PROBLEM SET 2

- 1. Prove that the Lebesgue function F (defined on page 20 in our book) is continuous.
- 2. If $E \subset [0,1]$ is a null set, and $f:[0,1] \to [0,1]$ is continuous, does f(E) have to be a null set as well? Prove this or find a counterexample.
- 3. Let $X = \{x + y : x, y \in C\}$ be the set of sums of numbers in the Cantor middle third set. What is X?
- 4. Prove that if $\lambda > 0$ then $m^*(\lambda E) = \lambda m^*(E)$ where $\lambda E = {\lambda x : x \in E}$.
- 5. If X is set of finite Lebesgue measure show that $m(X \cap X + t) \to 0$ as $t \to \infty$. Here $X + t = \{x + t : x \in X\}$. Does there have to be a value of t so that $m(X \cap X + t) = 0$?