RESEARCH PAPERS

- Variation of singular Kähler-Einstein metrics (with J. Cao and M. Paun)
- A decomposition theorem for smoothable varieties with trivial canonical class (with S. Druel), submitted
- Klt varieties with trivial canonical class: holonomy groups, differential forms and fundamental groups (with D. Greb and S. Kebekus), submitted

- Orbifold stability and Miyaoka-Yau inequality for minimal models (with B. Taji), submitted

- Families of conic Kähler-Einstein metrics, submitted

- Kähler-Einstein metrics: from cones to cusps, submitted
- Semi-stability of the tangent sheaf of singular varieties, Algebraic Geometry, Vol 3, Issue 5 (2016), 508-542
- On the boundary behavior of Kähler-Einstein metrics on log canonical pairs (with D. Wu), Math. Annalen, 366 (1), 101-120 (2016)
- Kähler-Einstein metrics with conic singularities along self-intersecting divisors, IMRN Vol. 2016, No. 15, 4634-4648
- Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors (with M. Paun), J. Differential Geom. 103, n°1 (2016), 15-57
- Kähler-Einstein metrics on stable varieties and log canonical pairs (with R. Berman),
- Kähler-Einstein metrics with cone singularities on klt pairs, Int. J. Math. 24 1350035 (2013)
- Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor, Ann. Inst. Fourier 64 (3), 1291-1330 (2014)
- Metrics with cone singularities along normal crossing divisors and holomorphic tensors fields (with F. Campana and M. Paun), Ann. Éc. Norm. Sup.
- Toric plurisubharmonic functions and analytic adjoint ideal sheaves, Math. Z.

*MISCELLANEOUS*

- Métriques de Kähler-Einstein singulières,
__text__, PhD Thesis supervised by S. Boucksom and M. Paun and defended on October 13, 2013 - Points de vue algébriques et analytiques sur la notion de positivité en géométrie complexe,
__text__, magister’s project, defended at the ENS in June 2010 - Méthodes analytiques pour l’étude des singularités en géométrie complexe,
__text__, master’s thesis, defended at Université Paris VI in June 2010