Review for MAT 341 Midterm

March, 2016
Solve first order linear ode's both homogeneous and non-homogeneous
Solve $\ddot{u}+k \dot{u}+p u=0$ for k and p constants.
Show that there is only one solution u of the equation above with a given $u(0)$ and $\dot{u}(0)$.
Understand superposition for linear equations. (the sum of two solutions is also a solution and a constant times a solution is a solution)
Boundary value problem: Solve $\ddot{u}+k \dot{u}+p u=0$ given $u(a)$ and $u(b)$. Is the solution necessarily unique?
Find heat flow in a cylinder and the velocity of water in a pipe using the assumptions made in class.
Define a periodic function.
Define the Fourier series of a function on the interval $(-a, a)$. This includes the formula for the Fourier coefficients.
Define orthogonal and orthonormal sets in a vector space with inner product.
Define the span of a set of vectors.
Define even and odd functions.
Prove that $\{\sin n x\}$ is an orthogonal set with respect to the inner product:
$\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x$
Define pointwise and uniform convergence for a sequence of functions. Show that the uniform limit of a sequence of continuous functions is continuous.
Let $\left\{a_{n}, b_{n}\right\}$ be the Fourier coefficients of a function f. Show that if

$$
\Sigma_{0}^{\infty}\left|a_{n}\right|+\left|b_{n}\right|<\infty
$$

then the Fourier series of f converges uniformly.
Define convergence in mean.
Given $f(x)=\Sigma_{1}^{\infty} a_{n} \cos n x$ find a solution of

$$
\ddot{u}+\alpha \dot{u}+\beta u=f
$$

assuming that α is not zero.

