The entropy of polynomial diffeomorphisms of C²

JOHN SMILLIE[†]

Department of Mathematics, Cornell University, Ithaca NY 14853, USA

(Received 21 November 1988)

In this note we answer a question raised by Friedland and Milnor in [FM] concerning the topological entropy of polynomial diffeomorphisms of C^2

Friedland and Milnor prove that a polynomial diffeomorphism is conjugate to a diffeomorphism of one of three types affine, elementary or cyclically reduced The first two families of maps are very simple from a dynamical point of view The third family contains diffeomorphisms which are dynamically very interesting The Hénon map is an example of a cyclically reduced diffeomorphism of degree 2

Topological entropy is most naturally defined for maps of compact spaces Since \mathbb{C}^2 is not compact Friedland and Milnor consider the map g, the extension of g to the one point compactification of \mathbb{C}^2 They prove that if g is a cyclically reduced diffeomorphism of (algebraic) degree d then the inequality $h(g) \leq \log d$ holds They raise the question of whether the inequality can be replaced by an equality We show that it can

THEOREM If g is cyclically reduced then $h(g) = \log d$

The Hénon map has been intensively studied as a map from \mathbf{R}^2 to itself and yet many important problems remain In particular the dependence of the entropy of g on the parameter values determining g is quite mysterious. The above result suggests that the dynamics of the Hénon map when considered as a diffeomorphism of \mathbf{C}^2 may be simpler than when considered as a diffeomorphism of \mathbf{R}^2

Let $Per_n(g)$ be the set of periodic points of period n Let

$$H(g) = \limsup_{n \to \infty} \frac{1}{n} \log^{+} |\operatorname{Per}_{n}(g)|$$

COROLLARY $H(g) = \log d$

Proof of Corollary This follows by combining the above theorem with the result of **[FM]** that $h(g) \le H(g) \le \log d$

Friedland and Milnor show that every cyclically reduced polynomial diffeomorphism is conjugate to a composition of generalized Hénon maps of the form $g(x, y) = (y, p(y) - \delta x)$ where p is a polynomial and δ is a nonzero complex number. The degree of g is the degree of p. The degree of a composition of generalized Hénon

Downloaded from http://www.cambridge.org/core. Cambridge Books Access paid for by The Indiana University Maurer School of Law, on 23 Sep 2016 at 15:23:18, subject to the Cambridge Core terms of use, available at http://www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0143385700005927 maps is the product of the degrees of the factors We begin by proving some basic facts about these maps The proof of the theorem follows A version of Lemma 2 first appears in [DN]

LEMMA 1 (see [FM] Lemma 3 4) For every generalized Hénon map $g(x, y) \mapsto (y, z) = (y, p(y) - \delta x)$ there exists a constant κ so that $|y| > \kappa$ implies that either |z| > |y| or |x| > |y| or both

We fix the following notation Let $g = g_1 \circ g_2 \circ g_n$ be a composition of generalized Hénon maps Let d be the degree of g Choose κ large enough so that Lemma 1 holds for each g_i Let

$$V^{-} = \{ (x, y) | y| > \kappa \text{ and } |y| > |x| \}$$

$$V^{+} = \{ (x, y) | x| > \kappa \text{ and } |x| > |y| \}$$

$$V = \{ (x, y) | x| \le \kappa \text{ and } |y| \le \kappa \}$$

Lemma 2

- $(1) \ g(V^{-}) \subset V^{-}$
- (2) $g(V^- \cup V) \subset V^- \cup V$
- (3) $g^{-1}(V^+) \subset V^+$
- $(4) g^{-1}(V^+ \cup V) \subset V^+ \cup V$

Proof It suffices to prove each assertion when $g(x, y) \mapsto (y, z)$ is itself a generalized Hénon map

- (1) Let (x, y) be an element of V^- then $|y| > \kappa$ and |y| > |x| By Lemma 1 |z| > |y|and, since $|y| > \kappa$, we conclude that $|z| > \kappa$ This implies that g(x, y) = (y, z) is in V^-
- (2) By (1) it suffices to consider the case when (x, y) is an element of V We will show that g(x, y) = (y, z) is in $V \cup V^-$ Consider two case If $|z| \le \kappa$ then, since $|y| \le \kappa$, (y, z) is in V If $|z| > \kappa$ then, since $|y| < \kappa$, we conclude that |z| > |y| so (y, z) is in V^-
- (3) Let (y, z) be an element of V^+ we want to show that $g^{-1}(y, z) = (x, y)$ is in V^+ Since $|y| > \kappa$ and |y| > |z| Lemma 1 gives |x| > |y| and, since $|y| > \kappa$ and |x| > |y|, we conclude that $|x| > \kappa$ This implies that (x, y) is in V^+
- (4) By (3) it suffices to consider the case when (y, z) is an element of V We will show that (x, y) is in V⁺ ∪ V If x ≤ κ then since |y| ≤ κ we conclude that (x, y) is in V If x > κ then, since |y| < κ, we conclude that |x| > |y| and (x, y) is in V⁺

Notation Let $D_r \subset C$ be the disk of radius *r* centered at the origin Let $\iota \ C \to C^2$ be defined by $\iota(z) = (0, z)$ Let $\pi \ C^2 \to C$ be defined by $\pi(x, y) = y$

LEMMA 3 The set V^- is homotopy equivalent to S^1 the map $\iota \partial D_{2\kappa} \rightarrow V^-$ is a homotopy equivalence The topological degree of the map induced by g on V^- is the algebraic degree of g

Proof Let \mathbf{C}_{ι} be the y-axis Let $\phi_t(x, y) = ((1-t)x, y)$ for $t \in [0, 1]$ Now $\phi_t(V^-) \subset V^-$, ϕ_0 is the identity on V^- and ϕ_1 is the projection from V^- to $V^- \cap \mathbf{C}_{\iota}$. Thus ϕ provides a retraction from V^- to $V^- \cap \mathbf{C}_{\iota}$. The set $V^- \cap \mathbf{C}_{\iota}$ is the image of $\iota \ \mathbf{C} - D_{\kappa}$. Both $\iota \ \mathbf{C} - D_{2\kappa} \rightarrow V^-$ and $\pi \ V^- \rightarrow \mathbf{C} - D_{\kappa}$ are homotopy equivalences To prove the last assertion it suffices to consider a single generalized Hénon map $g_i(x, y) \mapsto (y, p(y) - \delta x)$ If we can prove it for a single such map it will follow for a composition of generalized Hénon maps because both the algebraic and homological degrees of generalized Hénon multiply under composition We compute the degree of the map from V^- to itself by computing the degree of the map $\pi \circ g \circ i$. This is an equivalent problem because π and i are homotopy equivalences. This map is given by $y \mapsto p(y)$. Let d_i be the algebraic degree of g_i , then d_i is the degree of p_i . If L is sufficiently large then the topological degree of the map on $C - D_L$ induced by p is the degree of the polynomial p. The inclusion $C - D_k \subset C - D_L$ is a homotopy equivalence.

LEMMA 4 Let $f(D, \partial D) \rightarrow (V^- \cup V, V^-)$ be a holomorphic map Let deg (f) denote the topological degree of $f \partial D \rightarrow V^-$ Then area $(f(D) \cap V) \ge area(D_{\kappa}) \deg(f)$

Proof The projection map π sends v to D_{κ} The induced map from $f(D) \cap V$ to D_{κ} is a proper map and therefore a branched cover. We see that the covering degree is deg (f) by noting that $\pi f(\partial D)$ wraps deg (f) times around D_{κ} . Let U be the set obtained from D_{κ} by removing the critical points of the projection and removing arcs connecting the critical points to the boundary of D_{κ} . The area of U is the same as the area of D_{κ} and $f(D) \cap \pi^{-1}U$ consists of deg (f) components each mapped bijectively onto U by π . Now π does not increase lengths and hence does not increase area so the area of each component is at least area $(U) = \operatorname{area}(D_{\kappa})$. Thus the area of $f(D) \cap V$ is at least area (D_{κ}) .

Proof of Theorem 1 Let $K^+ \subset \mathbb{C}^2$ be the set of points with bounded forward orbits and let K^- be the set of points with bounded backwards orbits Let $K = K^+ \cap K^-$ When g is cyclically reduced an argument from [FM] Lemma 3.5 proves that $K^+ \subset V \cup V^-$, $K^- \subset V \cup V^+$ hence $K \subset V$ The same argument shows that all points outside of K are wandering The set K is compact and is in fact the maximal compact invariant subset of \mathbb{C}^2

Friedland and Milnor give log d as an upper bound for the entropy of h(g) The inequality $h(g) \ge h(g|K)$ is a basic property of entropy It suffices to prove the lower bound $h(g|K) \ge \log(d)$

Lemmas 3 and 4 imply that the area of $g^n \iota(D_{2\kappa}) \cap V$ is at least constant d^n Thus the volume growth, as defined in [Y], of the submanifold $\iota(D_{2\kappa})$ is at least log d We wish to apply the result of Yomdin ([Y], see also [G]) which says that, for C^{∞} maps of compact manifolds, volume growth of submanifolds is a lower bound for entropy We cannot apply this theorem directly to C^2 because it is not compact We cannot apply this theorem directly to C^2 because it is not and we do not have information on the area of $g^n \iota(D_{2\kappa}) \cap K$ We proceed by an indirect course, we approximate the set K^+ by manifolds with boundary V_n defined below

Let $d_n(x, y) = \max_{x=0 \quad n-1} d(g'(x), g'(y))$ For X a compact subset of \mathbb{C}^2 we denote by $M(n, \varepsilon, X)$ the minimum number of ε -balls in the d_n metric needed to cover X Let v(n) be the area of $g^n \iota(D_{2\kappa}) \cap V$ Let $V_n = V \cap g^{-n}(V)$ Let $v^0(n, \varepsilon)$ be the maximum of the area of $g^n \iota(S')$ where S' is $\iota^{-1}(S)$ for S an ε -ball of V_n in the d_n metric If we choose a minimal covering of V_n by ε -balls S_i then the area of $g^n \iota(D_{2\kappa}) \cap V$ is bounded above by the sum of the areas of $g^n \iota(S'_i)$. The sum of areas is bounded above by the number of balls times the maximum area. This gives

$$v(n) \leq M(n, \varepsilon, V_n) v^0(n, \varepsilon)$$

Taking limits gives

$$\limsup_{n\to\infty}\frac{1}{n}\log v(n) \le \limsup_{n\to\infty}\frac{1}{n}\log M(n,\varepsilon,V_n) + \limsup_{n\to\infty}\frac{1}{n}\log v^0(n,\varepsilon)$$

We evaluate v(n) By Lemma 3 the topological degree of the map $g^n \iota$ on $\partial D_{2\kappa}$ is d^n By Lemma 4 we have

area
$$(g^n \iota(D_{2\kappa}) \cap V) \ge \text{constant} \quad \deg(g^n \iota) = \text{constant} \quad d^n$$

Thus the left hand side is greater than or equal to $\log d$ and we have

$$\log d \leq \limsup_{n \to \infty} \frac{1}{n} \log M(n, \varepsilon, V_n) + \limsup_{n \to \infty} \frac{1}{n} \log v^0(n, \varepsilon)$$

Taking limits as ε goes to zero gives

$$\log d \leq \lim_{\varepsilon \to \infty} \limsup_{n \to \infty} \frac{1}{n} \log M(n, \varepsilon, V_n) + \lim_{\varepsilon \to \infty} \limsup_{n \to \infty} \frac{1}{n} \log v^0(n, \varepsilon)$$

Yomdin shows ([Y] Theorem 18) that

$$\lim_{\varepsilon\to\infty}\limsup_{n\to\infty}n^{-1}\log v^0(n,\varepsilon)$$

is zero for C^{∞} maps This result is stated for compact manifolds but it holds in our situation. The following modification is required in the proof A bound of the form B^k on the norm of the first derivative of the kth iterate of the map is needed In our case if B is a bound for the norm of the derivative of g | V then B^k is a bound for the norm of the derivative of g | V then B^k is a bound for the norm of the derivative of $g | V_k$

It remains for us to relate the quantity

$$\lim_{\varepsilon\to\infty}\limsup_{n\to\infty}n^{-1}\log M(n,\varepsilon,V_n)$$

to the entropy of g | K Let \overline{V} denote the quotient space $(V \cup V^-)/V^-$ Let *m* be the point corresponding to V^- We define a metric $\overline{d}(x, y)$ on \overline{V} by the formula

$$\bar{d}(x, y) = \min \{ d(x, v), d(x, V^{-}) + d(y, V^{-}) \}$$

$$\bar{d}(x, m) = d(x, V^{-})$$

Since the set V^- is g invariant, g extends to a continuous map \bar{g} from \bar{V} to itself We have

$$h(\bar{g}) = \lim_{\epsilon \to \infty} \limsup_{n \to \infty} \frac{1}{n} \log M(n, \epsilon, \bar{V})$$
$$\geq \lim_{\epsilon \to \infty} \limsup_{n \to \infty} \frac{1}{n} \log M(n, \epsilon, V_n)$$
$$\geq \log d$$

Downloaded from http://www.cambridge.org/core. Cambridge Books Access paid for by The Indiana University Maurer School of Law, on 23 Sep 2016 at 15:23:18, subject to the Cambridge Core terms of use, available at http://www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0143385700005927 The first equality is the definition of entropy The second inequality follows because $V_n \subset V$ and if V_n is sufficiently far from $V \cap V^-$ (relative to the size of ε) then the metrics d and \bar{d} are the same when restricted to V_n Thus an (n, ε) cover of \bar{V} with respect to the \bar{d} metric yields an (n, ε) cover of V_n with respect to d

By a result of Bowen [B] the entropy of a map is equal to the entropy of the restriction of the map to the nonwandering set. In this case we have $h(\bar{g}) = h(\bar{g} | K^+ \cup \{m\})$ because the nonwandering set is contained in $K^+ \cup \{m\}$ Now

$$h(\bar{g} | K^+ \cup \{m\}) = h(\bar{g} | K^+) + h(\bar{g} | \{m\}) = h(\bar{g} | K^+)$$

On the set K^+ the maps g and \bar{g} are identical Thus $h(\bar{g}) = h(g|K^+)$ The nonwandering set of $g|K^+$ is contained in g|K so applying Bowen's result again we have $h(g|K^+) = h(g|K)$ Combining these results gives

$$h(g \mid K) = h(g \mid K^+) = h(\bar{g}) \ge \log d$$

This completes the proof of the theorem

REFERENCES

- [B] R Bowen Topological entropy and axiom A Proc Symp Pure Math 14 Amer Math Soc (1970), 23-41
- [DN] R Devaney & Z Nitecki Shift automorphisms in the Hénon map Comm Math Phys 67 (1979), 137-146
- [FM] S Friedland & J Milnor Dynamical properties of plane polynomial automorphisms Ergod Th & Dynam Svs 9 (1989), 67-99
- [G] M Gromov Entropy homology and semialgebraic geometry (after Y Yomdin) Seminaire N Bourbaki 663 (1985-86)
- [HO] J H Hubbard & R Oberste-Vorth Henon mappings in the complex domain In preparation
- [Y] Y Yomdin Volume growth and entropy Israel J Math 57 (1987), 285-300