MAT 320 Quiz #1 Wednesday 10/10/01

Name: **ID Number:**

Each of the following 5 assertions is FALSE. Describe a counterexample to each.

1. Every bounded sequence $\{a_n\}$ converges.

COUNTEREXAMPLE: $\{1, -1, 1, -1, ...\}$ or written differently $a_n = (-1)^n$.

2. The intersection of an infinite sequence of proper open intervals $I_n = (a_n, b_n)$ (thus

 $a_n \le a_{n+1} < b_{n+1} \le b_n$ for all positive integers n) is nonempty. COUNTEREXAMPLE: Let $a_n = 0$ and $b_n = \frac{1}{n+1}$. (Every positive r is not in $\left(0, \frac{1}{n+1}\right)$ for some (hence many) n.)

3. A convergent series $\{S_n = \sum_{i=0}^n a_i\}$ converges absolutely. COUNTEREXAMPLE: $a_n = (-1)^n \frac{1}{n}$.

4. If the sequence $\{a_n\}$ is not bounded from above, then $\lim_{n\to\infty} a_n = \infty$.

COUNTEREXAMPLE: $\{1, 1, 1, 2, 1, 3...\}$ or written differently $a_n = \begin{cases} 1 & \text{for odd } n \\ \frac{n}{2} & \text{for even } n \end{cases}$.

5. Let $\{a_n\}$ be a sequence and form the series $\{S_n\}$ of partial sums (thus $S_n = \sum_{i=0}^n a_i$). If $\lim_{n \to \infty} a_n = 0$, then $\lim_{n \to \infty} S_n = \sum_{i=0}^n a_i$.

 $\lim_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} S_n$ exists.

COUNTEREXAMPLE: $a_n = \frac{1}{n}$.