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COMPLEX HENON MAPPINGS IN C2 AND
FATOU-BIEBERBACH DOMAINS

JOHN ERIK FORNASS anp NESSIM SIBONY

Introduction. For (a, ¢) e C* x C the formula
gz, w) = (22 + ¢ + aw, 2)

defines a biholomorphism in C? whose Jacobian is —a. These are the complex
continuations of the maps studied by Hénon when (z, w) € R? and (g, ¢) € R* x R.
In [H] Hubbard introduced the following terminology. Let

K* = {p; pe C% g*"(p) is a bounded sequence}.

Also let J* =0K* and K=K*nK™. As in [Br] and [H], we define the
functions

G*(z, w) = lim = log* g"(z, |

n—oo 2”

and

G (2, ) = lim  log* g™"(z, W)

n—oo 2”

It was shown in [H], [BS1], that G* are continuous functions in C? plurisub-
harmonic in U* = C?\K* and U~ = C2\K ", respectively. It follows that K* and
K~ are nonpluripolar closed sets.

Define u* = dd° G*. The positive, closed (1, 1) currents u* satisfy the functional
equations

g* “i' =2%1 Ni’ .

It was shown by Bedford and Smillie [BS2] that, if V is an algebraic curve in C2,
then the currents (1/2")[g~"(V)] converge to a constant multiple of u*. Assuming
that g is hyperbolic on J = J* nJ~, Bedford and Smillie showed that the interior
of K* consists of the basins of finitely many sink orbits and that J* has a foliation
F* whose leaves are complex manifolds biholomorphically equivalent to C.
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Hubbard and Oberste-Vorth [HO] have studied the foliations of U* connected to
the functions G*, when |c| is large or when the polynomial z2 + c has an attractive
fixed point and |a| is small enough. Finally, Benedicks-Carleson [BC] have shown
the existence of strange attractors in the real case for some values of parameters.
See also Mora-Viana [MV].

In this paper we continue the study of dynamical properties of polynomial
automorphisms in C2.

In the first section we show that the functions G* are Holder continuous, which
implies estimates for the Hausdorff dimension of K* when the interior of K is
empty. We then show that, if T'is a closed positive (1, 1) current in P2 such that the
point p, =[1:0:0] is not in the support of T, then the currents (1/2")g*"(T)
converge to cu* for some positive constant c. This gives a stronger version of the
result by Bedford-Smillie. The results generalize to the case where g is a finite
composition of Hénon mappings as considered in [FM] and [BS].

Let f be a polynomial automorphism of C2. Suppose f(0) = 0 and that the eigen-
values 4, 4, of f'(0) satisfy | 4,| < 1,|4,| < 1.LetQ = {q; g € C?, lim,,, f"(q) = 0}.
It is well known that Q is biholomorphic to C?; Q is called a Fatou-Bieberbach
domain. If the matrix f’(0) has no resonances, then f can be linearized in Q.

In the second section we consider the case when the eigenvalues 4,, 4, of f'(0)
satisfy the condition that A; = €?™,|4,| < 1, and 0 satisfies a diophantine condition.
Then the domain of linearization Q of f is either C? or biholomorphic to A x C
where A is the unit disc in C. In this later case we call Q a Siegel cylinder.

In the third section we turn to the family

g(z, w) = (2% + ¢ + aw, az).

Such g is just conjugate to (z, w) = (z2 + ¢ + a’w, z). Let P,(z) = z? + c. We first
assume that P*(0) is unbounded. In that case, if a is small enough, then K* have
empty interior and are foliated by complex manifolds, and moreover each leaf is
dense. It then follows that g is hyperbolic on K. We also give estimates for the
Hausdorff dimension of K*.

If P.(z) has in C an attractive orbit of order k, then if a is small enough, g has an
attractive cycle of order k: {p,, ..., p}, the interior of K* consists of k connected
components, and J* is their common boundary. As a consequence, if k > 2, the
boundaries of these Fatou-Bieberbach domains are not topological manifolds. We
also show, when k = 1, that it is generically not a ¢! manifold. We show that J*
has a foliation with dense leaves, and also K~ \{p,, ..., p;} has a foliation with dense
leaves. The foliation of K~ cannot be extended to {p,, ..., p,}. In this case also g
is hyperbolicon J = J* nJ".

When k =1, then J* is a topological manifold, and for |w,| small enough
J* n{w = w,} is a quasicircle. Moreover, J* has Lebesgue measure 0. This property
can also be deduced from the general fact, due to Bowen, that a hyperbolic set with
empty interior has Lebesgue measure zero. We thank the referee for this observation.
We also obtain estimates for the Hausdorff dimension of K™.
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1. Green function and currents. Let
gz, w) = (22 + ¢ + aw, 2)

w2
iz w) = (W, M)

a

Let P2 be the projective space and let p ;. be the points in P2 defined in homogeneous
coordinates by

ps =[1:0:0], p_=1[0:1:0].
We consider the extension § of g from P?\{p_} to P?>\{p_} defined by the formula
glz:w:t] = [22 + ct® + awt : zt : t2].

Similarly, gEl is defined from P?\{p,} to P?\{p,} by

2 2

~ —w* —ct® + zt

g 1[z:w:t]=|:wt:———:t2:|.
a

We observe the important fact that p, is a fixed point for § and (Dg?)(p,) = 0.
Indeed, in the (w, t) coordinates

0 1
Dg(l’+)=<0 0>;

(Dg*)(p+) = 0.

therefore,

We recall a few elementary facts concerning the dynamics of g; see [FM] and [BS1]
for a proof.
There exists R > 0 such that |z| > R implies that either |22 + ¢ + aw| > |z| or
|w| > |z| or both. For such R let
V™ ={(z, w) |z| > R, |z| > |w|}
V* = {(z, w) Iw| > R, |w| > |z|}
V = {(z, w); |z| <R, |w| < R}.

ProrosiTION 1.1 ([FM], [BS1]). For R as above the following holds.
i) K'nV =Zand K- nV* = .
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() gV )V, gWVuV)cV uV;gt(VHc VvV, g'\(VTuV)c VT UV
Ut =C\K* = 209"V ,and U~ = C*\K™ = J,09"V".

(iii) If (z, w) € K%, then lim,_, ,, dist(g%"(z, w), K) = 0.

(iv) Given e > 0, suppose (z,, w,) = g"(z, w). If (z, w) € U™, then for n large enough
[Wal < €|z,

Let U¥ = Ut u (H\p-), where H is the hyperplane at infinity of P2 It is easy to
deduce from Proposition 1.1 that U™ is the domain of attraction of p, for §.
Similarly, U” = U~ U (H\p, ) is the domain of attraction of p_ for g~*.

Let | || denote a norm in C2. The function

1
G (z, w) = lim _log™ [|g"(z, w)ll

n—o0 2”

describes the rate of escape at infinity of g"(z, w). It follows from Proposition 1.1 that

1
G*(z, w) = lim = log™ |z,|.

n—oo 2”
Therefore, G* is pluriharmonic outside K* and clearly
G*(9) = 2G*, G (g7Y)=2G".

In what follows we will give the results only for G*. The adaptation for G~ is easy.

As mentioned in the introduction, G* is plurisubharmonic and continuous on C2
and K* = {(z, w); G*(z, w) = 0}. Moreover, for |w| < R

G*(z, w) = log™ |z| + 0(1);

see [BS1].

THEOREM 1.2. There exists © > 0 such that for every compact X < C? there is a
constant C > 0 such that for (z, w) and (z', w') e X

[G*(z, w) — G*(z', w)| < Cll(z, w) — (2, w)II".

Proof. Let V be as in Proposition 1.1. Property (iii) of Proposition 1.1 implies
that we can assume X = V. Let § > 0 such that G*(z, w) = 35 on g(V)\V = V.
Define

Qs ={(z,weV,d<G*(z,w) < 26}

and let

ow

+
C= sup{l%

’aG“

for (z, w) e Q,,} .
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For (z, w) € V\K" let n € Z be such that
1) 8 < 2"G™*(z, w) < 20.

Clearly, there exists no > 0 such that n > —n,. Assume first that n > 0. Since
G*(g"(z, w)) = 2"G*(z, w), we have

0G* Gt T, | 9G* g,
@ YW=t o

We know that g(W U V™) c Vu V™ and g(V~) c V™. Therefore, g(z, w) € V for
k < n. Let M be a majorant of the derivatives of g on V. Inductively, we have
|0g7/0z] < 2"~*M" and |dg}/ow| < 2""'M" for j = 1, 2. From (2) we deduce

L 0G*
oz

3) 2 (z,w)| < C2M)".

This estimate holds also for —ny, < n <0, increasing C if necessary. Define y =
log 2M/log 2. Relation (3) is equivalent to

oG* 26\ 7!
< n(y —1) < =
- <C2 C( G +>
or
_a_(G+)v < Cy(28) !
0z = ’

With a similar argument for 6/0w(G*)” we get
lgrad(G*)| < C,.

Hence, (G*)" extends to a Lipschitz function on V, and therefore G* is Holder with
exponent T = 1/y = log 2/log2M. 0O

Remarks. (i) It follows that a minorant of 7 is computable as soon as one has
localized K. It is easy to show that v(a, c) = log 2/log(2[supg, |g'|]) is a lower
semicontinuous function of (a, ¢) and that, if t > v(a, ¢), then G* is Holder continuous
of exponent t.

(i) Friedland and Milnor have introduced in [FM] the semigroup ¥ of generalized
Hénon mappings

Y= {g =Ggm° ""°91, gj(z’ W) = (p](z) - 4w, Z)}

where p; is a monic polynomial of degree d; > 2. If g is of degree d := d,d,...d,,
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one defines similarly

1
G*(z, w) = lim —log* |lg"(z, w)|

n—oo d”

whered =d,...d,.

The same proof, with minor changes, shows that G* is Holder continuous.
We develop a consequence of the previous theorem for the Hausdorff dimension
of K*. We first mention the following result from [FM].

PROPOSITION 1.3. Let o denote the Lebesgue measure.

@) If |a] = 1, then 6(K) = a(K*) = (K"~) are finite and equal.
@) If |a| < 1, then 6(K~) = 0 and 6(K*) = 0 or 0.

(iti) If |a| > 1, then 6(K*) = 0 and 6(K™) = 0 or oo.

The proof follows easily from the fact that the Jacobian of g is equal to —a.

COROLLARY 1.4. Let 1 be as in Theorem 1.2. Then K* is of Hausdorff dimension
= 2 + t at every point of K*.

Proof. We recall the following result from [Ca]. Let O be an open set in C and
Y a closed set in O. Let ¢ be a Holder continuous function of order t in O. Assume
@ is harmonic in O\ 'Y with no harmonic extension to O. Then A*(Y) > 0, where A*
denotes the Hausdorff measure of dimension .

Let peJ* and let X be a germ of analytic manifold at p; assume X is not
contained in K*. The restriction of G* to X is harmonic in (G* > 0) U Inty(G*)™(0))
and has no harmonic extension to X. The previous result implies that A"(X n K™) >
0. Suppose p = (24, wo) and fix r > 0. For |a| < 1 let

L, 5= {(Za W) |z—2zo|l <r,w—wo =0z —zo)}-

We have
AN(L,onK*)>0.

Hence,

0< f AN(L, o K*)dA(a).
le| <1
So for 0 < § < r small enough
0< J A(LysnK*Y)dA(®) < CA**(K* n[|z —z| <1, |w — wo| < 7])
lal<1

by a standard geometric inequality, where A denotes the Lebesgue measure in C.
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The result is of interest only when K* (resp. K™) are of empty interior in a
neighborhood of p.

Before proving a convergence result of (1/2")(g")*(T) to u* = dd° G* as mentioned
in the introduction, we recall a few basic facts. See [Le2] for background.

Let d=0+0 and d°=i(0— 0). Define p=dd(|z|*>+|w|?) and o=
dd° log(1 + |z]® + |w|?). Let

& = {v; v plurisubharmonic in C2, v(z, w) < log* ||(z, w)| + O(1) at infinity}.

In [Lel] (see also [Sk1]) Lelong proved the following result.
THeOREM 1.5 ([Lel]). If v € &, then the positive (1.1) current dd° v satisfies

J. dd°v A w< oo,
CZ

Conversely, if T is a closed positive (1, 1) current in C* such that

TAw< o,
C2

then there exists a constant ¢ = 0 and v € & such that T = ¢ dd° v.

We will call minimal a positive closed (1, 1) current T'in C?such that [c. T A © <
o0. Let P? be the projective space of dimension 2 and let H be the hyperplane at
infinity. The current T in P2\ H has bounded mass near H. It follows that T has an
extension T to P%; Tisa positive closed (1, 1) current on P? with zero mass on H.
See [Si] or [Sk] for a discussion of this extension problem. We will identify T and
T.

The currents u* = dd° G* and u~ = dd° G~ are examples of minimal currents.
Since G* is pluriharmonic on V7, it follows that p, ¢ supp u* = J*; we also have
thatp_ésuppu” =J".

THEOREM 1.6. Let T be a positive closed (1, 1) current on P2, Suppose p., ¢ supp T.
Then the sequence of currents T, = (1/2")g"*(T) converges to cu* in C* for some
constant ¢ > 0.

LEMMA 1.7. Let ¢ € &. Fix ¢ > 0 and let
1
C.= {(z, W Iz > EIWI}-

Assume that at infinity in the cone C, we have
o(z, w) = log |z| + 0(1).

Then ¢, = (1/2")@(g") converges in Li(C?) to G*.
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Proof. 1t is clear that the sequence ¢, has a uniform upper bound on any
compact set. It follows from Proposition 1.1 that ¢, converges uniformly on compact
sets of U* to the function G*.

We recall the following result; see [HO, p. 95]. Let v; be a sequence of subharmonic
functions on a domain W of R", which have a uniform upper bound on compact
sets. Then the following holds.

(a) If v; does not converge uniformly on compact sets of w to — oo, then there is
a subsequence v;, which is convergent in Lj,.(W) to a subharmonic function v.

(b) If v; converge in L [, .(W) to a subharmonic function v, then

lim v;(x) < v(x) xeW,

j=o
and for every compact X < W

lim sup v; < supv.
Jj X X

Assume that there is a ball Bin C? and a subsequence n; such that f|¢, — G*| > ¢
for every j. We apply the previous result to the sequence v; = ¢, . Let v be the
plurisubharmonic function such that v, converges to v in L},.(C?). We know that
v=G* on U", and we have to show that v = 0 on K*; this will contradict the
assumption on the sequence ¢, . Property (iv) of Proposition 1.1 implies that v < 0.
By upper semicontinuity it is impossible to have v < 0 at a point of J*; so v = G*
on U* U J*. Suppose there is « > 0 and W = = Int K* such that v < —a on W.
Property (b) implies that for j large enough

(p,,j(z, w) < —g on W.

Let
E"={(z,w) e V; ¢(z, w) < —Fa2"}
and
El, = {z; 0(z, wo) < —4a2"}’

We recall the following result. Let Y be a nonpolar compact set in C. Then Gy({),
the Green function on Y with pole at infinity, is equal to the supremum of the
subharmonic functions v in C, such that v < 0 on Y and v({) = log || + O(1) at
infinity. Moreover, Gy({) = log |{| + y + O(1) with y € R. The logarithmic capacity
of Y is by definition cap(Y) = exp(—7); see [Ts] for reference.

Let X be a compact set in E™ and let X,, = X n {w = w,}. The hypothesis on ¢
implies that ¢(z, w,) + 322" is < 0 on X,, and grows like log |z| + O(1) at infinity.
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Therefore, there is a constant C > 0 such that for every compact X < E™
Cap(X,,,) < Ce™ (11227,

Using a standard inequality between area and capacity (see [Ts]), we get that for
some constant C, > 0 and for |wy| < R

Area(X,,) < C e~ 122",

Fubini’s theorem and the regularity of the Lebesgue measure imply that for a
constant C, > 0

VOI(E™) < Cpe™ @227
But for j large, g"i(W) = V n E"; therefore,
|a|?" vol(W) = vol(g™(W)) < Cpe”@/22%

which is a contradiction. Hence, v = G* and ¢, converge to G* in L1 (C?).

Proof of Theorem 1.6. A theorem of Siu [Siu] implies that the restriction of T
to the hyperplane at infinity H is a multiple of the current of integration on H. Since
p+ ¢ Supp T, it follows that T has no mass on H, hence the restriction of T to C2
is nonzero. Since p, ¢ Supp T, then there exists R; > 0 and ¢ > 0 such that, if
C, = {(z, w); |z| = (1/e)|wl, |z| = R}, then Supp T n C, # &. By Theorem 1.5 on
C?, there exists a constant ¢ > 0 and ¢ € .Z such that dd° ¢ = cT on C2. Since ¢ is
pluriharmonic on C, and has logarithmic growth at infinity, we have that for every
w fixed ¢(z, w) = a(w) log |z| + O(1) at infinity. Pluriharmonicity of ¢ on C, implies
that o is harmonic on C, the growth of ¢, and the fact that T # 0 imply that o is a
nonzero constant. Changing c eventually, we can assume that for w fixed ¢(z, w) =
log |z| + O(1). Lemma 1.7 implies that ¢, = ¢(g")/2" converge in L., to G*. Hence,
(1/2") dd° ¢, = c(1/2")(g")*T converges in the sense of currents to u*.

Remarks. 1. Let T be a positive closed (1, 1) current in P? without mass on H.
For every k € N the current (g*)*T is well defined as a current on C2; it is positive
closed and has minimal growth; hence, it has a positive closed extension as a current
in P2 that we still denote (g*)*T. If, for some k, p, ¢ Supp g**(T), then we also have
that (1/2")g"*(T) converges to cu*. When T is the current of integration on an
algebraic curve S, the condition on the support of g**[S] is always verified for some
k; see [BS2]. So Theorem 1.6 implies the Bedford-Smiliie result, that for an algebraic
variety S the currents (1/2")g"*[S] converge to cu®.

2. A condition on the support of T is needed for Theorem 1.5 to hold. Suppose
T = pu~; then g*u~ = 4u~. Therefore, (1/2")(g")*u~ converges to 0 in the topology
of currents on C2,

3. Theorem 1.6 is easily generalized if we only assume that g € ¥, the semigroup
of finite compositions of Hénon mappings.
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COROLLARY 1.8. If T is a positive closed (1, 1) current in C? such that Supp T <
K* and g*(T) = 2T, then T = cu*, where c is a positive constant.

Proof. Since K™ n V™ = (J, the current T is defined by 0 in a neighborhood of
p+ in P2 So T can be considered as a (1, 1) positive closed current in P2\A, where
A is a compact disc in the hyperplane at infinity H. It follows from [Si, Corollary
1.5] that the trivial extension of T to P? is closed. Therefore, T is a minimal current
and T = (1/2")g"*(T); hence, by Theorem 1.5, T = cu*. O

COROLLARY 1.9. Let T # 0 be a positive closed (1, 1) current in Cx.IfSupp T c
~, then T has a closed extension T to P? and p+_€Supp T. If Supp T = K*, then
T has a closed extension T to P2 and p_ € Supp T.

Proof. We have already seen that under the above assumptions T has a closed
extension to P2, Suppose for example that p, ¢ Supp T and Supp T <= K. Then
T, = (1/2")(g")*T converges to cu*. On the other hand, Supp T, = K~ since
g~ (K™) = K. Therefore, the support of u* should be contained in K = K* n K~
which is impossible since every point of J*, which is not compact, is an essential
singularity for G*;i.e., G* has no pluriharmonic extension in a neighborhood of a
point of K*. The proof when Supp T = K™ is similar. O

COROLLARY 1.10. Let Q be an open set in C? such that g }(Q) = Q. Assume
|det g'| < 1 and that Q contains a fixed point p of g. Let T % 0 be a positive closed
(1, 1) current in P2 with p_ ¢ Supp T. Then Supp T N Q is nonempty.

Proof. Since p_ ¢ Supp T, then the sequence T, = (1/2")(g™")*T converges
to cu_. If Supp TnQ = ¢, then since Q is invariant under g~*, we get that
Supp T, " Q = J for every n, and hence Supp u~ N Q = . But, by Proposition
1.3,J7 = K™ if |det g’| < 1, and we know that Supp of 4~ = J~. Since pe J~, we
have a contradiction. Hence, Supp T n Q is nonempty.

Remarks. 1.1t is enough to assume that K~ n Q is nonempty without assuming
the existence of a fixed point.

2. It follows that Supp T intersects any Fatou-Bieberbach domains and the
Siegel cylinders we will construct in Section 2.

The case where T is the current associated to an algebraic variety and where Q
is a Fatou-Bieberbach domain, has been proved by Bedford and Smillie [BS2].

3. With obvious modifications, Corollaries 1.8, 1.9, and 1.10 are valid for g € ¥,
the semigroup of finite compositions of Hénon mappings.

2. Siegel cylinders. In this section we study a linearization problem around a
fixed point for polynomial automorphisms of C2.

Following [FM], we will say that a polynomial automorphism e is elementary if
it can be written as

e(z, w) = (az + p(w), pw + 7)
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where a, B, ye C, aff #£0, and p is a polynomial. We call E the group of such
automorphisms. A Hénon mapping is an automorphism which has the form

g(z, W) = (p(z) — aw, Z)

withdegp = 2,a #0.

It is proved in [FM] that a polynomial automorphism of C? is either conjugate
to an elementary automorphism or to a composition of a finite number of Hénon
mappings. The dynamics of elementary mappings is quite simple, and we just recall
the following result from [FM].

THEOREM 2.1. Every element of E is E-conjugate to one of the following types of
automorphisms.
i) (z, w) - (az, fw).
(ii) (z, w) = (az,w + 1) or (z, w) = (z + 1, Bw).
(iii) (z, w) = (B%z + w?), pw), wherede N, d > 1.
@iv) (z, w) = (B*(z + w*q(w")), Bw), where B is a primitive rth root of unity, q a
nonconstant polynomial, and u > 0.

Let f be a germ of an automorphism of C2 near the origin, such that f(0) = 0.
Let A = f'(0) and let 4,, 4, be the eigenvalues of A. Assume |4,| < 1,]4,| < 1 and
for all (k,, k,) e N2, |k| > 2,

Aas — 2, #0.

Then f can be linearized near 0. More precisely, there exists a unique germ h of a
biholomorphism of the form

h=1d + O(li(z, w)I*)
such that in a neighborhood of 0 the identity
f oh=hoA
holds. If f is a polynomial automorphism of C2, then h extends to a biholomorphic
map from C? to Q, the basin of attraction of 0. When one of the eigenvalues of A
is of modulus 1, the situation is more delicate, and we refer to the recent survey by

Herman [He] for a discussion and references. We just recall the following result.
Let A4 be a (2, 2) diagonalizable matrix with eigenvalues (4,, 4,). Define

Qm)= inf |4k — 4|

2<[kl<m

where as usual A* = A%A%2if k = (k,, k,), k,, k, are nonnegative integers. The matrix
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A satisfies the Brjuno condition if and only if
(B) Y2 log—l—,—”—< .
m Q(2")
Ol:se.rfve that, if |4,| = 1 and |4,| < 1, then A satisfies the Brjuno condition if and
only i

1

9(2"‘)< 0

(B) Y 27 log

where

Q(m) = inf |2%—1,].

2<ksm

If 2, = €*™ and there are positive constants a, f such that |6 — (p/q)| = a/|q|® for
all p, q € Z, then A, satisfies condition (B’).

THEOREM 2.2. Let f = A + O(||(z, w)||?) be a germ of a biholomorphism of C2.
Assume A is diagonal with eigenvalues A, = e*™, |A,| < 1, which satisfy condition
(B). Then there exists a germ of a biholomorphism in a neighborhood of 0 € C? such
that

foh=hoA.

The above theorem was proved under weaker conditions by Siegel and in general
by Brjuno. See, however, [He] for a more precise discussion and for references.
We want to prove a global result when f is a polynomial automorphism.

THEOREM 2.3. Let f be a polynomial automorphism of C2. Suppose f(0) = 0 and
that A = f’(0) has two eigenvalues A, = e*™™, |4,| < 1, where A, satisfies the Brjuno
condition (B'). Then either f is conjugate to A in the group E or there exists a
biholomorphic map h: A x C — Q, where Q is the connected component of int(K™)
containing 0 and A is the unit disc in C such that

foh=hoA.

Proof. Suppose f is conjugate to an elementary mapping. We use the Friedland
Milnor classification given in Theorem 2.1. Case (i) is clear. In case (ii) there is no
fixed point. In cases (iii) and (iv) the eigenvalues at the fixed points do not satisfy
the hypothesis of Theorem 2.3.

We now assume that f is conjugate to a composition of a finite number of Hénon
mappings. Conjugating with a translation, we can still assume that f(0) = 0 and
that Proposition 1.1 holds for f. Brjuno’s theorem implies the existence of a germ
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of a biholomorphism h in a neighborhood of 0 such that
foh=hoA.

We assume that A is in diagonal form and A(z, w) = (4,2, 1, w).

Let M be a germ of a complex manifold of dimension 1 around 0 such that, on
M, fis conjugate to a rotation. More precisely, for some r > 0, M = {h((, 0), (| < r}.
Since f" is a normal family on Q, we can choose a subsequence n, with the property
that f™|,, converges to Id|,,. We also assume that "< converges on compact sets
of Q.

LEMMA 24. Let F = lim f™. Define
M ={qeQF(g)=q}.
Let M be the connected component of M containing 0. Then M is a closed complex
manifold biholomorphic to a disc.

Proof. In a neighborhood of 0 we have
f"h(z, w) = h(e*"™0z, 13w).
Therefore, we also have that
(1) Fh(z, w) = h(z, 0),

and hence F o F = F in a neighborhood of 0.

From (1) it follows that F’ has at most rank one in ; hence, I — F'(z, w) has at
least rank one. Therefore, .# is a complex manifold of dimension 1 or 0. So M is a
complex manifold of dimension 1 since M = M. Since f(M)= M, by analytic
continuation for f and f~! we have that f is an automorphism of M which is
conjugate to an irrational rotation. Hence, the group generated by f;; is infinite

and has a fixed point; so M is biholomorphic to the unit disc A since McK. 0O

Let = A-—»!'V! be a biholomorphic map from A onto M with w(0) = 0. For
0<r<llet M, =n(A0,r)).

LEMMA 2.5. Fix r < 1. The open set Q, = F “I(M,) can be exhausted by biholo-
morphic images of the bidisc.

Proof of Lemma 2.5. Letn = (n,, n,). Choose holomorphic functions h, h, on
A such that

omn,

0
e hatts) = g—f(tl)hl(tl) =1.

This is possible since dx, /dt,, dn,/0t, do not vanish simultaneously on A. Consider
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the map H defined on A x C as
H(ty, t;) = (m(t1) + tohy (), ma(t) + £3h5(24)).

For every r’ < 1 there exists § > 0 such that H is a biholomorphism from A, x A,
onto its image; hence, M,. has a basis of neighborhoods biholomorphic to a bidisc.
As a consequence, there exists a holomorphic function ¢ defined on a neighborhood

of M, and vanishing to first order exactly on M.

For ¢ small enough let D* = Q, N {|¢| < &}. For ¢ small enough define ®°(z, w) =
(n! o F(z, w), (1/€)@(z, w)). There exists &, > 0 such that, for 0 <& < ¢g,, ®*is a
biholomorphism from D® to A, x A.

On M, f is conjugate to a rotation; hence, f(Q,) =Q,. Since f™ converges
uniformly on compact sets to F, it follows that for k large enough f"(D°) = D?; so
there exists a subsequence n, such that f~"(D%) 7 Q,.

LEMMA 2:9. The connected component Q of Int K* containing 0 is equal to
Q, = FY{(M).

Proof of Lemma 2.6. It is not a priori clear that F(Q) < Q although F(Q) < Q.
However, the local images of F on Q are one-dimensional varieties. Hence, we can
abstractly think of F(Q) as a connected normal complex variety M* over C?
containing M. We know that f(M) = M; so f extends to M*, f(M*) = M*. As in
Lemma 2.5, we prove that M* is biholomorphic to a disc and that f is conjugate
to a rotation on M*. Suppose q € M* is on the boundary of M in M*. We can
construct a disc M, containing 0 € M and g € M* such that M, has a neighborhood
U, biholomorphic to a bidisc; this latter fact is proved as in Lemma 26.0nU,, f
is conjugate to

f(z, w) = (e2™z + O(w), O(w)).

At every point of (w = 0) the matrix (f") has an eigenvalue equal to >, Since
|Det f'| = a < 1, the other eigenvalue decreases geometrically to 0. Therefore, there
is a neighborhood U, of M, such that the sequence f” is normal on U,, and hence
qgeQ. 0O

End of proof of Theorem 2.3. From Lemma 2.6 it follows that Q = Q, can be
exhausted by biholomorphic images of polydiscs. Since F is a nonconstant bounded
holomorphic map on €, it follows that the infinitesimal Kobayashi metric of Q is
not identically 0. A theorem of [ FS] implies that in this situation Q is biholomorphic
toA x C orto A% But f € Aut Q has a fixed point, and f™ converges to a degenerate
mapping; therefore, Q is not biholomorphic to A2

Since F(Q) = M, F is a retraction on M and F o F = Id. The biholomorphism
®:Q - A x C constructed in [FS] is such that ®(M) = A x {0}; ie., the first
component @, satisfies ®, ="' o F.

If y = ®o fod !, then ¥ is a biholomorphic map on A x C, Y(z, 0) = (4,2, 0),
and therefore Y (z, w) = (4, z, A, we"@), where u is a holomorphic function on A with
u(0) =
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For a holomorphic function v on A with v(0) = 0, define
T,(z, w) = (z, e*®w).
We have to determine v such that
(*) T, oy o Ty(z, w) = (412, A, W).
Equation (*) is equivalent to
u(z) + v(z) — v(4,2) = 0.

Let u(z) = Y ,»; @,2" and v(z) = ), b,z". Equation (*) is satisfied if and only if
foreveryn > 1

a, + b,(1 —A})=0;
ie.,

a

b=y

Since A, satisfies the Brjuno condition, then given ¢ > 0, for n large enough,

_1
121 = 1]

S esn.

Therefore, the series Y >, b,z" has a radius of convergence at least equalto 1. O

It should be observed that the component Q is a Runge domain. This is indeed
a general fact.

PROPOSITION 2.7. Let f €% be a polynomial automorphism of C> If w is a
component of Int K*, then w is a Runge domain.

Proof. Recall that
K* = {q; f"(g) is bounded} .
Recall that a domain of holomorphy is Runge if and only if every holomorphic

function in U is uniformly approximable on compact sets by polynomials. If X is
a compact set in C*, let X denote the polynomial hull of X i.e.,

X= {C € CX, |p(0)| < sup |p(2)| for every polynomial p} .
zeX
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Equivalently, U is Runge if and only if, for every compact X < U, X = U.
If X is a compact in C¥, let

= {¢ e C% dist((, X) <1}

Observe that (X ), X Indeed, let p be a polynomial and n e C¥, ||n|| < r. If{ e X,
then

P +n)l < sup Ip(z + 1) < sup Ip|

which implies that { + y € X,.

Suppose X g < Int K*. Let r > 0 such that X, < Int K*. It follows from Propo-
sition 1.1 that X, = K*. Since (X), = X,, we have X < Int K*. It is well known that
connected components of a Runge open set are Runge. O

Problem. Let f be a polynomial automorphism of C* such that f(0) = 0 and the
eigenvalues (4;) of the matrix A = f7(0) satisfy |4;| < 1,i=1, ..., k. Let Q be the
maximal connected open set containing 0 on which the sequence f” is normal.
Assume f is linearizable around 0. Is Q biholomorphic to @ x C*~/, where w is a
bounded Reinhardt domain in C’ for some #,0 < ¢ < k? When all 4; satisfy | 4;| = 1
and f is linearizable around 0, Herman [He] asks for a description of the Reinhardt
domains that one can obtain in this way.

3. Structure of K* and K~ for small a. Let P be a monic polynomial in C of
degree at least two. Recall that a point z belongs to the Julia set J(P) if and only if
the sequence f" (considered as maps to P!)is not a normal family in a neighborhood
of z. The polynomial P is hyperbolic if and only if all the critical points of P are
attracted by attractive cycles (including o0). Equivalently, P is hyperbolic if and
only if there are two constants C > 0, y > 1, such that for every z € J(P)

|P"(2)] = Cy".

It is standard to find a Riemannian smooth metric on C with the property that in
the new metric there is a y > 1 such that for z € J(P)

[P'(2)| > 7.

In what follows, we will assume that such a metric has been chosen.
In this paragraph we study the dynamics of maps

ooz, W) = (2% + ¢ + aw, az)

assuming that the polynomial P,(z) = z2 + c is hyperbolic and that a is small
enough. The idea is as in Benedicks-Carleson [BC] to consider g as a perturbation
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of the degenerate map
go..(z, W) = (2% + ¢, 0).
Let J(c) denote the Julia set of the polynomial P,. Let .# be the Mandelbrot set
M = {c; J(c) is connected} .

It is well known that, for ¢ € C\.#, J(c) is a Cantor set and that the polynomial P,
is hyperbolic; see [De], [Do]. This happens in particular if |c| > 2.

It is however not known whether for ¢ € Int(.#) the polynomial P, is hyperbolic.
We will study separately the case where ¢ € C\.# and the case where ¢ belongs to
a hyperbolic component of Int .#.

We recall the following definition of hyperbolicity; see [Sh]. Let f be a diffeo-
morphism of a smooth manifold N. Let A be a closed invariant set under f. Then
f is hyperbolic on A if there is a continuous invariant splitting for f’; i.e., there are
invariant continuous subbundles E; and E, such that TN, = E;® E,, and there is
a metric on N, and constants ¢ > 0, 4 > 1, such that in this metric

C

1 Yed < 55

1"l > €A™

THEOREM 3.1. Let ¢ € C\A. Then there exists ay(c) > 0 such that, if |a| < ay(c)
and g(z, w) = (22 + ¢ + aw, az), then the sets K* and K~ associated to g have the
following structure.

(i) K* and K~ are foliated by complex manifolds which intersect transversally.
Every leaf in the foliation F* of K* (resp. in the foliation #~ of K~) is dense
in K* (resp. in K~) and is biholomorphic to C.

(i) If K = K* n K™, then g is hyperbolic on K and K is a Cantor set.

(ili) The Hausdorff dimension h, .of K* has the following properties: h, (K*) > 2

and for any fixed a lim,_,, h, (K*) = 2. We also have the inequalities

log 2
V< _log2
2<h, (KT)<2+ log 1/ja|

for the Hausdorff dimension of K~.

In the proof of Theorem 3.1 we basically deal with the horseshoe construction.
We recall the following facts from the dynamics of P.(z) = z? + ¢. See [De] or
[Do].

LEMMA 3.2. Suppose c ¢ M. There exist 3 real analytic simple closed curves y,,
V2, V3 bounding D, D,, D3 with the following properties.
(i) DynD, =
(i) Dy = D3, D, = Dy;
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(iii) 0e D;\D, UD,, c¢ Ds;
(iv) P. maps each D; biholomorphically to D5, i = 1,2;
(v) If z ¢ Dy, then P.(z) ¢ D4 and P}(z) — 00 as n — 0.

For any sequence 4 = (iy, ..., i,, ...) where i;e {1, 2}, let 4, = (i, ..., i,). The
domains D, and the curves y, = 0D, are defined inductively using the following
relations: ;. ;. <Dy . and F'(y..i.) =7, Let U,= UI).I=nD).' Then
U,+, © <« U,, n U, has empty interior, and J(c) is given by

Je)=(U,.

Since P, is hyperbolic, we know as above that there is Riemannian metric on C
and a constant y > 1 such that

|P(z)| >y onlJ(c).
By continuity there exists an integer M > 1 so that
|P/(z)| >y onUy.
We fix R > 1 and R > |c| such that D, = A(0, R). Let
D =D; x {|{w| <R}.
We will make restrictions on a of the type |a| < a(c); the conjunction of all restrictions

will give the constant aq(c) > 0 of the theorem.

LeMMA 3.3. There exists a(c) > 0 such that, if 0 < |a| < a(c), the following holds.

(i) If (z,w)e D and for some n > 1, g*(z, w) ¢ D, then g"**(z, w) ¢ D for every
k> 1 and g¥(z, w) » 0 as k —» .

(i) If (z, w) € K™, then there exists n, such that g"(z, w) € D for every n > n,,.

Proof. (i)If|w| < Rand z ¢ D,,then z2 + ¢ + awisjust a perturbation of z2 + c;
therefore, g,(z, w) ¢ D, and g%(z, w) = o0 as k — oo.

(ii) Suppose (z,w)eC? |w| >R, and |z|>|w|, if a is small enough,
|22 + ¢ + aw| > |z| and clearly (z, w) ¢ K*.

Let (z9, wo) € K* and (z,, w,) = g"(z¢, W,) be the forward orbit. It follows from
the previous observation that, if |w,| > R, we must have |z,| < |w,|. Hence,

[War1] = laz,]| < lal|w,|.

Therefore, for some ny, |w,,| < R, and since (z,,, w,,) € K*, z, € D;. Using (i), we
see that g"(z, wye Dforalln >n,. O

The main ingredient in the proof of Theorem 3.1 is the following estimate on the
derivative of g".
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PROPOSITION 3.4. Fix R > 1. There are constants C,, C,>0, A>1, and

a(c, R) > 0 such that the following holds. 3

Suppose (z;, w;), 0 < j < n, is an orbit in D and let
ny —_— an bn

(9"Y (2o, wo) = <Cn d,,) .

|da| < 3C;alla,|.

Then
Icnl s C2 Ia‘ |an|’

p—

|an| 2 Clln, |bn| < ﬁlanla
We prove at first a lemma.
LEMMA 3.5. Given R » 1, let (1, «) € C2 with |a| < R. There are constants C(R) >

0, A > 1, such that the following holds. Assume (z;, w;)e D for i =0, ..., k, where
(z;, w;) = 9(zj—1, Wj—_y). Let k = m + r withr < M + 2 and suppose z, ..., 2, € Uy,.

Let
(9" 20> Wo) = (9") (Zms Wm)9' @m—15 Wim—1)---9'(Z0s Wo) = Aps1Am--- Ay .

Denote
(xl’ yl) = A1(17 a)! (xz, y2) = Az(xl’ yl)’ LR ] (xm+1’ ym+1) = Am+1(xms ym)

Then

(@) for 1 <j<m—1,1x4.] > Alx| and |y;| < 2C(R)lal x| < |x;l; and
(ii) there exists 6 > 0 such that

|xm+1| > %(25)"3(3,,,'

and
4C|a| -
|Ym+1] < —Q_(gj;—lxm+1| < C(R)|al|Xm+1] < 1Xm1l-

Proof. Supposem = 0;thenk =r
220...22,._1 +f1 f2]

(9") (2o, Wo) = [ 1, fa

where | f;| < Clal. Since (z;, w;) € D, there is a constant J > 0 such that |z;]| > ¢ if

i <r— 1; hence,
= (20).

r-1
[1 2z
j=0
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We then have

(9" (2o, Wo)(i) =((220---22,1 + f1) + f2ot, f3 + fa0) = (x1, y1)-

If |a| < a(C, R) is small enough, we have
x| > (26 — Cla| — Cla| R > 28y — 2C|a| R > §(26)

and

4Cla|R
20y

il < Clal + Cla|R < 2CJa|]R < R < EARNENE

Suppose m > 1. Then
(*1, 1) = (220 + ax, a).

On C we use the metric with respect to which | P/(z)| > y on U,,. The first part can
be reinterpreted with this metric as well. We have

1
%, = 2| o|< I2al|2|:||> > z—;— = 1 if a is small enough,

ly1l < Clal < C'lal|x,].

For 1 < j < m we have by induction since z;_; € U), and

>> x4

For (X,,+1> Ym+1) the estimate is just as in the case m =0, i€, (Xps1> Yms1) =
(2zm-+-2Zmir-1 + f1)Xm + [2Vms [3Xm + foYm), Where| f;| < C|alfor some constant
C. Recall that r < M + 2; hence,

(), ¥j) = 22—y Xj—y + ayj—y, aX;_;)

[x;| = 2|zj—1”xj—1i<

lyil < Clallx;—1| < Clal|x].

y_]l
2z;_1 X,

1
Xms1] > (20) x| = 2C|al|xn| = 5(20) [xm|

4Cla|

(26), I m+1| D

|Ym+1| < 2C]al x| <
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Proof of Proposition 3.4. We assume that a(c) is small enough such that, if

z;e Uyfori<mandz,,,,...,z, € D, by the choice of a(c) we have thatn — m <
M + 2. We have

ny l_anbnl_.a”b”a—x”
(g ) (ZO’ w0)<a> - (Cn d”) (d) - (C,, dna) B (yn) .

We apply Lemma 3.5 to the vector (1, 0). It follows that there is a constant C, such
that

|Xa| = A"3Q20) = C, A"

Since for || < R, a, + b,a # 0,

1
bn <= a,|.
|bal RI I
Next, y, = ¢, + d,a. If o = 0, then |¢,| = |y,| < Cgla||x,| < Cglalla,|. If a = —1,

then
dal < lcp —dyl + [eal = lyal + lcal
< |yal + Cilalla,| < Cglallx,| + Cglalla,|
< Cgla|[2]a,| + 1b,|] < 3Cglalla,|. O
We now introduce some special neighborhoods of K* n D. For each n let
S, = {(z, w) € D; g"(z, w) € D}.

Then clearly, S, > S, and ), S, = K* n D. The following lemma gives a descrip-
tion of S,.

Lemma 3.6. (i) For eachn
Sn = {(29 W), le < R: g'll(z’ W) € D3}

(ii) For each fixed|w| <R,S,,,, = {z; (z, w) € S,} consists of 2" smoothly bounded
simply connected regions. Moreover, for every (z,, w,o) € S, there exists a unique holo-
morphic function z = @(w), |w| < R, with z, = @(w,) and g}(@(w), w) = g1(2o, Wo)-
There is a constant Cy such that the diameter of each component of S, ,, is < C3/A".

(ii) Each S, has 2" connected components, S; , A, = (iy,...,1,), i€ {1,2}, and
Dn §,.] < S,,,....i,; moreover, .ST,I” N S};‘ = Fif A, # 4.

O R TN
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Proof. We assume that a is sufficiently small in order that all the previous results
hold. Assertion (i) follows easily from Lemma 3.3.
(i) Let r be a defining function for D, i.e.,
Dy ={z;zeC,r(z) < 0}
and Vr # 0 on 0D;. We have
0S, N D = {(z, w) € D; r(g}(z, w)) = 0}.

Let (a,, b,) = ((3¢" /92), (39" /ow)). We know that |b,| < (1/R)|a,|; therefore,

—rogl|<= irog” .
ow ' R|oz !

Also, V(r o g7) # 0 on 35, n D since g" is a biholomorphism. It follows that S, has
a real analytic boundary and is almost vertical if R is large enough (which we can
assume if a is small enough). Moreover, each S, is foliated by complex manifolds
given by g7(z, w) = c*. Each such level set is a graph over the w axis (i.e. z = ¢(w))
since |b,| < (1/R)|a,|. It follows also that S, consists of finitely many components
and that the number of components is independent of w; indeed, {w = w,} is
transverse to 08,.

Let |l <R and A? = {(z, B), ze D,;}. Let Af...A4, be the components of
A? N S,. We will prove inductively that #(n) = 2", that g7|A? is biholomorphic
onto D,, and that S, has 2" components.

For n =1 we know that §; has 2 components and that /(1) = 2 and g, are
blholomorphlsms onto D;. Suppose the assertion holds for n. Then g"(A%), i < 2",
is a graph over D, given by

w = 0f(2) = g3((91) " & B), B).

Proposition 3.4 implies the existence of a constant C such that

"3"" @|<Clal.

Therefore, if a is small enough, the graph w = @#(z) intersects S, transversally (i.e.,
S; n {w = ¢f(z)} has two components); so the assertion holds for n + 1.

Since |dg?/0z| = C, A" on A%, it follows that the diameter of Af is smaller than
C,/A", where C, is independent of n and of || < R. This proves (ii) and (iii) is
immediate. O

We now prove some of the assertions of Theorem 3.1 concerning K*. Sincz
K* nD = ()8, and each S, is foliated by “vertical” complex manifolds and since
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the diameter of each component of S, ,, goes to zero, it follows that K* n D is
foliated by complex manifolds and that the leaves are of the form z = ¢(w) with
l@'(W)| < 1/R.OnK* n D we have symbolic dynamics. To a leaf L in D we associate
the sequence {j;}i, if L = (\,S;,...;,» Or equivalently, g"(L) = §;_,,. Two leaves L,
L' in D are in the same global leaf ifand only if j; # j; for only finitely many i’s. The
action of g on the space of leaves is conjugate to the shift operator on the sequences
{Jji}. It follows that each leaf is dense in K*.

We know that, for |f| <R, S# has 2" components S4, |4,/ =n, and that
diam(S4 ) < C/A" Therefore, K; = K* n {w = p} has a Hausdorff dimension less
than log 2/log A. Since 4 is arbitrarily large when c is large, it follows that, for a
fixed, lim,.. , h, ((K.) = 0. The fact that h, ,(K*) > 2 is the content of Corollary 1.4.

We now study K~.

LEMMA 3.7. There is a(c) > 0 such that, if |a| < a(c), the following holds. If
(z, w) € K™, there exists n, such that, for n = ny, g~"(z, w) € D.

Proof. Recall that g~1(z, w) = ((W/a), (z/a) — (c/a) — (w?/a®)). Suppose first that
|w| = R and |z| < |w|. Let (z, w') = g7*(z, w). We have

1 [|w]? 1 [|w]? [w|?
7 >_ _ — — >—~ M 2
[w'| Ial( p lel IZI> Ial( p —|w I) 2ap > (wl
if a is small enough, and
w [w|?
N =|— s < ’
|z ‘a’ 21al [w’|

So inductively, g™"(z, w) = o0; hence,
K™ A {(z w) Iwl > Rand |z| < |wl} = &

Let A = {(z, w); |z] = R and |w| < |z|} U A%(0, R)\D. If (z, w) € A, we have seen
in Lemma 3.3 that g"(z, w) — oo uniformly on A; therefore, if (z, w) € K, necessarily
there is an n, such that g~"(z, w) € D. So we can assume (z, w) € D. If (z', w') =
g~ !(z, w), then necessarily z’ € D5, and if |w’| > R, then |z’| < |w’| and g7"(z’, w') =
.80 (z,w)eD. O

LemMA 3.8. Let T, = g"(S,) and T, = g"(S;) for |Al=n.Then T, _; < T, ;
and 8T, ., N 0T, = 8D, x {|w| < R}. We also have K~ nD =, T,.

Proof. We have

(g")-l(’l}l"'jn+l) = g(Sjl~~jn+l) cS cedn+t (g ) 1( ~Jn+l)'

Therefore, T, ;. < T, ;... and consequently T,,, < T,. Assume (z, w) € 0T, 4; N
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{(z, w); z€ D3}. Then (z', w') = g~"*V(z, w) satisfies |w’| = R; hence, (z", w") =
g(z', w') = g™"(z, w) satisfies |[w"| < R, and then (z, w) € T,.

Suppose (z, w) € K~ n D. Lemma 3.7 implies that, for n > 1, g7"(z, w) € D. Hence,
g™"(z, w) € S,, which means that for all n > 1, (z, w) € T,. Assume that (z, w) € [ T,.
Then, for all n, g™"(z, w) € S, < D; so (9~ "(z, w)) is bounded. Hence, (z, w) € K™ n D.

a

For each 4, S, is foliated by the horizontal sections S; N (w = w,). The image
under g" of each such leaf is a graph of the form w = ¢(z). This was shown in the
proof of Lemma 3.6. To prove that the limit of these foliations is a foliation of
K~ n D, we only need to show that for fixed o the diameter of T; N {z = a} ap-
proaches zero when || — 0.

Consider the foliation of S; N D and let L = {(z, w), z = ¢(w), |[w| < R} be a leaf.
The tangent to L is almost vertical if R is large enough. We also know that g"(L) is
vertical and that g*(L), 1 < k < n, is almost vertical (Lemma 3.5). But

oo <[ J(177)- (M)

In particular, |2z¢'(w) + a| < |a¢’(w)| since the vector is close to vertical and the
second component shrinks by the factor |ag’(w)|. Similarly, the vertical vector
g" (p(w), w)(¢'(w), 1) has length smaller than C|al", where C is a fixed constant. So
the diameter of T, N (z = a) is at most C|a|". It follows that the Hausdorff dimension
of (DN K™)n(z = B) = K is less than log 2/log (1/|a|), and we know it is positive
because the function G~ is Holder continuous and has a nonremovable singularity
on Kg.

Using the same symbolic dynamics argument as for K*, we can show that each
leaf is dense in K™

We prove that each global leaf is biholomorphic to C. Suppose L is a leaf of K*.
If y is a closed curve in L, g"(y) can be contracted in g"(L) n D for large n. Hence,
L is biholomorphic to the unit disc or C. Assume there is a nonconstant holomorphic
function on L, |h| < 1, h(p) = 0, h(q) = 4, for some p, q € L. Pulling the function
forward to g"(L) n D and observing that ||g"(p) — g"(q)| — O and |g5(p)| < |a| R, we
obtain a contradiction to the Schwarz lemma. So L is biholomorphic to C. The
argument for K~ is quite similar.

To complete the proof of Theorem 3.1 we only need to prove that g is hyperbolic
onK=K*"nK".

For g € K let E, be the tangent plane to the leaf in K~ through g and let E; be
the tangent plane of the leaf in K* through g. Since K < D, then E, and E; meet
transversally; so

TC*=E,®E,,

and g'(q)E? = E?9, g'(q)E? = E?9, with obvious notations. The leaves of K* n D
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are almost vertical, and we have seen that
I(g"Ylg,| < Clal", n>1.

For E, we use the estimate of Proposition 3.4, namely,

@rem = .

Now a, dominates the other terms and |a,| = CA" with A > 1. Therefore,
(g™ lg,| = C'A"

for some positive constant C'.
Itis also clear that the subbundles E, and E, vary continuously since the foliations
on K* and K~ are uniform limits of smooth foliations on S, and T,, respectively.

Remarks. 1. Suppose P is a polynomial in C such that all critical points of P are
in the basin of attraction of co. Then P is a hyperbolic polynomial, and J(P) is a
Cantor set. We can show that there is a constant a,(P) > 0 such that for |a| < a,(P)
the Hénon map

g(z, w) = (P(2) + aw, az)

is hyperbolic on K = K* n K~ and such that K* and K~ are foliated by dense
leaves which are biholomorphic to C.

2. In [BS1] Bedford and Smillie show that, when g is hyperbolic on K, then J*
and J~ have foliations by dense leaves biholomorphic to C.

We consider now the case where the Hénon mapping has an attractive cycle in C2.

Let w be an open set in C. We will assume in what follows, that for every c € @
the polynomial P,(z) = z% + ¢ has an attractive cycle of order k: for example, if
|c] <%, P.(2) has an attractive fixed point, i.c., k = 1. Also, if |c — 1| < %, P.(z) has
an attractive cycle of order 2.

It is a result due to Fatou (see [Do]) that in this case P, has no other attractive
or indifferent cycle. Since the critical point is in the immediate basin of attraction
of the cycle, it follows that P, is hyperbolic on J(c). Choose a Riemannian metric on
C such that there is a constant y > 1 with the property that

@) >y

if z belongs to a neighborhood U of the Julia set J(c) of P,. Let U,, ..., U, be the
immediate basins of attraction of z,,. . ., z,. Without loss of generality we can assume
that 0 € U,. Let K, be the filled-in Julia set of P,; i.e,, z € K, if and only if P’(z)is a
bounded sequence. It is a result due to Sullivan [Su] that any other component V
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of K \J(c) is preperiodic to {U,, ..., U,};ie,forsomem >1andj, 1 <j<k
P™V U,

is a biholomorphic map.
We first fix some notations for the dynamics of P.. Choose simple closed real
analytic curves y,, ..., Jx ¥ in U with the following properties.
(i) yo bounds a domain D, > K_, and we can assume P, }(D,) = = D,,.
(ii) y; bounds a domain D;cc U; for 1 <j<k and for 1 <j<k, y;0
P (Uj41\Dj+1) = &, 0€ D;.
(iii) y; bounds a domain D; such that D, = = D; = U, and y; " P (U,\D,) = &.

The following theorem gives a description of K* and K~ for the Hénon maps
associated to the polynomial P,.

THEOREM 3.9. Suppose c € w and let
g(z, w) = (2% + ¢ + aw, az).

Fix R » 1. There exists a positive constant ay(c, R) such that for 0 < |a| < aq(c, R)
the following properties hold.

(i) g has an attractive cycle of order k,{p,, ..., p.}, and the interior of K* consists
of k connected components, each of which is the immediate basin of attraction
of oneof py, ..., Px-

(i) J* is foliated by complex manifolds, biholomorphic to C, which are dense in
J*. The k basins have the same boundary J*.

(iii) If |B| <R, then K5 = K* n{w = B} is a connected compact set. If k = 1,
then 0(Ky) is of Lebesgue measure zero, and consequently, J* is of measure
zero in C2.

(iv) K™ \{py»..., P} is also foliated by complex manifolds, biholomorphic to C,
and leaves are dense in K™. All leaves cluster at each p;, but no leaf has an
extension as a complex variety through any p;.

(v) The Hausdorff dimension of K~ satisfies the inequalities

log 2
log 1/]al’

2<h, (K)<2+

We will decompose the proof in a series of lemmas. We fix R > 1 such that
K, = = D(0, R). We will have various restrictions on a of the type |a| < aq(c, R), and
we will always consider that the restrictions on a introduced in previous lemmas
are satisfied.

LeEMMA 3.10. There exists ap > 0 such that for 0 < |a| < a, the map

g(z, w) = (22 + ¢ + aw, az)
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has an attractive cycle of order k, {p,, ..., p;}, and D; x {|w| < R} is contained in
the immediate basin of p;.

Proof. We have
gk(z’ W) = (P:‘(Z) + P(Z, W)’ Q(Z’ W)) = G(Za w, a, C)

where all the coefficients of P and Q contain positive powers of a. The rank of the
derivative of G(z, w, a, ¢) — (z, w) at z = z,, w = 0, a = 0 is two. So by the implicit
function theorem there are two holomorphic functions Z(a), W(a) defined for
lal < ay such that

G(Z(a), W(a), a, ¢) = (Z(a), W(a)).

We denote, for 1 <j <k, p; = g’ "'(Z(a), W(a)). We can assume that, for |a| < a,,
|G'(z,w,a,c)] <1ona polydlsc A%((Z(0), W(0)); ). If (z, w) e D x {|w| < R} and
if a is small enough, then G’(z, w, a, c) € A%(Z(0), W(0), 5) for a fixed ¢/ large
enough, and therefore G"(z, w, a, c) converges to (Z(a), W(a)). The same applies on
D; x {|lw|<R},j=2,...,k

LemMA 3.11.  Let (z, w) € K. Then there exists n, such that, for n > no, g"((z, w)) €
Doy x {|w| < R} =: D.If (z, w) € K* N D, theng(z, w) € D. If (z, w) € K™, there exists
nq such that, for n = ng, g~"(z, w) € D.

The proof is very similar to Lemma 3.3 and Lemma 3.7, and we omit it.
Let 9 := Dy\| J¥=; D;. We want to estimate the derivative (¢") (2o, o) if the orbit
(2, W) = g(z;-1, W), 1 < i< m,staysin

=9 x {|w| <R}.

LEMMA 3.12.  Assume (z;, w;) = g(2;—y, W;—1), 0 < 1 < n, is in %U. Given R>»1,let
(1, @) € C2 with |a| < R. Denote (xj ¥;) = (¢°Y (zo» wo)(l ®), 1 <j < n. There exists
ao(c, R) > 0.and a constant C > 0, both independent of n, such that, if |a| < ay(c, R),
then

) Iyl < 2Cglallx| <1x,, and

(i) |x;l > (1/Cr)A%, A= (v + 1)/2.

The proof is like the proof of Lemma 3.5, and we omit it.
As a consequence, we have the following estimate for (g").

PROPOSITION 3.13. Fix R » 1. There exists ae(c, R) > 0 and positive constants
C:, C;, A > 1 such that, if (z;, w;), 0 < j < nis an orbit in U and

b
(") 20, Wo) = [‘c’ d:],

then |a,| > C,2" |b,| < (1/R)la,), lc,| < C;lalla,l, 14,] < C;lalla,l.
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Now we define
U, ={(z,W)eU; g"(z, W) e U}.

The following lemma can be deduced from the estimate on (g") in the previous
proposition.

LEMMA 3.14.  Each %, has a real analytic boundary in {|w| < R}, 0%, is almost
vertical, and %, is foliated by almost vertical complex discs of the form z = ¢(w),
|w| < R, such that g'{(@(w), w) is constant for |w| < R.

We remark that, if we choose R very large, then a(c, R) is very small, and then
the leaves z = ¢@(w) are close to vertical; i.e., |¢'| « 1.

LemMa 3.15. Fix|B| <R. Fix

Upp = {z; (2, B) e U,}.

Then 4, ; is a connected domain with smooth real analytic boundary. The number of
holes in %, , is independent of B and is equal to k + (2" — 1)(k — 1). They are
hierarchically ordered according to their bounding curves

{Vs.x, LR} ys,k}’ {y’ll,l’ (RS y'lt,k—1}9 {y;,l’ ARRE] 7;,2(k—1)}’ AR {'yr:l,l’ ARRE Y;::z"‘l(k—l)}

and with outer boundary y". Furthermore, y !

#7" always surrounds y!; for i < n while
y" surrounds y"*1.

Proof. The proof is by induction on n. Observe first that %, = % has vertical
boundary in (C x |w| < R) and that %, ; has k holes for every | 8| < R. The lemma
is clear if we let f = 0 and a = 0. Recall that we have assumed that 0, the critical
point of P,(z), belongs to D, = U,. The choice of D, ..., D, was such that P,"!(2)
contains holes slightly larger than D, ..., D,. Also, P,}(2) has (k — 1) new holes
of K \J(c)since P,is 2 to 1. Hence, if a is small enough, %, n {w = B} is also a simply
connected domain minus holes slightly larger than D, ..., D, and (k — 1) new holes.

Assume the lemma is true for n. Let || < R. The map g" maps %, ,; properly to
2 x {|w| < R} and ¢}0%, , = 02. So g}: U, s — 2 is a proper holomorphic map
which is an unbranched covering of degree 2". The estimate of the derivative of g"
in Proposition 3.13 implies that g"(U, z) cuts 0%, transversally; hence, for U, ., 4
we obtain 2"(k — 1) extra holes from the (k — 1) extra holes of %;. We list the

boundary curves of these new holes as {71 1, ..., Vo] ynge—1)}- O

LEMMA 3.16.  For |Bl < R, (5 = (Va1 Umsa?™ = Jj is connected and has
empty interior.

Proof. Recall that there exists 4 > 1 such that |(g])| > CA" on %, and that g7:
U,,5 — 2 is an unbranched cover of degree 2". Let (z,, B) € %, 4. Let o be a curve
of length ¢ from g%(z,, B) to the outer boundary of 2. Let & be the pullback of o
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from z, to the exterior boundary y" of %, ;. The length of & in the z-direction is
smaller than ¢/CA". Therefore, () %, , has empty interior and is connected. The
other assertions are clear. O

LEMMA 3.17.  Through every point in J* n {{w| < R} = (), %,, there is a unique
leaf contained in J* of the form z = p(w), |[w| < R, with ¢ holomorphic. Moreover,
|@'(w)| is arbitrarily small provided a is small enough.

Proof. Since (%, ; has empty interior, it follows from Hurwitz’s lemma that
the limit of the foliations of 0%, is a foliation of ("), %,. The other assertions are
clear from the previous discussion. O

We now prove that the interior of K* consists of k connected components, each
of which is the immediate basin of attraction of one of the points {p, ..., p,} in the
attractive cycle. Let (z, w) € K*. By Lemma 3.11 there exists n, such that, for n > ny,
g"(z, w) e D. If g"(z, w) is never in ()., D; x {|w| < R}, then g"(z, w) € %, and
consequently g™(z, wye J* n{|w| < R} and (z, w) e J*. In particular, we have
shown that the only attractive cycle for g is {p,,..., p;}. This proves part (i) of
Theorem 3.9.

Lemma 3.17 implies that J* if foliated by complex manifolds. To prove density
of leaves in J* we need the following lemma.

LeMMA 3.18. Let w = y(z) be a germ of a complex manifold at (zy, wo) € J*.
Suppose |Y(z)| < R and that |{'(z)| < 1. Then there exists ann such that g"[z, y(z)] N
(2 x {lw| < R}) is a locally horizontal manifold intersecting all leaves of J* N
(lw| < R).

Proof. That the manifolds g"[z, ¥(z)] are locally horizontal follows from the fact
that |(0/0z)g%| dominates the other derivatives as shown in Proposition 3.13.

Let I be the family of graphs w = /(z) defined for |z — z,| < ¢ and satisfying the
requirements in the lemma. Since |(0/dz)g’| = cA", it follows that there exists r > 0
independent of ¢ such that, for every graph in I'(z, Y (2)), |z — 20| < &, there is an N
such that g¥[z, ¥(2)] = [z, ¥(2)], where y is defined in |z — z§| < r, (2§, Y(zp)) € J*.
For the polynomial P,(z) = z2 + ¢ there exists n, such that, if z, € J(c) and A =
{Iz — 24| < r/2}, then P!°(A) contains a fixed open neighborhood of J(c). Con-
sequently, if a is small enough, g"[g" [z, ¥(z)]1] meets all leaves in J* N {|w| < R}.

0O

To show that the global leaves of J* are dense in J™, it suffices to prove
density in J* n(Dy x {|w| < R}). Let L be a leaf in J* and let W be a neigh-
borhood of p = (zo, wo) € J* N (Dy % {|w| < R}). Lete > Osuch that thediscA; =:
{|z — z¢| < & w = w,} is contained in W. Suppose z = ¢(w), |w| < R, is contained
in LN (Dy x {|w| < R}). By the above lemma there exists an n such that g"(A,)
cuts all leaves in Dy x {|w| x R}. In particular, it intersects the leaf containing
g"(p(w), w), |w| < R. Hence, one of the leaves intersecting A, lies globally in the
same leaf as L, and therefore L clusters at p. The proof that L is biholomorphic to
C is the same as in the case considered in Theorem 3.1.
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Let (z9, wo) € J* and choose j = 1,..., k. We will show that (z,, w,) is a boundary
point of the basin of attraction of p;. For n, large, g"*(zo, w,) = (24, B) € %. As in
Lemma 3.16, we can find a curve 6 of length O(1/A™) in %, , from (z,, B) to the
basin of attraction of p;. Here, 4 > 1 is the constant from Proposition 3.13. Hence,
g~"*() is a curve of length O(1/4™) from (z,, w,) to the basin of attraction of p;.

This completes the proof of part (ii) of Theorem 3.9.

We suppose now that k = 1,and we prove that the Lebesgue measure of J, is zero.

LeMMA 3.19. Let P(z) = z> + c. For all |c| small enough there is a constant
y> ﬁ and an open set U > J(c) such that |P.(z)| > y on U, where | | denotes the
Euclidean norm.

The proof is left to the reader.

For | 8| < R we have seen that z — g}(z, p) is a covering of %, , onto 2 of degree
2". To emphasize the dependence on a and ¢, we denote by g(z, w, a, c) the Hénon
mapping we consider. We have

1
(Zi(Z), ﬂ’ a, C)

o(Uy,,p(a, c)) = 5 do(2)

2
azgl

where ¢ is the Lebesgue measure on C and g7(z;(z), §, a,c) = zfor 1 <i < 2" The
domain 2 is independent of (g, ¢) for (a, ¢) in a neighborhood of (ay, ¢).

Observe that log o(%, s(a, c)) is a plurisubharmonic function of (B, 4, ¢). Con-
sequently, log a(J;(a, ¢)) = lim N log 6(%, 4(a, ¢)) is also a plurisubharmonic
function.

On the other hand, for [c| « 1, |a] « 1 and || < R we have

. 1
o'(alln,ﬂ(a’ C)) < 2 m

where A is a constant such that |(6/0z)g%(z, w, a, ¢)] > CA" in Proposition 3.13. But
if a is small enough, A can be chosen arbitrarily close to y; so we can assume 4 > ﬁ
Consequently, o(J;(a, c)) =0 for |al, |c| small enough and [B| < R. But since
log o(J4(a, c)) is plurisubharmonic for |a| < a,(c) provided, the polynomial 2 +c
has one attractive fixed point; we get that o(J; (g, c)) is identically zero.

Together with Lemma 3.16, this completes the proof of part (iii) of Theorem 3.9.

We prove assertion (iv). We first show that K~ n% is foliated by complex
manifolds.

LemMA 3.20. Let (z, w) € K. There exists nq such that, for n = ny, g~"(z, w) €
Dy x {|w| <R} =D.

Proof. Recall that g7*(z, w) = (w/a, z/a — c/a — w?/a®). Suppose first that |w| >
R and |z]| < |w|. Then if (z/, w’) = g71(z, w), we have |w'| > 2|w| and |2’| < |w’|.
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(Recall that a is small.) So g™"(z, w) converges to infinity; i.e., K~ does not intersect
Iwl 2 R, |z| < |wl.

Let A = ({(z, w); |z] < R, |w| < R}\D) u {|z| = R, |w| < |z|}. We have seen that,
on A, g" converges uniformly to co. Suppose (z, w) € K™ and infinitely many of the
g~ "(z, w) belong to A. This contradicts convergence to infinity of g” on A.

LemMA 3.21. If (z, w) € K™\{py, ..., P}, then g~"(z, w) clusters on J* n {|w| <
|a| R}. Consequently, for n large enough, g™"(z, w) e % = @ x {|w| < R}.

Proof. Suppose at first that (z, w) ¢ K*. By Lemma 3.20, g ™"(z, w) € D for nlarge
enough. But then it follows even that, for each m, g"(z, w) € #,, for n large enough.
Hence, all the cluster points of the sequence are in J* N {|w| < R}. Since the set of
cluster points is invariant under g, it follows that they are in J* n {|w| < |a|R}.

If (z, w)e J*, there is nothing to prove; so we can assume (z, w) € Int K™\
{Pys..., P} Since int K* is the basin of attraction of the cycle, then g~"(z, w)
clusters on J*. In all cases, for n large, g™"(z, w) € %.

We will prove that K~ n % is foliated. This will imply that K™\{py, ..., p} is
foliated by complex manifolds. Observe however that there is no analytic disc
through p; in K~. Suppose ®: A - K~ is a nonconstant analytic map from the unit
disc with values in K~ and such that ®(0) = p;. Then g™" o ® is a normal family on
A, a limit function h will satisfy h(0) = p;, and, except on ®7'(p;), h should have
values on J*, which is impossible.

Recall that %, = {(z, w) € %; g"(z, w) € %}. Define ¥, = g"(%,,).

LEMMA 322. Wehave ¥,,, "% < ¥, and (\, ¥, = K~ N4

Proof. 1f (z, w) € ¥4y N U, then g~ "*V(z, w) € U, ., and g™ "(z, w) € g, ;) <
,; hence, (z, w) € ¥,,.

For (z,w)€0¥,,,n(2 x {Iw| <R}) let (z",w")=g"®*V(z,w). We have
(z",w")e 0U,.,. Let (z', w') = g(z", w"). Clearly, |w'| < R and g"(z’,w') = (z, w) €
%. Hence, (z’, w') € %, and (z, w) € ¥,

If (z, w) € () ¥, then, for every n, g™"(z, w) € %; so (z, w) € K. Suppose next that
(z, w) € K~ n % We need to show that for every n, (z, w) € ¥,. Lemma 3.21 implies
that g7"(z, w) € % for all large enough n. Therefore, g~"(z, w) € %, and (z, w) € ¥, for
large enough n. Since ¥, < ¥,, we have (z, wy e (\¥,. O

The description of the dynamics of g™ on K~ N % is contained in the following
lemma.

LEMMA 3.23. For each n, ¥, has a real analytic boundary relative to %, whose
normal is almost vertical everywhere. Moreover, for each z € 9 the z-section ¥, , of
¥, consists of 2" components, each of which is simply connected with a real analytic
boundary. Furthermore, each component of ¥, , contains exactly two components of
Vu+1,2- Moreover, we have diam(7, ,) < C|a|", where C is a constant.

Proof. Using the horizontal foliation of %, by level sets w = f and taking the
image under g”, we obtain a foliation of ¥;. We have shown in the proof of Lemma
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3.15 that the image of %, ; under g” is an unbranched covering over 2 of degree 2".
The estimate on the derivative of g" implies that locally each such leaf is of the form
w = ¢(z). We have that 0¥, n % is foliated by g"(#,, 5) with | | = R. These manifolds
are almost horizontal. Therefore, the normal is almost vertical.

Fix z°€ 2 and |B| <R. Let z,, ..., z,. be the 2" points in %,z such that
gi(z;, B)=2%i=1,...,2" Let z = @,(w) be the almost vertical leaf of %, such that
©:(B) = z;. By construction of the foliation of %, we have g (¢;(w), w) = z° for i =
1,..., 2" These graphs (¢;(w), w) are the preimage of ¥, .o since g7 is of degree 2"
and since the graphs are disjoint. Since g is biholomorphic, g5(¢,(w), w), [w| < R,
are the 2" components of ¥, , . Observe that, as after Lemma 3.8, g contracts vertical
vectors by a factor almost |al; hence, the diameter of a component of ¥, , is of order
of magnitude almost |al".

It remains only to show that each component of ¥, , contains exactly two
components of ¥}, .. For fixed z® € D let z = g, ;(w),i = 1,..., 2" be the preimages
of ¥}, ;0. Since g7 [g[@y+1,:(W), w)1] = 2°, it follows that g(@, ,,:(w), w) is contained
in one of the graphs (¢, j(w), w). We have to prove that for every (n, j) there are at
most two (n + 1, i) for which the inclusion holds.

We study g~ (¢, ;(w), w). We have

_ _(w enw) ¢ w?
g 1((pn,j(w)a w) = (;, 4 a - ;3‘) .

We want to show that there are at most two values of w, |w| < R, such that the
second coordinate is equal to w, with |wy| < R. But this is an immediate consequence
of Rouché’s theorem. 0O

We prove that K~ n % is foliated by complex manifolds. Let Z# = g"({z, B}) with
(z, B) € U, and | B|] = R. As n varies, the Zf are disjoint and connected. Moreover,
locally in 9, Z? is a graph of the form w = ,(z). We can therefore apply Hurwitz’s
theorem to prove that the analytic manifolds Z# converge to complex manifolds
that foliate K~ N %. (Recall that the diameter of the components of ¥, , has limit
zero.) Since each of the ZF goes through all components of ¥, . , it follows that each
leaf of K™ is dense in K~ n %, and hence in K~.

Note that leaves of K~ n % enter the basins of attraction of { p,, ..., p;}. Hence,
by the invariance under g, each p; is a cluster point of K~ — {p;}.

To show that each leaf is biholomorphic to C, consider a closed curve y in a leaf
L. Then g7"(y) « K~ n% for all n large enough. Also, from the estimate of the
derivative of g it follows that the length of g~"(y) » 0 as n — o0. Hence, for large n,
g~ "(y) is contractible in g ~"(L). Hence, L is simply connected. We can show that L
has no nonconstant bounded holomorphic functions in the same way as for leaves
of K* in Theorem 3.1.

This completes the proof of part (iv) of Theorem 3.9. O

It only remains to prove part (v). The estimate on the Hausdorff dimension of
K~ is quite simple. We know from the Holder continuity of Green’s function and
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the theorem of Carleson already mentioned that the Hausdorff dimension of K~ N
{z = z,} is strictly positive. As in Corollary 1.4, the Hausdorff dimension of K~ is
then strictly larger than 2. The fact that the 2" components of ¥, , have a diameter
decreasing like |a|" gives the other estimate. This completes the proof of Theorem
3.9.

THEOREM 3.24. Suppose (a, ¢) is as in Theorem 3.9. If P,(z) = z* + c has an
attractive cycle of order k > 2, then J* is nowhere a topological manifold. If P.(z) has
an attractive fixed point and g satisfies the following generic condition, condition (C),
then J* is nowhere a €' manifold.

Condition (C). The map g satisfies condition (C) if there is a k € N such that g*
has a fixed hyperbolic point P with eigenvalues |A| < 1, [u| > 1, and u = |u|e*™ with
0 irrational.

Proof. 1fP.(z) = z? + chasan attractive cycle of order k > 2, then at every point
peJ*, J* is on the boundary of at least 3 components. Therefore, J* is not a
topological manifold.

Suppose now that P, has an attractive fixed point. We will use the following
lemma.

LEMMA 3.25. Let f be a Hénon automorphism of C2. Let p be a hyperbolic fixed
point of f*. Let v, w be two nonzero vectors in C? such that (f*)(p)v = Av and
(f*Y(p)w = uw with | 1] < 1 and |u| > 1. Suppose u = |u|e*™. If the tangent cone to
J* is not equal to Cv, then for some B # 0 it contains any limit point of {€*™pw}.

Proof. Recall that the tangent cone C(p, J*) at p is the set of positive multiples
of limits of (p, — p)/Ilp, — pll for p, € J*|{p} and lim, p, = p. Since J* is stable under
f, it follows that C(p, J*) is stable under (f*)(p). Suppose & = av + pw e C(p, J*),
B # 0-. The limits of (/") (p)&)/I(f"Y (p)¢|| give all the limit points of {e*>™Bw}.

End of the proof of Theorem 3.24. Suppose p is a hyperbolic fixed point for
some g* and that the expansive value associated to it satisfies u = |u|e?™, 6
irrational. The stable manifold W, of f = g* at p is contained in J*. Hence, Cv <
C(p, J*). Since in our situation C(p, J*) # Cv, by Lemma 3.25 we have in C(p, J*)
all the limits of {€2"Bw} for some B 5 0. Therefore, C(p, J*) is not contained in a
real hyperplane.

We want to show that J* is not ¢ at any point of W,. Since W, is dense in J*,
this will prove the theorem.

Without loss of generality assume that J* is €' at g € % N W,. Let A, be a small
horizontal disc centered at g. Since W, is almost vertical at g, A, is transverse to J*
at ¢, and the intersection of A, with J, is a ' curve in A,. By the stable manifold
theorem (see [Sh]), g"™(A,) converge to the germ W of the unstable manifold
through p. We therefore get that W, n J* contains a €' curve y at p. Let h: C —» W,
be a holomorphic parametrization of the global unstable manifold W,. Then h
satisfies the equation g*(h({)) = h(u{). We may assume that h™'(y) can be pa-
rametrized as (s, 6(s)), o’ (0) = 0. Using the functional equation satisfied by h, we see
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that we may assume ¢ = 0. Since g™ is uniformly bounded on y, we get, using the
functional equation, that h is bounded uniformly on all the rays e2™®. Since 0 is
irrational, we deduce that h is bounded, which is impossible. O

Remark. Condition (C) can be weakened to the following. If 6 = (r/¢)eQ, we
have to assume that log |y| is large enough for the Phragmen-Lindel6f theorem to
apply. Indeed, h is an entire map of order a < log 2/log |u|. If we know that h is
bounded on some ray in any open sector of angular width =/, then h is bounded.

The following result gives a parametrization of Qg = (lw| < R\K™*.

THEOREM 3.26. For (a, ¢) as in Theorem 3.9, the open set Qg = (J]w| < R\K™* is
biholomorphic to the domain (|| > 1, |w| < R).

Proof. For |w| < R fixed, G*(z, w) = log |z| + O(1) at infinity and G* vanishes
on the compact K;. Hence, z — G*(z, w) is the Green’s function of K}, with pole at
infinity. It is easy to check that G*(z, w) = log |z| + O(1) at infinity, i.e., that
cap(K}) = 1for |w| <R.

We have proved in Theorem 3.9 that K}, is connected for |w| < R. Therefore, the
function z — G*(z, w) has no critical point in C|K}. Let z — H(z, w, a, ¢) be the
conjugate of G*(z, w, a, ¢) which is defined only modulo 2kr, k € Z. The func-
tion F(z, w, a, c) = exp(G*(z, w, a, ¢) + iH(z, w, a, c)) is well defined, and ®: Q —
(1Z] > 1, |w| < R) defined by ®(z, w, a, ¢) = (F(z, w, g, ¢), w) is a biholomorphism
depending holomorphically on the parameters.

Remark. Let ®1({,w, a, c) = (Y({, w, a, c), w). For each fixed { we get a leaf of
a foliation of Q. Using the A-lemma ([MSS]), we see that this foliation extends to
give a foliation of Q. Hurwitz’s lemma implies that this foliation on J* n {|w| < R}
coincides with the previous one.

In the following result we study the quasi-conformal geometry of slices J;; with
[wo| < R. We emphasize the dependence on the parameters (a, c).

Recall that a homeomorphism in C, f, is quasi-conformal if and only if f has
derivatives in L2 (C) and 0f/0z = u(df/dz), where p € L*(C) and ||u|, < 1. For the
properties of quasiconformal mappings we refer to Lehto [Le].

A quasi circle is the image of a circle under a quasi-conformal homeomorphism
of the plane.

We will also use the following notion from [ST]. Let X be a subset of C. A
holomorphic motion of X in C is a map

[iTxX->C

defined on an open disc T <= C containing 0 such that

(a) for any fixed x € X, f;(x) = f(t, x) is a holomorphic map;

(b) for any fixed ¢, f, is injective; and

(c) f, is the identity on X.

The following result is proved in Sullivan ad Thurston [ST]; see also [MSS] and
[s1].
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THEOREM 3.27. A holomorphic motion of a set X = C can be extended to a
holomorphic motion of C defined on T x C, and each map f, is a quasi-conformal
homeomorphism of C onto C. Moreover, the map (t, x) = f(t, x) is continuous.

THEOREM 3.28. Assume that, for c € @, P.(z) = z? + ¢ has an attractive cycle of
order k > 1. Suppose |a| < ay(c) asin Theorem 3.9. Let J; (a, c) be the slice of J*(a, c)
by the plane w = w,. Then, for |w| < R, c € w, |a| < ao(c) all the J,, (a, c) are quasi-
conformally equivalent. If k = 1, J,, (a, c) is a quasi circle.

Proof. We first prove that for (a, c) fixed, |a| < ao(c), |w| < R, the slice J,,(a, )
is quasi-conformally equivalent to J(a, ). For x € J,(a, c), there is a leaf in (J* N
|w| < R) through x; the leaf is a graph z = ¢, (w). If T = {we C, |w| < R} and
X = Jy(a, ¢), the map (x, w) = @,(w) is a holomorphic motion of X in C. This is a
consequence of the fact that each graph (¢,(w), w) is a leaf of a foliation and of the
fact that ¢,(0) = x. Theorem 3.27 implies that (w, x) — ¢,(w) is continuous and for
each w, x — ¢, (w) extends to a quasi-conformal homeomorphism. Hence, x — ¢, (w)
is a homeomorphism between J,(a, ¢) and J (g, c).

Each 0%,(a, c)is foliated by graphs z = ¢,(w, a, ¢, x), where x varies in 0%,(a, ¢) N
(w = 0). Each ¢, depends holomorphically on (w, 4, c) as follows from Lemma 3.14.
These foliations converge to a foliation of J*(a, c), and the leaves are graphs
z = @(w, g, ¢, x), where x varies in J,(0, ¢). Moreover, each function (w, a, ¢) —»
o(w, a, ¢, x) is holomorphic for x fixed.

Let o = (0,0, c, x). Fix cew and let T = {a:|a| < ao(c)}. Define h(a, o) =
(0, a, ¢, x). The map h is a holomorphic motion of J,(0, ¢) since, if a # o, then
x # x' and the corresponding graphs are disjoint.

We apply Theorem 3.27 to get that J (0, c) is quasi-conformally homeomorphic
to Jola, ¢) for |a| < ay(c). Hence, all the J,(a, ¢) are quasi-conformally homeo-
morphic.

If P,(z) = z% + c has an attractive fixed point, it was proved in [MSS] that J (0, c)
is a quasi circle. Consequently, J,,(a, ¢) is also a quasi circle. O

COROLLARY 3.29. Let g(z, w) = (22 + ¢ + aw, az). Suppose a, c are as in Theorem
3.28. Then J™ is of Lebesgue measure 0.

Proof. We have seen in Theorem 3.27 that, for |wo| < R, J; (a, ¢) is quasi-
conformally equivalent to J§ (0, ¢) which is the Julia set for the polynomial P,(z) =
z% + ¢. We have assumed that the polynomial P, has an attractive fixed point of
order k > 1, and hence P, is a hyperbolic polynomial. In that case it is a result due
to Sullivan [Su2] that the corresponding Julia set is of Lebesgue measure 0 in C.
Since the image of a set of Lebesgue measure 0 under a quasi-conformal homeo-
morphism is of measure zero (see [LV, p. 150]), it follows that J;; (a, c)is of Lebesgue
measure zero; hence, J* has zero volume in C2. O
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