PROBLEM SET 6

- 1. Let $f_n(x) = \sin(nx)$. Does the sequence f_n converge in $L^1[0, 2\pi]$?
- 2. Prove that if X is a metric space and p and q are distinct points of X, then there exit two disjoint subsets of X, one of which contains p and the other of which contains q.
- 3. Give an example of a topological space X whose topology does not come from any metric. That is, there is no metric on X whose open sets coincide with the open sets of the topological space X.
- 4. Give an example of a continuous function f such that the improper integral $\int_{-\infty}^{\infty} f(x) dx$ exists but f is not in $L^1(\mathbf{R})$. Explain why your example cannot be a positive function.
- 5. Let $f_n = n \mathbb{1}_{[0,1/n]}$. Does there exist an integrable function g such that $f_n \leq g$?