Exercise 1. For each of these limits, say whether they exist, and if need be, precise the limit.

a. \(\lim_{x \to 0} \frac{\sin^2 x}{x} \)

b. \(\lim_{x \to 0^+} \frac{\tan x - 1}{x} \)

c. \(\lim_{x \to 0} \frac{x}{\sin x} \)

d. \(\lim_{x \to 0} x^6 \sin \left(\frac{1}{x} \right) \)

Exercise 2. Show that each of the following equations admit a solution \(x \) and give an interval of the form \([a, a + 1]\) to which the solution belongs:

a. \(3x^4 - x^3 + 8x + 2 = 0 \)

b. \(\cos(3x) = \frac{1}{3} \)

Exercise 3. For each of these limits, say whether they exist, and if need be, precise the limit.

a. \(\lim_{x \to 5^+} \frac{x^4 + 2x + 1}{5 - x} \)

b. \(\lim_{x \to +\infty} \frac{2x^3 + x + 1}{x^3 - 3} \)

c. \(\lim_{x \to +\infty} \frac{2x^4 + x^2 - 3x + 1}{5x^4 - 3x + 1} \)

d. \(\lim_{x \to +\infty} \frac{6x^7 + 2x^3 - x + 2}{7x^7 - x + 13} \)

e. \(\lim_{x \to +\infty} \sqrt{x} - 7 \sin^2 x \)

f. \(\lim_{x \to 3} \frac{\sqrt{x} - 3}{x - 3} \) (for this one, give two different methods).

g. \(\lim_{x \to 7} \frac{x - 7}{\sqrt{x} - \sqrt{7}} \)

Exercise 4. For each of the following functions, precise the domain and compute the derivative:

a. \(\frac{x^3 + 3x^2 - x}{x^2 - 4} \)
b. $x^7e^x + \tan x$

c. $\sin x \cos x$

d. $\cos^2 x$

e. e^{3x}

f. e^{-2x}

Exercise 5. Let f be the function defined on \mathbb{R} by

$$f(x) = \begin{cases}
 x + 1 & \text{if } x < 0 \\
 e^x & \text{if } x \geq 0
\end{cases}$$

Show that f is continuous on its whole domain of definition. What about differentiability?

Exercise 6. Give the equation of the tangent to the graph of $y = e^{3x} + x$ at $x = 0$. Same question with $y = x^3 + 2x + 3$ at $x = 1$. Sketch a graph.