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On the dynamical and arithmetic degrees of
rational self-maps of algebraic varieties

By Shu Kawaguchi at Kyoto and Joseph H. Silverman at Providence

Abstract. Let f W X Ü X be a dominant rational map of a smooth projective
variety defined over a characteristic 0 global field K, let ıf be the dynamical degree of f ,
and let hX W X. NK/! Œ1;1/ be a Weil height relative to an ample divisor. We prove that for
every � > 0 there is a height bound

hX ı f
n
� .ıf C �/

nhX ;

valid for all points whose f -orbit is well-defined, where the implied constant depends only
on X , hX , f , and �. An immediate corollary is a fundamental inequality f̨ .P / � ıf for the
upper arithmetic degree. If further f is a morphism and D is a divisor satisfying an algebraic
equivalence f �D � ˇD for some ˇ >

p
ıf , we prove that the canonical height

Ohf;D D limˇ�nhD ı f
n

converges and satisfies Ohf;D ı f D ˇ Ohf;D and Ohf;D D hD CO.
p
hX /. We also prove that the

arithmetic degree f̨ .P /, if it exists, gives the main term in the height counting function for
the f -orbit of P . We conjecture that f̨ .P / D ıf whenever the f -orbit of P is Zariski dense
and describe some cases for which we can prove our conjecture.

Introduction

Let X=C be a smooth projective variety, and let f W X Ü X be a dominant rational
map. The dynamical degree of f is a measure of the geometric complexity of the iterates f n

of f . More precisely, it measures the complexity of the induced maps .f n/� of the iterates
of f on the Néron–Severi group NS.X/R of X , where we note that in general .f n/� need
not be equal to .f �/n. (By a divisor we mean a Cartier divisor, and NS.X/ denotes the set of
Cartier divisors on X modulo algebraic equivalence. We write NS.X/R for NS.X/˝R, and
similarly for NS.X/Q and NS.X/C .)
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22 Kawaguchi and Silverman, Dynamical and arithmetic degrees of rational maps

Definition. Let X=C be a (smooth) projective variety and let f W X Ü X be a domi-
nant rational map as above. The dynamical degree of f is

ıf D lim
n!1

�..f n/�;NS.X/R/1=n;

where in general �.A; V / denotes the spectral radius of a linear transformation A W V ! V of
a real or complex vector space. The limit defining ıf converges and is a birational invariant,
so in particular there is no need to assume that X is smooth; see [20, Proposition 1.2 (iii)],
Remark 7, and Corollary 16.

The study of the dynamical degree and its relation to entropy was initiated in [3, 33] and
is currently an area of active research; see for example [1, 4–9, 12, 13, 16, 22, 28–30, 32, 37].
In this article we describe how the geometrically defined dynamical degree of a map limits the
arithmetic complexity of its orbits, and we prove an inequality relating the dynamical degree
to an analogous arithmetic degree defined in [36].

Before stating our main results, we set some notation that will be used throughout
this article.

K: either a number field or a one-dimensional function field of characteristic 0. We let NK
be an algebraic closure of K.

X; f : either X is a smooth projective variety and f W X Ü X is a dominant rational map,
all defined overK; orX is a normal projective variety and f W X ! X is a dominant
morphism, all defined over K. (See also Remark 8.)

hX : an (absolute logarithmic) Weil height hX W X. NK/! Œ0;1/ relative to an ample
divisor.

hCX : for convenience, we set hCX .P / D max¹hX .P /; 1º.

Of .P /: the (forward) f -orbit of P , i.e., Of .P / D ¹f
n.P / W n � 0º.

If : the indeterminacy locus of f , i.e., the set of points at which f is not well-defined.

Xf . NK/: the set of points P 2 X. NK/ whose forward orbit Of .P / is well-defined, i.e., such
that f n.P / … If for all n � 0. We note that Xf . NK/ always contains many points;
see [2].

Div.X/: the set of Cartier divisors on X .

We refer the reader to [11, 23, 27, 35] for basic definitions and properties of Weil height
functions.

Our main theorem gives a uniform upper bound for the growth of points in orbits.

Theorem 1. Fix � > 0. Then there is a constantC D C.X; hX ; f; �/ so that for all n� 0
and all P 2 Xf . NK/,

hCX .f
n.P // � C.ıf C �/

nhCX .P /:

For rational maps f W PN Ü PN of projective space, Theorem 1 above was essen-
tially proven in [36, Proposition 12]. The same proof works, mutatis mutandis, for varieties
satisfying Pic.X/R D R, and, with a little more work, for varieties satisfying NS.X/R D R.
But if NS.X/R has dimension greater than 1, then the proof of Theorem 1, which we give in
Section 5 after several sections of preliminary results, is considerably more intricate.
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Kawaguchi and Silverman, Dynamical and arithmetic degrees of rational maps 23

We next consider the arithmetic degree of a map at a point, as introduced in [36]. We re-
call the relevant definitions, give an elementary counting result, and then describe an inequality
that was a primary motivation for the research that led to this paper.

Definition. Let P 2 Xf . NK/. The arithmetic degree of f at P is the quantity

f̨ .P / D lim
n!1

hCX .f
n.P //1=n;

assuming that the limit exists.

The arithmetic degree of f at P measures the growth rate of the height hX .f n.P //
as n!1. It is thus a measure of the arithmetic complexity of the f -orbit of P .

Conjecture 2. The limit defining f̨ .P / exists for all P 2 Xf . NK/.

One reason for studying the arithmetic degree is that it determines the height counting
function for points in orbits, as in the following elementary result, which we prove in Section 2.

Proposition 3. Let P 2 Xf . NK/ be a wandering point, i.e., a point whose orbit #Of .P /

is infinite. Assume further that the arithmetic degree f̨ .P / exists. Then

(0.1) lim
B!1

#¹Q 2 Of .P / W hX .Q/ � Bº

logB
D

1

log f̨ .P /
:

(If f̨ .P / D 1, then (0.1) is to be read as saying that the limit is equal to1.)

Definition. Since for the moment we lack a proof of Conjecture 2, we define upper and
lower arithmetic degrees,

f̨ .P / D lim sup
n!1

hCX .f
n.P //1=n and f̨ .P / D lim inf

n!1
hCX .f

n.P //1=n:

As a corollary to Theorem 1, we obtain the following fundamental inequality relating
the dynamical degree and the (upper) arithmetic degree. This inequality quantifies the state-
ment that the arithmetic complexity of the f -orbit of an algebraic point P never exceeds the
geometrical-dynamical complexity of the map f .

Theorem 4. Let P 2 Xf . NK/. Then

f̨ .P / � ıf :

Definition. We will make extensive use of the theory of Weil heights. This theory at-
taches to each divisorD 2 Div.X/ a function hD W X. NK/! R, well-defined modulo bounded
functions and satisfying various standard properties; see for example [11,23,27,34,35]. In par-
ticular, the linearity relation hDCE D hD C hE CO.1/ allows us to R-linearly extend the
association D ! hD and define hD for D 2 Div.X/R, i.e., we write

D D
X

ciDi

with Di 2 Div.X/ and ci 2 R and set

hD D
X

cihDi
:
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24 Kawaguchi and Silverman, Dynamical and arithmetic degrees of rational maps

Classically, a polarized dynamical system is a triple .X; f;D/ consisting of a morphism
f W X ! X and a divisor D satisfying a linear equivalence f �D � ˇD for some ˇ > 1.
(Often the definition also includes the condition that D be ample; cf. [39].) There is a well-
known theory of canonical heights associated to polarized dynamical systems; see for exam-
ple [14]. Using Theorem 1, we are able to partially generalize this theory to cover the case that
the relation f �D � ˇD is only an algebraic equivalence.

Theorem 5. Assume that f W X ! X is a morphism, and letD 2 Div.X/R be a divisor
that satisfies an algebraic equivalence

f �D � ˇD for some real number ˇ >
q
ıf ,

where� denotes equivalence in NS.X/R.

(a) For all P 2 X. NK/, the following limit converges:

OhD;f .P / D lim
n!1

ˇ�nhD.f
n.P //:

(b) The canonical height OhD;f in (a) satisfies

OhD;f .f .P // D ˇ OhD;f .P / and OhD;f .P / D hD.P /CO
�q

hCX .P /
�
:

(c) If OhD;f .P / ¤ 0, then f̨ .P / � ˇ.

(d) If OhD;f .P / ¤ 0 and ˇ D ıf , then f̨ .P / D ıf .

(e) Assume that D is ample and that K is a number field. Then

OhD;f .P / D 0 ” P is preperiodic.

We note that not every morphism f W X ! X admits a polarization (for linear equiva-
lence), but that there always exists at least one nonzero nef divisor D 2 Div.X/R satisfying
f �D � ıfD; see Remark 29. Hence every morphism f of positive algebraic entropy, i.e.,
with dynamical degree satisfying ıf > 1, admits a canonical height associated to a nef divisor.

Theorem 4 raises a natural question: Under what conditions is f̨ .P / equal to ıf , i.e.,
when does the arithmetic complexity of the f -orbit of a point P fully capture the geometrical-
dynamical complexity of f ? This leads to the following multi-part conjecture, into which we
have incorporated Conjecture 2, as well as an integrality conjecture suggested by a classical
conjecture [9] on the integrality of ıf . See also [36, Conjecture 40], in which (b), (c), and (d)
were conjectured for f̨ .P /.

Conjecture 6. Let P 2 Xf . NK/.

(a) The limit defining f̨ .P / exists.

(b) f̨ .P / is an algebraic integer.

(c) The collection of arithmetic degrees ¹ f̨ .Q/ W Q 2 Xf . NK/º is a finite set.

(d) If the forward orbit Of .P / is Zariski dense in X , then f̨ .P / D ıf .
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In the final section of this paper we briefly indicate some cases for which we can prove
Conjecture 6. These include morphisms f when NS.X/R D R, regular affine automorphisms,
surface automorphisms, and monomial maps. The proofs of these results, together with other
cases for which we can prove the weaker statement that f̨ .P / D ıf .X/ for a Zariski dense
set of points P 2 Xf . NK/ having disjoint orbits, will appear in a companion publication [24].
See also [25] for a proof of Conjecture 6 (a)–(c) when f is a morphism and (d) when f is an
endomorphism of an abelian variety.

Acknowledgement. The authors would like to thank ICERM for providing a stim-
ulating research environment during their spring 2012 visits, as well as the organizers of
conferences on Automorphisms (Shirahama 2011), Algebraic Dynamics (Berkeley 2012), and
the SzpiroFest (CUNY 2012), during which some of this research was done. The authors would
also like to thank Najmuddin Fakhruddin and the referee for their helpful comments and sug-
gestions regarding the initial version of this article, including pointing out that our original
formulation of the main theorem was too general; see Remark 8 for details.

1. Some brief remarks

In this section we discuss pull-back maps and make some brief remarks about dynamical
degrees, arithmetic degrees, and canonical heights.

Let X be a projective variety and letD be a Cartier divisor. If f W X ! X is a surjective
morphism, then the pull-back f �D is a Cartier divisor. Assume now that X is smooth and
that f W X Ü X is merely a dominant rational map. In this case, the pull-back f �D is defined
as follows.

We take a smooth projective variety eX and a birational morphism � W eX ! X such
that ef ´ f ı � W eX ! X is a morphism:

eX
�

��

�f
��

X
f

// X .

We have the pull-back ef �D, which is a Cartier divisor. We regard ef �D as a Weil divisor.
Then, as Weil divisors, we have the push-forward ��.ef �D/, which we denote by

f �D´ ��.ef �D/:
Since X is smooth, we regard f �D as a Cartier divisor. Thus for a Cartier divisor D on X ,
we have the pull-back Cartier divisor f �D on X .

We note that f �D is independent of the choice of eX . Indeed, suppose that eX 0 is a smooth
projective variety with a birational morphism � 0 W eX 0 ! X such that ef 0´ f ı � 0 W eX ! X

is a morphism. Let eX 00 be a resolution of the main part of eX �X eX 0, and let p W eX 00 ! eX and
p0 W eX 00 ! eX 0 be the first and the second projections. Since ef 0 ı p0 and ef ı p are morphisms
from eX 00 to X that agree on a Zariski open subset of eX 00, we have

ef 0 ı p0 D ef ı p:
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26 Kawaguchi and Silverman, Dynamical and arithmetic degrees of rational maps

Similarly we obtain
� ı p D � 0 ı p0:

Then we have
��.ef �D/ D ��.p�p�.ef �D//

D .� ı p/�.ef ı p/�.D/
D .� 0 ı p0/�.ef 0 ı p0/�.D/
D � 0�.p

0
�p
0�.ef 0�D//

D � 0�.
ef 0�D/:

Thus f �D is independent of the choice of eX .

Remark 7. Let X be a smooth projective variety. Let H be an ample divisor on X , and
let N D dim.X/. Then [20, Proposition 1.2 (iii)] says that

lim
n!1

..f n/�H �HN�1/1=n D lim sup
n!1

�..f n/�;NS.X/R//1=n:

(Notice the right-hand side is a lim sup.) We will prove below (Corollary 16) that the limit

lim
n!1

�..f n/�;NS.X/R//1=n

exists, justifying our definition of ıf in terms of the action of .f n/� on NS.X/R, but we
note that the alternative definition of ıf using intersection theory is more common and often
more useful.

Remark 8. We have restricted our variety X to be smooth when f is not a morphism.
In our original formulation, we had only assumed that X is normal. We thank Najmuddin
Fakhruddin and the referee for pointing out that some conditions are necessary to define the
pull-back f � on NS.X/R for a dominant rational map f W X Ü X . Fakhruddin has indicated
that it should suffice to take X to be Q-factorial. We use the Lefschetz Hyperplane Theorem
in the proof of Lemma 18, but for a singular variety, one can use a version of the Lefschetz
Hyperplane Theorem [18, Theorem, p. 153] for a general member of the linear system of a very
ample divisor. Alternatively, if the orbit Of .P / of P lies within the smooth locus X sm of X ,
as is often the case, then one can simply replace X with a smooth model of a projective closure
of X sm and reduce to the smooth case.

Remark 9. If Of .P / is not Zariski dense, then we can look at the restriction of the
map f to the Zariski closure Y D Of .P / � X of the orbit. If Y is nonsingular, then applying
Conjectures 6 (a, d) to the dominant rational map f jY W Y Ü Y and the dense orbit of the
pointP 2 Yf . NK/ gives f̨ .P / D ıf jY . (Note that f̨ .P / is independent of whether we viewP
as a point of X or a point of Y , since the restriction to Y of an ample height function hX on X
gives an ample height function on Y .)

More generally, suppose that there exist two integers k � 1 and m � 0 such that the
orbit Of m.f k.P // does not intersect Y sing, the singular locus of Y . Then assuming Conjec-
tures 6 (a, d), an elementary argument gives

f̨ .P /
k
D f̨ .f

m.P //k D f̨ k .f m.P // D ıf k jY
D ıkf jY ;
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so again we obtain f̨ .P / D ıf jY . The existence of such an m and k is tied up with the
dynamical Mordell–Lang conjecture, which would imply that the set

(1.1) ¹m � 0 W f m.P / 2 Y sing
º

consists of a finite union of arithmetic progressions. (Note that the set in (1.1) is not all of N,
since Of .P / is dense in Y and Y sing is a proper closed subset of Y .) We also note that Bellon
and Viallet [9] have conjectured that the dynamical degree of a rational map is always an
algebraic integer. Thus Conjectures 6 (b, c) more-or-less follow from Conjectures 6 (a, d), the
Bellon–Viallet conjecture, and the dynamical Mordell–Lang conjecture.

Remark 10. We use hCX instead of hX in the definition of arithmetic degree simply to
ensure that f̨ .P / � 1, even in the rare situation that P is periodic and hX .f n.P // D 0 for
some n. We also note that the arithmetic degree is independent of the choice of ample height
function hX ; see Proposition 12.

Remark 11. Let f W X ! X be a morphism with ıf > 1, and let D 2 Pic.X/R be an
ample divisor class satisfying the linear equivalence f �D � ıfD. Then using properties of
the classical canonical height OhD;f , as described for example in [14], it is an exercise to show
that

Ohf .P / > 0 H) f̨ .P / D ıf :

In the number field case, it is also an exercise to prove that

Ohf .P / D 0 H) #Of .P / <1;

so in particular, Conjecture 6 is true in this case. There are other situations in which one
can define a canonical height having sufficiently good properties to prove Conjecture 6;
see Section 8 and [24, 36] for examples and further details. But in general, a rational map,
or even a morphism, does not have a canonical height with sufficiently good properties to
directly imply Conjecture 6 (d). The arithmetic degree f̨ .P /, although coarser than an ample
canonical height, may be viewed as a general nontrivial measure of the arithmetic complexity
of the f -orbit of P .

2. Basic properties of the arithmetic degree

In this section we verify that the upper and lower arithmetic degrees are well-defined,
independent of the choice of height function hX on X , and we prove a counting result for
points in orbits. We also prove two useful lemmas.

Proposition 12. The upper and lower arithmetic degrees f̨ .P / and f̨ .P / are inde-
pendent of the choice of the height function hX .

Proof. If P has finite f -orbit, then it is clear from the definition that the limit f̨ .P /

exists and is equal to 1, regardless of the choice of hX . We assume henceforth that P is not
preperiodic, which means that we can replace hCX with hX when taking limits over the orbit
of P .
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28 Kawaguchi and Silverman, Dynamical and arithmetic degrees of rational maps

Let h and h0 be heights on X relative to ample divisors D and D0, and let the corre-
sponding arithmetic degrees be denoted respectively by f̨ .P /, f̨ .P /, ˛

0
f .P /, and ˛0

f
.P /.

By definition of ampleness [21, Section II.7], there is an integer m such that mD �D0 is
ample, so standard functorial properties of height functions, as described for example in [27]
or [23, Theorem B.3.2], imply that there is a non-negative constant C such that

(2.1) mh.Q/ � h0.Q/ � C for all Q 2 X. NK/.

We choose a sequence of indices N � N such that

(2.2) lim
n2N

h0.f n.P //1=n D lim sup
n!1

h0.f n.P //1=n D ˛0f .P /:

Then
˛0f .P / D lim

n2N
h0.f n.P //1=n from (2.2)

� lim
n2N

.mh.f n.P //C C/1=n from (2.1)

� lim sup
n!1

.mh.f n.P //C C/1=n

D lim sup
n!1

h.f n.P //1=n

D f̨ .P /:

This gives one inequality for the upper arithmetic degrees, and reversing the roles of h and h0

gives the opposite inequality, which proves that ˛0f .P / D f̨ .P /. We omit the similar proof
that ˛0

f
.P / D f̨ .P /.

The following lemma says that both f̨ .P / and f̨ .P / depend only on the eventual
orbit of P .

Lemma 13. Let f WX ÜX be a rational map defined over NK. Then for allP 2Xf . NK/
and all k � 0,

f̨ .f
k.P // D f̨ .P / and f̨ .f

k.P // D f̨ .P /:

Proof. We compute

f̨ .f
k.P // D lim sup

n!1
hCX .f

nCk.P //1=n

D lim sup
n!1

�
hCX .f

nCk.P //1=.nCk/
�1Ck=n

D lim sup
n!1

hCX .f
nCk.P //1=.nCk/

D f̨ .P /:

The proof for f̨ is similar, which completes the proof of Lemma 13.

We next prove Proposition 3, which we recall says that if the limit defining f̨ .P / exists,
then the growth of the height counting function of the orbit of P is given by (0.1).

Proof of Proposition 3. Since #Of .P / D1, it suffices to prove (0.1) with hCX in place
of hX . For every � > 0 there is an n0.�/ so that

.1 � �/ f̨ .P / � h
C

X .f
n.P //1=n � .1C �/ f̨ .P / for all n � n0.�/.
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It follows that

¹n � n0.�/ W .1C �/ f̨ .P / � B
1=n
º � ¹n � n0.�/ W h

C

X .f
n.P // � Bº

and
¹n � n0.�/ W h

C

X .f
n.P // � Bº � ¹n � n0.�/ W .1 � �/ f̨ .P / � B

1=n
º:

Counting the number of elements in these sets yields

logB
log..1C �/ f̨ .P //

� n0.�/ � 1 � #¹n � 0 W hCX .f
n.P // � Bº

and
#¹n � 0 W hCX .f

n.P // � Bº �
logB

log..1 � �/ f̨ .P //
C n0.�/C 1:

Dividing by logB and letting B !1 gives

1

log..1C �/ f̨ .P //
� lim inf

B!1

#¹Q 2 Of .P / W h
C

X .Q/ � Bº

logB

and

lim sup
B!1

#¹Q 2 Of .P / W h
C

X .Q/ � Bº

logB
�

1

log..1 � �/ f̨ .P //
:

Since � is arbitrary, and the lim inf is less than or equal to the lim sup, this completes the proof
that

lim
B!1

#¹Q 2 Of .P / W h
C

X .Q/ � Bº

logB
D

1

log f̨ .P /
;

including the fact that if f̨ .P / D 1, then the limit is1.

The following elementary linear algebra result will be used in the proof of Theorem 4.

Lemma 14. Let A D .aij / 2Mr.C/ be an r-by-r matrix. Let kAk D max jaij j, and as
usual let �.A/ denote the spectral radius of A. Then there are constants c1 and c2, depending
on A, such that

(2.3) c1�.A/
n
� kAnk � c2n

r�.A/n for all n � 0.

In particular, we have �.A/ D limn!1 kAnk1=n.

Proof. For any matrices A and B in Mr.C/, the triangle inequality gives the estimate

kABk � rkAk � kBk:

We write A D PƒP�1 with ƒ in Jordan normal form. Let � be an eigenvalue of A having
largest absolute value such that among such largest eigenvalues, it has the largest Jordan block.
Let the dimension of the largest �-Jordan block be `. Then

kƒnk D max
0�i<`

´ 
n

i

!
j�jn�i

µ
:
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30 Kawaguchi and Silverman, Dynamical and arithmetic degrees of rational maps

Since r � ` and j�j D �.A/, the trivial estimates 1 �
�
n
i

�
� nr give

(2.4) �.A/n�r � kƒnk � nr�.A/n:

We next observe that

kAnk D kPƒnP�1k � r2kP k � kP�1k � kƒnk;

kƒnk D kP�1AnP k � r2kP�1k � kP k � kAnk;

so setting C D C.A/ D r2kP k � kP�1k > 0, we have

(2.5) C�1kƒnk � kAnk � Ckƒnk for all n � 0.

Combining (2.4) and (2.5) gives (2.3), and then taking nth-roots and letting n!1 finally
gives kAnk1=n ! �.A/.

3. A divisor inequality for rational maps

Let f W X Ü X be a rational map. Our goal in this section is to prove the following
geometric inequality relating the actions of .f �/n and .f n/� on the vector space NS.X/R.
This result will provide a crucial estimate in our proof that hX ı f n � .ıf C �/

nhX .

Theorem 15. Let X be a smooth projective variety, and fix a basis D1; : : : ;Dr for the
vector space NS.X/R. A dominant rational map g WX ÜX induces a linear map on NS.X/R,
and we write

g�Dj �

rX
iD1

aij .g/Di and A.g/ D .aij .g// 2Mr.R/:

We let k � k denote the sup norm on Mr.R/. Then there is a constant C D C.D1; : : : ;Dr/ � 1
such that for any dominant rational map f W X Ü X we have

kA.f mCn/k � CkA.f m/k � kA.f n/k for all m; n � 1,(3.1)

kA.f m/k � CkA.f /mk for all m � 1.(3.2)

We remark that an immediate corollary is the convergence of the limit defining the
dynamical degree.

Corollary 16. The limit ıf D limn!1 �..f n/�;NS.X/R/1=n converges.

Proof. With notation as in the statement of Theorem 15, we have

�..f n/�;NS.X/R/ D �.A.f n//;

so (3.1) gives

log �..f mCn/�/ � log �..f m/�/C log �..f n/�/CO.1/:

Using this convexity estimate, it is an exercise to show that the sequence 1
n
�..f n/�/ converges,

proving the corollary.
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We start the proof of Theorem 15 with the following preliminary result. This is essentially
shown in [20, Proof of Proposition 1.2 (ii)] by an analytic argument; cf. [20, equation (�)].
We give an algebraic proof.

Proposition 17. Let X .0/; X .1/; X .2/; : : : ; X .m�1/; X .m/ be smooth projective vari-
eties of the same dimension N , and let f .i/ W X .i/ Ü X .i�1/ be dominant rational maps
for 1 � i � m. Let D be a nef divisor on X .0/. Then for any nef divisor H on X .m/, we have

(3.3) .f .1/ ıf .2/ ı � � � ıf .m//�D �HN�1
� .f .m/�/ � � � .f .2/�/.f .1/�/D �HN�1:

Proof. We consider a sequence of dominant rational maps:

X .m/
f .m/

Ü X .m�1/ Ü � � �Ü X .2/
f .2/

Ü X .1/
f .1/

Ü X .0/:

We blow up a closed subscheme with support equal to the indeterminacy locus If .i/ of f .i/

in X .i/ for 1 � i � m, so that we have
� smooth projective varieties X .i/1 ,
� birational morphisms �.i/1 W X

.i/
1 ! X .i/ and

� morphisms ef .i/ W X .i/1 ! X .i�1/ such thatef .i/ D f .i/ ı �.i/1 :

Let f .i/1 W X
.i/
1 Ü X

.i�1/
1 be the induced dominant rational map for 1 � i � m,

X
.m/
1

�
.m/
1

��

�f .m/

""

f
.m/

1 // X
.m�1/
1

�
.m�1/
1

��

// � � � // X
.2/
1

�
.2/
1

��

�f .2/

!!

f
.2/

1 // X
.1/
1

�
.1/
1

��

�f .1/

!!

X .m/
f .m/

// X .m�1/ // � � � // X .2/
f .2/

// X .1/
f .1/

// X .0/.

Next we blow up a closed subscheme with support equal to the indeterminacy locus If .i/
1

of f .i/1 in X .i/1 for 2 � i � m, so that we have
� smooth projective varieties X .i/2 ,
� birational morphisms �.i/2 W X

.i/
2 ! X

.i/
1 and

� morphisms ef1.i/ W X .i/2 ! X
.i�1/
1 such thatef1.i/ D f .i/1 ı �.i/2 :

Let f .i/2 W X
.i/
2 Ü X

.i�1/
2 be the induced dominant rational map for 2 � i � m.

We continue this procedure to obtain the commutative diagram illustrated in Figure 1.
For 1 � k � i � m, let us define a proper closed subvariety Z.i/

k
of X .i/ as follows.

For k D 1, we set
Z
.i/
1 ´ If .i/ in X .i/ for 1 � i � m:

For k D 2, we set

Z
.i/
2 ´ If .i/ [

�
Zariski closure of .f .i/j

X.i/XZ
.i/
1

/�1.Z
.i�1/
1 /

�
in X .i/ for 2 � i � m:

We note that
.f .i/j

X.i/XZ
.i/
1

/�1.Z
.i�1/
1 / D .f .i/jX.i/XI

f .i/
/�1.If .i�1//:
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X
.m/
m

�
.m/
m

��

�f .m/
m�1

""

X
.m/
m�1

��

f
.m/

m�1 // X
.m�1/
m�1

��
  :::

��

:::

��

: : :

��

X
.m/
2

�
.m/
2

��

�f1

.m/

""

f
.m/

1 // X
.m�1/
2

�
.m�1/
2

��

// � � � // X
.2/
2

�
.2/
2

��

�f1

.2/

  

X
.m/
1

�
.m/
1

��

�f .m/

##

f
.m/

1 // X
.m�1/
1

�
.m�1/
1

��

// � � � // X
.2/
1

�
.2/
1

��

�f .2/

!!

f
.2/

1 // X
.1/
1

�
.1/
1

��

�f .1/

!!

X .m/
f .m/

// X .m�1/ // � � � // X .2/
f .2/

// X .1/
f .1/

// X .0/

Figure 1. A commutative diagram.

Inductively, for k � m, we set

Z
.i/

k
´ If [

�
Zariski closure of .f .i/j

X.i/XZ
.i/

k�1

/�1.Z
.i�1/

k�1
/
�

in X .i/ for k � i � m:

Then we have a sequence of morphisms:

X .m/ XZ
.m/
m

f .m/j
X.m/XZ

.m/
m // X .m�1/ XZ

.m�1/
m�1

f .m�1/j
X.m�1/XZ

.m�1/
m�1 // X .m�2/ XZ

.m�2/
m�2

��

:::

��

X .0/ X .1/ XZ
.1/
1

f .1/j
X.1/XZ

.1/
1oo X .2/ XZ

.2/
2

f .2/j
X.2/XZ

.2/
2oo

Since nef divisors are limits of ample divisors, we may assume that D is ample. Replac-
ing D by `D for sufficiently large `, we may assume that D is very ample and represented by
an effective divisor on X .0/ with the following property:

(P) The divisorD does not contain the image in X .0/ of any effective divisor in X .m/m whose
image in X .m/ is contained in Z.m/m .
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With these assumptions, we claim that the divisor

(3.4) .f .m/�/ � � � .f .2/�/.f .1/�/D � .f .1/ ı f .2/ ı � � � ı f .m//�D

is effective, and hence has non-negative intersection with HN�1.
We note that property (P) implies that

.f .1/ ı f .2/ ı � � � ı f .m//�D(3.5)

D Zariski closure of .f .1/ ı f .2/ ı � � � ı f .m/j
X.m/XZ

.m/
m
/�D in X D X .m/.

The divisor .f .m/�/ � � � .f .2/�/.f .1/�/D is effective on X .m/, and restricted to X .m/ XZ.m/m ,
it contains .f .1/ ı f .2/ ı � � � ı f .m//�D. The description (3.5) implies that the divisor

.f .m/�/ � � � .f .2/�/.f .1/�/D � .f .1/ ı f .2/ ı � � � ı f .m//�D

is effective onX D X .m/. Now to complete the proof of Proposition 17, it only remains to note
that in general, if E is effective and H is nef on a smooth projective variety X of dimension n,
then E �Hn�1 � 0.

We now give the proof of Theorem 15.

Proof of Theorem 15. We set the following notation:

N : the dimension of X , which we assume is at least 2.

Amp.X/: the ample cone in NS.X/R of all ample R-divisors.

Nef.X/: the nef cone in NS.X/R of all nef R-divisors.

Eff.X/: the effective cone in NS.X/R consisting of the classes of all effective R-divisors.

Eff.X/: the pseudoeffective cone, i.e., the R-closure of Eff.X/.

As explained in [17, Section 1.4], we have

Nef.X/ D Amp.X/ and Amp.X/ D int.Nef.X//:

In particular, Nef.X/ is a closed convex cone. Also, since Amp.X/ � Eff.X/, it follows that
Nef.X/ � Eff.X/.

The next lemma is essentially shown in [31, Proposition II.6.3] over C. (Indeed, in
[31, Proposition II.6.3], it is even shown that similar results hold for pseudoeffective cycles
of codimension greater than 1 that are not homologically trivial.)

Lemma 18. With notation as above, let D 2 Eff.X/ X ¹0º and H 2 Amp.X/. Then

D �HN�1 > 0:

Proof. Since H is ample and D is in the closure of the effective cone, we certainly
have D �HN�1 � 0. Our goal is to prove that we have a strict inequality.

We first consider the case N D 2. Since D ¤ 0 in NS.X/R, there is a divisor E such
thatD �E ¤ 0. ReplacingE by�E if necessary, we may assume thatD �E < 0. Choose k > 0
sufficiently large so that kH CE is ample. Since D is a limit of effective divisors, it follows
that D � .kH CE/ � 0. Hence

D �H �
�D �E

k
> 0:
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34 Kawaguchi and Silverman, Dynamical and arithmetic degrees of rational maps

We now proceed by induction on N . Let N D dimX � 3. Replacing H with kH for
an appropriate k � 1, we may assume that H is very ample. Let Y be a (smooth) irreducible
variety in the linear system jH j. The Lefschetz Hyperplane Theorem [38, Theorem 1.23] says
that the restriction map NS.X/! NS.Y / is injective and preserves effective divisors. Our
induction hypothesis says that

DjY � .H jY /
N�2 > 0:

Hence D � Y �HN�2 > 0. But Y � H in Pic.X/, so in particular Y � H in NS.X/R. Hence
we have D �HN�1 > 0, which completes the proof of Lemma 18.

Lemma 19. Let H 2 Amp.X/, and fix some norm j � j on the R-vector space NS.X/R.
There are constants C1; C2 > 0 such that

(3.6) C1jvj � v �H
N�1
� C2jvj for all v 2 Eff.X/.

Proof. We consider the map

' W NS.X/R ! R; '.w/ D w �HN�1:

Since ' is continuous, it attains a minimum and (finite) maximum when restricted to the
compact set

Eff.X/ \ ¹w 2 NS.X/R W jwj D 1º:

Lemma 18 tells us that '.w/ > 0 for all nonzero w 2 Eff.X/, so the minimum is strictly
positive, say

C1 D inf¹'.w/ W w 2 Eff.X/ and jwj D 1º > 0:

Then for all v 2 Eff.X/ X ¹0º we have

v �Hn�1
D jvj'

�
v

jvj

�
� C1jvj:

Similarly, letting

C2 D sup¹'.w/ W w 2 Eff.X/ and jwj D 1º <1;

we have

v �Hn�1
D jvj'

�
v

jvj

�
� C2jvj:

This proves the first part of Lemma 19, and the last assertion is then clear, since as noted earlier,
we have Nef.X/ � Eff.X/.

We resume the proof of Theorem 15. As in the proof of Lemma 19, we fix a norm j � j on
the R-vector space NS.X/R, and for any linear map A W NS.X/R ! NS.X/R, we set

kAk0 D sup
v2Nef.X/X0

jAvj

jvj
:

We note that for linear maps A;B 2 End.NS.X/R/ and c 2 R we have

kAC Bk0 � kAk0 C kBk0 and kcAk0 D jcjkAk0:

Further, since Nef.X/ generates NS.X/R as an R-vector space, we have kAk0 D 0 if and only
if A D 0. Thus k � k0 is an R-norm on End.NS.X/R/.
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Similarly, for any linear map A W NS.X/R ! NS.X/R, we set

kAk00 D sup
w2Eff.X/X0

jAwj

jwj
;

then k � k00 is an R-norm on End.NS.X/R/.
We note that Eff.X/ is preserved by f � and that Nef.X/ � Eff.X/. Thus if v 2 Nef.X/,

then .f mCn/�v and .f �/nv belong to Eff.X/. This allows us to compute

k.f mCn/�k0 D sup
v2Nef.X/X0

j.f mCn/�vj

jvj

� C�11 sup
v2Nef.X/X0

.f mCn/�v �HN�1

jvj
from Lemma 19

� C�11 sup
v2Nef.X/X0

.f m/�..f n/�v/ �HN�1

jvj
from Proposition 17

D C�11 sup
v2Nef.X/X0
.f n/�v¤0

.f m/�..f n/�v/ �HN�1

jvj

D C�11 sup
v2Nef.X/X0
.f n/�v¤0

�
.f m/�..f n/�v/ �HN�1

j.f n/�vj
�
j.f n/�vj

jvj

�

� C�11

�
sup

v2Nef.X/X0
.f n/�v¤0

.f m/�..f n/�v/ �HN�1

j.f n/�vj

�
�

�
sup

v2Nef.X/X0

j.f n/�vj

jvj

�

D C�11

�
sup

v2Nef.X/X0
.f n/�v¤0

.f m/�..f n/�v/ �HN�1

j.f n/�vj

�
� k.f n/�k0

� C�11

�
sup

w2Eff.X/X0

.f m/�w �HN�1

jwj

�
� k.f n/�k0 since .f m/�v 2 Eff.X/

� C�11 C2

�
sup

w2Eff.X/X0

j.f m/�wj

jwj

�
k.f n/�k0 from Lemma 19

� C�11 C2k.f
m/�k00 � k.f n/�k0:

We recall that we have defined k � k to be the sup norm onMr.R/ D End.NS.X/R/, where the
identification is via the given basis D1; : : : ;Dr of NS.X/R. We thus have three norms k � k,
k � k0 and k � k00 on End.NS.X/R/, so there are positive constants C 03, C 04, C 003 and C 004 such that

C 03kk � kk
0
� C 04kk and C 003 kk � kk

00
� C 004 kk for all  2 End.NS.X/R/.

Hence

kA.f nCm/k D k.f nCm/�k � C 03
�1
k.f nCm/�k0

� C 03
�1
C�11 C2k.f

n/�k0 � k.f m/�k00

� C 03
�1
C�11 C2C

0
4C
00
4 k.f

n/�k � k.f m/�k

D C 03
�1
C�11 C2C

0
4C
00
4 kA.f

n/k � kA.f m/k:

This completes the proof of (3.1).
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Similarly, if v 2 Nef.X/, then .f m/�v and .f �/mv belong to Eff.X/. A similar calcu-
lation gives

k.f m/�k0 D sup
v2Nef.X/X0

j.f m/�vj

jvj

� C�11 sup
v2Nef.X/X0

.f m/�v �HN�1

jvj
from Lemma 19

� C�11 sup
v2Nef.X/X0

.f �/mv �HN�1

jvj
from Proposition 17

� C�11 C2 sup
v2Nef.X/X0

j.f �/mvj

jvj
from Lemma 19

D C�11 C2k.f
�/mk0:

Hence

kA.f m/k D k.f m/�k � C 03
�1
k.f m/�k0

� C 03
�1
C�11 C2k.f

�/mk0

� C 03
�1
C�11 C2C

0
4k.f

�/mk D C 03
�1
C�11 C2C

0
4kA.f /

m
k:

This completes the proof of (3.2), and with it the proof of Theorem 15.

Remark 20. If we assume that f W X ! X is a morphism, then the conclusions of
Theorem 15 are valid for normal varieties X . Indeed, in this situation it suffices to work
with Nef.X/; there is no need to introduce Eff.X/ into the argument.

4. A height inequality for rational maps

Let f W X Ü X be a rational map and let D be a divisor on X . Our goal in this
section is to prove an arithmetic inequality relating the height functions hD ı f and hf �D .
For rational self-maps f W PN Ü PN of projective space, the desired result follows by an
elementary triangle inequality argument [23, Theorem B.2.5 (a)], but the proof for general
varieties f W X Ü X is more complicated because the pullback of an ample divisor by f
need not be ample. With an eye towards future applications, and since the argument is no more
difficult, we prove a stronger result in which the domain and range may be different varieties.
We again refer the reader to [11, 23, 27, 34, 35] for the theory of height functions and Weil’s
height machine. In Section 7 we will give an alternative proof of Proposition 21 that avoids
blowups.

Proposition 21. Let X= NK and Y= NK be smooth projective varieties, let f W Y Ü X be
a dominant rational map defined over NK, let D 2 Div.X/ be an ample divisor, and fix Weil
height functions hX;D and hY;f �D associated to D and f �D. Then

hX;D ı f .P / � hY;f �D.P /CO.1/ for all P 2 .Y X If /. NK/,

where the O.1/ bound depends on X , Y , f , and the choice of height functions, but is indepen-
dent of P .
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Proof. We blow up a closed subscheme with support equal to the indeterminacy locus If
of f to get a smooth projective variety Z, a birational morphism p W Z ! Y , and a mor-
phism g W Z ! X such that f D g ı p�1. For any effective divisorD onX , the pullback f �D
is defined by

(4.1) f �D D p�.g
�D/:

We note that f �D is independent of the choice of Z.

Lemma 22. With notation as above, assume that D is nef. Then the divisor

(4.2) B ´ p�p�.g
�D/ � g�D

is effective.

Proof. For any curve C on Z such that p.C / is a point, we have

�B � C D .g�D/ � C � .p�p�.g
�D// � C D .g�D/ � C � 0:

Thus �B is p-nef. It follows from the Negativity Lemma (see [26, Lemma 3.39]) that B is
effective if and only if p�B is effective. Since p�B D 0, we conclude that B is effective.

We now resume the proof of Proposition 21, so in particular we assume that D is ample.
For a sufficiently large m, the divisor mD is very ample, so there exists an effective divisor D0

that is linearly equivalent to mD. Since f �D0 is linearly equivalent to f �.mD/, we may
assume that D is effective.

We let B be the divisor (4.2), so Lemma 22 tells us that B is an effective divisor with the
property that p.Supp.B// � If . For any QP 2 Z. NK/ X Supp.B/, we estimate hp�p�.g�D/. QP /
in two ways. First we have

hp�p�.g�D/.
QP / D hg�DCB. QP /(4.3)

D hg�D. QP /C hB. QP /CO.1/

� hg�D. QP /CO.1/;

where the last inequality follows from the positivity of the height hB on Z X Supp.B/ for
the effective divisor B; see [23, Theorem B.3.2 (e)]. Secondly, using functoriality of height
functions for morphisms [23, Theorem B.3.2 (b)], we have

hp�p�.g�D/.
QP / D hp�.g�D/.p.

QP //CO.1/ functoriality(4.4)

D hf �D.p. QP //CO.1/ formula (4.1) for f �D.

Now let P 2 Y. NK/ X If . Then there exists a unique QP 2 Z X p�1.If / with p. QP / D P .
Since Supp.B/ � p�1.If /, we have P 2 Z X Supp.B/. Hence

hf �D.P / D hf �D.p. QP // since P D p. QP /

D hp�p�.g�D/.
QP /CO.1/ from (4.4)

� hg�D. QP /CO.1/ from (4.3)

D hD.g. QP //CO.1/ since g is a morphism

D hD.f .P //CO.1/ since g. QP / D f .P /.

This completes the proof of Proposition 21.
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Remark 23. Proposition 21 is true more generally for a nef divisor D such that there
exists an m � 1 such that mD is linearly equivalent to an effective divisor.

5. A bound for the height of an iterate

We now prove the quantitative height upper bound for hCX .f
n.P // that constitutes one

of the main results of this paper. For the convenience of the reader, the statement includes
a reminder of the notation that we set in the introduction.

Theorem 24 (Theorem 1). Let K be a global field, let f W X Ü X be a dominant
rational map defined over K, let hX be a Weil height on X. NK/ relative to an ample divisor,
let hCX D max¹hX ; 1º, and let � > 0. Then there is a positive constant C D C.X; hX ; f; �/ such
that for all P 2 Xf . NK/ and all n � 0,

hCX .f
n.P // � C � .ıf C �/

n
� hCX .P /:

Before proving Theorem 24, we pause to show how it immediately implies the funda-
mental inequality f̨ .P / � ıf stated in the introduction.

Corollary 25 (Theorem 4). Let P 2 Xf . NK/. Then

(5.1) f̨ .P / � ıf :

Proof. Let � > 0. Then

f̨ .P / D lim sup
n!1

hCX .f
n.P //1=n definition of f̨ .P /

� lim sup
n!1

�
C � .ıf C �/

n
� hCX .P /

�1=n from Theorem 24

D ıf C �:

This holds for all � > 0, which proves that f̨ .P / � ıf .

Proof of Theorem 24. If P is preperiodic, then f̨ .P / D 1 � ıf , so there is nothing to
prove. We assume henceforth that #Of .P / D1. We let m and ` be positive integers to be
chosen later, and we set

g D f m`:

We note that Xf . NK/ � Xg. NK/. We choose ample divisorsD1; : : : ;Dr 2 Div.X/ whose alge-
braic equivalence classes form a basis for NS.X/Q, and we fix height functions hD1

; : : : ; hDr

associated to the divisors D1; : : : ;Dr . We note that any two ample heights are commensurate
with one another, i.e., hX � h0X , so we may take hX to be

hX .Q/ D max
1�i�r

hDi
.Q/:

To ease notation, we further assume that hD1
is chosen to satisfy hD1

� 1, so hCX D hX .
Applying g� to the divisors in our basis of NS.X/Q, we have algebraic equivalences

(5.2) g�Dk �

rX
iD1

aik.g/Di for some aik.g/ 2 Q.
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We set the notation

A.g/ D .aik.g// and kA.g/k D max
i;k
jaik.g/j:

Algebraic equivalences of divisors as in (5.2) implies a height relation as in the following result.

Lemma 26. Let E 2 Div.X/R be a divisor that is algebraically equivalent to 0, and fix
a height function hE associated to E. Then there is a constant C D C.hX ; hE / such that

(5.3) jhE .P /j � C

q
hCX .P / for all P 2 X. NK/.

Proof. See for example [23, Theorem B.5.9].

Remark 27. A well-known weaker form of Lemma 26 says that

(5.4) lim
P2X. NK/
hX .P /!1

hE .P /

hX .P /
D 0I

see for example [23, Theorem B.3.2 (f)] or [27, Chapter 4, Proposition 3.3]. We remark that
it is possible to prove that f̨ .P / � ıf using only the weaker estimate (5.4), but in order to
prove the quantitative bound in Theorem 24 and the error estimate in Theorem 5, we need the
stronger estimate provided by (5.3).

Applying Lemma 26 to (5.2) and using additivity of height functions, we find a positive
constant C1 D C1.�; g/ such that

(5.5)

ˇ̌̌̌
ˇhg�Dk

.Q/ �

rX
iD1

aik.g/hDi
.Q/

ˇ̌̌̌
ˇ � C1phX .Q/ for all Q 2 X. NK/.

Here and in what follows, the constants C1; C2; : : : are allowed to depend on the divi-
sors D1; : : : ;Dr and their associated height functions, as well as on X , f , �, m, `, and �.
However, we will eventually fix m and `, at which point

Ci D Ci .X; f; �; hD1
; : : : ; hDr

/:

We also remind the reader that we have chosen hX to satisfy hX � 1.
Apply Proposition 21 to the rational map g and to each of the ample divisorsD1; : : : ;Dr .

Thus for all points Q 2 X. NK/, we have

hX .g.Q// D max
1�k�r

hDk
.g.Q// definition of hX(5.6)

� max
1�k�r

.hg�Dk
.Q/C C2/ from Proposition 21

� max
1�k�r

 
rX
iD1

aik.g/hDi
.Q/

!
C C3

p
hX .Q/ from (5.5)

�

�
r max
1�i;k�r

jaik.g/j
�
hX .Q/C C3

p
hX .Q/

D rkA.g/khX .Q/C C3
p
hX .Q/:

We are going to use the following elementary lemma.
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40 Kawaguchi and Silverman, Dynamical and arithmetic degrees of rational maps

Lemma 28. Let S be a set, let g W S ! S and h W S ! Œ0;1/ be maps, let a � 1
and b � 1 be constants. Suppose that for all x 2 S we have

(5.7) h.g.x// � ah.x/C c
p
h.x/:

Then for all x 2 S and all n � 0,

(5.8) h.gn.x// � an
�
h.x/C .2

p
2c/n

p
h.x/

�
:

Proof. The proof is an elementary induction on n. For the convenience of the reader,
we give the details in Appendix A.

We apply Lemma 28 to (5.6) to obtain

hX .g
n.Q// � .rkA.g/k/n

�
hX .Q/C C

n
4

p
hX .Q/

�
(5.9)

� .C5rkA.g/k/
nhX .Q/;

where we stress that C4 and C5 do not depend on Q or n.
We recall that g D f m`, which lets us estimate

kA.g/k D kA..f `/m/k

� C6kA.f
`/mk Theorem 15 applied to f `

� C7m
r�.A.f `//m from Lemma 14.

By definition, the dynamical degree is the limit of �.A.f `//1=` as `!1. So we now
fix an ` D `.�; f / such that

�.A.f `// � .ıf C �/
`:

For this choice of `, we have

(5.10) kA.g/k � C7m
r.ıf C �/

`m:

Substituting (5.10) into (5.9) and using g D f m` gives

(5.11) hX .f
m`n.Q// � .C8rm

r.ıf C �/
`m/nhX .Q/:

We now take P 2 Xf . NK/ as in the statement of the theorem, and we apply (5.11) to each of
the points P; f .P /; : : : ; f m`�1.P / to obtain

(5.12) max
0�i<m`

hX .f
m`nCi .P // � .C8rm

r.ıf C �/
`m/n max

0�i<m`
hX .f

i .P //:

For 0 � i < m`, we apply Proposition 21 to each of the heights hX .f i .P //. Using the fact that
the ample height hX dominates any other height hD , i.e., hX � hD with a constant depending
on D, we obtain

(5.13) max
0�i<m`

hX .f
i .P // � C9hX .P /:

Combining (5.12) and (5.13) gives

(5.14) max
0�i<m`

hX .f
m`nCi .P // � C9.C8rm

r.ıf C �/
`m/nhX .P /:
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Now let q � 1 be any integer and write

q D m`nC i with 0 � i < m`.

Then (5.14) implies that

(5.15) hX .f
q.P // � C9.C8rm

r/q=m`.ıf C �/
qhX .P /;

where we have used the trivial estimates `mn � q and n � q=m`. The key point to note
about inequality (5.15) is that the quantity .C8rmr/1=m` is independent of q and goes to 1
as m!1. So we now fix a value of m such that

.C8rm
r/1=m` � .1C �/:

This value of m depends on �, and of course it depends on X and f , but it does not depend on
the integer q or the point P . We note that the constant C9 now also depends on �, but not on q
or P . Hence (5.15) becomes

(5.16) hX .f
q.P // � C9.1C �/

q.ıf C �/
qhX .P /:

We have proven that (5.16) holds for all P 2 Xf . NK/ and all q � 0, where C9 does not depend
on q or P . After adjusting �, inequality (5.16) is the desired result, which completes the proof
of Theorem 24.

6. An application to canonical heights

In this section we use Theorem 24 to prove Theorem 5, which says that the usual canon-
ical height limit converges for certain eigendivisor classes relative to algebraic equivalence.
We remark that the result is well known (and much easier to prove) for eigendivisor classes
relative to linear equivalence; cf. [14].

Proof of Theorem 5. To ease notation, we will let ı D ıf .
(a) Theorem 24 says that for every � > 0 there is a constant C1 D C1.X; hX ; f; �/ such

that

(6.1) hCX .f
n.P // � C1 � .ı C �/

n
� hCX .P / for all n � 0.

We are given that f �D � ˇD. Applying Lemma 26 with E D f �D � ˇD, we find a positive
constant C2 D C2.D;A; f / such that

(6.2) jhf �D.Q/ � ˇhD.Q/j � C2

q
hCX .Q/ for all Q 2 X. NK/.

Since we have assumed that f is a morphism, standard functoriality of the Weil height says
that

hf �D D hD ı f CO.1/;

so (6.2) becomes

(6.3) jhD.f .Q// � ˇhD.Q/j � C3

q
hCX .Q/ for all Q 2 X. NK/.
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For N �M � 0 we estimate a telescoping sum,

jˇ�NhD.f
N .P // � ˇ�MhD.f

M .P //j(6.4)

D

ˇ̌̌̌
ˇ

NX
nDMC1

ˇ�n
�
hD.f

n.P // � ˇhD.f
n�1.P //

�ˇ̌̌̌ˇ
�

NX
nDMC1

ˇ�njhD.f
n.P // � ˇhD.f

n�1.P //j

�

NX
nDMC1

ˇ�nC3

q
hCX .f

n�1.P // applying (6.3) with Q D f n�1.P /

�

NX
nDMC1

ˇ�nC3

q
C1.ı C �/n�1h

C

X .P / from (6.1)

� C4

1X
nDMC1

�
ı C �

ˇ2

�n=2q
hCX .P /:

By assumption we have ˇ >
p
ı, so we can take � D ˇ2�ı

2
, which implies that

 ´
ı C �

ˇ2
D 1 �

ˇ2 � ı

2ˇ2
< 1:

Hence the series (6.4) converges, and we obtain the estimate

(6.5) jˇ�NhD.f
N .P // � ˇ�MhD.f

M .P //j � C5
M=2

q
hCX .P /;

where C5 D C5.X; f;D/ is independent of P , N , and M . Then (6.5) and the fact that  < 1
imply that the sequence ˇ�nhD.f n.P // is Cauchy, which proves (a).

(b) The formula
OhD;f .f .P // D ˇ OhD;f .P /

follows immediately from the limit defining OhD;f in part (a). Next, letting N !1 and set-
ting M D 0 in (6.5) gives

j Ohf;D.P / � hD.P /j � C5

q
hCX .P /;

which completes the proof of (b).
(c) We are assuming that Ohf;D.P / ¤ 0. If Ohf;D.P / < 0, we change D to �D, so we

may assume that Ohf;D.P / > 0. Let H 2 Div.X/ be an ample divisor such that H CD is also
ample. (This can always be arranged by replacing H with mH for a sufficiently large m.)
Since H is ample, we may assume that the height function hH is non-negative. We compute

hDCH .f
n.P // D hD.f

n.P //C hH .f
n.P //CO.1/

� hD.f
n.P //CO.1/ since hH � 0

D Ohf;D.f
n.P //CO

�q
hCX .f

n.P //
�

from (b)

D ˇn Ohf;D.P /CO
�q

hCX .f
n.P //

�
from (b)

D ˇn Ohf;D.P /CO
�q

C.ı C �/nhCX .P /
�

from Theorem 24.
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This estimate is true for every � > 0, whereC depends on �. Using the assumption that ˇ >
p
ı,

we can choose an � > 0 satisfying ı C � < ˇ2. This gives

hDCH .f
n.P // � ˇn Ohf;D.P /C o.ˇ

n/;

so taking nth-roots, using the assumption that Ohf;D.P / > 0, and letting n!1 yields

f̨ .P / D lim inf
n!1

hDCH .f
n.P //1=n � ˇ:

(Note that Proposition 12 says that we can use hDCH to compute f̨ .P /, since D CH is
ample.)

(d) From (c) we get f̨ .P / � ˇ D ıf , while Theorem 4 gives f̨ .P / � ıf . Hence the
limit defining f̨ .P / exists and is equal to ıf .

(e) One direction is trivial. For the other, suppose that OhD;f .P / D 0. Since we are
assuming that D is ample, we may take hX D hD and hD � 1. Then for any n � 0, we apply
part (b) to the point f n.P / to obtain

0 D ˇn OhD;f .P / D OhD;f .f
n.P // � hD.f

n.P // � c
p
hD.f n.P //:

This gives hD.f n.P // � c2, where c does not depend on P or n. This shows that Of .P / is
a set of bounded height with respect to an ample height. Since Of .P / is contained inX.K.P //
and since we have assumed that K is a number field, we conclude that Of .P / is finite.

Remark 29. If f is a morphism, then De-Qi Zhang has pointed out that there is always
at least one nonzero nef divisor class D 2 NS.X/R satisfying f �D � ıfD. So there is
always at least one nontrivial nef divisor class to which Theorem 5 applies, although there
need not be any such ample divisor classes. The existence of such a D is an immediate con-
sequence of the following elementary Perron–Frobenius-type result of Birkhoff, applied to the
vector space Rr D NS.X/R, the linear transformation T D f �, and the cone C D Nef.X/;
cf. [15, Lemma 1.12].

Proposition 30 (Birkhoff [10]). Let C � Rr be a strictly convex closed cone with
nonempty interior, and let T W Rr ! Rr be an R-linear map with T .C / � C . Then C con-
tains an eigenvector whose eigenvalue is the spectral radius of T .

Question 31. It would be interesting to know if Theorem 5 is true for algebraically
stable rational maps that are not morphisms.

7. An alternative proof of Proposition 21

In this section we give an alternative, more elementary, proof of Proposition 21. The
proof uses three lemmas, one geometric, one arithmetic, and the third combining the first two.

Lemma 32. Let ˛0; : : : ; ˛n; ˇ0; : : : ; ˇm 2 NK with not all of the ˛i equal to 0. Then

h.Œ˛0; : : : ; ˛n; ˇ0; : : : ; ˇm�/ � h.Œ˛0; : : : ; ˛n�/:
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Proof. Extending K, we may assume that ˛0; : : : ; ˛n; ˇ0; : : : ; ˇm 2 K. Letting MK be
an appropriately normalized set of inequivalent absolute values onK, the definition of the Weil
height on Pn gives

h.Œ˛0; : : : ; ˛n�/ D
X
v2MK

log max¹k˛0kv; : : : ; k˛nkvº

�

X
v2MK

log max¹k˛0kv; : : : ; k˛nkv; kˇ0kv; : : : ; kˇmkvº

D h.Œ˛0; : : : ; ˛n; ˇ0; : : : ; ˇm�/;

which completes the proof of Lemma 32.

Lemma 33. Let D 2 Div.X/ be an effective divisor, let

1 D x0; x1; : : : ; xn 2 �.X;O.D//;

and fix a height function hD on X. NK/ associated to the divisor D. Then there is a con-
stant C D C.X; f; hD/ such that for all points P 2 X. NK/ such that x0; : : : ; xn are defined
at P ,

hD.P / � h.Œx0.P /; x1.P /; : : : ; xn.P /�/ � C:

Proof. Let
� D Œx0; : : : ; xn� W X Ü Pn

be the rational map induced by the functions x0; : : : ; xn.
Let H be an ample divisor on X . It is a consequence of Serre’s theorem [21, II.5.17]

that there is an integer m > 0 such that both mH and D CmH are very ample. We choose
a basis 1 D z0; z1; : : : ; z` for �.X;OX .mH//. Then the functions xizj satisfy

xizj 2 �.X;OX .D CmH// for 0 � i � n and 0 � j � `,

so we can find a spanning set 1 D w0; w1; : : : ; wk for the space �.X;OX .D CmH// whose
first .nC 1/.`C 1/ elements are the functions xizj .

Now for all points in the set

(7.1) ¹P 2 X. NK/ W x0; : : : ; xn; w0; : : : ; wk; z0; : : : ; z` are regular at P º;

we have

hD.P / D hDCmH .P / � hmH .P /CO.1/

D h.Œw0.P /; : : : ; wk.P /�/ � h.Œz0.P /; : : : ; z`.P /�/CO.1/

� h.Œxizj .P /�0�i�n; 0�j�`/ � h.Œz0.P /; : : : ; z`.P /�/CO.1/ from Lemma 32

D h.Œx0.P /; : : : ; xn.P /�/CO.1/ from [23, Proposition B.2.4 (b)]

(Segre embedding). This completes the proof of Lemma 33 for all points in the set (7.1). But
since D CmH and mH are very ample, we can repeat the argument using a finite number of
other bases for �.X;OX .D CmH// and �.X;OX .mH// so as to obtain the desired estimate
for all points at which x0; : : : ; xn are regular.

Alternative proof of Proposition 21. ReplacingD by a multiple, we may assume thatD
is very ample and effective. We let 1 D x0; x1; : : : ; xn be a basis for �.X;OX .D//.
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Our assumption that D is effective implies that f �D is effective. (To see this, take
a projective birational morphism � W QX ! X with QX normal so that Qf D f ı � extends to
a morphism. Then Qf �D is defined via the pullback of the defining equations of the Cartier
divisor D, so Qf �D is an effective Cartier divisor, so its associated Weil divisor on QX is also
effective, and hence the Weil divisor f �D´ ��. Qf

�.D// is effective.) Further, there is a nat-
ural map

f � W �.X;OX .D//! �.Y;OX .f
�D//;

so in particular,
f �x0; : : : ; f

�xn 2 �.Y;OX .f
�D//:

We consider the set of points

(7.2) ¹P 2 .X X If /. NK/ W x0; : : : ; xn are defined at f .P /º:

For points in this set, we apply Lemma 33 to the divisor f �D and functions f �x0; : : : ; f �xn.
This yields

(7.3) hY;f �D.P / � h.Œf
�x0.P /; : : : ; f

�xn.P /�/ � C:

On the other hand, the functions x0; : : : ; xn give an embedding

� D Œx0; : : : ; xn� W X ,! Pn satisfying ��OPn.1/ D OX .D/;

so for points Q 2 X. NK/ at which x0; : : : ; xn are regular, we have

hX;D.Q/ D h.�.Q// D h.Œx0.Q/; x1.Q/; : : : ; xn.Q/�/CO.1/:

Applying this with Q D f .P / and noting that xi .f .P // D f �xi .P /, we find that

(7.4) hX;D.f .P // D h.Œf
�x0.P /; : : : ; f

�xn.P /�/CO.1/:

Combining (7.3) and (7.4) gives

hY;f �D.P / � hX;D.f .P //CO.1/;

which gives the desired result for points in the set (7.2). By taking a finite number of different
effective divisors in the very ample divisor class of D, we obtain analogous inequalities that
cover all points P at which f is defined.

8. Some instances of Conjecture 6

Let P 2 Xf . NK/. We recall that Conjecture 6 asserts:

� The limit defining f̨ .P / exists and is an algebraic integer.

� The set ¹ f̨ .P / W P 2 Xf . NK/º is finite.

� If Of .P / is Zariski dense in X , then f̨ .P / D ıf .

The following theorem describes some cases for which we can prove Conjecture 6.
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Theorem 34. Conjecture 6 is true in the following situations:

(a) f is a morphism and NS.X/R D R.

(b) f W PN Ü PN extends a regular affine automorphism AN ! AN .

(c) X is a smooth projective surface and f is an automorphism.

(d) f W PN Ü PN is a monomial map and P 2 GN
m .
NK/.

(e) X is an abelian variety and f W X ! X is an endomorphism.

Proof. See [24] for (a)–(c), see [36] for (d), and see [25] for (e).

Remark 35. The maps in Theorem 34 (a)–(c) are algebraically stable. (This is auto-
matic for morphisms, and it is also true for regular affine automorphisms.) We note that if f is
algebraically stable, then

ıf D lim
n!1

�..f n/�/1=n D lim
n!1

�..f �/n/1=n D �.f �/;

so ıf is automatically an algebraic integer. Monomial maps are not, in general, algebraically
stable, but their dynamical degrees are known to be algebraic integers [22].

We also mention the following result from [24] which shows in certain cases that f̨ .P /

is equal to ıf for a “large” collection of points. The proof uses p-adic methods, weak lower
canonical heights, and Guedj’s classification of degree 2 planar maps [19].

Theorem 36. Let f W A2 ! A2 be an affine morphism defined over NK whose extension
to f W P2 Ü P2 is dominant. Assume that either of the following is true:

(a) The map f is algebraically stable.

(b) deg.f / D 2.

Then ¹P 2 A2. NK/ W f̨ .P / D ıf º contains a Zariski dense set of points having disjoint orbits.

Proof. See [24].

A. Proof of Lemma 28

In this section we prove Lemma 28, which we restate for the convenience of the reader:

Lemma (Lemma 28). Let S be a set, let g W S ! S and h W S ! Œ0;1/ be maps, and
let a � 1 and c � 1 be constants. Suppose that for all x 2 S we have

(A.1) h.g.x// � ah.x/C c
p
h.x/:

Then for all x 2 S and all n � 0,

(A.2) h.gn.x// � an
�
h.x/C .2

p
2c/n

p
h.x/

�
:

Proof of Lemma 28. To ease notation, we let  D 2
p
2. The proof is by induction on n.

Inequality (A.2) is trivially true for n D 0, and for n D 1, the desired inequality (A.2) is weaker
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than the assumed estimate (A.1). Suppose now that (A.2) is true for n. Then

h.gnC1.x// D h.gn.g.x///

� an
�
h.g.x//C .c/n

p
h.g.x//

�
from the induction hypothesis

� an
�
ah.x/C c

p
h.x/C .c/n

q
ah.x/C c

p
h.x/

�
from (A.1)

� an
�
ah.x/C c

p
h.x/C .c/n

p
2ach.x/

�
since a; c; h.x/ � 1

D anC1h.x/C
�
anc C .ac/n

p
2ac

�p
h.x/:

Hence

anC1
�
h.x/C .c/nC1

p
h.x/

�
� h.gnC1.x//

�
�
anC1h.x/C .ac/nC1

p
h.x/

�
�
�
anC1h.x/C

�
anc C .ac/n

p
2ac

�p
h.x/

�
D
p
h.x/anc

�
nC1acn � 1 � na1=2cn�1=2

p
2
�

�
p
h.x/anc

�
nC1acn � 1 � nacn

p
2
�

D
p
h.x/anc

�
nacn. �

p
2/ � 1

�
D
p
h.x/anc

�
nacn

p
2 � 1

�
since  D 2

p
2

> 0 since a; c � 1.

This shows that (A.2) is true for nC 1, which completes the proof of the lemma.
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