Kneading Invariant 3.
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The kneading invariant (i1, · · · , ip−1,0) of E
describes the way in which the orbit of a bounces back
and forth between the two lobes of the figure eight.

In particular, the kneading invariant is (0,0, · · · ,0) if and only if
the entire orbit of a is contained in the left hand lobe.



The Mandelbrot set and Escape Regions of Sp. 4.

There is a one-to-one correspondence between period p
hyperbolic components in the classical Mandelbrot set M ,
and escape regions in Sp with trivial kneading invariant.

On the left: the Douady rabbit. On the right: a Julia set from the
corresponding escape region in S3. Every non-trivial connected
component is hybrid equivalent to the rabbit.

(The proof depends on the Branner-Hubbard puzzle.)



Some Hyperbolic components in M. 5.
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The Landing Together Conjecture. 6.

We will say that two parameter rays land together if they have
the same landing point in Sp.

Conjecture. In any zero-kneading region E and for any
positive integer q, the parameter rays with angles of co-
period q land together in pairs.
Furthermore if the rays of co-periodic angle θ and
θ′ land together in one zero-kneading region, then
the corresponding rays land together in every zero-
kneading region.

(In the special case of the zero-kneading regions in S1 and S2,
the second part of this conjecture has been proved by Bonifant,
Estabrooks and Sharland.)



Example: Rays of Co-period 2 in S1 and S2. 7.
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Example: The Airplane Region in S3. 8.
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Showing all rays of co-period two.



The Three or Four Conjecture. 9.

In any zero-kneading region of Sp, the parameter rays of
co-period p play a very special role.

If two such rays in E land at a boundary point of E which
is shared with one or more other escape regions, then
we conjecture that there are either one or two rays
from outside of E which land at the same point,

making a total of either three or four.

Hyperbolic components in M come in two types:

They are either primitive (with a cusp),
or a satellite (with no cusp).



The Three or Four Conjecture (Satellite Case). 10.

In this case, there are four rays landing at each shared
boundary point, and 2p such boundary points.

o
I

-
8

I
⑧

A
⑰⑧
e

H
e

--
-
↓

o
f

Example: The (1/3)-rabbit region (denominator 78).



The 1/4-Rabbit Region in S4 11.
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The Three or Four Conjecture (Primitive Case). 12.

In this case, there are three rays landing at each shared
boundary point, and 4p such boundary points.
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The Kokopelli Region in S4 13.
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Tessellations and Orbit Portraits. 14.

For each p ≥ 1 and each q ≥ 1, the parameter rays of
co-period q and their parabolic landing points divide the
Riemann surface Sp into connected open sets which we call the
faces of the tessellation Tesq(Sp).

A basic invariant associated with each face is its period
q orbit portrait.

Definition. The orbit portrait of a map F is the following
equivalence relation between angles of period q under tripling:

Two angles θ and θ′ are equivalent if and only if the
dynamic rays of angle θ and θ′ for F land at a common
point in the Julia set.

Theorem. Two maps in the same face always have the same
orbit portrait.



Example: Part of the tessellation Tes2(S3). 15.1
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Quadratic to Cubic: Orbit Portrait Conjecture. 16.

For any zero-kneading escape region E ⊂ Sp, we conjecture
that there is a close relationship between:

(1) the orbit portrait for the root point of the
associated Mandelbrot component, and

(2) the period p orbit portrait for any one of
the shared faces around the boundary of E .
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Left: Orbit Portrait for the root point of the (1/4)-rabbit in M.
Right: Orbit portrait for one of the eight shared faces around the
(1/4)-rabbit region in S4. (Denominators 15 and 80.)



Another Example 17.
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One of 16 shared faces around
the Kokopelli region in S4.



The Mandelbrot Vein Conjecture. 18.

By a vein in the Mandelbrot set we mean a connected path
which starts in the central region, then passes through some
rabbit region and continues outward, crossing many
components.
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Conjecture. For any fixed q, as we follow any vein, the period
q tessellation, “restricted” to each corresponding zero-kneading
region, remains “isomorphic” except when we cross into a
component of period q. Then it becomes “more complicated”.



The Vein Conjecture: “Isomorphisms”. 19.

The orbit portraits associated with a tessellation will be
considered as an essential part of the tessellation.

Let E ⊂ Sp and E ′ ⊂ Sp′ be two escape regions.

Definition. Tesq(E) is isomorphic to Tesq(E ′) if:

There is a one-to-one correspondence between the
faces of Tesq(Sp) intersecting E and the faces of the
Tesq(Sp′) intersecting E ′, preserving orbit portraits,
and preserving the angles of the parameter rays within
E or E ′ which lie on the boundary of each such face.



Example: Tes2 for Basilica and Airplane 20.
34 Cubic Polynomial Maps, Part III
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Figure 22: Cartoon showing the tessellation Tes2(S2) , together with the period 2 orbit portrait
associated with each of the sixteen faces. Each of the co-periodic angles shown in this cartoon
has denominator 24 . In this particular case, each face has a well defined critically periodic center
point, and two faces have the same orbit portrait only if their center points have the same Julia
set. (Compare Remark 3.14.)

Oq1,··· ,qk(F ) in which we allow dynamic rays for all periods which are in the list. (Of course,
dynamic rays of different period can never have a common landing point; hence their angles
can never be equivalent.)

Such an equivalence relation between angles can be conveniently described by providing
an unordered list of all of the equivalence classes which contain more than one element. It is
often convenient to write the angles which have period q under multiplication by 3 as frac-
tions of the form n/d with common denominator d = 3q−1 . As an example, if q = 2 so that
d = 8 then the angles with period precisely q can be listed as 1/8, 2/8, 3/8, 5/8, 6/8, 7/8 .
If the 1/8 and 2/8 rays land at one point and the 3/8 and 6/8 rays land at a different
point, then we will write

O2(F ) = {1/8 ' 2/8, 3/8 ' 6/8} .

In practice we will often abbreviate the right hand side by writing {1 ' 2, 3 ' 6}/8 . If all
four of these rays land at a single point, we will write {1 ' 2 ' 3 ' 6}/8 .
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The outer part of the left hand figure represents the basilica
region of S2. Tes2(basilica) is isomorphic to Tes2(airplane).

(Denominators: 8 for dynamic angles, 24 for parameter angles.)



The Vein Conjecture: “More Complicated”. 21.

Again consider two escape regions E ⊂ Sp and E ′ ⊂ Sp′ .

Definition. Tesq(E) << Tesq(E ′) if:
Tesq(E ′) has more faces than Tesq(E), and each face
of Tesq(E ′) is a subset of some face of Tesq(E).

Furthermore the orbit portrait for each face of Tesq(E ′)
is bigger than the orbit portrait for the corresponding
face of Tesq(E).



Example: Tes3 for basilica and airplane. 22.
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(Denominators 26, 78.) The unique shared face on the left has
trivial orbit portrait. The twelve on the right are all non-trivial.
Between rays 67 and 68 on the left, the orbit portrait has three
simple arcs. On the right it has three tripods.



The Similarity Conjecture 23.

Imitating Douady and Hubbard, a map in Sp will be called a
Misiurewicz map if the free critical point −a is eventually
periodic repelling.
Tan Lei proved the following:

If f (z) = z2 + c is a quadratic Misiurewicz map, then
under iterated magnification, the parameter plane near
f looks more and more like the dynamic plane near c
(up to a fixed scale change).

Conjecture. For a Misiurewicz map F ∈ Sp, under iterated
magnification, the parameter space near F looks more and
more like the dynamic plane near 2aF (up to a fixed scale
change and rotation).



Similarity Example (A Chebyshev map in S2). 24.
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Remark 2.26 (Root Points in Parameter Space). By definition a root point of a
hyperbolic component in Sp is a parabolic boundary point with minimal ray period. Here
components of Type D have one root point; those of Type A have two root points; and
those of Type B have three root points. As one example, the archetypal Type A component
is the central lemmon shaped component in S1 , with root points at the upper and lower
tips. (Compare Figure 23.) As far as we know, those of Type C can never have a parabolic
boundary point.

Assuming Conjecture MC1 below, it follows that components of Type A and B always
have attached components of Type D. We believe that components of Type C never have
such attachments. (For details in the Type A and B cases see [M1] and [AK, Theorem 6.6].
Similar arguments prove the corresponding statement for components of Type D.)

Remark 2.27 (Copies of M in Sp ). McMullen [Mc] has shown that families of rational
maps often contain many quasiconformal copies of the quadratic Mandelbrot set M . That
certainly seems to be true for every Sp . (These copies are made up of components of Type D,
and hence are blue in our figures.) Some of these copies M ⊂ Sp are surrounded by a single
escape region E , in the sense that every boundary point of M is also a boundary point
of E ), In such cases the copy seems to be relatively undistorted. (Compare Figures 31,
44, 52, 46.) But in many cases there are two or three different escape regions which have
infinitely many boundary points in common with M . This leads to quite a bit of distortion.
(Compare Figures 21, 25 and 38.) For an example of a very distorted Mandelbrot set copy
where its airplane component appears attached to a type A component see Figure 14.
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Figure 11: On the left a copy of M in S2 . The Chebyshev point is at the leftmost tip of this
copy. (Compare Figure 19 for a picture showing the entire connectedness locus in S2 .) On the
right is the Julia set for this Chebyshev point. The common denominator 18 is to be understood
for all angles. Here +a is in the largest component; while 2a is at the landing point of the
17 ray; and −a is at the meeting point of the 5 and 11 rays. Both 2a and −a map to the
landing point of the 15 ray; which maps to the fixed point at the end of the 9 ray.

On the left: a copy of M in S2. The Chebyshev point at the left
tip of this copy, is the landing point of the 17/18 parameter ray.

On the right: Julia set for this Chebyshev point.
Note that {5,11,17} 7→ 15 7→ 9 (mod 18).

Here 2a is at the landing point of the 17/18 ray.
The 9/18 = 1/2 ray is fixed under tripling.



Similarity Example (between Kokopelli and 0010). 25.

On the left: Julia set picture centered at 2a for a Misiurewicz
map F0 ∈ S4. In this example, 2a is a fixed point of rotation
number 1/3. On the right: Corresponding parameter space
picture, centered at F0 and suitably rotated and magnified, with
the Kokopelli region to the left and a 0010 region to the right.



Canonical Coordinates. 26.
Let S ⊂ C2 be an arbitrary smooth affine curve, defined by a
polynomial equation Φ(z,w) = 0.
Then there is a canonical closed 1-form on S,

Φzdw + Φwdz .

Near any point of S we can integrate this 1-form to obtain a
canonical coordinate g ,

well defined up to an additive constant,
which maps a neighborhood biholomorphically into C.

But in general g cannot be extended to a global coordinate.

Zero-Kneading Case:
E corresponds to a neighborhood of infinity.

Non-Zero Kneading:
The puncture point maps to the finite plane, and E is
locally a branched covering of the canonical plane.

THE END!
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