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Addendum.

This is a slightly revised version of my doctoral thesis: some typing and spelling mistakes
have been corrected and a few sentences have been re-worded for better legibility
(particularly in section 4.3). Also, to create a nicer pdf document with hyperref, the title
of section 3.3.2 has been made shorter. The original title was A model for a map with an
attracting fixed point as well as a period-3 sink: the (3-1)-graph.



ON THE COMBINATORICS OF EXTERNAL RAYS IN THE DYNAMICS OF

THE COMPLEX HENON MAP.

Ricardo Antonio Oliva , Ph.D.

Cornell University 1998

We present combinatorial models that describe quotients of the solenoid arising

from the dynamics of the complex Hénon map

fa,c : C2 → C2, (x, y) #→ (x2 + c− ay, x).

These models encode identifications of external rays for specific mappings in the

Hénon family. We investigate the structure of a region of parameter space in R2

empirically, using computational tools we developed for this study. We give a combi-

natorial description of bifurcations arising from changes in the set of identifications

of external rays. Our techniques enable us to detect, predict, and locate bifurca-

tion curves in parameter space. We describe a specific family of bifurcations in a

region of real parameter space for which the mappings were expected to have sim-

ple dynamics. We compute the first few bifurcation curves in this family and label

them combinatorially. Our computer experiments also indicate the existence of gaps

within the region of real parameter space where Hénon family fa,c has connected

Julia set Ja,c. We show why the verification of this gap would imply the existence of

values of a for which the level-a Mandelbrot set, Ma = {c ∈ C : Ja,c is connected},

is not connected.
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Chapter 1

Introduction

One of the main goals in complex dynamics is the description of the set where the

“chaotic” dynamics are concentrated. This set is called the Julia set and is denoted

by J . For polynomials on C, the Julia set coincides with the boundary of the

set K, consisting of points with bounded orbit. Douady and Hubbard introduced

“external rays” as a powerful tool for understanding the topology of J in one-

dimensional complex dynamics. In one sense external rays are geometric objects:

field lines of the Greens function of the set K. Rays are parameterized by the circle

and they model the dynamics of C−K under a polynomial of degree n, in terms of

dynamics of the circle under the map z #→ zn. The later can be described in terms

of symbolic dynamics, and in this sense rays are also combinatorial objects. For

expanding polynomials with connected Julia sets each ray has a well defined limit

as it approaches J . This defines a “landing map” by which the topology of J can be

described as a quotient of the circle. This model of J is known as the “pinched-disk”

1
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model. The combinatorics of external rays have proved very useful in studying the

structure of the Julia set as well as the Mandelbrot set ( [Br, DH, A]).

Hubbard also introduced sets analogous to K and J for studying the dynamics

of the Hénon map

fa,c(x, y)→ (x2 + c− ay, x)

as a mapping of C2. Although the definitions of the invariant sets in C2 are anal-

ogous to those for dynamics in one-complex variable, the study of mappings of C2

requires different mathematical tools and, in general, proves more difficult than the

parallels with the one-dimensional theory would suggest. Some of the main ad-

vances in the dynamics of the complex Hénon map have been carried out in the

works of Hubbard & Oberste-Vorth, Fornaess & Sibony, and Bedford & Smillie.

One of the difficulties of dynamics in C2 is that, unlike their counterparts in

C, the sets J and K can not be “seen” or drawn directly on a computer. Bedford

and Smillie proved that for general polynomial diffeomorphisms of C2 many of the

properties of J , in particular its connectivity, can be deduced from “slices” of C2

by unstable manifolds of points in J . These invariant manifolds are parameterized

by C and can be drawn by computer 1. Furthermore, it is shown in [BS7] that

when J is connected and f is hyperbolic, there exists a combinatorial model for the

dynamics of f |J defined in terms of external rays. For the Hénon map, the external

rays are not parameterized by the circle but instead by its inverse limit under the

doubling map. This inverse limit construction is known as a solenoid.
1This experimental approach had been suggested by Hubbard, who produced the first computer

pictures of the unstable manifold of the fixed saddle point of complex Hénon mappings.
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In this thesis we study the combinatorics of external rays for the Hénon map.

We will present specific examples of quotients of the solenoid resulting from iden-

tifications of external rays. These examples give new combinatorial models for the

dynamics of polynomial diffeomorphisms of C2. The quotients of the solenoid are

described by means of bi-labeled directed graphs on which paths correspond to pairs

of binary sequences representing identified rays.

Another part of this thesis is experimental in nature. We investigate the com-

binatorial structure of parameter space using computer tools that we developed for

the visualization of unstable manifolds and external rays. We describe how the

combinatorics of rays changes as parameter values are varied. Changes in the iden-

tifications of rays take place through bifurcations in which pairs of identified rays

change partners. We can predict these combinatorial changes using the models that

encode the identifications. In addition, we implement algorithms to locate the corre-

sponding bifurcations curves in parameter space. These bifurcations correspond to

tangencies of invariant manifolds. Some correspond to tangencies of invariant man-

ifolds in R2, while other bifurcations occur outside R2 and have not been described

before.

A surprising discovery resulting from our computer investigations is that there

appear to be thin bands in parameter space where the Julia set is disconnected. A

consequence of the rigorous confirmation of this discovery would be the existence

of parameter values a > 0 for which the level-a Mandelbrot set Ma = {c : Ja,c is

connected} is not connected, in contrast with the classic theorem of Douady and

Hubbard which proved that the Mandelbrot set M0 is connected.
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1.1 Thesis Summary.

In Chapter 2 we review the essential background for the dynamics of the Hénon

map as a polynomial diffeomorphisms of C2. In §2.2 we present the main definitions

from [HOV1, BS7]. We discuss the complex solenoid as the space of rays and as a

symbolic dynamical system (§2.3). In §2.4 we present the theorems of Bedford and

Smillie which provide the semi-conjugacy from the solenoid. In §2.5 we discuss the

information encoded in the computer pictures of unstable manifolds.

In Chapter 3 we construct the combinatorial models in term of directed labeled

graphs representing equivalence relations in the space of symbol sequences. We show

how to construct these graphs for the pinched-disk model a quadratic polynomials

z #→ z2+c when c is in a real hyperbolic component of the Mandelbrot set (§3.2). In

§3.3 we present two graphs that model Hénon mappings whose combinatorics differ

from those arising from polynomials on C. There are restrictions in the possible

quotients of the solenoid that can arise from identifying external rays. Section §3.3.3

is devoted to proving that the quotients produced by our models satisfy the known

combinatorial conditions given in [BS7].

In Chapter 4 we examine the structure of a region in real parameter space. We

associate changes in the identifications of specific rays with bifurcations curves sep-

arating regions of apparent stability. We present computer evidence supporting our

conjecture that the combinatorics of Hénon mappings within two of these stable

regions are those given by specific models presented in chapter 3. From the differ-

ences in the set of identifications given by these models, we deduce other bifurcations
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that must occur between the regions in parameter space were each model applies.

A complete combinatorial description for the minimum set of bifurcations between

two of the models is given in section 4.3. We then verify some of these predictions

and describe “fans” of bifurcation lines in parameter space associated with specific

families of rays (§4.3.2). In section §4.4 we present the computer evidence for the

thin bands of disconnectivity in parameter space, and show why they would imply

the disconnectivity of the connectivity locus Ma.

Some details of the algorithms used to compute the unstable manifold pictures

and external rays are given in the appendix.



Chapter 2

Preliminaries.

2.1 External rays for polynomials on C.

We begin with a quick overview of some well known concepts from dynamics in one

complex variable which have useful analogies in the study of polynomial mappings

on C2.

Let Kc ⊂ C be the set of points that remain bounded under iteration by the

polynomial Pc : z #→ z2 + c. The set Jc = ∂Kc is known as the Julia set of Pc and

carries the chaotic dynamics: the iterates of Pc form a normal family in C−Jc. Jc is

non-empty, compact, and either connected or totally disconnected. The connectivity

locus M = {c : Jc is connected } is known has the Mandelbrot set.

When Kc is connected, the Böttcher coordinate in a neighborhood of infinity can

be extended to give a holomorphic bijection ϕc : C−K → C−∆ which conjugates

the dynamics of Pc outside Kc to the action of z #→ z2 outside the unit disk. This

6
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endows C−K with a natural system of polar coordinates “imported” from C−∆

via the homeomorphism ψc := ϕ−1
c . The images under ψc of circles centered at the

origin are termed equipotentials, and the images of lines of constant angle are called

external rays. The ray with angle θ is said to “land” at the point zθ if zθ is the

limit of ψ(reiθ) as r approaches 1. The landing lemma of Douady and Hubbard

shows that rays with rational angle always land. When ψ extends to a continuous

map on the boundary the landing map θ #→ ψ(e2πiθ) induces a semi-conjugacy

between the doubling map on S1 = ∂∆ and the action of Pc on Jc = ∂Kc. As a

result, the parameterization of external rays by their angular coordinate induces

a parameterization of Jc. The equivalence relation on S1 induced by the landing

map provides an abstract topological description for the Julia set, known as the

“pinched disk” model ( [D]). This model can be given a combinatorial description

via the natural semi-conjugacy between the doubling map on the circle and the

left-shift map on the space of right-infinite binary sequences where points in S1 are

represented by the binary expansion of their angular coordinate. This leads to a

combinatorial model of Jc as a quotient of the space of one-sided binary sequences

for the case of expanding polynomials with Jc connected.

2.2 Complex Hénon Mappings and their Julia set.

By a theorem in [FM] every polynomial diffeomorphisms of C2 with interesting

dynamics is conjugate to a finite composition of maps of the form

f : (x, y) = (P (x)− ay, x)
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where P is a monic polynomial in x of degree at least two, and a ̸= 0. These are

called generalized Hénon mappings. In this sense the Hénon map, when P = Pc, is

a fundamental family to consider.

The relevant sets for the dynamics of polynomial diffeomorphisms of C2 are de-

fined in a similar way as for polynomials in one-dimensional complex dynamics, but

both forward and backwards orbits of points have to be considered. In particular,

Kc and Jc have the following analogs for for a polynomial diffeomorphism of C2 :

K± = {p ∈ C2 : f±n(p) ̸→ ∞ as n→ +∞}, (2.1)

J± = ∂K±, and (2.2)

J = J− ∩ J+. (2.3)

The set J will be referred to as “the Julia set” of f , as it corresponds to the locus of

points where the dynamics are expected to be “chaotic”. Points in U± = C2 −K±

escape to infinity under forward/backward iteration at a rate measured by the Green

function of K±, respectively, which can be defined as

G±(p) = lim
n→∞

1

dn
log+ ||f±n(p)|| = lim

n→∞

1

dn
log+ |πx f±n(p)| (2.4)

where πx is the projection to the first coordinate [HOV1]. It follows that

G± ◦ f± = dG±. (2.5)

The recurrent dynamics occur in a bounded part of C2. In fact, for sufficiently
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large R the regions defined

V + = {|x| ≥ |y|, G+ ≥ log R}, (2.6)

V − = {|x| ≤ |y|, G− ≥ log R} and (2.7)

V = {G+, G− < log R} (2.8)

provide a partition of C2 such that, relative to these regions, the forward orbit

of any point behaves as indicated in figure 2.1: points in V + never escape V + and

belong to U+, the forward orbit of any point in V − enters V or V +; and the forward

orbit of a point in V either belongs to V , in which case the point is in K+, or enters

V +. If R is large enough, the picture for backward orbits is the same with V + and

V − interchanged. Then, U± = ∪n>0f∓n(V ±), J± ⊂ V ∪ V ∓, and J ⊂ V . Note in

particular that J− ∩ {G+ > R} ⊂ V +.

In V + ⊂ U+ one can define a “direction of escape” function ϕ+ : V + → C by

V −
V +

V

|x|

|y|

Figure 2.1:
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the uniformly converging sequence

ϕ+(x, y) = lim
n→∞

(πx ◦ fn(x, y))1/dn

, (2.9)

where πx is the projection to the first coordinate and the root is chosen such that

ϕ+ ≈ πx at infinity. This definition is analogous to that of the function ϕc which

conjugates the action of the polynomial Pc in a neighborhood of infinity to the

action of z #→ z2, and which is used in the definition of external rays in the one-

dimensional theory. Thus, ϕ+ gives an analogous semi-conjugacy for f on V +,

namely ϕ+ ◦ f = (ϕ+)d. Hubbard and Oberste-Vorth showed that ϕ+ can not be

extended analytically to all of U+ ( [HOV1]). In [BS6] Bedford and Smillie give

topological conditions under which ϕ+ extends analytically to J−
+ := J− ∩ U+,

inducing a semi-conjugacy Φ between f on J−
+ and the inverse limit of C−∆ under

z #→ zd. Accordingly, J−
+ is equipped with “external rays” and plays a role analogous

to that played by of exterior of Kc for the polynomial Pc.

2.3 The complex solenoid

Let σ : X → X be a dynamical system. The inverse limit of X under σ defines

an invertible dynamical system, σ̂ : X̂ → X̂, where X̂ is the space of (bi)-infinite

sequences of histories under σ of points in X:

X̂ =
{

ξ ∈ XZ : ξi+1 = σ(ξi) ∀ i ∈ Z
}

with the product topology, and σ̂ is the homeomorphism induced by σ:

[σ̂(ξ)]n = σ(ξn) = ξn+1
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Thus, a point in X̂ is specified by a sequence of consecutive pre-images under σ of

a point in X, and σ̂ is the map that shifts sequences to the left. Although we write

ξ ∈ X̂ as a bi-infinite sequence, the specification of any coordinate ξn determines ξm

for all m > n. The projections to the n-th coordinate of a point, π̂n : X̂ → X, ξ #→

ξn, are continuous and satisfy π̂n ◦ σ̂ = σ ◦ π̂n. When X is a topological group with

identity element 1, then X̂ is also a topological group with group operation defined

coordinatewise and with the constant sequence 1 = (. . . , 1, 1, 1, . . . ) as identity

element. In any topological group, the the path component of 1 is a subgroup and

its topology determines the topology of the whole group ( [Hig]). If H1 denotes

the component of 1, then the path component of any other element in the group is

given by the coset ŝ H1.

The degree-d complex solenoid, denoted by Σ, is the inverse limit of C∗ under

σd : z #→ zd, d ≥ 2. From C∗, Σ inherits the structure of a topological group under

multiplication. The unit element will be denoted by 1. The subgroup

Σ0 = {ξ ∈ Σ : |ξ0| = 1}

is the topological space usually known as the solenoid1. We will refer to the subspace

that projects to the exterior of the unit disk,

Σ+ = {ξ ∈ Σ : |ξ0| > 1}

as the “exterior” solenoid. The exterior solenoid plays a fundamental role as a

model for the dynamics “outside” K+, much like the role played by the exterior of
1Smale introduced the solenoid as an example of a hyperbolic dynamical system F : T̂ → T̂ ,

where F maps the solid torus T ⊂ R3 strictly inside itself d times around its “hole” without
intersections, and T̂ = ∩n>0 F n(T ). This is also discussed in [Shu].
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the unit disk under z #→ z2 in the study of quadratic polynomials in the plane. The

main tool from that theory are external rays: lines of constant angular coordinate

in the plane. Below we introduce their natural analogs in Σ+.

2.3.1 External rays on the complex solenoid.

We write ΣR+ for the subgroup of the solenoid consisting of points with all coordi-

nates in the positive real numbers, namely

ΣR+ = {ξ ∈ Σ : ξn = |ξn| ∀n ∈ Z}.

The “inclusion” map defined by

R+ ∋ r #→ r̂ ∈ ΣR+ with r̂n = rdn

is a homeomorphism (with inverse π̂). The pair of maps

ρ : Σ→ ΣR+ [ρ(ξ)]n = |ξn| (2.10)

Θ : Σ→ Σ0 [Θ(ξ)]n = ξn/|ξn| (2.11)

are continuous and surjective. Clearly ξ = ρ(ξ)Θ(ξ) for all ξ ∈ Σ hence

Σ = ΣR+Σ0.

It follows that Σ is homeomorphic to the product R+×Σ0, with Σ+ = {r > 1}×Σ0.

In this sense ρ and Θ are the natural “polar” coordinates of Σ. The external ray

above ω ∈ Σ0 is the path in the exterior solenoid Σ+ having “constant Θ coordinate”:

Rω = {ξ ∈ Σ+ : Θ(ξ) = ω} = {r̂ω : r > 1}
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The point ω is said to be the landing point of Rω , and the ray Rω is said to pass

through ξ ∈ Σ+ if ξ ∈ Σ+ ∩Rω .

Since both ρ and Θ commute with σ̂, rays are preserved by the shift map and

the action of σ̂ on rays reduces to the action of σ̂ on Σ0.

For any ξ ∈ Σ+ there is a unique ray that passes through ξ, and this ray lands

at Θ(ξ). In particular, the external ray above 1 ∈ Σ0 is given by

R1 = {r̂ : r > 1} = ΣR+ ∩ Σ+.

Next we discuss how path components in Σ+ can be given a global parameterization

by the complex half-plane in which rays correspond to horizontal lines.

2.3.2 Parameterization of components.

Let Ω(ω, Σ0) denote the path component of Σ0 containing ω. Then, Ω(ω, Σ0) is the

coset ω Ω(1, Σ0). As shown below, path components in Σ0 are not closed.

The complex exponential C ∋ z → ez ∈ C∗, is a (universal) covering map that

covers C∗ − ∆ by the half-plane H = {z ∈ C : Real z > 0}, and S1 = ∂∆ by the

imaginary axis iR = {z ∈ C : Real z = 0}. Given a point z above ez ∈ C∗, there

is a natural choice of ω ∈ Σ such that π̂(ω) = ez, namely ωn = (ez)dn
. We denote

such point by ez. This defines a map C→ Σ.

Lemma 1 (Parameterization via exp). The function exp : C→ Σ defined by

exp(z) = ez where [ez]n = (ez)dn

is continuous and injective, and satisfies the “rule of exponents” ez1ez2 = ez1+z2 .
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Proof. Each coordinate function [ez]n = ezdn
is continuous and obeys the law of

exponents, hence so does exp. To verify injectivity suppose ex+iy = eu+iv. Then

e(x+iy)dn
= e(u+iv)dn

for every n. Taking norms it follows that x = u since the real

exponential is injective. We are left with eiydn
= eivdn

for every n, which implies

that the product (y−v)dn is an integer multiple of 2π for each n. But (y−v)d−n < 1

for n large enough, therefore (y − v)d−n = 0 for some n, hence y = v.

Clearly eiR ⊂ Σ0 so the path component of 1 = e0 in Σ0 contains a copy of R

parameterized by y #→ eiy. In fact, this parameterizes all of Ω(1, Σ0).

Lemma 2. The path components of Σ0 are homeomorphic to R and agree with the

unstable manifolds, namely

exp(iR) = Ω(1, Σ0) = W u(1, Σ0).

Proof. Let γ : [0, 1] → Σ0 be a path in the solenoid with initial point γ(0) = 1

and terminal point ω. We want to show that ω = eit for some t ∈ R. The

projections γn = πn ◦ γ are paths in S1 with initial point γn(0) = 1, and such

that γn(t)d = γn+1(t). Let γ̃n be the lift of γn to the universal cover of S1. Then

γ̃n is a path in R with initial point γ̃n(0) = 0, and such that γ̃n(t) d = γ̃n+1(t).

Let t0 = γ̃0(1). Then γ̃n(1) = t0dn for any n; then for N large enough we have

t0d−N < 2π, implying γ−N (1) = ω−N = eit0/2N
. This shows γ(1) = eit0, hence

Ω(1, Σ0) ⊂ exp(iR). In addition, ω−n = γ−n(1) = eit0/dn → 1 as n → ∞. This

implies σ̂−n(ω) → 1 as n → ∞, hence ω ∈ W u(1). This shows Ω(1, Σ0) ⊂ W u(1),

and we have

Ω(1, Σ0) = eiR ⊂ W u(1).
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Now let x ∈W u(1). Then σ̂−n(x)→ 1 implies x−n → 1, as n→∞. Hence, for any

given ε > 0 there exist n0 < 0 such that

xn ∈ {eit : t ∈ (−ε, ε)} for n ≤ n0.

Let xn = eitn. Then tn satisfies tn−1d = tn mod (1) for each n, thus

tn−1 ∈ {(tn + k)/d : k = 0, . . . , d− 1} .

This together with tn, tn−1 ∈ (−ε, ε) for n < n0, with ε small enough, imply that

tn−1 = tn/d for n ≤ n0 < 0.

But then tn0−k = tn0/d
k for k ∈ Z, and therefore x = eit0 with t0 = tn0d

|n0|. This

shows W u(1) ⊂ exp(iR).

It follows that the path component of R1 in Σ+, denoted Ω(1, Σ+), is parameterized

by H via exp, and we call exp(H) the canonical parameterization of Ω(1, Σ+). With

this choice of coordinates, the external ray above 1 is given by

R1 = {er : r > 0} = exp(R+)

and the external rays above any other ω ∈ Ω(1, Σ0) is given by {ereiy0 : r > 0}

where ω = eiy0. More generally, the external ray above any ω ∈ Σ0 correspond to

the path

Rω = {ωer : r > 0} = ω exp(R+),

and the path component of Σ+ containing Rω can be parameterized as ω exp(H),

choosing ω as a base point. This is not unique, but if ω and υ are in the same path

component of Σ0, then υ = ωeiy in the parameterization given by ω, therefore both

parameterizations agree up to multiplication by an element of Ω(1, Σ0).
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2.3.3 Binary Representation of Σ0

The degree-2 solenoid has a natural representation as a quotient of the shift on

the space of binary sequences {0, 1}Z, with the word “natural” justified by the fact

that the map z #→ z2 on S1 corresponds to “shifting” the base-2 expansion of the

angular polar coordinate: 0.b0b1b2 · · · #→ 0.b1b2b3 · · · . Thus, a choice of an inverse

image under z #→ z2 for a point z = e2πiθ with θ = 0.b0b1b2 . . . in base 2, corresponds

to a choice of b−1 ∈ {0, 1} for 0.b−1b0b1b2 · · · . More generally, a history

(· · · , z−3, z−2, z−1), (z−n)
2n

= z,

of such z corresponds to a specific choice of b−1, b−2, b−3, · · · , each bi ∈ {0, 1}, for

the sequence

(· · · (0.b−3b−2b−1 . . . ), (0.b−2b−1b0 . . . ), (0.b−1b0b1 . . . ) ) .

This suggests how each point in s ∈ Σ0 can be specified by a point b ∈ {0, 1}Z, and

how the shift on the solenoid agrees with the shift on {0, 1}Z. Below we outline the

semi-conjugacy in detail and introduce notation that will be used in later section.

Finite binary sequences will be referred to as words, and the length of the word

x will be denoted |x|. The word resulting from the concatenation of two words x

and y is written xy, and the concatenation of x with itself n-times is written xn so

that the usual rule of exponents applies: xnxm = xn+m with the convention that

x0 = ε, the empty word. The space bi-infinite binary sequences will be denoted by

S2. It will be convenient to also use S+
2 and S−

2 to denote, respectively, the space
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of left- and right-infinite sequences written as

S2 = {(· · · b−1.b0b1 · · · ) : bi ∈ {0, 1} },

S+
2 = {(b0b1 · · · ) : bi ∈ {0, 1} }

S−
2 = {(· · · b−2b−1) : bi ∈ {0, 1} }.

so that the indices agree naturally with S2 = S−
2 × S+

2 . As customary, a period is

used to indicate the 0-th term within a specific sequence. If x is a (non-empty) word

the notations ∞x and x∞ denote, respectively, the element of S−
2 and S+

2 in which

x repeats infinitely often. A bi-infinite sequence is periodic of period k if it can

be written as ∞z.z∞ with z a word of minimal length k. The constant sequences

∞0.0∞ and ∞1.1∞ will also be denoted by 0 and 1 , respectively. A word occurring

within a sequence is called a sub-word of b, or block of b. We use interval sub-indices,

such as b[n,m], b(−∞,n] and b[n,∞), to denote a subword or left/right subsequences, for

instance,

b[n,n+k] = bnbn+1 · · · bn+k, (2.12)

b[n,n+k) = bnbn+1 · · · bn+k−1, and (2.13)

b[n,∞) = (bnbn+1 · · · ) ∈ S+
2 . (2.14)

The central n-block of b ∈ S2 refers to b[−n,n].

We consider S2 (also S+
2 and S−

2 ) as having the product topology and metric

given by

d2(a, b) =

{

2−|k|−1 where ∃ k : ak ̸= bk and an = bn for |n| < |k|

0 otherwise.
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hence a neighborhood about b of size less than 1/2k , k ≥ 1, consists of sequences

that agree with b in an initial k-block. This gives S2 (also S+
2 and S−

2 ) the topology

of a Cantor set ( [KH, LM]). On S2 the left shift σ : b #→ b′ defined by b′n = bn+1 gives

a homeomorphism. The natural projection S2 ∋ b #→ b[0,∞) ∈ S+
2 is continuous.

The usual binary representation of the circle by S+
2 has a natural generalization

to S2 in which the angle function simply “ignores” the left-part of a bi-infinite

sequence. Namely, the map

θ : S2 → S1, θ(b) = ei2πϑ(b)

where

ϑ(b) =
∞

∑

i=0

bi

2i+1
(= 0.b0b1b2 · · · in base 2),

is continuous and satisfies σθ = (θ)2. Hence, θ defines a semi-conjugacy between

the shift map on S2 and the squaring map on S1, and this induces a semi-conjugacy

with the solenoid

θ̂ : S2 → Σ0, [θ̂(b)]n = θ(σnb).

Thus, under θ̂, a bi-infinite sequence b = b(−∞,−1].b[0,∞) determines a point in the

circle from the angle specified by b[0,∞) (interpreted as a binary expansion), and

also a history of this point from its digits to the left, b(−∞,−1]. More specifically, the

subword b[−n,−1] selects a choice of 2n-th root of π̂θ̂(b) = [θ̂(b)]0 ∈ S1 as specified in

the next lemma.

Lemma 3. Let ϑ(b) = t. For each n ≥ 0, [θ̂(b)]n = ei2πt2n
(by definition), and

[θ̂(b)]−n = ei2π(t+k)/2n
where b[−n,−1] gives the binary representation of the integer k.
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Proof. By definition, [θ̂(b)]−n = ei2πϑ(σ−nb) and ϑ(σ−nb) =
∑∞

j=0 bj−n/2i+1 can be

rewritten as

ϑ(σ−nb) =

(

b−n

2
+ · · · + b−1

2n

)

+
∞

∑

j=0

bi

2n2i+1

=
1

2n

(

b−n2n−1 + · · · + b−12
0
)

+
t

2n

=
1

2n
(k + t) .

Lemma 4. The mapping θ̂ is continuous, onto, and satisfies θ̂σ = σ̂θ̂.

Proof. Each coordinate function θ̂n is continuous being a composition of continuous

functions, surjectivity follows from Lemma 3, and the conjugation relation follows

directly from the definition:

[

θ̂(σb)
]

n
= θ(σnσb) = θ(σn+1b) =

[

θ̂(b)
]

n+1
=

[

σ̂θ̂(b)
]

n
.

Therefore Σ0 is homeomorphic to the quotient

S̃2 = S2/∼ where a ∼ b ⇐⇒ θ̂(a) = θ̂(b) (2.15)

and (Σ0, σ̂) is conjugate to (S̃2, σ).

Lemma 5. If a ̸= b but a ∼ b then either a and b are the constant sequences,

{a, b} = {0 , 1 }, or there is an index m such that {a[m,∞), b[m,∞)} = {10∞, 01∞}

and a(−∞,m) = b(−∞,m).
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Proof. Suppose a, b ∈ S2 satisfy θ̂(a) = θ̂(b) and a ̸= b. Then, there is m ∈ Z

such that am ̸= bm; without loss of generality suppose am = 0, bm = 1. Now,

θ̂(a) = θ̂(b) ⇐⇒ θ(σna) = θ(σnb) for each n; in particular θ(σma) = θ(σmb). This

is equivalent to ϑ(σmb) = ϑ(σma) mod (1). However, as am = 0 and bm = 1,

ϑ(σma) ∈ [0, 1
2 ] and ϑ(σmb) ∈ [ 1

2 , 1].

Therefore ϑ(σmb) = ϑ(σma) mod (1) only if

ϑ(σma) = 0 and ϑ(σmb) = 1, or ϑ(σma) = 1
2 = ϑ(σmb).

From these two cases, respectively, and the definition of ϑ it follows that either

a[m+1,∞) = 0∞ and b[m+1,∞) = 1∞, or a[m+1,∞) = 1∞ and b[m+1,∞) = 0∞.

Therefore, a[m,∞) ∈ {00∞, 01∞} and bi ̸= ai for i ≥ m. Reversing the assumption

am = 0, bm = 1 to am = 1, bm = 0 interchanges the role of a and b. In either case,

we conclude that a and b are constant for n > m with opposite symbols:

{a[m+1,∞), b[m+1,∞)} = {0∞, 1∞}. (∗)

But m is an arbitrary index such that am ̸= bm, so either (∗) holds for all m, in

which case a and b are the constant sequences, or there is some integer m′ ≤ m such

that ai = bi for i < m′ and {a[m′,∞), b[m′,∞)} = {10∞, 01∞}.

We say that ω ∈ Σ0 has (binary) coding b if θ̂(b) = ω. According to Lemma 5 any

ω ∈ Σ0 has a unique coding b such that b[n,∞) ̸= 1∞ for any n. If b is of this form

then ω0 has an angle ϑ(b) ∈ [0, 1
2
) if, and only if, b0 = 0. By considering the shifted

sequence σnb, the same conclusion applies to bn and ωn. This defines an inverse to

θ̂ relative to S̃2. We let !(z) denote the angle of z ∈ C measured in turns.
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Lemma 6 (Binary coding of Σ0). The map β : Σ0 → S̃2 defined by

[β(ω)]n =

{

0 if !(wn) ∈ [0, 1
2)

1 otherwise
(2.16)

satisfies θ̂ ◦ β(ω) = ω for ω ∈ Σ0, and β ◦ θ̂(b) = b for b ∈ S̃2 not ending in 1’s.

The conjugacy between Σ0 and a quotient of the symbolic space S2 makes it

easy to see some of its dynamical characteristics. For instance, since the distance

between points in S2 is determined from the central block in which they agree, it

is clear that the set of periodic orbits is dense. Similarly, it is clear that unstable

manifolds in S2 consists of sequences that agree sufficiently far to the right, and

stable manifolds are given by sequences that agree to the left:

W s(b,S2) = {a : ∃ n a[n,∞) = b[n,∞)}.

W u(b,S2) = {a : ∃ n a(−∞,n] = b(−∞,n]}

It follows from Lemma 5 that W u(b, S̃2) = W u(b,S2) if b is not constant, otherwise

the unstable manifold consists of sequences that are eventually constant to the left:

W u(0 , S̃2) = W u(0 ,S2) ∪W u(1 ,S2) = W u(1 , S̃2).

The symbolic characterization of unstable manifolds also tells us the following:

Lemma 7. Path components are dense in Σ0 and each contains at most one peri-

odic point.

Proof. Path components correspond to unstable manifolds (Lemma 2). For arbi-

trary a, b ∈ S̃2 and n > 1, the point b′ = b(−∞,−n))a[−n,∞) belongs to W u(b) and
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and to the 1/2n-neighborhood of a, so components are dense. Next, two sequences

that agree “to the left” and are periodic also agree “to the right”, hence are equal,

or if both are “constant to the left” and are periodic they are both constant, hence

equal in S̃2.

The subset of S̃2 consisting of sequences that are eventually zero to the left provides

a natural representation of {R ≥ 0} (via the standard binary representation of real

numbers). The same is true of the subset of sequences that are eventually ones to

the left (as b #→ b is a homeomorphism). This makes evident the fact that W u(0 , S̃2)

is a copy of R, with the map χ : W u(0 , S̃2)→ R continuous and bijective:

χ(b) =

⎧

⎪

⎨

⎪

⎩

∞
∑

i=−∞

bi

2i+1
if ∃ n b(−∞,n] = ∞0,

−χ(b) if ∃ n b(−∞,n] = ∞1,

Then, the point in the unstable manifold W u(0 , S̃2) that corresponds to x ∈ R is

given by the binary expansion of x,

[βR(x)]n =

{

0 if 2nx (mod 1) ∈ [0, 1
2)

1 if 2nx (mod 1) ∈ [ 1
2 , 1)

if x ≥ 0, and by βR(x) = βR(−x) for x < 0.

In terms of the standard parameterization of the component of 1 ∈ Σ0 via the

map exp, recall that W u(1, Σ0) = exp(iR), hence

β(exp(iR)) = W u(0 , S̃2) = βR(R).

The connection between the map exp and binary sequences is is as suggested by

the notation: for t ∈ R+, and ei2πt = exp(i2πt) ∈ Ω(1, Σ0)

β(ei2πt) ⇐⇒ χ(b) = t ⇐⇒ βR(t) = b,
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so that binary coding of ei2πt is the expansion of t in base 2 not ending in 1’s. For

negative t we use the expansion of −t reversed.

2.4 The solenoid as a model for J−+ .

The existence of a semi-conjugacy from J−
+ to Σ+ when J−

+ satisfies certain topolog-

ical conditions was proved by Bedford & Smillie in [BS6]. The construction of this

semi-conjugacy depends on extending ϕ+ from V + ⊂ U+ − V to J−
+ = J− ∩ U+.

One major result shows that the existence of such an extension depends on the

topology of the intersection of U+ with unstable manifolds. In addition, these con-

cepts are shown to be related to the geometric structure of J−
+ , as well as with the

connectivity of J :

Theorem 1 (Bedford & Smillie). If det(Df) ≤ 1, the following are equivalent:

1. ϕ+ extends to a continuous map on J−
+ satisfying ϕ+ ◦ f = (ϕ+)d.

2. For some periodic saddle point p, some component of U+
p is simply connected.

3. For any periodic saddle point p, some any component of U+
p is simply con-

nected.

4. J is connected

5. J−
+ has a lamination by simply connected Riemann surfaces, (then each com-

ponent of U+
p is a leaf of this lamination, and ϕ+ restricted to any leaf is a

holomorphic covering of C−∆.)
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The hypothesis in the theorem is not restrictive, as it holds for either f or f−1.

If any of the equivalent conditions in Theorem 1 are satisfied, then the map

Φ : J−
+ → Σ+, [Φ(p)]n = ϕ+(fn(p)), (2.17)

provides a semi-conjugacy

Φ ◦ f = σ̂ ◦ Φ. (2.18)

It is shown in [BS6] that Φ maps each component bijectively and holomorphi-

cally. It follows that every component O of J−
+ is conformally equivalent to a half

plane with canonical coordinates given by log |π̂Φ| = log |ϕ+| = G+ and a choice of

harmonic conjugate, denoted here by H+. The function H+ is a real valued function

on O such that

ϕ+ = eG++iH+

where ez denotes the complex exponential (this specifies H+ up to addition of an

integer multiple of 2π). Then Φ(p) = s is equivalent to

sn = ϕ+ ◦ fn(p) = (ϕ+(p))dn
= e[G+(p)+iH+(p)]dn

or s = exp(G+(p) + iH+(p)). External rays in J−
+ can be defined as the inverse

images of rays in Σ+, and on each component of J−
+ they corresponds to points where

H+ is constant. The choice of H+ corresponds to choosing the ray γ ∈ O where

H+ ≡ 0, then Φ|O gives the parameterization of the component ω exp(H) ∈ Σ+

where Φ(γ) = Rω.

By (2.18) the action of f on rays in J−
+ is given by the dynamics of rays in Σ+,

which is equivalent to the action of σ̂ on Σ0. The later has been given a symbolic
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dynamics description as the shift on the quotient S̃2 = S2/∼ where the equivalence

∼ is as in Lemma 5.

We say a ray γ in J−
+ has solenoidal coding b ∈ S̃2 if b is the binary coding of

its corresponding ray in Σ+, namely if θ̂(b) = ω and Rω = Φ(γ).

From a computational point of view it is worth noting that if q is point in J−
+ ,

then Φ(q) is a point in the ray Rω ∈ Σ+ where ω = Θ ◦ Φ(q) ∈ Σ0, or

ωn =
ϕ+ ◦ fn(p)

|ϕ+ ◦ fn(p)| , n ∈ Z (2.19)

For n large enough fn(q) will have entered V + where ϕ+ ≃ πx. Then, !(πxfn(q)) ≃

!(ωn) which determines [β(ω)]n by the rule given in Lemma 6.

2.4.1 Hyperbolic maps with connected J .

Under the additional hypothesis that f is hyperbolic, it is shown in [BS7] that the

mapping Φ is a covering map of finite degree, and this fact is used to establish the

existence of a conjugacy

Ψ : (σ, Σ+)→ (f, J−
+)

that maps rays in Σ0 to rays of J−
+ . In addition, when f is hyperbolic rays in J−

+

actually land on J , and the landing map induces a semi-conjugacy

ψ : (σ, Σ0)→ (f, J) (2.20)

defined as follows: for ω ∈ Σ0, the external ray above ω, Rω ∈ Σ+, maps under Ψ

to a ray γ ∈ J−
+ whose landing point qγ is in J . Then, the assignment ψ : ω #→ qγ

gives a continuous extension of Ψ to Σ0. It is shown that ψ is onto and finite-to-one.
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Hence, the map ψ represents J as a quotient of the solenoid

Σ0/∼ where ω ∼ υ ⇐⇒ ψ(ω) = ψ(υ). (2.21)

Let {s1, . . . , sν} ⊂ Σ0 be the pre-images of the point q ∈ J under ψ and write Rj

for the ray Rsj ∈ Σ+. Let Hj denote the component of Σ+ containing Rj, and let Ij

be the components of Σ0 containing sj. Then {ΨRj : j = 1, . . . , ν} is the set of the

rays that land at q. A result in [BS7] shows that every component of U+
q corresponds

to a unique ray landing at q. Namely if Oj = Ψ(Hj) then U+
q = {Oj : j = 1, . . . , ν}

with the components of J in K+
q given by ∂Oj = ψ(Ij). From the fact that each Oj

is a homeomorphic image of H sitting in W u(q), itself a copy of C, it follows that

there are topological restrictions in the possible elements of the solenoid that can be

identified under ψ. In particular, it is shown in [BS7] that the following planarity

conditions must hold

Planarity Conditions. Let Ω and Ω′ denote distinct components of Σ0, parame-

terized by R with orientations determined by π̂ and a orientation of S1.

• Non-linking. If r1, r2, r3, r4∈ Ω are such that ψ(r1) = ψ(r2) ̸= ψ(r2) =

ψ(r4), then r1 < r2 < r3 implies r1 < r4 < r3.

• Orientation. If r1, r2 ∈ Ω and r′1, r2 ∈ Ω′ are such that ψ(r1) = ψ(r′1) ̸=

ψ(r2) = ψ(r′2), then, r1 < r2 implies r′1 > r′2.

• Localization. If r1, r2 ∈ Ω and r′1, r
′
2 ∈ Ω′ are such that ψ(r1) = ψ(r′1) ̸=

ψ(r2) = ψ(r′2) and r ∈ (r1, r2) ⊂ Ω is such that ψ(r1) ̸= ψ(r) ̸= ψ(r2), then

ψ(r) = ψ(s) implies s ∈ (r1, r2) ∪ (r′1, r
′
2).
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In addition to the planarity conditions, ψ satisfies the following properties with

respect to stable manifolds:

• Injectivity. If ω and υ are distinct points in the same stable manifold of Σ0

then ψ(ω) ̸= ψ(υ).

• Matching. If ψ(ω) = ψ(υ), then ∀ ω′ ∈ W s(ω) ∃ υ′ ∈ W s(υ) such that

ψ(ω′) = ψ(υ′).

According to the matching property, two identified rays belonging to distinct stable

manifolds imply that the stable manifolds are identified.

2.5 The unstable manifold “picture” of a periodic

saddle.

Next we consider the parameterization of the unstable manifold of a periodic point

as a tool to explore the connectivity of J and the combinatorics of external rays by

computer. We assume that f is hyperbolic and that p ∈ J is periodic.

The unstable manifold of any point q ∈ J admits an analytic parameterization

by C. There is an analytic bijective map

φp : C→ W u(q), φp : 0 #→ p, (2.22)

which is unique if we specify a derivative at 0.
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If qk = fk(q), the map λ that makes the following diagram commute

C
φq−−−→ W u(q)

F

⏐

⏐

1

⏐

⏐

1
fk

C
φqk−−−→ W u(qk)

is holomorphic bijection of C with 0 as a fixed point, hence F (z) = λz for some

λ ∈ C∗. When p is periodic of period N , we can talk about the action of fN on

W u(p), which “as seen” in C becomes multiplication by λ, the expanding eigenvalue

of DfN at p,

φ−1
p ◦ fN ◦ φp(z) = λz. (2.23)

Lemma 8. If p ∈ J is periodic of period N , then the rays landing at p are all

periodic of period kN for some k ∈ N and fN preserves their cyclic ordering within

W u(p).

Proof. The set of rays landing at p is a finite set mapped to itself by fN , hence

some least k-th iterate of fN maps each ray to itself. The action of fN on W u(p)

corresponds to multiplication by λ so rays are either rotated or fixed by fN .

Corollary 1. If p = ψ(1) then U+
p consists of a single component.

We will refer to the fixed point of fa,c for which Df(p) has the largest eigenvalue

as the β-fixed point of f . If f is hyperbolic ψ(1) coincides with the β-fixed point.

The fact that the parameterization φp from 2.22 can be approximated numeri-

cally makes W u(p) a particularly useful slice of C2 for obtaining information about
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the structure of J using a computer. Properties of W u(p) can be pulled back to C

via the map φp, and can be observed on a computer rendered picture of the plane.

In particular, the partition of W u(p) into K+
p := W u(p) ∩K+ and its complement,

U+
p := W u(p)−K+

p , can be approximated from the dynamics of points under finite

iteration, to give a partition of C by φ−1
p (K+

p ) and φ−1
p (U+

p ). In the resulting com-

puter picture, the connectivity of φ−1
p (K+

p ) is indicative of the connectivity of J , by

Theorem 1, and from φ−1
p (U+

p ) we obtain information about the external rays and

the combinatorics of their identification as explained below2. These experiments

were first suggested and carried out by Hubbard.

We will call the image of the partition of C by φ−1
p (K+

p ) and φ−1
p (U+

p ) the

unstable manifold picture of f at p, or W u
p -picture for short. When p is the β-fixed

point we also write W u
β . By a minor abuse of notation we will use K+

p and U+
p to

denote the subsets of W u(p) in C2 and their respective inverse images under φp in

the W u
p picture.

Examples. Figure 2.2 shows the W u
p picture for two mappings. In each picture

the set K+
p is colored black and U+

p is shaded gray/white. In the images on the

left the shading depicts level curves of G+ as the boundary between the grey/white

regions, and in the images on the right external rays are made visible by a binary-

decomposition of the level sets which we explain below. For the first example (top

images) the picture is rather simple with K+
p and U+

p both being topologically half-

planes. The second example illustrates how external rays “pinch” K+
p when ψ is

not injective.
2 Some details of the algorithms are given in the appendix.
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a = .201, c = −0.673

a = .01, c = −1.0

Figure 2.2:

The W u
p picture in the second example, where a = 0.01 and c = −1, resembles

the picture of the filled-in Julia set of the polynomial P−1 : z #→ z2 − 1 (see figure

3.4). In general, if c is in the interior of the Mandelbrot set, there will be some

small enough |a| such that the the picture of K+ ∩W u(β) for fa,c is topologically

the same as the picture of Kc at the β-fixed point of the polynomial Pc. This is a

consequence of a theorem in [HOV2] about Hénon mappings that are “perturbations

of quadratic polynomials” to be discussed in more details in Chapter 3. In Chapter
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4 we will consider the question of how the W u
β picture changes as the value of |a|

increases.

2.5.1 Reading the W u
p picture.

In the W u
p -picture we color U+

p to depict the following information. Let Un =

fn(V +) ∩ U+
p for each n ∈ Z. Then, q ∈ Un if G+(fn(q)) ≥ log R. We call the

set Ln = Un − Un−1 the n-th level set. By (2.5) the boundaries of each level set

correspond to level curves between which G+ decreases by a factor of 2,

q ∈ Ln ⇐⇒ 1

2n
<

G+(q)

log R
<

1

2n−1
.

Next, the binary decomposition of U+
p shown in the in the right-hand-side of

figures 2.2 is obtained by a partition of each level set Ln into L0
n (colored light) and

L1
n (colored dark) according to the criteria

q ∈ L0
n if !

(

ϕ+ ◦ fn(q)
)

∈ [0, 1
2), else q ∈ L1

n

This rule is also what defines n-th entry in the solenoidal coding of the ray

through q, as in (2.19). Thus,

γ ∩ Lℓ
n ⇐⇒ [β(γ)]n = ℓ. (2.24)

Accordingly, the solenoidal coding of a ray γ ∈ U+
p can be read from the picture by

looking at the label (light/dark) of the region through which the ray passes on each

level set.

The boundary of any component O of U+
p is the image of a single component of

Σ0 under ψ. Let γp denote the ray in O that lands at 0 = φ−1
p (p) in the W u

p -picture.
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In general, β(γp) is periodic and its coding and can be determined from its initial

repeating word. Since components in Σ0 are unstable manifolds, it follows that that

the solenoidal coding of any ray γ ∈ O agrees sufficiently far to the left with the

coding of γp, or is eventually constant if p is the β-fixed point.

Now, by (2.23) the the geometry of the W u
p picture is invariant under multiplica-

tion by λ. Therefore knowledge of L0 is irrelevant: to locate any specific ray γ with

given coding b, we can assume the picture is at a scale showing the first coordinate

where b and β(γp) disagree. Equivalently, in the W u
β picture the geometry of any

ray γ the same as the geometry of λkγ for any k ∈ Z. If γ ̸= γp we refer to the region

between γ and λγ, including either of these two rays, as a fundamental domain of the

component O of U+
p containing γ. A computed W u

p picture showing the origin will

contain a largest fundamental domain on each side of γp. To examine the behavior

near K+ of any ray in O we use its λ-scaled representative inside this domain. In

particular, the topology of ∂O is determined by the identifications involving rays in

these fundamental domains.

When p is the β-fixed point, β(γp) = 0 = 1 , and U+
p has one component.

Multiplication by λ in the W u
β -picture corresponds to the action of f on W u(β)

and to the shift σ the solenoid. Thus, in terms of symbol sequences, a fundamental

domain in the W u
β -picture is determined by rays with coding b and σb for any b ̸= 0 .

Figure 2.3 shows an example.

Combining the planarity conditions with the shift invariance of the geometry of

rays gives the following restriction for the identifications of rays within a fundamen-

tal domain. On a parameterization of a component of Σ0 by R the action of the
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shift corresponds to multiplication by 2.

Lemma 9. Let Ω be a component of Σ0 parameterized by R with 0 corresponding

to a periodic point. If r, s ∈ Ω are such that rs > 0 and ψ(r) = ψ(s), then

2−1r ≤ s ≤ 2r.

Proof. Without loss of generality suppose r, s > 0. Assume s > 2r. The interval

[r, 2r] is a fundamental domain so there is k > 0 such that 2−ks ∈ [r, 2r]. By

invariance under the shift, 2−ks ∼ 2−kr. This identification together with r ∼ s

violate the non-liking condition. Replacing r by s we conclude 2−1r < s.

This tells that two rays in the same side of the periodic point can be identified only

if both are within a fundamental domain, hence not too far apart. But as the W u
β -

picture in figure 2.3 illustrates, there are also identifications involving rays located

0.1

0.0

0.00

0.01

0.10

0.11

γ

λγ

Figure 2.3: A fundamental domain in U+
β .
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on opposite sides of the fixed ray. In this case, the examples we have seen indicate

that the rays also have opposite solenoidal coordinates, ψ(r) = ψ(−r), and can be

noted as the rays that land on the real axis in the W u
β -picture. In fact this has to

be the case when there is symmetry with respect to complex conjugation.

The W u
β -pictures in figure 2.2 are symmetric with respect to reflection about the

real-axis. This is due to the fact that the fixed point p is in R2 and the eigenvalues

of Df(p) are real, for then the coefficients of φp can be chosen to be real. Since f

and φp commute with complex conjugation the same holds for the Greens function

on U+
p . Thus rays in come in conjugate pairs. It follows that the fixed ray is in R in

the W u
β -picture, as suggested in the images of figure 2.2. By (2.16), the solenoidal

coding of complex conjugate rays have opposites symbols,

β(γ) = β(γ).

When there is symmetry with respect to complex conjugation, then we have

Lemma 10. Let Ω be a component of Σ0 parameterized by R with 0 corresponding

to a periodic point. If the identifications are symmetric about 0, (such as when

there is symmetry with respect to complex conjugation), and if r, s ∈ Ω are such

that rs < 0 and ψ(r) = ψ(s) then s = −r.

Proof. Without loss of generality assume r > 0. By the symmetry, r ∼ s implies

−r ∼ −s. Then either of r > −s or r < −s violate the non-linking condition.

When the W u
β -picture is symmetric with respect to complex conjugation we will

say that rays that land on the real axis form a real identification. For instance, in
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the fundamental domain specified in figure 2.3 there is only one real identifications

arising from the ray ∞0.(10)∞ and its complex conjugate ray.

If γ lands on z in the W u
p -picture and β(γ) is periodic sufficiently far to the

right, then φp(z) ∈W s(p′) where p′ is periodic. If the W u
β picture is symmetric with

respect to complex conjugation and both γ and γ land on z in the W u
β -picture, then

p′ is in R2 as it is the limit of fn(φp(z)) ∈ R2. For example, in the W u
β -picture

of figure 2.3, the rays that land on R are identified only with their conjugate rays

and have solenoidal coding that eventually becomes either (01)∞ or (10)∞. This

tells us that the landing point of these rays map to W u(p) ∩ W s(p′) under φp,

where p′ ∈ R2 is the landing point of a pair of rays which have coding ∞(01).(01)∞

and ∞(10).(10)∞, respectively. Since these period-2 rays are identified under the

landing map but map to each other under the shift, it follows that p′ is the other

fixed point of f .

A second mapping having real identifications is the mapping for a = 0.3 and

c = −1.17, whose W u
β -picture is shown in figure 2.4. The coding of rays landing

on R eventually becomes either (011)∞ or (100)∞. This tell us that there is a

period-three orbit {p′1, p′2, p′3} ⊂ J ∩R2, where

ψ(∞(011).(011)∞) = p′1 = ψ(∞(100).(100)∞)

ψ(∞(110).(110)∞) = p′2 = ψ(∞(001).(001)∞)

ψ(∞(101).(101)∞) = p′3 = ψ(∞(010).(010)∞).

The study of this map was suggested by Hubbard. In the next chapter we will

present a combinatorial model for this mapping.
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γ

λγ

Figure 2.4: Wu
β picture with four real identifications in a fundamental domain.



Chapter 3

Combinatorial Models for Hénon

Mappings

3.1 Graph representation of quotients of S2.

In this chapter we will consider the set J as a quotient of the combinatorial space

Σ0 ≃ S2/θ̂. We will make use of the fact that the equivalence relation E induced

on S2 by ψ ◦ θ̂ is a subshift of finite type ( [Fr]). This allows E to be described by

a finite directed graph whose edges carry an ordered pair of binary labels.

A finite directed graph whose edges are labeled with an ordered pair of elements

of {0, 1} will be called a bi-labeled graph. We will write the labels of the edges

positioned vertically relative to each other, for instance as [ 01 ]. The notation top

and bot will refer to the top and bottom labels of an edge, respectively. A path in

a directed graph is a sequence of consecutive edges: γ = (. . . , γk, γk+1, . . . ) where

37



38

0
0

1
1

Figure 3.1: The diagonal graph.

the terminal node of γk is the initial node of γk+1. If γ is a path, we let [γ]k denote

the pair of labels of the edge γk, namely [γ]k =
[ top γk

botγk

]

. Any bi-infinite path on a

bi-labeled graph produces an ordered pair of elements in S2, given by the sequences

of top and bot labels along the path. A bi-labeled graph is said to describe the

equivalence relation E there exist a path on the graph producing the pair [ AB ] if and

only if (A, B) ∈ E. We will refer to an element of E as an identification. If A ∼ B

the identification (A, B) ∈ E will also be written [ AB ], a notation that facilitates

comparing the identified sequences.

Without loss of generality we may write the graphs describing E so that they

are left-deterministic: the set edges incident on a given node carry distinct pairs of

labels [LM]. When this condition holds there is at most one backward path starting

at a given node ν that produces a given pair of left-infinite sequences
[

A(−∞,−1]

B(−∞,−1]

]

.

Example 1 (the diagonal graph). The graph consisting of a single node and

two edges labeled [ 00 ] and [ 11 ], respectively, will be called the diagonal graph (figure

3.1). The diagonal graph expresses the identification of every possible sequence with

itself.

We will use the diagonal graph to encode the identifications due to the reflexivity

property of the equivalence relation E . The symmetry property of the equivalence
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0
0

1
1

0
1

1
0

ν0

ν1

ν2

1
0

0
1

Figure 3.2: The solenoid graph ΓΣ0 .

relation will be evident in our graphs that represents E , for the existence of a

path γ encoding [ AB ] ∈ E implies the existence of a symmetric path γ′ encoding [ BA ]

which must consists of edges with top and bot labels interchanged relative to those

of γ.

Example 2 (The solenoid graph). We have seen that the solenoid is a quotient

of the full shift in section 2.4. This equivalence relation identifies a sequence termi-

nating in 10∞ with one terminating on 01∞ as described in Lemma 5. The graph in

figure 3.2 encodes exactly the identifications representing the solenoid: paths that

never leave the node ν0 correspond to the trivial identifications; paths that stay
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only in the ν1 node or only the ν2 node correspond to the identification of the two

constant sequences ∞1.1∞ and ∞0.0∞; and any path containing either of the edges

(ν0, ν1) or (ν0, ν2), correspond to the identification of X10
∞

with X01
∞

, where X is a

left infinite sequence. It follows that ΓΣ0 is the complete graph describing E when

the landing map on rays ψ is injective. As we are interested in identifications when

ψ is not injective, we will also refer to the identifications produced by the solenoid

graph as being trivial.

Next, we discuss the graph for simplest non-trivial equivalence relation on Σ0.

In fact, this will be the graph arising from a well known one-dimensional map.

Example 3 (The graph Γ2). As we will show in the next section, the graph in

Figure 3.3 is the graph that describes the pinched-disk model of Jc for the quadratic

polynomial Pc : z #→ z2 − c when c is in the period-2 hyperbolic component of the

Mandelbrot set. The center of this hyperbolic component is at c = −1. Figure 3.4

shows a drawing of the set Kc for c = −1 with a few external rays identified in the

pinched-disk model.

It follows from a theorem in [HOV2] that the topology of the Julia set of Pc

determines the topology of the Julia set of the Hénon mapping fa,c : (x, y) #→

(x2 + c− ay, x) when a is small enough and c belongs to a hyperbolic component of

the Mandelbrot set. We will show in the next section that, in this case, the graph

describing identifications of rays under the pinched-disk model for the polynomial Pc

is the same graph describing identifications of rays in the solenoid for the complex

Hénon mapping fa,c. We will also outline a method for constructing such graph.

In the graph of figure 3.3 we can distinguish three kinds of identifications pro-
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Figure 3.3: The graph Γ2.

duced by paths outside the solenoid subgraph.

(i) Paths that always stay in the 2-cycle (edges a and a). These produce the

identification of the period-2 sequences ∞(01).(01)∞ and ∞(10).(10)∞.

(ii). Paths that include edge b but do not include edge d. These identify pairs of

sequences of the form ∞0(01)∞ and ∞1(10)∞.

(iii). Paths that include edges b and d. These identify pairs of sequences of the

form X01n(10)∞ and X10n(01)∞, where n ∈ N and X is a left-infinite sequence

corresponding to a path in the diagonal subgraph.
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Figure 3.4: The set Kc for c = −1.

Note that by the matching property of ψ with respect to stable manifolds, (§2.4.1),

the identification in (i) implies that every ray in the stable manifold of ∞(01).(01)∞

is identified with a ray in the stable manifolds ∞(10).(10)∞. The question of which

ray is the “partner” of any given ray in these stable manifolds is specified in (ii)

and (iii). In particular, the only non-trivial identifications encoded by this graph

correspond to rays in these two stable manifolds.
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3.2 Perturbations of hyperbolic polynomials.

In this section we show that a Hénon map that is a perturbation of a hyperbolic

polynomial is described by the same graph that describes the polynomial, and we

give a method of constructing the later in the case that the polynomial is a com-

plexified real polynomial.

When a = 0 the Hénon map fa,c is not invertible: it maps all of C2 to the

“parabola” y = Pc(x) in C2. In this “degenerate” case, the dynamics of points

{(x, Pc(x)} under f0,c coincides with the dynamics C under Pc. If |a| is small but

non-zero, the dynamics of the Hénon mapping fa,c and the polynomial Pc are still

closely related if the polynomial is hyperbolic. In this case, fa,c can be thought of

as a perturbation of the “polynomial” f0,c. This idea was made precise by Hubbard

& Oberste-Vorth in [HOV2] where the following theorem is proven:

Theorem 2 (Hubbard & Oberste-Vorth). If the polynomial Pc : z #→ z2 + c is

hyperbolic, there is some ε > 0 such that for 0 < |a| < ε there is a homeomorphism

Φ− conjugating the inverse limit of C under Pc to the dynamics of J− under the

Hénon mapping fa,c : (x, y) #→ (Pc(x)− ay, x).

Moreover, it is shown in [HOV2] that Φ− can be made analytic when restricted

to the inverse limit of C−K, which we denote Ûc. The set Ûc is homeomorphic to

the exterior solenoid, Σ+, via the map induced by ϕc (cf. §2.1). Since external rays

can be defined from the complex structure, the map Φ− preserve external rays.

We will write f ≈ lim←−Pc when there is a conjugacy Φ between the mapping fa,c

restricted to J− and the inverse limit of C under the polynomial Pc such that the
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restriction of Φ to Ûc takes external rays to external rays.

By restricting the homeomorphism Φ− to the non-wandering set, theorem 2

implies the existence of a conjugacy between the inverse limit of the polynomial’s

Julia set, Ĵc, and the Julia set of the Hénon mapping:

Φ : Ĵc → Jf , Φ ◦ P̂c|Jc = fa,c ◦ Φ.

This provides a representation of Ja,c as a quotient of the solenoid or, equivalently,

as a quotient of the the 2-shift, as summarized in the following diagram where σ̂c

denotes the shift on Ĵc induced by Pc.

S2
θ̂−−−→ Σ0

ψ̂c−−−→ Ĵc
Φ−−−→
≃

J
⏐

⏐

1

σ

⏐

⏐

1
σ̂

⏐

⏐

1

σ̂c

⏐

⏐

1

fa,c

S2
θ̂−−−→ Σ0

ψ̂c−−−→ Ĵc
Φ−−−→
≃

J

Then, the equivalence relation defining the J as a quotient of S2 is given by

A ∼ B ⇐⇒ ψ̂c ◦ θ̂ (A) = ψ̂c ◦ θ̂ (B).

The equation in the right-hand-side, when expressed coordinate-wise, becomes

ψc ◦ θ ◦ σn (A) = ψc ◦ θ ◦ σn (B) for all n ∈ Z.

That is,

ψc(e
2πiϑ(σnA)) = ψc(e

2πiϑ(σnB)) for all n ∈ Z,

where, we recall, ϑ : S2 → R/Z maps a bi-infinite sequence A to the point whose

binary expansion is given by A[0,∞). Now, for the polynomial Pc, the identification

of rays, (which are parameterized by R/Z), is defined precisely by

x ∼c y ⇐⇒ ψc(e
i2πx) = ψc(e

i2πy).
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This proves

Lemma 11. If f ≈ lim←−Pc and A and B are rays on the solenoid, then

A ∼ B ⇐⇒ A[n,∞) ∼c B[n,∞) for all n ∈ Z. (3.1)

In other words, projecting the solenoidal rays to their circle coordinate, produces

a pair of external angles identified under ∼c , and this is holds for any shift of the

solenoidal rays. As a consequence, we get the following corollary which confirms

the assertion made after Example 3 in §3.1.

Corollary 3. If f ≈ lim←−Pc then the graph describing the equivalence relation ∼ for

f is the same as the graph describing ∼c for the polynomial Pc.

In addition to the solenoidal planarity conditions of §2.4.1, Lemma 11 imposes

some further restrictions on the of rays that can be identified under ∼. For instance,

the projection to the circle of any solenoidal identification produces external angles

that must satisfy the following condition (see [D]).

Lemma 12 (Non-crossing of ∼c ). If x, x′, y, y′ ∈ R/Z satisfy x ∼c x′ ̸∼c y ∼c

y′, then x < y < x′ if, and only if, x < y′ < x′.

Below we consider other combinatorial properties of polynomial external rays

which are relevant for obtaining the graph describing ∼c when c is real.

Working assumptions. In what follows we assume that the polynomial Pc is

hyperbolic (expanding on Jc, with Jc connected), and that c is real. Then all rays

land and come in complex conjugate pairs.
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Notation and terminology. In this section, the rays we consider are the exter-

nal rays for the polynomial Pc. These are parameterized by R/Z. An identification

of rays in C under ∼c will be called a planar identification. A planar identification is

non-trivial if it is not produced by forward paths in the solenoid graph (figure 3.2).

The inverse image of a planar identification [ AB ], denoted [ AB ]−1, consists of the

set of identifications
{[

A′

B′

]

: A′ ∈ σ−1(A), B′ ∈ σ−1(B)
}

. A planar identification has

exactly one pair of inverse images given by:

[

A

B

]−1

=

{[

0A

0B

]

,

[

1A

1B

]}

, or

[

A

B

]−1

=

{[

0A

1B

]

,

[

1A

0B

]}

. (3.2)

By the landing point of an identification [ AB ], we mean the common landing point

of the rays A and B, and we will say that an identification is real (resp. complex) if

its landing point is real (resp. complex). Since c is real, a non-trivial identification

is real if and only if the pair of identified planar rays are complex conjugate of

each other. In terms of binary sequences this means that [ AB ] is a real identification

iff A and B have opposite symbols on each term: A = B. In fact, for c ∈ R, this

characterization is determined by first digit of the external angles:

Proposition 13. For c ∈ R if A ∼c B and A0 ̸= B0 then B = A, thus [ AB ] is real.

Proof. Without loss of generality, assume A0 = 0, B0 = 1 so that A < B. By

invariance under complex conjugation, A ∼c B implies A ∼c B. As A0 = B0, if A < B

the A > B and we get B < A < A < B, contradicting the non-crossing condition of

Lemma 12. Similarly, non-crossing is violated if we assume A > B since then A < B

and A < B < B < A. Therefore, A = B.
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From the above proposition we can formulate a general relation between the the

external angles of identified rays.

Proposition 14. For c ∈ R, if [ AB ] is any non-trivial planar identification A ∼c B,

then either A = B or there is an n ≥ 0 such that A[0,n) = B[0,n) and A[n,∞) = B[n,∞).

Proof. If A0 ̸= B0, the result follows from the previous proposition. Assume other-

wise. Since the identification is non trivial, there is a first n > 0 such that An ̸= Bn.

Then A[n,∞) = B[n,∞) by applying the previous proposition to the shifted sequences

σnA and σnB which must be identified by invariance of ∼c under the shift.

If c ∈ R the inverse images of a complex identification must also be complex. By

the previous two propositions, the inverse images of [ AB ] under σn consists of the

following set of identifications

Corollary. If A ∼c B and A0 = B0, then for any n > 0

[

A

B

]−n

=

{[

wA

wB

]

: w ∈ {0, 1}n

}

. (3.3)

A real hyperbolic component of M is a component of the interior of M inter-

secting the real axis. Its center corresponds to the value of c such that 0 is periodic

under Pc. We now describe a method of constructing the the graph describing ∼c

assuming that c is inside a real hyperbolic component of M.

Steps to obtain the graph for real hyperbolic Pc.
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Suppose for the moment that c is the center of a period-n real hyperbolic component

of the Mandelbrot set. Let β be the the largest fixed point of Pc.

(a) Let xk = P k
c (0), k = 0, . . . , (n − 1) and let P = {In, In−1, . . . , I1} be the

partition of the interval (−β, β) ⊂ R obtained by removing {x0, . . . , xn−1}.

(b) Thinking of Pc|R as an unimodal map, let Γ be the graph describing the

dynamics of the intervals in P . Namely, the nodes of Γ are I1, . . . , In, and

there is an edge (Ii, Ij) in Γ iff Pc(Ii) ⊃ Ij

(c) Next, construct a node-labeled graph Γ̇ based on Γ as follows: for each node

Ik of Γ there is a pair of nodes in Γ̇ with opposite binary labels, I0k and I1k

(where the superscript is the label). Also, for each edge (Ij, Ik) of Γ there are

two edges in Γ̇: either (I0j , I
1
k) and (I1j , I

0
k) if Ij lies to the left of the critical

point, or (I0j , I0k) and (I1j , I
1
k) if Ij to the right of the critical point.

Then Γ̇ describes the coding of the possible external angles that can land at

points of Jc ∩R. No additional information is needed to transform Γ̇ into a graph

describing the equivalence relation ∼c .

(d) Let the top label of each edge be the label of its source node, and let bot be

the opposite symbol. Node labels are then redundant, hence omitted. We

denote by Γ̈ the resulting edge-labeled graph.

The steps leading to Γ̈ for the case of period two are illustrated in figure 3.5(a)-

(d), and figure 3.6(a)-(d) shows the same for the case of period three.



49

I1 I2I3

Γ:

0
1

0
1

1
0

1
0

0
1

0
1

1
0

1
0

Γ:
..

I3
1 I1

1

I3
0

I2
1

I1
0 I2

0
Γ:
.

I3 I1I2 β−β x1 x0

Γ:
~

0
1

0
1

1
0

1
0

0
1

0
1

1
0

1
0

1
1

0
0

(a)

(b)

(c)

(d)

(e)

Figure 3.5:



50

I1 I2I4

Γ:

Γ:
..

I4
1 I1

1

I4
0 I1

0

I2
1

I2
0

Γ:
.

(a)

(b)

(c)

(d)

I4 I1I2 β−β x1 x0 x2I3

I3

I3
1

I3
0

0
1

0
1

1
0

1
0 0

1

0
1

1
0

1
0 1

0

0
1

1
0

0
1

Figure 3.6:



51

In the graph Γ̈ constructed in step (d) there must be two nodes where no edge

terminates. These correspond to the leftmost interval of P whose points have only

complex pre-images under Pc. The last step is contained in the next proposition.

Proposition 15. Let Γ̈ be the graph describing the real identifications of external

rays under the landing map for the real hyperbolic polynomial Pc, as constructed

above. Let Γ̃ be the graph obtained from Γ̈ by replacing the two non-terminal nodes

by the diagonal graph. Then Γ̃ describes the equivalence relation ∼c of the pinched-

disk model of Jc.

Proof. This follows from (3.3) in Corollary 3.2 and the fact that the interval In has

no preimages in R.

Figure 3.5-(e) illustrates the last step for the case of period 2, and the graph pro-

duced is the same as the one given in figure 3.3. This confirms the assertion made

in Example 3 of §3.1.

Within a hyperbolic component of the Mandelbrot set all polynomials are con-

jugate, hence the above construction gives the graph describing ∼c for c inside a

hyperbolic component of the Mandelbrot having non-empty intersection with the

real axis. We expect that a similar construction can be obtained for the hyperbolic

components that do not intersect the real line using as initial data the skeleton of

the expanded Hubbard tree (see [D]).
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3.3 Two-dimensional examples.

In this section we present bi-labeled graphs that describe equivalence relation on

the solenoid which are not reducible to the equivalence relation coming from the

inverse limit of quadratic polynomials on C.

The graphs we will present have been obtained by analyzing the identification

patterns of rays in the unstable manifold picture of certain specific Hénon mappings.

Although it has not been proven that these maps are hyperbolic, this is strongly

suggested by the qualitative features of the unstable manifold pictures and by the

pictures of invariant manifolds in the real domain. We will prove that the rays

identified according to these models satisfy the combinatorial constraints imposed

by the planarity conditions. In the next chapter we present the computer evidence

supporting our conjecture that, in fact, these graphs do describe the identifications

for certain mappings.

3.3.1 A Hénon map with period-2 sink.

Figure 3.7, shows the unstable manifold picture for a certain map fa,c with a and

c real and in the parameter region of where fa,c and the polynomial Pc have an

attracting orbit of period two and the W u
β -picture is symmetric with respect to

complex conjugation. The value of both parameters has been increased relative to

the last example of §3.1 when fa,c ≈ lim←−P−1. The external rays in the W u
β picture

reveal that a non-trivial topological change has occurred between the parameter

values for these two cases. For instance it can be observed that a fundamental
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A

A

Figure 3.7: Wu
a,c picture for a = 0.125, c = −1.124

domain for this mapping has three rays identified with their complex conjugate rays

whereas the mapping of example 3 in §3.1 has only one (cf. figure 2.3). Specifically, it

can be observed that the ray marked A in figure 3.7 has binary coding ∞0011(01)∞,

and it is identified with the rays with coding A = ∞1100(10)∞. The computer

evidence supports the following conjecture.

Conjecture 1. For the parameters values a = .125 and c = −1.24 the ray ∞0011(01)∞

and its conjugate ray, ∞1100(10)∞, are identified under ψ.

This topological change with respect to the mapping of example 3 in §3.1 tells

us the following:
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Proposition 16. If conjecture 1 holds then fa,c ̸≈ lim←−P−1 for the parameter values

a = .125 and c = −1.24.

Proof. By the corollary to Theorem 2, if fa,c ≈ lim←−P−1 then the graph describing

∼ for this mapping would be the same describing ∼c for c = −1, or the graph Γ2

in figure 3.3. According to conjecture 1 the ray A is identified with its complex

conjugate, but this identification is not produced by the graph Γ2, which instead

gives
[

∞0011(01)∞
∞0100(10)∞

]

for the identification corresponding to ray A.

Computer evidence suggest that this map belongs to aregion of (real) parameter

space where all maps are topologically conjugate on J .

We have obtained the graph shown in figure 3.8 as the graph that describes

the quotient of the solenoid for this Hénon map. It is easy to see that the graph

of figure 3.8 does encode the identifications that give rise to the the large scale

features of K+
β . For instance, in figure 3.8 we have marked some of the most

evident identifications and listed the binary coding of the rays involved. Since

the graph is backwards deterministic, the corresponding paths in the graph Γ′
2 can

be obtained starting from the two-cycle (where all forward paths that leave the

solenoid subgraph terminate) and following the arrows backwards. In the next

chapter we present evidence supporting the conjecture that the graph also encodes

the identifications occurring at small scales.
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Figure 3.8: The graph Γ′
2.
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[ A’
A’ ] =

[

∞0101.001(01)∞
∞0100.110(10)∞

]

[

B’
B′

]

=
[

∞0100.101(01)∞
∞1011.010(10)∞

]

[ C’
C’ ] =

[

∞0100.100(10)∞
∞0011.011(01)∞

]

[ D’
D’ ] =

[

∞0100.011(01)∞
∞0011.100(10)∞

]

[

E’
E′

]

=
[

∞0011.010(10)∞
∞1100.101(01)∞

]

[ F’
F’ ] =

[

∞0011.001(01)∞
∞0010.110(10)∞

]

[

G’
G′

]

=
[

∞0010.101(01)∞
∞1101.010(10)∞

]

BA’A DC C’D’ E F

F’

G

Figure 3.9:
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3.3.2 A model for a map with sinks of period 1 and 3

The parameter values a = 0.3 and c = −1.17 also give rise to a Hénon mapping that

appears to be hyperbolic. This is an interesting example whose study was suggested

by Professor Hubbard. The map has an attracting cycle of period three as well as

an attractive fixed point. Figure 3.10 shows the W u
β picture for this map. The

“round” components of Kβ−J belong to the basin of attraction of the period-three

cycle, while the other components (with cusps) belong to the basin of the fixed sink.

Within a fundamental domain defined by a pair of rays identified on the real axis

in the W u
β picture (and their images under multiplication by λ) there is two of each

type of components of Kβ − J that intersect the real axis.

As discussed at the end of chapter 2, the real identifications arise from rays

with coding ending in either (011)∞ or (100)∞. The graph we have obtained for

this Hénon mapping is shown in figure 3.11 and denoted Γ(3,1). Although more

complicated that the previous example, it can be readily seen that the graph Γ(3,1)

encodes the identifications of the stable manifolds of the ray ∞(011).(011)∞ and

∞(100).(100)∞. In particular, the real identifications correspond to the paths in

Γ(3,1) from the two 1-cycles with label [ 01 ] and [ 10 ] to the two terminal 3-cycles. These

identifications have the form

[

h100(100)∞

h011(011)∞

]

and

[

h100(011)∞

h011(100)∞

]

where h is ∞0 or ∞1.
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Figure 3.10: Wu
a,c picture for a = 0.3, c = −1.17
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Figure 3.11: The graph Γ(3,1).
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3.3.3 Verification of the planarity conditions

The rays identified under ∼ must satisfy the planarity conditions of §2.4.1 if they

actually correspond to rays in the dynamics of hyperbolic maps with connected

Julia set. We recall these conditions below:

• Non-linking If A, B, A′, B′ are four rays in the same unstable manifold and

they satisfy A ∼ A′, B ∼ B′, and A < B < A′, then A < B′ < A′.

• Orientation Let H and H ′ be two distinct components of Σ0. Suppose that A

and C are rays in H and that A′ and C′ are rays in H ′ such that A ∼ A′ ̸∼ C ∼ C′.

Then, A < C implies A′ > C′.

• Localization Let H and H ′ be two distinct components of Σ0. Suppose that A

and C are rays in H and that A′ and C′ are rays in H ′ such that A ∼ A′ ̸∼ C ∼ C′.

Then, if B ∈ (A, C) ⊂ H and A ̸∼ B ∼ B′ ̸∼ C, then B′ ∈ (A, C) ∪ (A′, C′).

If a planarity condition is satisfied by all pairs of identifications produced by a

graph, we say that the graph itself satisfies this planarity condition. In this section

we prove the following theorems:

Theorem 4. The graph Γ′
2 satisfies the planarity conditions.

Theorem 5. The graph Γ(3,1) satisfies the planarity conditions.

Remark. Proving orientation and localization is easy since these conditions are sat-

isfied vacuously by the graphs in question. Verification of the non-linking condition

is not as trivial and will require setting up notation and terminology. In particular,
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the following “coloring scheme” will be useful in analyzing the combinatorics of the

graphs.

Terminology. In a bi-labeled graph Γ we will say an edge γ0 is red if it has

opposite labels, top(γ0) ̸= bot(γ0), otherwise we will say the edge is blue. We say

that Γ is of type-R if it has the property that only red edges are reachable from

red edges. Namely, Γ is of type-R if for any path γ in Γ, top(γn) ̸= bot(γn) implies

top(γk) ̸= bot(γk) for all k ≥ n. All the graphs presented in the previous section

satisfy this property.

Lemma 17. The graph Γ′
2 satisfies orientation and localization.

Proof. Both conditions apply to a pair of identifications between rays in distinct

unstable manifolds. Let A and A′ be the solenoidal codings of rays that belong to

different unstable manifolds. It was shown in section 2.3.3 that A and A′ do not agree

to the left: for any n ∈ Z, A(−∞,n] ̸= A′(−∞,n] Let γ be a path in Γ′
2 corresponding

to the identifications A ∼ A′. In Γ′
2 all paths producing non-trivial identification

eventually end up in the 2-cycle consisting of the edges marked c and c in figure

3.12. And all paths involving edges outside this two cycle end up in the solenoid

sub-graph when followed backward. But a bi-infinite path that stays in the solenoid

sub-graph when followed backwards always produces an identification of two rays

in the same unstable manifold. Therefore, γ may not include any edges other than

c and c, meaning that A = ∞(01).(01)∞ and A′ = ∞(10).(10)∞, or vice versa. This

shows that Γ′
2 produces only one identification involving rays in distinct unstable

manifolds. Since the hypothesis of the orientation and localization conditions require
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two distinct such identifications, they are satisfied vacuously.

Lemma 18. The graph Γ(3,1) satisfies orientation and localization.

Proof. This graph produces only three identifications of sequences that are not in

the same unstable manifold:

∞(011).(011)∞ ∼ ∞(100).(100)∞

and its two shifts. The six rays involved in these identifications are all in distinct

unstable manifolds, and therefore the hypothesis for the orientation and localization

conditions are vacuously satisfied.

Next we verify the non-linking condition for both graphs. In the proof of the non-

linking condition we will use the following notation and terminology. Recall from

section 3.1 that if γ is a path on a graph Γ and γk is the kth-edge along γ then

the notation [γk] or [γ]k refers to the label of γk. Let A, B, A′, B′ denote four rays

belonging to the same unstable manifold. Let α and β be paths in a bi-labeled

graph such that α correspond to the identifications A ∼ A′, while β corresponds to

the identification B ∼ B′. Namely,

[

α
]

k
≡

[

Ak

A′k

]

and
[

β
]

k
≡

[

Bk

B′k

]

and more generally,

[

α
]

[k,k+n]
≡

[

Ak . . . Ak+n

A′k . . . A′k+n

]

and
[

β
]

[k,k+n]
≡

[

Bk . . . Bk+n

B′k . . . B′k+n

]

.

The key idea in both theorems will be to show that the order relation A < B < A′ < B′

is inconsistent with the assumption that paths α and β belong to the graph under
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consideration. There are two ways by which symbol sequences tell us that two

rays belong to the same unstable manifold, (§2.3.3). Thus, the problem breaks up

naturally into two cases depending on whether A, B, A′, B′ eventually agree to the

left, or all four sequences become constant but not equal sufficiently far to the left.1

Propositions 19 and 20 establish the general form that the binary coding of the rays

must satisfy in the these two cases.

Proposition 19. Let α and β be paths in a bi-labeled graph Γ producing the iden-

tifications A ∼ A′ and B ∼ B′, respectively. Suppose that A, B, A′, B′ agree sufficiently

far to the left and satisfy A < B < A′ < B′. Set n0 = max{k ∈ Z : Ai = Bi = A′i =

B′i for all i < k}. If Γ is of type-R, there exist integers n1 and n2, n0 < n1 ≤ n2,

and words x and y, such that [α][n0,n2]
≡ [ A

A′ ][n0,n2]
and [β][n0,n2]

≡ [ B
B′ ][n0,n2] are of

one of the following four form:

n0 n1 n2

(19.1)

[

A

A′

]

[n0,n2]

=

[

0 x 0 y 1

1 x 1 y 0

]

,

n0 n1 n2
[

B

B′

]

[n0,n2]

=

[

1 x 0 y 0

1 x 1 y 1

]

.

n0 n1 n2

(19.2)

[

A

A′

]

[n0,n2]

=

[

0 x 1 y 0

1 x 0 y 1

]

,

n0 n1 n2
[

B

B′

]

[n0,n2]

=

[

1 x 0 y 0

1 x 1 y 1

]

.

n0 n1 n2

(19.3)

[

A

A′

]

[n0,n2]

=

[

0 x 0 y 0

0 x 1 y 1

]

,

n0 n1 n2
[

B

B′

]

[n0,n2]

=

[

0 x 0 y 1

1 x 1 y 0

]

.

n0 n1 n2

(19.4)

[

A

A′

]

[n0,n2]

=

[

0 x 0 y 0

0 x 1 y 1

]

,

n0 n1 n2
[

B

B′

]

[n0,n2]

=

[

0 x 1 y 0

1 x 0 y 1

]

.

1The second case occurs if the rays belong to the unstable manifold of the β-fixed point.
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Proof. The ordering of the sequences determines seven possibilities, three of which

are eliminated because they contradict the graph being of type-R, as we now explain.

If exactly three of the sequences agree on the n0-entry, let n1 be the first index where

only two of them agree, and let n2 be the first index where the two sequences that

agreed at n1 become different. Then, there are four possibilities for the entries

n0, . . . , n2 of the sequences A, B, A′, B′, that respect their ordering, as listed in table

3.1. On the other hand, if only two of the sequences A, B, A′, B′ agree on the n0-entry,

Table 3.1: Possible [n0, . . . , n2]-block of four sequences A < B < A′ < B′ subject to

the conditions that exactly k of the sequences agree on all coordinates less than n4−k,

k = 4, 3, 2. The entries x and y denote words and ∗ is a “wild-card” (of the right length

in each column) representing arbitrary entries.

(I)

A : n0 ∗ n1 ∗ n2

A : 0 ∗ ∗ ∗ ∗

B : 1 x 0 ∗ ∗

A′ : 1 x 1 y 0

B′ : 1 x 1 y 1

(II)

A : n0 ∗ n1 ∗ n2

A : 0 ∗ ∗ ∗ ∗

B : 1 x 0 y 0

A′ : 1 x 0 y 1

B′ : 1 x 1 ∗ ∗

(III)

A : n0 ∗ n1 ∗ n2

A : 0 x 0 y 0

B : 0 x 0 y 1

A′ : 0 x 1 ∗ ∗

B′ : 1 ∗ ∗ ∗ ∗

(IV )

A : n0 ∗ n1 ∗ n2

A : 0 x 0 ∗ ∗

B : 0 x 1 y 0

A′ : 0 x 1 y 1

B′ : 1 ∗ ∗ ∗ ∗
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Table 3.2: Possible [n0, . . . , n2]-block in four sequences A < B < A′ < B′ which agree

on all coordinates less than n0 and such that no three of the sequences agree on the n0

coordinate. The coordinates n1 and n2 correspond to the first distinct entry between each

pair of sequences that agreed on the n0 coordinate.

(V ) (V I) (V II)

A : n0 ∗ n1 ∗ n2

A : 0 x 0 ∗ ∗

B : 0 x 1 ∗ ∗

A′ : 1 z t y 0

B′ : 1 z t y 1

A : n0 ∗ n1 ∗ n2

A : 0 x t y 0

B : 0 x t y 1

A′ : 1 z 0 ∗ ∗

B′ : 1 z 1 ∗ ∗

A : n0 ∗ n1 = n2

A : 0 x 0

B : 0 x 1

A′ : 1 y 0

B′ : 1 y 1

necessarily An0 = Bn0 = 0 and A′n0
= B′n0

= 1 due to the ordering of the sequences.

In this case, let n′ be the first index where A and B become distinct, and let n′′ be the

first index where A′ and B′ become distinct. Set n1 = min{n′, n′′}, n2 = max{n′, n′′}.

Then, there are three possibilities for the entries n0, . . . n2 of the sequences A, B, A′, B′,

as listed in table 3.2.

Now, because the graph is of type-R, the occurrence of a red edge in either of

the paths α or βimplies that all subsequent edges in the path must be red as well.

This determines the ∗ entries of (I)-(IV ) in terms of x and y, giving (19.1)-(19.4),

respectively. However, cases (V )-(V II) lead to contradictions under the hypothesis

that the graph is of type-R: In (V ) we have [ A
A′ ]n0

= [ 01 ] and [ B
B′ ]n0

= [ 01 ], hence

both edges αn0 and βn0 are red. Since the graph is of type-R, αn1 and βn1 must be
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red edges as well. Then, [ A
A′ ]n1

= [ 0t ] implies that t = 1, but [ B
B′ ]n1

= [ 1t ] imply that

t = 0. Case-(V I) is similar: The edges αn1 and βn1 are red, therefore [ A
A′ ]n1

= [ t
0 ]

implies that t = 1 while [ B
B′ ]n1

= [ t
1 ] requires t = 0. Finally, in (V II) we have

[ A
A′ ]n0

= [ 01 ] and [ A
A′ ]n1

= [ 00 ], so that αn0 is red but αn1 is not, contradicting the

hypothesis that the graph is of type-R.

Proposition 20. Let α and β be paths in a bi-labeled graph Γ producing the iden-

tifications A ∼ A′ and B ∼ B′, respectively, such that A ̸∼ B. Suppose that for

small enough index n, A(−∞,n], B(−∞,n], A′(−∞,n] and B′(−∞,n] are constant, and that

A < B < A′ < B′. Assume furthermore that not all four sequences agree to the left.

If Γ is of type-R, there exist integers n1 and n2, n1 ≤ n2, and an arbitrary word x

such that [α](−∞,n2] ≡ [ A
A′ ](−∞,n2] and [β](−∞,n2] ≡ [ B

B′ ](−∞,n2] are of the form given

in one of the following four possibilities:

n0 n1 n2

(20.1)

[

A

A′

]

(−∞,n2]

=

[∞1 1 x 1
∞1 0 x 0

]

,

n0 n1 n2
[

B

B′

]

(−∞,n2]

=

[ ∞1 1 x 0
∞0 0 x 1

]

.

n0 n1 n2

(20.2)

[

A

A′

]

(−∞,n2]

=

[∞1 0 x 1
∞0 1 x 0

]

,

n0 n1 n2
[

B

B′

]

(−∞,n2]

=

[ ∞0 0 x 0
∞0 1 x 1

]

.

n0 n1 n2

(20.3)

[

A

A′

]

(−∞,n2]

=

[∞1 1 x 1
∞1 0 x 0

]

,

n0 n1 n2
[

B

B′

]

(−∞,n2]

=

[ ∞1 0 x 1
∞0 1 x 0

]

.

n0 n1 n2

(20.4)

[

A

A′

]

(−∞,n2]

=

[∞1 1 x 0
∞0 0 x 1

]

,

n0 n1 n2
[

B

B′

]

(−∞,n2]

=

[ ∞0 0 x 0
∞0 1 x 1

]

.
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Proof. The proof of Proposition 20 is similar to that of Proposition 19, with n1

and n2 defined in the same way. The ordering A < B < A′ < B′ determines seven

possibilities, three of which contradict the hypothesis that the graph is of type-R,

and the other four lead to (20.1)-(20.4).

We are now ready to verify the remaining planarity condition and complete the

proof of Theorem 4.

Lemma 21. The SFT Γ′
2 satisfies the non-linking condition.

Proof. As outlined above, we proceed by letting α and β be paths in Γ′
2 producing

identifications A ∼ A′ and B ∼ B′, respectively, where A < A′, B < B′, and A < B.

We claim that the hypothesis A < B < A′ < B′ leads to contradictions, therefore if

A < B then, in fact, A < B < B′ < A′. There are two possibilities to consider: one

where Proposition 19 applies and the other where Proposition 20 applies. resulting

in eight cases to check.

Case 19.1:

n0 n1 n2

[

α
]

[n0,n2]
=

[

0 x 0 y 1

1 x 1 y 0

]

,

n0 n1 n2

[

β
]

[n0,n2]
=

[

1 x 0 y 0

1 x 1 y 1

]

.

In this case both αn0 and βn1 are red edges immediately preceded by a blue edge

(since, by hypothesis, An0−1 = A′n0−1). Therefore αn0 and βn1 must each be one of

the edges a or b in figure-3.12. This implies that the subsequence [ x
x ] and

[

y
y

]

in

(19.1) both begin with [ 1100 ]. Consequently, the subsequence [ 011100 ] occurs at least

twice in [α]: at n0 and at n1. But this subsequence occurs only once among labels

of forward paths which begin with edge b, hence αn0 ̸= b. It follows that αn0 = a
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Figure 3.12: The graph Γ′
2 with marked edges referenced in the proof of Lemma 21.

and αn1 = b. At b the graph Γ′
2 is forward deterministic, and it determines that

between n1 and n2 [α] is of the form

[

α
]

[n1,n2]
=

[

0 1 1 (0 1)k 0 1

1 0 0 (1 0)k 1 0

]

. (3.4)

for some k ≥ 0. This specifies y in (19.1), giving

[

β
]

[n1,n2]
=

[

0 1 1 (0 1)k 0 0

1 0 0 (1 0)k 1 1

]

. (3.5)
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If k = 0 then [β][n1,n2] = [ 0110010011 ], and if k > 0 we get [β][n1,n1+5] = [ 011010100010 ]; it

follows that βn1 ̸= a because these subsequences do not occur on any forward path

originating at edge a. Also, the fact that Γ′
2 is forward deterministic at b implies

that βn1 ̸= b since αn1 = b but [α] and [β] differ at n2 which is to the right of n1.

This contradicts βn1 ∈ {a, b}.

Case 19.2:

n0 n1 n2

[

α
]

[n0,n2]
=

[

0 x 1 y 0

1 x 0 y 1

]

,

n0 n1 n2

[

β
]

[n0,n2]
=

[

1 x 0 y 0

1 x 1 y 1

]

.

By arguing as in the previous case, we first conclude that αn0 , βn1 ∈ {a, b}, and

therefore the undetermined words x and y in (19.2) both begin with at least two

1’s. Then, [α][n0,n0+3] = [ 011100 ] and [α][n1,n1+3] = [ 100011 ], which leads to the conclusion

that αn0 must be a and that αn1 is b. The graph Γ′
2 is forward deterministic at b,

specifying that

[

α
]

[n1,n2]
=

[

1 0 0 (1 0)k 1 0

0 1 1 (0 1)k 0 1

]

(3.6)

with k ≥ 0. By (19.2), we then get

[

β
]

[n1,n2]
=

[

0 1 1 (0 1)k 0 0

1 0 0 (1 0)k 1 1

]

. (3.7)

It follows that βn1 ̸= b since the subsequence [ 0011 ] does not occur on the forward

path that begins at b. But equation (3.7) is the same as equation (3.5) which ruled

out βn1 = a. Hence βn1 ̸∈ {a, b}, giving a contradiction.

Cases 19.3 & 19.4: The analysis of (19.3) is exactly as case (19.1) with the roles of

[α] and [β] interchanged –the difference between [ B
B′ ][n0,n1) in (19.1) and [ A

A′ ][n0,n1) in

(19.3) does not affect the argument. Similarly, case (19.4) follows from case (19.2)
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with [α] and [β] interchanged.

Case 20.1:

n0 n1 n2

[

α
]

(−∞,n2]
=

[ ∞1 1 x 1
∞1 0 x 0

]

,

n0 n1 n2

[

β
]

(−∞,n2]
=

[∞1 1 x 0
∞0 0 x 1

]

.

Observe in figure-3.12 that the only paths which produce the constant left-infinite

sequence [
∞0
∞1 ] are those that remain in edge e when followed backwards. Hence

βk = e for all k < n for some n ≤ n1. Also, it must be that αn1 = a because

no other edge in Γ′
2 has label [ 10 ] and can be preceded exclusively by edges with

label [ 11 ]. It follows that the word x in (20.1) begins with at least two 0’s. Then,

β[n1,n1+2] = [ 100011 ] and this determines that βn1 = b, because b is the only edge in

Γ′
2 where the subsequence [ 100011 ] occurs for forward paths that originate from edge e.

At b the graph is forward deterministic, giving

[

β
]

[n1,n2]
=

[

1 0 0 (1 0)k 1 0

0 1 1 (0 1)k 0 1

]

(3.8)

with k ≥ 0. This specifies x in (20.1), to yield

[

α
]

[n1,n2]
=

[

1 0 0 (1 0)k 1 1

0 1 1 (0 1)k 0 0

]

(3.9)

Now, if k = 0 in 3.9 then αn1 ̸= a as the subsequence [ 1001101100 ] does not occur on labels

of any path that begins with a. And if k > 0, then [α][n1,n1+5] = [ 100101011010 ] which also

does not occur after edge a. This contradicts αn1 = a.

Case 20.2:

n0 n1 n2

[

α
]

(−∞,n2]
=

[ ∞1 0 x 1
∞0 1 x 0

]

,

n0 n1 n2

[

β
]

(−∞,n2]
=

[∞0 0 x 0
∞0 1 x 1

]

.

From [β](−∞,n1] = [
∞00
∞01 ] it follows that βn1 = a. Therefore [ x

x ] begins with [ 1100 ].

Then, from [α](−∞,n1+2] = [
∞1011
∞0100 ] we conclude αn1 = b. At b the graph Γ′

2 is forward
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deterministic, hence the labels of α[n1,n2] specify x. Then, (20.2) gives

[

β
]

[n1,n2]
=

[

0 1 1 (0 1)k 0 0

1 0 0 (1 0)k 1 1

]

.

But this is equation (3.5) which leads to βn1 ̸= a, giving a contradiction.

Case 20.3:

n0 n1 n2

[

α
]

(−∞,n2]
=

[ ∞1 1 x 1
∞1 0 x 0

]

,

n0 n1 n2

[

β
]

(−∞,n2]
=

[∞1 0 x 1
∞0 1 x 0

]

.

From the form of [α](−∞,n1] it follows that α = a. Therefore [ x
x ] begins with [ 0011 ].

Then, from [β](−∞,n1+2] = [
∞1011∞0100 ] we conclude βn1 = b. At b the graph Γ′

2 is forward

deterministic, therefore the labels of β[n1,n2] specify x and we get

[

α
]

[n1,n2]
=

[

1 0 0 (1 0)k 1 1

0 1 1 (0 1)k 0 0

]

according (20.3). But this is the same as equation (3.9) which contradicted αn1 = a.

Case 20.4:

n0 n1 n2

[

α
]

(−∞,n2]
=

[ ∞1 1 x 0
∞0 0 x 1

]

,

n0 n1 n2

[

β
]

(−∞,n2]
=

[∞0 0 x 0
∞0 1 x 1

]

.

Exactly as in (20.2), it follows that β = a and that [ x
x ] begins with [ 1100 ]. Then,

from [α](−∞,n1+2] = [
∞1100
∞0011 ] we conclude αn1 = b. At b Γ′

2 is forward deterministic

and specifies x to give that [β][n1,n2] is given by the left-hand-side of equation (3.5),

which rules out βn1 = a, giving a contradiction.
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The next lemma completes the proof of Theorem 5.

Lemma 22. The graph Γ(3,1) satisfies the non-linking condition.

Proof. The proof is similar to that of the Γ′
2 graph. We show that the eight possi-

bilities allowed by propositions 19 and 20 lead to contradictions. We will make use

of the observation that in Γ(3,1) only the three edges marked a,b, and c in figure 3.13

have labels top=0, bot=1, and are immediately preceded by a blue node. Namely,
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Figure 3.13: The graph Γ(3,1) with marked edges referenced in the proof of Lemma 22.
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for any path γ in Γ(3,1) we have

[γ][k−1, k] ∈ { [ 0001 ], [ 1011 ]} implies γk ∈ {a, b, c}. (3.10)

In addition, it can also be checked by inspection that if γm ∈ {a, b, c} and [γ]n = [ 01 ]

for n > m then the following holds:

γm = a =⇒ γn ∈ {b, c, d, e, f, g}

γm = b =⇒ γn ∈ {d, e}

γm = c =⇒ γn = c.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(3.11)

We rule out the cases given in Proposition 19 by showing that their are incom-

patible with the above facts about Γ(3,1).

Case 19.1:

n0 n1 n2

[

α
]

[n0,n2]
=

[

0 x 0 y 1

1 x 1 y 0

]

,

n0 n1 n2

[

β
]

[n0,n2]
=

[

1 x 0 y 0

1 x 1 y 1

]

.

By (3.10),

αn0 , βn1 ∈ {a, b, c}, (3.12)

and by (3.11),

αn1 ∈ {b, c, d, e, f, g}. (3.13)

We will show that (3.12) can not hold for βn1 if β is a path in Γ(3,1).

First, suppose that βn1 is the edge a. Then

[

y

y

]

=

[

111 · · ·
000 · · ·

]

(3.14)
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and by (19.1) we get
[

α
]

[n1, n1+3]
=

[

0111 · · ·
1000 · · ·

]

.

Now, the subsequence [ 01111000 ] does not occur after any of the edges c, d, e, f or g.

Hence αn1 ̸∈ {c, d, e, f, g}and (3.13) imply that αn1 = b. After edge b the graph

Γ(3,1) is forward deterministic, and αn1 = b together with (3.14) and [αn2] = [ 01 ]

imply that
[

α
]

[n1, n2]
=

[

011100(100)k1

100011(011)k0

]

, k ≥ 0.

Then, by (19.1) we get that

[

β
]

[n1, n2]
=

[

011100(100)k0

100011(011)k1

]

, k ≥ 0.

This contradicts βn1 = a since the sequence [ 011100100011 ] does not occurs after edge a.

Second, suppose that βn1 is the edge b. Then the graph Γ(3,1) specifies that

[

β
]

[n1, n2]
=

[

011100(100)k10t0

100011(011)k01t1

]

, k ≥ 0, t ∈ {0, 1},

and then, by (19.1) we get

[

α
]

[n1, n2]
=

[

011100(100)k10t1

100011(011)k01t0

]

, k ≥ 0, t ∈ {0, 1}.

This is inconsistent with αn1 ∈ {b, c, d, e, f, g}, as can be checked by inspection.

Hence βn1 = b violates (3.13).

Finally, suppose that βn1 is the edge c. Then, as [βn2] = [ 01 ], we have

[

β
]

[n1, n2]
=

[

011(011)k0

100(100)k1

]

, k ≥ 0.

Then, by (19.1),
[

α
]

[n1, n2]
=

[

011(011)k1

100(100)k0

]

, k ≥ 0.
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The sequence [ 01101001 ] does not occur on labels of forward paths originating at any

of these edges b, d, e, f or g}, therefore k > 0 implies that αn1 ̸∈ {b, d, e, f, g}. In

addition, the fact that Γ′
2 is forward deterministic at c implies that αn1 ̸= c since

βn1 = c but [α] and [β] differ at n2 which is to the right of n1. Thus k > 0

contradicts (3.13). We check that k = 0 is also inconsistent with βn1 = c. If k = 0

then [α][n1, n2] = [ 0111
1000 ], therefore αn1 ̸∈ {d, e, f, g}. It follows that αn1 = b and

αn0 = a. In Γ(3,1), all paths between a and b consist of edges with label [ 1
0 ]; in

fact, [α](n1, n2) ≡ [ x
x ] = [ 1

m

0m ] for some m > 3. Then, (19.1) implies that [β]n1−1

and [β]n1−2 are blue edges with the same pair of labels, but this is inconsistent with

βn1 = c. This completes the proof that (19.1) is inconsistent with βn1 ∈ {a, b, c},

in contradiction with (3.12).

Case 19.2:

n0 n1 n2

[

α
]

[n0,n2]
=

[

0 x 1 y 0

1 x 0 y 1

]

,

n0 n1 n2

[

β
]

[n0,n2]
=

[

1 x 0 y 0

1 x 1 y 1

]

.

Note that equations (3.12) and (3.13) still apply in this case. Again, we show that

the three choices for βn1 lead to contradictions. If βn1 = a then
[ y

y

]

= [ 111000 ] which

implies [α][n1, n1+3] = [ 1000···0111··· ]. This leads to the conclusion that αn1 = b, and then

αn0 = a. At b, the graph Γ(3,1) is forward deterministic, and it determines

[

α
]

[n1, n2]
=

[

100011(011)k0

011100(100)k1

]

, k ≥ 0,

Then, (19.2) gives

[

β
]

[n1, n2]
=

[

011100(100)k0

100011(011)k1

]

, k ≥ 0.

But this contradicts βn1 = a as the subsequence [ 011100100011 ] never occurs after edge a.
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Next we consider βn1 = b. In this case there are two possibilities for [β][n1, n2]:

[

0111(001)k0

1000(110)k1

]

or

[

01110(010)k0

10001(101)k1

]

,

according to whether βn2 = e or βn2 = d. The resulting symbols sequence for

[α][n1, n2] according to (19.2) are

[

1000(110)k0

0111(001)k1

]

or

[

10001(101)k0

01110(010)k1

]

,

respectively. Both of these lead to the conclusion that αn0 is neither b nor c: the

subsequence [ 10000111 ] does not occur after these edges. By (3.12), αn0 = a. Then

αn1 = b as b is the only edge of Γ(3,1) where the subsequence [ 10000111 ] occurs after edge

a. But according to Γ(3,1), βn1 = b and αn1 = b imply that β[n1,∞) and α[n1,∞) have

opposite labels, which is not the case since [β]n2 = [α]n2. Thus, βn1 ̸= b either.

The last possibility according to (3.12) is that βn1 = c. Then, the graph Γ(3,1)

implies that
[

β
]

[n1, n2]
=

[

011(011)k0

100(100)k1

]

, k ≥ 0,

and by (19.2) we get

[

α
]

[n1, n2]
=

[

100(100)k0

011(011)k1

]

k ≥ 0.

Now, k > 0 implies that αn1 ̸∈ {b, c, d, e, f, g}, as the sequence [ 10010110 ] does not occur

on labels of forward paths originating at any of these edges. Thus, k > 0 violates

(3.13). If k = 0 we have [α][n1, n2] = [ 10000111 ], implying αn1 ̸∈ {d, e, f, g}. It follows

that αn0 = a and αn1 = b. In Γ(3,1), all paths between a and b consist of edges with

label [ 1
0 ] and, in fact, [α](n1, n2) ≡ [ x

x ] = [ 1
m

0m ] for some m > 3. Then, (19.2) implies
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[β]n1−1 = [β]n1−2, which is inconsistent with βn1 = c. We conclude that if (19.2)

holds then βn1 ̸∈ {a, b, c}, in contradiction with (3.12).

Cases 19.3 & 19.4: As in the proof of the previous lemma, cases 19.3 & 19.4

follow from the analysis of cases 19.1 & 19.2, respectively.

Case 20.1:

n0 n1 n2

[

α
]

(−∞,n2]
=

[ ∞1 1 x 1
∞1 0 x 0

]

,

n0 n1 n2

[

β
]

(−∞,n2]
=

[∞1 1 x 0
∞0 0 x 1

]

.

Observe in figure-3.13 that the only paths which produce the constant left-infinite

sequence [
∞0∞1 ] are those that remain in edge h when followed backwards. Hence

βk = h for all k < n for some n ≤ n1. Also, it must be that αn1 = a because no

other edge in Γ′
2 has label [ 10 ] and can be preceded exclusively by edges with label

[ 11 ]. It follows that [ x
x ] in (20.1) begins with [ 000...111... ] and therefore β[n1,n1+3] = [ 10000111 ].

From this we must conclude that βn1 = b, because b is the only edge in Γ(3,1) where

the subsequence [ 10000111 ] occurs for forward paths that originate from edge h. At b

the graph is forward deterministic, giving

[

β
]

[n1,n2]
=

[

1 0 0 0 (1 1 0)k 1 1 0

0 1 1 1 (0 0 1)k 0 0 1

]

(3.15)

for k ≥ 0. This specifies x in (20.1), to yield

[

α
]

[n1,n2]
=

[

1 0 0 0 (1 1 0)k 1 1 1

0 1 1 1 (0 0 1)k 0 0 0

]

(3.16)

However, the subsequence [ 100011011100 ] does not occur on labels of any forward path

originating at a in Γ(3,1); this contradicts αn1 = a.
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Case 20.2:

n0 n1 n2

[

α
]

(−∞,n2]
=

[ ∞1 0 x 1
∞0 1 x 0

]

,

n0 n1 n2

[

β
]

(−∞,n2]
=

[∞0 0 x 0
∞0 1 x 1

]

.

From [β](−∞,n1] = [
∞00
∞01 ] it follows that βn1 = a. Therefore [ x

x ] begins with [ 111000 ].

Then, from [α](−∞,n1+2] = [
∞10111∞01000 ] we conclude αn1 = b. At b the graph Γ(3,1) is

forward deterministic, hence the labels of α[n1,n2] specify x. Then, (20.2) implies

[

β
]

[n1,n2]
=

[

0 1 1 1 (0 0 1)k 0 0 0

1 0 0 0 (1 1 0)k 1 1 1

]

. (3.17)

However, the subsequence [ 011100100011 ] does not occur on labels of any forward path

originating at a in Γ(3,1); this contradicts βn1 = a.

Case 20.3:

n0 n1 n2

[

α
]

(−∞,n2]
=

[ ∞1 1 x 1
∞1 0 x 0

]

,

n0 n1 n2

[

β
]

(−∞,n2]
=

[∞1 0 x 1
∞0 1 x 0

]

.

From [α](−∞,n1] = [
∞11
∞10 ] it follows that αn1 = a. Therefore [ x

x ] begins with [ 000111 ]

hence [β](−∞,n1+2] = [
∞10111∞01000 ], which leads to the conclusion that βn1 = b. At b the

graph Γ(3,1) is forward deterministic, giving

[

β
]

[n1,n2]
=

[

0 1 1 1 (0 0 1)k 0 0 1

1 0 0 0 (1 1 0)k 1 1 0

]

(3.18)

for k ≥ 0. This specifies x in (20.3), resulting in

[

α
]

[n1,n2]
=

[

1 0 0 0 (1 0 0)k 1 1 1

0 1 1 1 (0 1 1)k 0 0 0

]

(3.19)

But this is equation (3.16), which contradicts αn1 = a.

Case 20.4:

n0 n1 n2

[

α
]

(−∞,n2]
=

[ ∞1 1 x 0
∞0 0 x 1

]

,

n0 n1 n2

[

β
]

(−∞,n2]
=

[∞0 0 x 0
∞0 1 x 1

]

.
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From [β](−∞,n1] = [
∞00
∞01 ] it follows that βn1 = a. Therefore [ x

x ] begins with [ 111000 ].

Then [α](−∞,n1+2] = [
∞11000
∞00111 ] which leads to αn1 = b. At b the graph Γ(3,1) is forward

deterministic, hence the labels of α[n1,n2] specify x in (20.2) to give

[

β
]

[n1,n2]
=

[

0 1 1 1 (0 0 1)k 0 0 0

1 0 0 0 (1 1 0)k 1 1 1

]

.

This is equation (3.17), which contradicts βn1 = a.



Chapter 4

On the Combinatorial Structure of

a Region of Real Parameter Space

4.1 Introduction.

In this section we take a experimental approach to examining the combinatorics of

Hénon mappings. More specifically, we examine how the unstable manifold pictures

at the β-fixed point of fa,c vary with the mapping, as a way of detecting by inspection

changes in the identifications of external rays.

Recall that for a given Hénon mapping, the unstable manifold picture at p, or W u
p

picture, refers to the image of the partition of C into φ−1
p (K+

p ) and its complement,

φ−1
p (U+

p ), where where φp is the natural parameterization of W u(p). In this chapter

p will always be the fixed point with largest eigenvalues, which we call the β-fixed

point. The discussion will involve mappings at various parameter values so we will

80
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also use the notation W u
a,c to refer to the W u

β picture of the mapping fa,c.

The experiment will consist of “scanning” parameter space by observing how

W u
a,c changes as parameter values are incremented along a line joining two points in

parameter space.

We want to apply these experiments in a systematic way to gain intuition about

the structure of parameter space. A strategy we find natural to start with is to

consider first Hénon mappings which are perturbations of a hyperbolic quadratic

polynomial Pc since then we know from that the set K+
β in the W u

β picture will

“look” as the the filled Julia set of Pc at the β-fixed point of the polynomial. More

specifically, we know from section §3.2 that the graph describing the identifications

of the external rays for these mappings is the same as the graph describing the

identifications of rays for Pc, and we can construct it explicitly at least for c in

a real hyperbolic component of M. In addition, the structural stability of these

mappings ensures that if the initial changes in the parameters are small enough

then the initial changes in the W u
β picture will be qualitative only, not topological.

Thus, the landing point of the rays will vary continuously with the parameters, at

least for small enough changes in the initial parameter values. Determining what

“small enough” should be for a particular mapping forms part of the experiment,

since for any given c inside a hyperbolic component of the Mandelbrot set, it is not

known how large can we take |a| and still have fa,c ≈ lim←−Pc. One of our objectives,

therefore, will be to address this question experimentally, using stability of the W u
β

pictures as an in indication of hyperbolicity.

We expect that the largest hyperbolic components of M will yield the more
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Figure 4.1: M and its hyperbolic components of period 1, 2 and 3.
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stable Hénon mappings f0,c, and we want to start with mappings having the simplest

combinatorics. Thus, we will focus on the hyperbolic components of low period.

The hyperbolic components of the Mandelbrot set can be characterized as the set

of parameter values for which the polynomial Pc has a sink of a specific period,

also called the period-n sink locus. Figure 4.1 shows the sink loci up to period

three. The sink loci for Pc coincide with the sink-loci for the Hénon map fa,c in the

plane {a = 0}. For small, non-zero, values of a the sink loci of fa,c in the plane

{a = constant} appear to form “deformed” Mandelbrot sets, as shown in figure

4.2. In particular the main cardioid and its attached components seem to persists

for 0 < a < .3, but the period-three “island” located near c = −1.75 in the plane

{a = 0}, drifts to the right and intersects the other loci as the value of a increases.

This sink locus lies at the center of the period-2 locus in the plane {a = 0.2} and

just inside the fixed-sink locus in the plane {a = 0.3}. Other so called satellite

components of M also drift as the value of a is increased, and they intersect other

components at different {a =const} planes; but components in the “main body” of

M appear to maintain their relative position 1. Parameter values that belong to

more than one sink locus are particularly interesting because they provide examples

of mappings whose dynamics must be distinct from those of polynomials in the

plane, which have at most one sink. Figure 4.3 shows how these sink loci intersect

in parameter space with c ∈ C and a ∈ R, and figure 4.4 shows the restriction of

these loci to R2.

1 Although not shown in figure 4.2 we have also observed this behavior for the components of
period four.
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Figure 4.2: Sink loci of fa,c in c-plane for small values of a.
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Figure 4.3: Sink loci in C×R.
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Figure 4.4: Sink loci in R×R.
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The boundaries between the sink loci in R2 are curves whose endpoints at the

level a = 0 are root-points of hyperbolic components of the Mandelbrot set, hence

parabolic bifurcation points [DH, Br]. Let these root-points be denoted by ri where

the subscript indicates the period of the hyperbolic component. In figure 4.4 we

have labeled as hi the curve ending at ri. Hence, the fixed-sink locus in R2 is

bounded by h1 and h2, the period-two sink locus by h2 and h4, and the period-3

locus is the thin strip between h3 and h9.

When fa,c ≈ lim←−Pc′ the picture of K+
β has the same topology as the picture of

the filled-in Julia set of the polynomial Pc′ at its β-fixed point. Thus, for each value

of c between r2 and r1 there is some ε such that for a < ε the W u
β picture of fa,c

is topological the same as that of P0: without any identifications of external rays.

Similarly, for each c ∈ (r4, r2) there is a small enough |a| such that fa,c ≈ lim←−P−1

and rays are in W u
β are identified as given by the graph Γ2 of Example-3, section

§3.1. On the other hand, the intersection of the period-3 sink locus with the period-

2 sink locus (or with the fixed-sink locus) consists of parameters where fa,c ̸≈ lim←−P

for any polynomial P . This makes the region inside the period-2 locus and below h3

an interesting window in parameter space in which to concentrate out experiments

in order to answer, for instance, whether or not the polynomial combinatorics from

the level a = 0 extend to h3. We have labeled this region as Region 2 in figure 4.4,

and Region 1 will be the adjacent region inside the fixed-sink locus and below h3,

where we begin exploring the same question.
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Figure 4.5: Some selected parameter values in Region 1.

4.1.1 Scanning Parameter Space.

Figure 4.5 show four sample scans with twelve selected parameter values (circled)

distributed throughout region-1. The resulting W u
β picture at each of the twelve

selected points is shown in figure 4.6. Each of these images indicates that K+
β − J

is a single component; distinct rays are not identified under the landing map. We

have conducted numerous other scans through this region all of which produce

pictures with the same trivial combinatorics. Closer to h2 and h3 the cusps in K+
β

become more pronounced, but we still find that no identifications take place inside

Region 1. This suggests the following statement which we call a conjecture since it

is based on empirical evidence.

Conjecture 2. For parameter values (a, c) inside the fixed sink-locus in R2 below
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Figure 4.6: W u
β pictures for parameter values of figure 4.5
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h3 and with 0 ≤ a ≤ 0.35, the Hénon map satisfies fa,c ≈ lim←−P0.

remark. Implicit in this conjecture is the statement that no other sink-locus

intersects the fixed sink locus in this region.

We now consider the same experiments in Region 2. We will be referring to the

parameter values shown in figure 4.7, and to their corresponding W u
β pictures shown

in figure 4.8.

As it was the case in Region 1, we find that within Region 2 the combinatorics

determined by the one-dimensional map Pc appear to survive for small values a

independently of c.
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Figure 4.7: Selected parameter values through Region 2.l
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Conjecture 3. For parameter values (a, c) inside the period-two sink locus in R2

and such that 0 ≤ a ≤ 0.05, the Hénon map satisfies fa,c ≈ lim←−P−1.

This is illustrated in two bottom rows of the array in figure 4.8 (compare with

figure 3.4). In fact, the W u
β pictures in a scan of Region 2 at a = 0.01 and those at

the polynomial level a = 0 seem identical. However, near the middle part of Region 2

the W u
β pictures reveal topological changes: at least two identifications are different

for a near 0.14, say, than they are for a < 0.5 (this is emphasized in figure 4.8 by the

rays drawn in the W u
β pictures numbered 2 and 11). Specifically, A = ∞0011(01)∞

and B = ∞0100(10)∞ are identified with each other for small values of a, as are

their complex conjugate pairs, A = ∞1011(01)∞ and B = ∞1100(10)∞. But when

a has reached the value 0.14 these four rays have changed partners and each ray

has become identified with its respective conjugate ray. Figure 4.8-8 is suggestive of

how the rays in the identifications A ∼ B and A ∼ B change partners as parameters

are varied (say from a = 0.05 towards h3, for concreteness): the landing points of

the two identifications approach the real axis in the W u
β picture in a continuous

manner with increasing a, (giving the appearance of squeezing the component of

K+ containing the landing points at its boundary). As a is increased further the

the four rays appear to meet on the real axis pinching K+, and then the previously

identified rays drift apart along R ⊂ W u
β , now identified with their conjugate rays.

This process is shown in the sequence of W u
β pictures in figure 4.9 corresponding to

nine parameter values between those of figure 4.8-5 and 4.8-11. Figure 4.10 shows

the approximate location in parameter space where the bifurcation occurs.

A parameter value at which a pair of identified rays switch partners will be called
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Figure 4.8: W u
β pictures for the parameters of figure 4.7.
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a “bifurcation point” in parameter space.

The bifurcation illustrated in figures 4.9 appears as the first prominent change

in the identifications of external rays when the parameters are varied within Region

2 from a = 0 towards h3. At parameter values close to those where this bifurcation

occurs we also observe other pairs of identified rays which approach each other and

appear to meet and change partners at the small-scale limbs of K+
β −J . Figure 4.11

shows an example.

We will say a bifurcation is real or complex according to whether or not it

involves pairs of complex conjugate rays. Thus, the bifurcation of figure 4.10 is a

real bifurcation but that of figure 4.11 is complex. The rays corresponding to a real

bifurcation meet on R in the W u
β -picture. At end of §2.5 we pointed out that rays

landing on R in the W u
β -picture for c = −1 and a = .01 correspond to point where

W u(β) and W s(p′) intersect in R2, with p′ being the other fixed point of f . Thus

the real bifurcation corresponds to a tangency of these unstable manifolds in R2.

When f is hyperbolic ψ is injective on stable manifolds (§2.4.1). Thus, at

parameter values corresponding to a real bifurcation fa,c is not hyperbolic. It is

interesting to ask whether the four rays changing partners in a complex bifurcation

actually meet. In 4.4 we discuss a specific case when they do not.
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Figure 4.9: Sequence of W u
β pictures illustrating how two pairs of identified rays

change partners.
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Figure 4.10: Parameter values near the first bifurcation in Region 2.
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Figure 4.11: A second bifurcations in Region 2 (cf. figure 4.10). Since the rays do

not meet on R we call this a complex bifurcation.
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Since the real bifurcations correspond to tangencies we expect these bifurcation

points in parameter space will have co-dimension one. In fact, even these observa-

tional experiments reveal that the parameter values corresponding to the bifurcation

of figure 4.9 lie on a “line” that cuts through Region 2. However, these type of ex-

periments only produce a rough approximation to the location of the bifurcation

points, and it is impractical to use this method to locate many such points since ob-

taining each W u
β picture is computationally intensive. In the next section we address

the problem of how to locate these bifurcations more accurately and efficiently.

4.2 Locating bifurcations in parameter space.

The experiments of the previous section revealed that there are parameter values in

Region 2 at which pairs of identified rays change partners, and suggested that these

bifurcation points could have co-dimension one, forming curves in R2. In this section

we will move from observations of unstable manifold pictures to a computational

way of finding these bifurcations in parameter space.

Let I be a line segment in parameter space containing only one bifurcation point

(a∗, c∗) for a bifurcation involving the identifications {A ∼ B, A′ ∼ B′} changing to

{A ∼ A′, B′ ∼ B′}. Using a binary-search algorithm on I one obtains a sequence

of points converging to (a∗, c∗). In order for the computer to perform this search

automatically it needs to be able to determine whether the rays are identified as

A ∼ A′ and B ∼ B′, or as A ∼ B and A′ ∼ B′ at parameter values near (a∗, c∗).

The problem of distinguishing between the two possibilities can be solved by the
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computer if given parameter value it can determine the landing point of each ray.

We have implemented a program that accomplishes this last task, in effect enabling

the computer to check with high precision whether or not two rays are identified for

specific parameter values (see appendix). With this tool we can use the computer

to locate, up to a specified accuracy, curves of bifurcation points in real parameter

space by using a simple binary-search algorithm in the plane.
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0.104
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Figure 4.12:

Given a neighborhood Bδ of a bifurcation point (a∗, c∗) the computer can produce

an ε-neighborhood of the bifurcation curve inside Bδ, in principle, by sampling a

fine grid over the neighborhood (say with cells of diagonal length less than ε/2),

and forming a list of grid cells selected according to the following “four-corners”

test: if the identifications involved are the same for the parameter values at the

four corners of the cell, then conclude that the cell contains no bifurcation points,

otherwise add the cell to the list. This works if ε is small enough so that the
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curve intersects the side of each cell at most once. If Bδ itself is a small window

in parameter space where the curve just “cuts through” without too much turning,

then a two-dimensional binary search algorithm can be used to produce the desired

list: recursively subdivide the window into four by connecting the midpoints of each

edge; the the recursion terminates if a window does not contain a bifurcation point

according to the four-corners test, in which case it is discarded, or it has become

smaller in size than the allowed tolerance, in which case it is added to the list. For

example, figure 4.12 illustrates some intermediate steps of this procedure as used

to obtain a neighborhood of the bifurcations shown in figure 4.10, starting with

the small zoom-window in that same figure; showing in blue are the boxes where

the computer found {A ∼ B, A ∼ B}, in red those where {A ∼ A, B ∼ B}, and

in yellow the cells containing the bifurcation curve. After a initial segment of the

bifurcation curve has been found to the desired accuracy, the computer can extend

the curve by placing an adjacent test-window at the endpoints and repeating the

search. Besides providing control on the accuracy with which we know the curve,

one advantage of this method is that it does not make many assumptions about

the global shape of the curve its trying to locate: if needed, the local curvature of

the found part of the curve can be estimated and the size of the adjacent Bδ can

be adjusted accordingly before extending the curve. In addition, processing of the

curve as computed at a tolerance ε can be used to guide the search at a smaller

tolerance without subdividing every ε-cell (for instance when the curvature is small

relative to the length).

Figure 4.13 shows the curve of figure 4.12 computed with a smaller tolerance
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and continued to the level {a = 0}. The line extends all the way to h2, but our

algorithm for computing the landing point of rays slows down at near this curve so

we the curve is not completely drawn.

This bifurcation curve, which we label ρ0, correspond to the the first bifurcation

detected by the experiments of the previous section.
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Figure 4.13: The bifurcation curve ρ0.
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4.2.1 Some specific bifurcation curves in Region 2.

The experiments of section §4.1.1 allow us to find specific pairs of identified rays

that change partners by observing the W u
β picture at varying parameter values. The

method of section §4.2 gives us the ability to locate such bifurcations in parame-

ter space independently of the W u
β picture. Combining these techniques we have

obtained several bifurcation curves Region 2. Below we describe the pair of rays

we have associated with three bifurcations that are relevant for understanding the

combinatorial structure of the lower part of Region 2.2

First, we have computed the curve ρ0 of figure 4.13 as the set of parameter values

where the rays identified as

[ ∞001(10)∞

∞010(01)∞

]

and

[ ∞101(10)∞

∞110(01)∞

]

change partners to become

[ ∞001(10)∞

∞110(01)∞

]

and

[ ∞101(10)∞

∞010(01)∞

]

.

recall from the end of section 4.1.1 that this is the first noticeable topological change

in the W u
β pictures as parameter values are varied in Region 2 from a = 0 towards h3.

This can be seen in figures 4.10 and 4.9. At parameter values near those where this

real bifurcation occurs we also found complex bifurcations. The most noticeable of

these complex bifurcations is shown in figure 4.11; it occurs at a point in parameter

space just above ρ0 (the curve ρ0 passes close to the point labeled 2 in figure 4.11).
2Other lines are shown in figure A.26 in the Appendix.
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Figure 4.14:

This complex bifurcation corresponds to the identifications

[ ∞001101(10)∞

∞001110(01)∞

]

and

[ ∞010001(10)∞

∞010010(01)∞

]

changing to
[∞001101(10)∞

∞010010(01)∞

]

and

[ ∞010001(10)∞

∞001110(01)∞

]

.

The curve for this bifurcation will be called χ0. We find that χ0 lies above ρ0

throughout region two, although the two curves appear tangent near {a = 0}, as

shown in figure 4.14. Above χ0 in the same figure there is a third bifurcation curve

labeled ρ1. The curve ρ1 corresponds to parameters where the identifications

[ ∞001101(10)∞

∞010010(01)∞

]

and

[ ∞101101(10)∞

∞110010(01)∞

]
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change to
[∞001101(10)∞

∞110010(01)∞

]

and

[ ∞101101(10)∞

∞010010(01)∞

]

.

This is not one of the complex bifurcations that occur for parameter values near

ρ0. In fact this another real bifurcation: the resulting pair of identification involve

conjugate rays. The results of our computer experiments in this region of parameter

space can be summarized in the following statement which because of its empirical

nature we call a conjecture.

Conjecture 4. Let ρ0, ρ1, and χ0 be the curves defined in terms of the bifurcations

described in the previous paragraph.

1. There are no bifurcations below ρ0 in Region 2.

2. There are no bifurcations between χ0 and ρ1 in Region 2.

This conjecture also says that the complex bifurcations occurring at parameter

values near ρ0 actually occur for parameter values between ρ0 and χ0. Looking at

the W u
β picture in detail we find that some of these complex bifurcations occur very

close to ρ0 in parameter space. Perhaps some coincide with the main bifurcation

that occurs for parameter values in ρ0, but our experiments indicate that none occur

at parameters below ρ0 or above χ0.

According to Conjecture 4, the curve ρ0 provides a more concrete answer than

Conjecture 3 to the problem of determining the part of Region 2 above a = 0 where

fa,c ≈ lim←−P−1.

We will denote the part of Region 2 below ρ0 as Region 2.0 and the part of

Region 2 between χ0 and ρ1 as Region 2.1.
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Next we consider two complementary and related questions motivated by Con-

jecture 4. One is to describe all the bifurcations that occur between ρ0 and χ0. The

other is to describe all the identifications for parameters values in Region 2.1. We

begin with the second question, since knowledge of the identifications in Region 2.1

and in Region 2.0 can be used to predict bifurcations that must occur between these

two regions.

4.2.2 Describing all identifications in a stable region.

We have used external rays to locate bifurcations in parameter space. In this section

we use rays to provide computational evidence that a single graph describes all the

identifications of external rays for mappings in this region.

The graph Γ′
2 was presented in figure 3.8 where we proved that it satisfies the

planarity conditions. We constructed this graph by considering the identifications of

rays in the W u
a,c picture with (c, a) = (−1.24, 0.125), which lies between χ0 and ρ1 in

parameter space. We conjecture that Γ′
2 is the graph encoding all the identifications

for this map as well as for any mapping in Region 2.1.

Both of these conjectures have been submitted to computer verification. To test

the graph at a specific parameter value we let the computer generate a large number

of paired sequences given by paths in the graph, and then the computer checks

whether or not both rays in each pair lands at the same point (to machine accuracy).

For instance, we can consider all possible paths of length N between the diagonal

subgraph and the terminal 2-cycle in the graph. These constitute identifications

of the form [ h uw
h vw ] where h is ∞0 or ∞1, w is (01)∞ or (10)∞ depending on the
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node chosen in the 2-cycle, and v and w are words of length N . These sequences all

belong to the unstable manifold of the fixed point, therefore the corresponding rays

can be seen in the W u
β picture (after shifting if necessary). Paths between either of

the other two nodes of the solenoid subgraph and the terminal 2-cycle give the real

identifications in W u
β . Figure 4.16 shows some of 256 pairs of sequences generated

from the graph, all of which were verified as valid identifications (a smaller subset

of twice as many verified identifications is shown near the center of the figure). In

practice the symmetries of the graph can be taken into account to avoid computing

duplicate sequences.

We have applied the same computer test at other parameters in Region 2.1

(figure 4.15). In each test the computer checked about 1000 pairs of sequences and

all pairs resulted in identified rays.
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Figure 4.15: Points in Region 2.1 where we the computer has tested the graph Γ2.

The asterisk indicates (c, a) = (−1.24, 0.125).
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Figure 4.16: A sample of the rays generated in pairs by the computer from the

graph Γ′
2 of figure 3.8. Rays on each pair were tested by the computer to have the

same landing point.
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Testing the graph Γ(3,1).

We used the same computer test to check the identifications produced by the graph

Γ(3,1) of section §3.3.2. Recall that we computed this graph for the mapping with

parameters a0 = 0.3 and c0 = −1.17. Figures 4.17 shows 504 rays corresponding

to pairs of sequences obtained from paths in the graph Γ(3,1), and verified by the

computer as being pairwise identified at the parameter values a0 and c0. Different

colors are used by the computer when drawing the rays to emphasize the fact that

it is testing rays in pairs. Figure 4.18 is a close-up of the region near the center of

the picture in figure 4.17.

We also have carried out a few preliminary experiments of the type discussed

in section §4.1.1, and these indicate that bifurcations do not occur for parameter

values in a neighborhood of (c0, a0). See figures 4.19 and 4.20.
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Figure 4.17: 252 pairs of rays generated by the computer from the graph Γ(3,1) of

figure 3.11. The landing point of each pair was verified by the computer to be the

same (to machine accuracy).
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Figure 4.18: Close up of figure 4.17.
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Figure 4.19: A neighborhood of the point the point (c0, a0) = (−1.17, 0.3) in

parameter space. The asterisk indicates (c0, a0). The W u
a,c pictures for the nine

neighboring points appear stable (see figure 4.20).
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Figure 4.20: W u
β pictures for the parameter values of figure 4.19.
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4.3 Bifurcations predicted by the models.

Knowing the graphs that give the identifications in Region 2.0 and Region 2.1 enable

us to obtain a combinatorial description of the bifurcations that occur for parameter

values between these two regions.

Note that the graphs Γ2 and Γ′
2 both describe the same set of rays with non-

trivial identifications, namely both graphs specify identifications between rays in

W s((01)∞) with rays in W s((10)∞). We will exploit the idea that if the the two

graphs give different “partners” for a given ray, then the ray must have changed

partners at least once as parameters vary between the regions described by each of

the graphs.
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Figure 4.21: The graphs Γ2 (left) and Γ′
2 (right).
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The proposed set of bifurcations will be obtained as an application of the fol-

lowing theorem.

Theorem 6. Let X denote the set of non-trivial identifications described by the

graph Γ2. Let X ′ denote the set of non-trivial identifications described by the graph

Γ′
2. There exist four families of rays

P (h, n), Q(h, n), R(h, n), S(h, n), h ∈ S−
2 , n ∈ N,

and, in addition, other four rays P (0), Q(0), R(0), S(0), such that for fixed h and

n ∈ {N ∪ 0} these rays satisfy

[

P
Q

]

, [ R
S ] ∈ X and [ P

S ],
[

R
Q

]

∈ X ′.

The collection of all these partner switches,
{[

P
Q

]

, [ R
S ]

}

to
{

[ P
S ],

[

R
Q

]}

for h ∈ S−
2

and n ∈ {N∪ 0}, constitutes the smallest set of combinatorial changes necessary to

change X into X ′.

We will prove theorem 6 and compute the families P (h, n), . . . , S(h, n) and the

four rays P (0), . . . ,S(0) in §4.3.1.

Under the assumption that the graphs Γ2 and Γ′
2 describe the identifications in

Region 2.1 and Region 2.0, respectively, we obtain a description of the bifurcations

occurring between these two regions.

Proposition 23. Assume that the identifications in region 2.0 are given by the

graph Γ2 and the identifications in region 2.1 are given by the graph Γ′
2. Suppose

all changes in the combinatorics between the two regions occur through bifurcations
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where two pairs of identified rays change partners. If rays change partners at most

once between these regions, then the set of all bifurcations between Region 2.0 and

Region 2.1 is given by the collection of partner exchanges predicted by Theorem 6,

with

P (h, n)

Q(h, n)

=

=

h01n110(01)∞

h01n101(10)∞

R(h, n)

S(h, n)

=

=

h10n010(01)∞

h10n001(10)∞

h ∈ S−
2 , n ∈ N, and

P (0)

Q(0)

=

=

∞110(01)∞

∞101(10)∞

R(0)

S(0)

=

=

∞010(01)∞

∞001(10)∞

where rays are identified as
[

P
Q

]

, [ R
S ] in Region 2.0 and as [ P

S ],
[

R
Q

]

in Region 2.1.

Proof. The proof will follow from that of Theorem 6.

4.3.1 Computing P (h,n), . . . ,S(h,n), and P (0), . . . ,S(0).

To simplify the notation we will drop the subscript 2 in the notation Γ2 and Γ′
2 and

we will refer to these graphs as Γ and Γ′ respectively. Accordingly, Region 2.0 and

Region 2.1 will be referred to as the Γ-region and the Γ′-region, respectively.

We let X stand for the set of non-trivial identifications given by Γ, modulo

symmetry and shifting. That is to say, the following identifications are treated as

one and the same element in X
[

s

t

]

≡
[

t

s

]

≡
[

σns

σnt

]

, n ∈ Z. (4.1)
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We call X the language3 of Γ. The language of Γ′ is defined similarly and denoted

X ′. For a bi-infinite sequence A such that [ A
B ] ∈ X we define the sequence ΓA to

be B; namely ΓA stands for the “partner” of A as given by the graph Γ. Similarly,

for [ A
C ] ∈ X ′ we define Γ′A to be C , so that Γ′A is the “partner” of A according to

the graph Γ′. Thus, [ A
ΓA ] ∈ X and [ A

Γ′A ] ∈ X ′ by definition.

If ΓA ̸= Γ′A, then the pair of rays in the identifications [ A
ΓA ] ∈ X must change

partners as parameter values are varied from the Γ-region to the Γ′-region; similarly,

the rays identified as [ A
Γ′A ] ∈ X ′ must change partner when parameters change

values in the other direction. Therefore, the sets X − X ′ and X ′ − X consists of

identifications that undergo bifurcations.

Lemma 24. Assume that between the Γ-region and the Γ′-region each ray is in-

volved in at most one bifurcation. Then, the following holds:

1. If [ A
B ] ∈ X − X ′ then

[

Γ′A
Γ′B

]

also belongs to X − X ′.

2. If [ A
B ] ∈ X − X ′ then between the Γ-region and the Γ′-region the rays in the

identification [ A
B ] change partners with the rays in the identification

[

Γ′A
Γ′B

]

.

Proof. Let [ A
B ] ∈ X − X ′. Then A has a different partner under Γ than under Γ′,

so by hypothesis there is exactly one bifurcation involving a second pair of rays

identified under Γ which change partners with [A, B] as parameter values are varied

from the Γ-region to the Γ′-region. Thus, there exist
[

A′

B′

]

∈ X − X ′, such that

[ A
A′ ] ∈ X ′ and [ B

B′ ] ∈ X ′. But then, A′ = Γ′A and B ′ = Γ′B.
3This differs somewhat from the Computer Science terminology where the language of a directed

labeled graph also include finite words.
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In general, knowing that [ A
B ] and

[

Γ′A
Γ′B

]

are both in X−X ′ is not enough to conclude

that there is a bifurcation involving all four rays, since there could be intermediate

bifurcations leading to [ A
Γ′A ] and [ B

Γ′B ]. Also, the set X ∩X ′ is not, a priori, the set

of stable identifications since a pair of rays identified in the Γ-region could break-up

and then reunite again before reaching the Γ′-region. But according to our computer

experiments it seems to be the case that rays bifurcate only once between Region

2.0 and Region 2.1. Additionally, all bifurcation lines appear to be disjoint (see

4.3.2). This justifies the hypothesis in Lemma 24 and in Proposition 23.

Corollary 7. The smallest set of pairs of identifications whose rays exchange part-

ners in order for X to become X ′ is given by

{

{

[ A
B ],

[

Γ′B
Γ′A

]}

: [ A
B ] ∈ X − X ′

}

. (4.2)

If rays change partners at most once, this is also the set of identifications corre-

sponding to all bifurcations between the Γ-region and the Γ′-region.

Expressing this set of identifications in terms of binary sequences is a way of

predicting specific bifurcations from the combinatorial data encoded in the two

graphs. The following lemma list the language of Γ as determined by this method.
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Lemma 25. X = X0 ∪ X1 ∪
{

X(h, n) : h ∈ S2, n ∈ N
}

where

X0 =

[ ∞(01).(01∞)
∞(10).(10∞)

]

=

[ ∞(10).(10∞)
∞(01).(01∞)

]

, (4.3)

X1 =

[ ∞1(10)∞

∞0(01)∞

]

=

[ ∞1(01)∞

∞0(10)∞

]

, and (4.4)

X(h, n) =

[

h10n(01)∞

h01n(10)∞

]

. (4.5)

Proof. An explicit description of X can be obtained by following backwards-paths

in Γ from its terminal 2-cycle and then using (4.1) to eliminate redundancies (cf.

§3.1, example 3).

Proposition 26. The set X − X ′ consists of the identifications A(h) ∼ B(h) and

C(h) ∼ D(h), with arbitrary h ∈ S−
2 , where

A(h)

B(h)

=

=

h1110(01)∞

h1101(10)∞

C(h)

D(h)

=

=

h0010(01)∞

h0001(10)∞

Proof. The graph Γ′ is also backwards deterministic; following the sequences of X ,

(4.3) to (4.5), backwards from the terminal 2-cycle in Γ′ we find that both X0 and

X1 belong to X ′. Also X(h, n) ∈ X ′ for n > 1, while for n = 1 we get X(h, n) ∈ X ′

if and only if h−2 ̸= h−1. Thus, X(h, n) ∈ X − X ′ if and only if n = 1 and h = k11

or h = k00, with k ∈ S−
2 arbitrary. The rays as listed in the statement of the

proposition correspond to writing
[

A(h)
B(h)

]

= X(h11, 1) and
[

C(h)
D(h)

]

= X(h00, 1).
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To apply Corollary 7 to the result of Proposition 26 we will need to find the

partners of rays A(h), . . . , D(h) under Γ′. We begin with a special case.

Lemma 27. Let A(h), . . . , D(h) be as in Proposition 26. Then,

Γ′A(∞1)

Γ′B(∞1)

=

=

D(∞0)

C(∞0)

Proof. By inspection of the graph Γ′.

According to Lemma 24 and Lemma 27 the rays

A(∞1)

B(∞1)

=

=

∞11110(01)∞

∞11101(10)∞

C(∞0)

D(∞0)

=

=

∞00010(01)∞

∞00001(10)∞

correspond to a bifurcation in which A(∞1) ∼ B(∞1) and C(∞0) ∼ D(∞0) change

partners and become identified as A(∞1) ∼ D(∞0) and C(∞0) ∼ B(∞1). We

recognize these rays as those that defined the bifurcation line ρ0 in section §4.2.1.

In Lemma 27 we found Γ′A(h) and Γ′B(h) for h = ∞1. If the sequence h is not

of this form it can be written as h = k01n, with n ≥ 0 and k ∈ S−
2 arbitrary. Then,

the rays Γ′A(h) and Γ′B(h) for h ̸= ∞1 are as given in the next Lemma.

Lemma 28. Let A(h), . . . , D(h) be as in Proposition 26. Then, for n ≥ 0

Γ′A(h01n)

Γ′B(h01n)

=

=

D(h10n)

C(h10n)

Proof. By inspection of the graph Γ′.

According to Lemma 24 and Lemma 28, the rays

A(h01n)

B(h01n)

=

=

h01n1110(01)∞

h01n1101(10)∞

C(h10n)

D(h10n)

=

=

h10n0010(01)∞

h10n0001(10)∞
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for fixed n ≥ 0, correspond to a bifurcation in which rays identified as A(h01n) ∼

B(h01n) and C(h10n) ∼ D(h10n) change partners to become identified as A(h01n) ∼

D(h10n) and C(h10n) ∼ B(h01n).

Proof of Theorem 6. Corollary 7 gives the smallest set of combinatorial changes

needed to change X into X ′ since each identification that must change changes only

once. Using Proposition 26 we obtained one such combinatorial change after Lemma

27, which involved the rays A(∞1), B(∞1), C(∞0), and D(∞0). The remaining

changes involved the rays A(h01n) to D(h10n) for h ∈ S−
2 arbitrary, as given in the

paragraph following Lemma 28. The four rays P (0), . . . , S(0) in the statement of

Theorem 6 correspond to A(∞1), . . . , D(∞0), and the rays P (h, n+1), . . . , S(h, n+1)

are given by A(h, n), . . . , D(h, n) for n ≥ 0.

4.3.2 A Cantor fan of bifurcation lines.

As noted after Lemma 27, the bifurcation involving the rays P (0), . . . , S(0) cor-

responds to the curve ρ0. To test other bifurcations predicted by Proposition 23

we consider P (h, n), . . . , S(h, n) when h is eventually constant; then the rays that

change partners belong to W u(0 ) and can be seen in the W u
β picture. Let h = ∞0w

for some for some fixed, non-empty, word w and consider the countable families
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given by

Pn = P (∞0.w, n)

Qn = Q(∞0.w, n)

Rn = R(∞0.w, n)

Sn = S(∞0.w, n)

where P , Q, R, and S are as in Proposition 23. Namely,

Pn = ∞0.w01n101(10)∞

Qn = ∞0.w01n110(01)∞

Rn = ∞0.w10n001(10)∞

Sn = ∞0.w10n010(01)∞.

According to Proposition 23, these four families of rays correspond to a sequence of

bifurcations indexed by n. We will denote this sequence of bifurcations by Yw(n).

For example, figure 4.22 shows the first 3 bifurcations in Yw(n) when w = 0.

We note that Yw(n) is a nested sequence in the sense that

Pn < Qn < Pm < Qm < Rm < Sm < Rn < Sn

for n < m. Therefore each bifurcation in Yw(n) could occur at distinct parameter

values while respecting the non-linking condition (§3.3.3).

To compute some specific rays lets choose the simplest possible non-empty word:

w = 0. Then, the first bifurcation in the sequence Y0(n) corresponds to the rays

identified as
[

P0

Q0

]

=

[ ∞0.001101(10)∞

∞0.001110(01)∞

]

and

[

R0

S0

]

=

[ ∞0.010001(10)∞

∞0.010010(01)∞

]

,
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changing partners to become

[

P0

S0

]

=

[∞0.001101(10)∞

∞0.010010(01)∞

]

and

[

R0

Q0

]

=

[ ∞0.001101(10)∞

∞0.010010(01)∞

]

.

This is the combinatorial change that defined the curve χ0.

In our computer experiments we found that the bifurcations Y0(n) for n = 0, 1,

and 2, occur on distinct curves in parameter space. We let χn denote the curve for

the bifurcation Y0(n). Figure 4.23 shows χn for n = 0, 1, 2. These curves are located

consecutively closer to ρ0, suggesting that the sequence of bifurcations corresponds

to a fan of bifurcation curves which converge to ρ0.

Figure 4.22 also illustrate how the rays in Y0(n) accumulate on the tip of the

most visible limb of K+ ∩W u
β in the fundamental domain. More generally, for any

given w the sequence Pn, Qn converge to Tw = ∞0.w01∞ from below as n increases,

while Rn and Sn converge to Tw from above as n increases. Stated informally, each

ray Tw lands at the tip of a limb of the W u
β picture, on a point that locally “looks

like” a neighborhood of the fixed point, and Yw(n) forms a sequence of bifurcations

involving rays that land on that limb, consecutively closer to the tip. 4. Our

computer experiments have revealed that other choices of w yield different “fans”

of bifurcations curves approaching ρ0, and it appears that each of the curves χi is

itself a “fan”, suggesting that these bifurcation curves have a Cantor set structure.

4 More specifically, if q ∈ Wu(p) ∩W s(p′) then a neighborhoods of K+
p at q is homeomorphic

to a neighborhood of K+
p′ at p′, (see [BS7])
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A0

A1A2 B0
B1B2D0 D1 D2C0 C1 C2

A0

A1A2

B0

B1B2D0 D1 D2C0 C1 C2

Figure 4.22: The bifurcations Y0(k) corresponding to the curves χk, k = 0, 1, and

2 (see figure 4.23). Top: rays as identified in Region 2.1 (cf. figure 4.11-5). Bottom:

rays as identified in Region 2.0 (cf. figure 4.10-1).
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Figure 4.23: Two consecutive zoom showing χ0, χ1, and χ2 approching ρ0.
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4.4 Disconnectivity of the connectivity locus.

Let Ja,c denote the set J for the mapping fa,c. We let Ma be the connectivity locus

inside the C × {a} slice in parameter space: Ma = {c ∈ C : Ja,c is connected }.

For example, M0 is the Mandelbrot set. A fundamental theorem in the study of

quadratic polynomials, due to Douady & Hubbard, establishes the fact that M0 is

connected. By contrast, our computer experiments have revealed that there exist

a ∈ (0, 1) ⊂ R, such that Ma ∩R is not connected: there is a “gap” between real

values of the parameter c with connected Ja,c. The manner in which K+
p becomes

disconnected is illustrated in figures 4.24 and 4.25. These figures are part of the

evidence supporting the following conjecture.

Conjecture 5. For a0 = 0.13610 the set K+
β is disconnected for values of the pa-

rameter c in the interval (−1.2240,−1.2215), but it is connected for c = −1.2260

and for c = −1.2198 on each side of this interval.

We show in the following theorem that a rigorous verification of this ‘gap” in

Ma0 ∩R would prove that Ma0 is not connected.

Theorem 8. If Conjecture 5 holds then the set Ma0 is disconnected.

Proof. Bedford and Smillie show in [BS3] that the Lyapunov exponent, Λ, is a

pluri-subharmonic function of the parameters and satisfies Λa,c ≥ log d for all a, c.

Furthermore, the conditions c ∈ Ma and Λa,c = log d are equivalent when |a| ≤

1 ([BS6]). Then, by the maximum principle for sub-harmonic functions, the set

C −Ma does not have any bounded components when |a| ≤ 1. In addition, for
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a ∈ R, the set Ma is symmetric with respect to reflection about the real-axis:

Λa,c = Λa,c because the maps fa,c = fa,c and fa,c are smoothly conjugate and

Lyapunov exponents are a smooth conjugacy invariant. This implies that if M is

any component of Ma, then M intersects the real axis in a connected set:

Suppose that there exits c1, c2, c3 ∈ R, c1 < c2 < c3, such that c1, c3 ∈Ma0 but

c2 ∈ C−Ma0. It is known that the connectivity locus in C2 is compact ( [HOV1]),

hence Ma0 is compact. Let D be a disk containing Ma0. The component of C−Ma0

containing c2 is unbounded and symmetric with respect to reflection on the real axis.

Thus there is a simple path γ ∈ C −Ma0 from c2 to a point z ∈ ∂D such that γ

is contained in the closure of the upper-half plane. By the symmetry with respect

to complex conjugation γ is also a simple path from c2 to ∂D. Then γ, γ and the

clockwise oriented arc in ∂D from z to z form a simple closed curve in the open

set C−Ma0, separating the component of Ma0 containing c1 from the component

containing c3.

We have found “gaps” in the connectivity locus at several parameter values

corresponding to complex bifurcations. We conjecture that such gaps occurs at all

complex bifurcations, hence that each complex bifurcation curve corresponds to a

thin band of disconnectivity in parameter space.
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Figure 4.24: Details of a W u
a,c picture with disconnected K+

p .
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[1]

c=−1.12259

[2]

c=−1.12249

[3]

c=−1.12239

[4]

c=−1.12229

[5]

c=−1.12224

[6]

c=−1.12219

[7]

c=−1.12214

[8]

c=−1.12209

[9]

c=−1.12199

Figure 4.25: Sequence of W u
β pictures with constant a = 0.13610 and decreasing c,

illustrating a “gap” in Ma ∩R (see figure 4.24 for a zoom-out of frame [4]).



APPENDIX

A Other bifurcation curves above region-2′.

In section §4.2.1 we computed the bifurcation curves ρ0, χ0, and ρ1, defining Region

2.0 and 2.1 in parameter space, and in §4.3 we described a family of bifurcations

between ρ0 and χ0.

Other bifurcations curves we have computed above ρ1 are shown in figure A.26.

Those curves labeled ρi correspond to real bifurcations (when the rays meet on the

real axis of the W u
β -picture before changing partners). On the other hand, χ′ and

χ0 are complex bifurcations.

All of these curves except ρ4 appear to continue up to the curve h2. Our algo-

rithm to compute the curves slows down considerably near h2 so only a few points

in each curve have ben computed near this boundary. The curve ρ4, however, does

not terminate on h2, instead it bends and appears to becomes asymptotic to ρ3 (al-

though we have not yet extended ρ4 to the level a = 0). Also we see that there are

bifurcations curves such as the one labeled χ′ which are asymptotic to two distinct

bifurcation curves.

127



128

The rays corresponding to these bifurcation curves are given in figures A.27 to

A.31 together with the W u
β -pictures at parameter values below and above (but near)

each curve.
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Figure A.26:
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[ ∞0.011100100(10)∞

∞0.011011011(01)∞

]

[ ∞0.100100100(10)∞

∞0.100011011(01)∞

]

[∞0.011100100(10)∞

∞0.100011011(01)∞

]

[∞0.011011011(01)∞

∞0.100100100(10)∞

]

Figure A.27: Rays as identified below χ′ (left) and above χ′ (right).
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[ ∞0.011011011(01)∞

∞0.100100100(10)∞

]

[ ∞1.011011011(01)∞

∞1.100100100(10)∞

]

[∞0.011011011(01)∞

∞1.100100100(10)∞

]

[∞0.100100100(10)∞

∞1.011011011(01)∞

]

Figure A.28: Rays as identified below ρ2 (left) and above ρ2 (right).
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[ ∞0.011100100(10)∞

∞0.011011011(01)∞

]

[ ∞1.100100100(10)∞

∞1.100011011(01)∞

]

[∞0.011100100(10)∞

∞1.100011011(01)∞

]

[∞0.011011011(01)∞

∞1.100100100(10)∞

]

Figure A.29: Rays as identified below ρ3 (left) and above ρ3 (right).
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[ ∞0.011(100)3(10)∞

∞0.100(011)3(01)∞

]

[ ∞1.011(100)3(10)∞

∞1.100(011)3(01)∞

]

[ ∞0.011(100)3(10)∞

∞1.100(011)3(01)∞

]

[ ∞1.011(100)3(10)∞

∞0.100(011)3(01)∞

]

Figure A.30: Rays as identified “inside” ρ4 (left) and “outside” ρ4 (right).
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[ ∞0.011100(10)∞

∞0.100011(01)∞

]

[ ∞1.011100(10)∞

∞1.100011(01)∞

]

[ ∞0.011100(10)∞

∞1.100011(01)∞

]

[ ∞0.100011(01)∞

∞1.011100(10)∞

]

Figure A.31: Rays as identified below ρ5 (left) and above ρ5 (right).
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B Notes on the algorithms.

B.1 Computing Unstable Manifolds.

The information contained in the W u
p picture was explained in §2.5. We present

here some further details of how these pictures are obtained. We let p be the

β-fixed point (for other periodic points an appropriate iterate of f needs to be

considered but the fundamentals are the same). An important piece of information

we obtain from the W u
p picture is the partition of W u(p) into points with bounded

orbit, K+
p , and their complement, U+

p , pulled back to C via the uniformization map

φp : C → W u(p) ⊂ C2 that parameterizes the unstable manifold. Except for the

computation of φp(z), the problem of computing this partition is analogous to that

of computing the filled Julia set of polynomials in the plane5. One of the simplest

methods for obtaining this partition numerically is the “escape set” algorithm in

which z ∈ C is assumed to be in K+
p if fN (φp(z)) ∈ W u(p) does not escape a ball

of radius R, where N >> 1 is some (fixed) large number of iterations. In practice

this simple method gives a reasonable results for maps in the region we discussed

here6. In our setting only a small neighborhood of 0 in φ−1
p (W u(p)) needs to be

computed since the W u
p picture is invariant under multiplication by a constant λ.

This self similarity was mentioned in §2.5 in connection with (2.23) which for the

β-fixed point becomes

f ◦ φp(z) = φp(λz) (B.1)

5Algorithms for this problem are discussed in detail in [PR, Mil2].
6In general the method is limited by the escape rate of points near K+

p ; more sophisticated
methods take into account the orbits of neighboring points.
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with λ the expanding eigenvalue of Df(p). To compute φp we exploit the fact that

it is an analytic map given by a power series, and use equation (B.1) to obtain a

recursive formula for the coefficients in the Taylor expansion of φp. A truncated

sequence can then be used to approximate φp after observing the behavior of the

coefficients at the parameter values being considered.

B.2 Computing G+ and its harmonic conjugate.

Additional information captured in the W u
β picture are level sets of G+ in U+

p ; (a

third is is the coding of external rays given the binary decomposition of U+
p , as

explained in 2.5).

The function G+ is the rate-of-escape function so G+ ≡ 0 on K+
p and on U+

p it

is well approximated numerically using the number of iterates it takes each point

to escape a large ball. Specifically, for q ∈ U+
p we compute G̃(q) ≈ G+(q) as

G̃(q) =
1

dnq
log |Xnq (q)|

where Xn(q) = πxfn(q) for n ≥ 0, and nq is the first integer such that |Xn(q)| > R.

In analogy with the one dimensional case, this computation is based on the relation

G+ = log |ϕ+| and the asymptotic behavior of φp “at infinity”: In our setting, ϕ+ ≈

πx on V + (more precisely ϕ+(x, y) = x+O(x−1) for (x, y) ∈ V +). Then, for R large

enough so that |Xnq (q)| > R implies fnq (q) ∈ V +, we get |Xnq (q)| ≈ |ϕ+ ◦ fnq (q)|,

and therefore G̃ ≈ G+ since G+ ◦ f = dG+.

Note that the error in the computed value for G(q) is smaller for q near K+
p ,

where nq is large. Namely, if |Xnq (q)| = |ϕ+(fnq (q))|+ ε, then G̃(q) = G+ + ε/dnq .
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The “improvement” in G̃ near K+
p will be useful in the computation of the landing

point of external rays. This computation will require the ability to also compute a

choice of harmonic conjugate H for G+.

A numerical value for H cannot be obtained directly by iterating f . Instead, we

get Θn = arg(Xn) = arg(πxfn). This quantity satisfies

Θnq (q) ≈ dnqH(q) mod 2π (B.2)

where nq is as in the computation of G̃(q). Then, from a known value of H(q0)

(initially 0 for q0 in the fixed-ray), we obtain H(q) for q near q0 as follows:

1. Compute an initial linear approximation HI(q) based on the partial derivatives

of G̃ at q0 (this is a standard numerical integration step).

2. Determine the integer N that minimizes ∆ = Θnq (q) + 2πN −HI(q).

3. If ∆ is adequately small, use N to compute H̃(q) = (Θnq +2πN)/dnq ≈ H(q);

else take steps to obtain a better HI (there are many options).

In a sequence of these steps there is no cumulative error from the numerical inte-

gration, since HI is only used to find N . Note also that if the error in (B.2) of size

ε, after obtaining the correct N we get an error in H̃(q) of size only ε/2qn.

B.3 Computing External Rays

Recall from §2.4 that when Theorem 1 holds, each component Ω of W u(p)−K+ is

conformally equivalent to left-half-plane H with the Greens function G = G+|Wu(p)

and a choice of harmonic conjugate H as natural coordinates: The map ω : Ω→ H,
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ω = G+ iH is a homeomorphism. Lines of constant-H correspond to external rays.

In the W u
p pictures, we visualize the inverse image of H under h = ω ◦ φp, where φp

is the natural parameterization of W u.

To solve the problem of computing a specific external ray (or more precisely the

landing point of the ray), we consider the more general problem of determining the

point z∗ ∈ C such that h(z∗) = G∗ + iH∗ for some specified target values G∗ and H∗

(the case G∗ = 0 corresponds to finding a landing point for the ray with H = H∗).

One approach is to “linearly navigate” towards z∗ adjusting the course at each step:

Adjust: Let sk be a “small step” in the direction from pk = h(zk) to p∗.

Advance: Compute zk+1 = zk + Dh(zk)−1sk.

To actually obtain a sequence that approaches the landing point z∗ = h−1(0, H∗)

one needs to deal with the paradigm of traveling with a reasonable step size while

preventing the non-linearities near the fractal boundary at G = 0 from taking over.

Our approach exploits the fact that the computation of h improves as points

approach the G = 0 region. Without giving all the details, the main idea is as

follows:

1. Starting from a value z0 such that G0 := G(z0) is not too small, proceed along

the G0 level curve until reaching zn such that H(zn) is near the target H∗.

2. Then, “descend” towards the the G = 0 level marching along the constant-H∗

curve, stopping when G̃ becomes less than required accuracy.

The first stage can be done with a step that is a fixed and small fraction of the

distance to the target H∗. The accuracy with which H∗ is found is improved in the
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second stage, and if the initial G0 > 0 is chosen adequately the non-linearities have

little effect in the march towards a neighborhood of h−1(G0, H∗).

In the second stage one needs to adjust the step size to ensure that at each

iteration step the new point zk remains close to the H∗-ray. For instance, we check

that the difference Θ + 2πN − HI remains small in each step, and we also require

that each new point descends only a few levels sets from the previous point (within

a level set the integer n such that |Xn(φp(z))| > R is constant). This allows us to

control the step size while assuring convergence towards the G = 0 level.

One nice feature of this approach is that plotting the points computed in the

second stage is a way of visualizing external rays near their landing point.
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Addendum.

This is a slightly revised version of my doctoral thesis of 1998. Most changes are simple
corrections of typing and spelling mistakes, but also I have re-worded a few sentences to
improve legibility. Most noticeable, the title of section 3.3.2 has been shortened: the
original title was “A model for a map with an attracting fixed point as well as a period-3
sink: the (3-1)-graph”. The new shorter title allows hyperref to create a single link into
this section when building the table of contents of the PDF document.
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