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COMPLEX HI’NON MAPPINGS IN C2 AND
FATOU-BIEBERBACH DOMAINS

JOHN ERIK FORNASS ArqD NESSIM SIBONY

Introduction. For (a, c) C* x C the formula

9(z, w) (z" + c + aw, z)

defines a biholomorphism in C2 whose Jacobian is -a. These are the complex
continuations of the maps studied by H6non when (z, w) e [2 and (a, c) e * x [.

In [HI Hubbard introduced the following terminology. Let

K + {p; p 12, g+,,(p) is a bounded sequence}.

Also let J+= OK+ and K K+cK-. As in [Br] and [H], we define the
functions

and

1
G+ (z, w)= lim log+ II0"(z, w)ll

1
G-(z, w)= lim log+ II0-"(z, w)ll.

It was shown in I-HI, [BS1], that G -+ are continuous functions in C2 plurisub-
harmonic in Ur C2\Kr and U- C2\K-, respectively. It follows that Kr and
K- are nonpluripolar closed sets.

Define/--- dd G +-. The positive, closed (1, 1) currents/ -+ satisfy the functional
equations

g*/+ 2+1/+

It was shown by Bedford and Smillie [BS2] that, if V is an algebraic curve in C2,
then the currents (1/2")[g-"(V)] converge to a constant multiple of/+. Assuming
that g is hyperbolic on J jr c J-, Bedford and Smillie showed that the interior
of Kr consists of the basins of finitely many sink orbits and that jr has a foliation
,-r whose leaves are complex manifolds biholomorphically equivalent to C.
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346 FORN/ESS AND SIBONY

Hubbard and Oberste-Vorth [HO] have studied the foliations of U--- connected to
the functions G +-, when Icl is large or when the polynomial z2 + c has an attractive
fixed point and lal is small enough. Finally, Benedicks-Carleson [BC] have shown
the existence of strange attractors in the real case for some values of parameters.
See also Mora-Viana [MV].

In this paper we continue the study of dynamical properties of polynomial
automorphisms in C2.

In the first section we show that the functions G -+ are Htilder continuous, which
implies estimates for the Hausdorff dimension of K +- when the interior of K -+ is
empty. We then show that, if T is a closed positive (1, 1) current in p2 such that the
point p/ [1:0:0] is not in the support of T, then the currents (1/2n)g*n(T)
converge to c#

+ for some positive constant c. This gives a stronger version of the
result by Bedford-Smillie. The results generalize to the case where # is a finite
composition of H6non mappings as considered in [FM-! and [BS].

Let f be a polynomial automorphism of C2. Suppose f(0) 0 and that the eigen-
values 21,22 off’(0) satisfy 1211 < 1,1221 < 1. Let f {q; q I2, limn_.oofn(q) 0}.
It is well known that f is biholomorphic to C2; f is called a Fatou-Bieberbach
domain. If the matrix f’(0) has no resonances, then f can be linearized in f.

In the second section we consider the case when the eigenvalues 21, 22 of f’(0)
e2itO,satisfy the condition that 21 1221 < 1, and 0 satisfies a diophantine condition.

Then the domain of linearization f of f is either C2 or biholomorphic to A x C
where A is the unit disc in C. In this later case we call f a Siegel cylinder.

In the third section we turn to the family

[(Z, W) (Z2 + C " aw, az).

Such is just conjugate to (z, w) (7.2 + c .-[- a2w, 7.). Let Pc(z) z2 + c. We first
assume that P(0) is unbounded. In that case, if a is small enough, then K -+ have
empty interior and are foliated by complex manifolds, and moreover each leaf is
dense. It then follows that is hyperbolic on K. We also give estimates for the
Hausdorff dimension of K-+.

If Pc(z) has in C an attractive orbit of order k, then if a is small enough, has an
attractive cycle of order k: {pl,..., Pk}, the interior of K/ consists of k connected
components, and J/ is their common boundary. As a consequence, if k > 2, the
boundaries of these Fatou-Bieberbach domains are not topological manifolds. We
also show, when k 1, that it is generically not a 1 manifold. We show that J/
has a foliation with dense leaves, and also K- \{pl Pk } has a foliation with dense
leaves. The foliation of K- cannot be extended to {pl,..., Pk}. In this case also g
is hyperbolic on J J/ c J-.
When k 1, then J/ is a topological manifold, and for Iw01 small enough

J/ c {w Wo} is a quasicircle. Moreover, J/ has Lebesgue measure 0. This property
can also be deduced from the general fact, due to Bowen, that a hyperbolic set with
empty interior has Lebesgue measure zero. We thank the referee for this observation.
We also obtain estimates for the Hausdorff dimension of K-.
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1. Green function and currents. Let

g(z, W)= (Z2 "- "- aw, Z)

--w2 + c + z)g-l(z, W)= W,

Let p2 be the projective space and let p+ be the points in p2 defined in homogeneous
coordinates by

p+ [1:0:0], p_ [0:1:0].

We consider the extension of /from p2 \{p_ } to p2 \{p_ } defined by the formula

[g W: t] [22 "" Ct2 + awt zt t2].

Similarly, 0-: is defined from p2\{p+ } to p2\{p+ } by

I w2 ct2 + Zt
0-l[g’w’t] Wt" "t2

a

We observe the important fact that p+ is a fixed point for and (D2)(p+) 0.
Indeed, in the (w, t) coordinates

therefore,

(o,5")(p+) o.

We recall a few elementary facts concerning the dynamics ofg; see [FMI and [BS1]
for a proof.

There exists R > 0 such that Izl > R implies that either Iz2 + c + awl > Izl or
Iwl > Izl or both. For such R let

v- {(z, w); Izl > R, Izl > Iwl}

v+ {(z, w); Iwl > R, Iwl > Izl}

v {(z, w); Izl R, Iwl R}.

PROPOSITION 1.1 ([FM], [BS 1]). For R as above the following holds.
(i) K+cV- =andK-cV+ =.
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(ii) o(V-) V-, g(V V-) V- V; g-’(V+) V+, O-(V+ V) V+ V.
g"V+g-"V- and U- C2\K Un>oU+ C\K+ .>o

(iii) If (z, w) K-+, then lim,_.oo dist(g-+"(z, w), K) O.
(iv) Given e > O, suppose (z,, w,) g(z, w). If (z, w) U+, then for n large enough

Iwl < lzl.
Let U" U/ w (H\p_), where H is the hyperplane at infinity of p2. It is easy to

deduce from Proposition 1.1 that U/ is the domain of attraction of p/ for .
Similarly, U- U- (H\p/) is the domain of attraction of p_ for g-1.

Let denote a norm in C2. The function

G+(z, w)= lim log+ IIg’(z, w)ll

describes the rate ofescape at infinity of g’(z, w). It follows from Proposition 1.1 that

1
G/(z, w)= lim log+ Izl.

Therefore, G/ is pluriharmonic outside K/ and clearly

G+ (g) 2G+ G-(g- 2G-

In what follows we will give the results only for G+. The adaptation for G- is easy.
As mentioned in the introduction, G/ is plurisubharmonic and continuous on C2

and K/ {(z, w); G/(z, w) 0}. Moreover, for Iwl < R

G+(z, w) log+ Izl + 0(1);

see [BS 1].

THEOREM 1.2. There exists z > 0 such that for every compact X c C2 there is a
constant C > 0 such that for (z, w) and (z’, w’) X

Ia/(z, w)- a+(z ’, w’)l C II(z, w)- (z’, w’)ll .
Proof. Let V be as in Proposition 1.1. Property (iii) of Proposition 1.1 implies

that we can assume X V. Let 6 > 0 such that G+(z, w) > 36 on 9(V)\V V-.
Define

f0 { (z, w) V, 6 < G+ (z, w) < 26 }

and let

oG+
C sup for (z, w) e f}.
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For (z, w) V\K+ let n Z be such that

(1) di < 2"G+(z, w) < 26.

Clearly, there exists no > 0 such that n > -no. Assume first that n > 0. Since
G+(o"(z, w))= 2"G+(z, w), we have

(2) 2"
OG+

(z,
OG+

w) (") Oz
OG+

We know that o(V u V-)c V V- and o(V-)c V-. Therefore, Ok(z, w)e V for
k < n. Let M be a majorant of the derivatives of 0 on V. inductively, we have
lO9’]/Ozl < 2"-aM" and IOo’]/Owl < 2"-1M" forj 1, 2. From (2) we deduce

(3) < C(2M)".

This estimate holds also for -no < n < 0, increasing C if necessary. Define y
log 2M/log 2. Relation (3) is equivalent to

OG+ ( 26 ’v -1

or

N(6+) c (2a)

With a similar argument for OlO(G+) we get

Igrad(G+)Vl < Ca.

Hence, (G+)r extends to a Lipschitz function on V, and therefore G+ is H61der with
exponent z 1/7 log 2/log 2M. El

Remarks. (i) It follows that a minorant of is computable as soon as one has
localized K. It is easy to show that v(a, c)= log 2/log(2[supco.c 10’[]) is a lower
semicontinuous function of(a, c) and that, if z > v(a, c), then G+ is H61der continuous
of exponent .

(ii) Friedland and Milnor have introduced in [FM] the semigroup f# ofgeneralized
H6non mappings

{0 0m o’’’o 01, Oj(Z, W) (pj(z) ajl,,

where pj is a monic polynomial of degree dj > 2. If 0 is of degree d := d d2... d,,
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one defines similarly

1
G+(z, w)= lim log+ II’(z, w)ll

where d dl... din.
The same proof, with minor changes, shows that G+ is Htilder continuous.
We develop a consequence of the previous theorem for the Hausdorff dimension

of K-. We first mention the following result from i-FM].

PROPOSITION 1.3. Let a denote the Lebesgue measure.
(i) If lal 1, then a(K) a(K+) a(K-) are finite and equal.
(ii) If lal < 1, then a(K-) 0 and a(K+) 0 or .
(iii) If lal > 1, then a(K+) 0 and a(K-) 0 or o.

The proof follows easily from the fact that the Jacobian of g is equal to -a.

COROLLARY 1.4. Let z be as in Theorem 1.2. Then K+ is of Hausdorffdimension
2 + z at every point of K+.

Proof. We recall the following result from [Ca]. Let O be an open set in C and
Y a closed set in O. Let 99 be a H6lder continuous function of order z in O. Assume
p is harmonic in O\Y with no harmonic extension to O. Then At(Y) > 0, where A
denotes the Hausdorff measure of dimension z.

Let p J/ and let X be a germ of analytic manifold at p; assume X is not
contained in K/. The restriction of G/ to X is harmonic in (G/ > 0) w Intx(G+)-(0))
and has no harmonic extension to X. The previous result implies that A(X c K+) >
0. Suppose p (Zo, Wo) and fix r > 0. For I1 < 1 let

L, {(z, w); di < Iz zol < r, w Wo 0(z Zo)}.

We have

IU(L,o K+) > O.

Hence,

0 < flal A*(L,o K+) dA(a).

So for 0 < di < r small enough

A(L, c K+) d2() < CA2+’(K+ c [Iz zil < r, Iw Wol < r])

by a standard geometric inequality, where 2 denotes the Lebesgue measure in C.
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The result is of interest only when K+ (resp. K-) are of empty interior in a
neighborhood of p.

Before proving a convergence result of (1/2n)(gn)*(T) to/z+ dd G/ as mentioned
in the introduction, we recall a few basic facts. See [Le2] for background.

Let d=d+c and dC=i(c3-c3). Define fl=ddC(lz[ 2 /lwl2) and co=
dd log(1 + Izl 2 / Iw12). Let

L’ {v; v plurisubharmonic in C2, v(z, w) < log/ II(z, w)ll + O(1) at infinity}.

In [Le1] (see also [Sk 1]) Lelong proved the following result.

TI-IEOREM 1.5 ([Le1]). If v .oq, then the positive (1.1) current dd v satisfies

dd v ^ co < .
Conversely, if T is a closed positive (1, 1) current in C2 such that

TAco<

then there exists a constant c > 0 and v 6 . such that T cdd v.

We will call minimal a positive closed (1, 1)current T in C2 such that c2 T ^ co <. Let p2 be the projective space of dimension 2 and let H be the hyperplane at
infinity. The current T in p2\H has bounded mass near H. It follows that T has an
extension f to p2; is a positive closed (1, 1) current on p2 with zero mass on H.
S [Si] or [Ski for a discussion of this extension problem. We will identify T and

The currents + dd G+ and #- dd G- are examples of minimal currents.
Since G+ is pluriharmonic on V-, it follows that p+ supp/+ J+; we also have
that p_ supp/- J-.

THEOREM 1.6. Let T be a positive closed (1, 1) current on p2. Suppose p+ supp T.
Then the sequence of currents T (1/2)g*(T) converges to c#

+ in C2 for some
constant c > O.

LEMMA 1.7. Let cp .. Fix e > 0 and let

C (z, w); Izl >-Iwl

Assume that at infinity in the cone C we have

cp(z, w) log Izl + 0(1).

Then p, (1/2n)cp(gn) converges in L1oc(C2) to G+.
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Proof. It is clear that the sequence qg, has a uniform upper bound on any
compact set. It follows from Proposition 1.1 that q, converges uniformly on compact
sets of U/ to the function G/.
We recall the following result; see [H6, p. 95]. Let v be a sequence ofsubharmonic

functions on a domain W of , which have a uniform upper bound on compact
sets. Then the following holds.

(a) If v does not converge uniformly on compact sets of w to -c, then there is
a subsequence v which is convergent in Lo(W) to a subharmonic function v.

(b) If v converge in L o(W) to a subharmonic function v, then

lim v(x) < v(x) x W,
joo

and for every compact X c W

lim sup v < sup v.
j x X

Assume that there is a ball B in C2 and a subsequence n such that B Iq G+I > e
for every j. We apply the previous result to the sequence v p. Let v be the
plurisubharmonic function such that v converges to v in Llo(C2). We know that
v G/ on U/, and we have to show that v 0 on K/; this will contradict the
assumption on the sequence o. Property (iv) of Proposition 1.1 implies that v < 0.
By upper semicontinuity it is impossible to have v < 0 at a point of J/; so v G/

on U/ w J/. Suppose there is > 0 and W c Int K/ such that v < - on W.
Property (b) implies that for j large enough

q.(z, w) < -- on W.

Let

E"= {(z, w)e V; q(z, w)< -1/22"}

and

E" {z; q(z, Wo)< -1/22"}’WO

We recall the following result. Let Y be a nonpolar compact set in C. Then Gr(),
the Green function on Y with pole at infinity, is equal to the supremum of the
subharmonic functions v in C, such that v < 0 on Y and v() log I1 / O(1) at
infinity. Moreover, Gr() log I1 / / o(1)with . The logarithmic capacity
of Y is by definition cap(Y) exp(-,); see ITs] for reference.

Let X be a compact set in E" and let X,o X c {w Wo }. The hypothesis on p
implies that qg(z, Wo) + 1/22"J is < 0 on X,o and grows like log Izl / O(1) at infinity.
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Therefore, there is a constant C > 0 such that for every compact X

Cap(Xo) < Ce-/22.

Using a standard inequality between area and capacity (see ITs]), we get that for
some constant C1 > 0 and for Iwol < R

Area(Xo) < C1 e-Fubini’s theorem and the regularity of the Lebesgue measure imply that for a
constant C > 0

vol(En) < C2e-(a/2)2".

But for j large, 9"(W) V c E"; therefore,

lal2" vol(W) vol(/"(W)) < C2 e-(a/2)2"J

which is a contradiction. Hence, v G+ and q. converge to G+ in Llo(CZ).

Proof of Theorem 1.6. A theorem of Siu [Siul implies that the restriction of T
to the hyperplane at infinity H is a multiple of the current of integration on H. Since
p/ Supp T, it follows that T has no mass on H, hence the restriction of T to C2

is nonzero. Since p/ Supp T, then there exists R1 > 0 and e > 0 such that, if
C {(z, w); Izl > (1/)lwl, Izl > Rx }, then Supp T c C # . By Theorem 1.5 on
C2, there exists a constant c > 0 and q hi, such that dd tp cT on C2. Since tp is
pluriharmonic on C and has logarithmic growth at infinity, we have that for every
w fixed tp(z, w) g(w) log Izl / O(1) at infinity. Pluriharmonicity of tp on C implies
that g is harmonic on C, the growth of tp, and the fact that T 0 imply that 0t is a
nonzero constant. Changing c eventually, we can assume that for w fixed q(z, w)
log Izl / O(1). Lemma 1.7 implies that t#. tp(#")/2" converge in Loc to G+. Hence,
(1/2") dd q. c(1/2")(#")*T converges in the sense of currents to

Remarks. 1. Let T be a positive closed (1, 1) current in p2 without mass on H.
For every k the current (tk)*T is well defined as a current on C2; it is positive
closed and has minimal growth; hence, it has a positive closed extension as a current
in p2 that we still denote (#k)*T. If, for some k, p/ Supp gk*(T), then we also have
that (1/2")/"*(T) converges to cg/. When T is the current of integration on an
algebraic curve S, the condition on the support of /k, I’S] is always verified for some
k; see [BS2-1. So Theorem 1.6 implies the Bedford-Smillie result, that for an algebraic
variety S the currents (1/2")#"* [S] converge to c#+.

2. A condition on the support of T is needed for Theorem 1.5 to hold. Suppose
T #-; then #*#- 1/2#-. Therefore, (1/2")(/")*#- converges to 0 in the topology
of currents on C2.

3. Theorem 1.6 is easily generalized if we only assume that /e c, the semigroup
of finite compositions of H6non mappings.
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COROLLARY 1.8. If T is a positive closed (1, 1) current in _2 such that Supp T
K+ and 0*(T) 2T, then T c#+, where c is a positive constant.

Proof. Since K+ c V- , the current T is defined by 0 in a neighborhood of
p+ in p2. So T can be considered as a (1, 1) positive closed current in 2\A, where
A is a compact disc in the hyperplane at infinity H. It follows from [Si, Corollary
1.5] that the trivial extension of T to 12 is closed. Therefore, T is a minimal current
and T (1/2)*(T); hence, by Theorem 1.5, T c#+. E1

COROLLARY 1.9. Let T 0 be a positive closed (1, 1) current in C2. If Supp T
K-, then T has a closed extension to 2 and p+ Supp . If Supp T K+, then
T has a closed extension " to :2 and p_ Supp .

Proof. We have already seen that under the above assumptions T has a closed
extension to p2. Suppose for example that p+ Supp and Supp T K- Then
T (1/2")(")*T converges to c/z+. On the other hand, Supp T K- since
/-(K-) K-. Therefore, the support of #+ should be contained in K K+ c K-
which is impossible since every point of J+, which is not compact, is an essential
singularity for G+; i.e., G+ has no pluriharmonic extension in a neighborhood of a
point of K+. The proof when Supp T K+ is similar. El

COROLLARY 1.10. Let be an open set in C2 such that -() . Assume
Idet /’l < 1 and that f contains a fixed point p of [t. Let T 0 be a positive closed
(1, 1) current in 12 with p_ q Supp T. Then Supp T c f is nonempty.

Proof. Since p_ Supp T, then the sequence T (1/2)([/-)*T converges
to c#_. If Supp T fl , then since f is invariant under -, we get that
Supp T f for every n, and hence Supp/z- . But, by Proposition
1.3, J- K- if det ’1 < 1, and we know that Supp of #- J-. Since p J-, we
have a contradiction. Hence, Supp T f is nonempty.

Remarks. 1. It is enough to assume that K- c f is nonempty without assuming
the existence of a fixed point.

2. It follows that Supp T intersects any Fatou-Bieberbach domains and the
Siegel cylinders we will construct in Section 2.
The case where T is the current associated to an algebraic variety and where f

is a Fatou-Bieberbach domain, has been proved by Bedford and Smillie [BS2].
3. With obvious modifications, Corollaries 1.8, 1.9, and 1.10 are valid for /e c,

the semigroup of finite compositions of H6non mappings.

2. Siegel cylinders. In this section we study a linearization problem around a
fixed point for polynomial automorphisms of C2.

Following [FM-I, we will say that a polynomial automorphism e is elementary if
it can be written as

e(z, w) (z + p(w), flw + )
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where ,/, T e C, / # 0, and p is a polynomial. We call E the group of such
automorphisms. A Hnon mapping is an automorphism which has the form

g(z, w) (p(z)- aw, z)

with deg p > 2, a # 0.
It is proved in [FM] that a polynomial automorphism of C2 is either conjugate

to an elementary automorphism or to a composition of a finite number of H6non
mappings. The dynamics of elementary mappings is quite simple, and we just recall
the following result from [FM].

THEOREM 2.1. Every element of E is E-conjugate to one of the following types of
automorphisms.

(i) (z, w) --, (az, flw).
(ii) (z, w) ---, (az, w + 1) or (z, w) --. (z + 1, flw).
(iii) (z, w) (d(z + wd), flw), where d [, d > 1.
(iv) (z, w)---, (*(z + wq(w’)), flw), where fl is a primitive rth root of unity, q a

nonconstant polynomial, and ! > O.

Let f be a germ of an automorphism of C2 near the origin, such that f(0) 0.
Let A f’(0) and let 21, 22 be the eigenvalues of A. Assume 1211 < 1, 1221 < 1 and
for all (kl, k2) [2, Ikl > 2,

"2 20.
Then f can be linearized near 0. More precisely, there exists a unique germ h of a
biholomorphism of the form

h Id + O(ll(z, w)ll 2)

such that in a neighborhood of 0 the identity

foh=hoA

holds. Iff is a polynomial automorphism of C2, then h extends to a biholomorphic
map from C2 to f, the basin of attraction of 0. When one of the eigenvalues of A
is of modulus 1, the situation is more delicate, and we refer to the recent survey by
Herman [He] for a discussion and references. We just recall the following result.

Let A be a (2, 2) dagonalizable matrix with eigenvalues (21, 22). Define

f(m) inf 2k- 2jl
2<lkl<m

whereas usual 2k ]kl]k2 ifk (kl k2),kl k2 are nonnegativeintegers. Thematrix
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A satisfies the Brjuno condition if and only if

1
(B) Em 2-m log (2m < o0.

Observe that, if 1211 1 and 1221 < 1, then A satisfies the Brjuno condition if and
only if

1
(n’) Em 2-m log (2m <

where

fi(m)= inf 12-2xl.
2 < k <m

If 21 e2in and there are positive constants , fl such that 10 (P/q)l > /Iql for
all p, q e 7/, then 21 satisfies condition (B’).

THEOREM 2.2. Let f A + O(ll(z, w)ll 2) be a germ of a biholomorphism of C2.
Assume A is diagonal with ei#envalues 21 e2i’, I)],21 < 1, which satisfy condition
(B). Then there exists a germ of a biholomorphism in a neighborhood of 0 e C2 such
that

foh=hoA.

The above theorem was proved under weaker conditions by Siegel and in general
by Brjuno. See, however, [He] for a more precise discussion and for references.
We want to prove a global result when f is a polynomial automorphism.

THEOREM 2.3. Let f be a polynomial automorphism of C2. Suppose f(O) 0 and
that A f’(O) has two ei#envalues 21 e2i’0, 1221 < 1, where 21 satisfies the Brjuno
condition (B’). Then either f is conjugate to A in the group E or there exists a
biholomorphic map h: A x C --, [, where f is the connected component of int(K+)
containing 0 and A is the unit disc in C such that

foh=hoA.

Proof. Suppose f is conjugate to an elementary mapping. We use the Friedland
Milnor classification given in Theorem 2.1. Case (i) is clear. In case (ii) there is no
fixed point. In cases (iii) and (iv) the eigenvalues at the fixed points do not satisfy
the hypothesis of Theorem 2.3.
We now assume that f is conjugate to a composition of a finite number of H6non

mappings. Conjugating with a translation, we can still assume that f(0)= 0 and
that Proposition 1.1 holds for f. Brjuno’s theorem implies the existence of a germ
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of a biholomorphism h in a neighborhood of 0 such that

foh=hoA.

We assume that A is in diagonal form and A(z, w) (21 z, 22W).
Let M be a germ of a complex manifold of dimension 1 around 0 such that, on

M,f is conjugate to a rotation. More precisely, for some r > 0, M {h((, 0), I(I < r}.
Since fn is a normal family on , we can choose a subsequence nk with the property
that fnklvt converges to IdlM. We also assume that fk converges on compact sets
offL

LEMMA 2.4. Let F lim f". Define

dll {q
_
f; F(q) q}.

Let M be the connected component of / containin9 0. Then M is a closed complex
manifold biholomorphic to a disc.

Proof. In a neighborhood of 0 we have

fh(z, w)= h(e2iz, 2w).

Therefore, we also have that

(1) Fh(z, w)= h(z, 0),

and hence F o F F in a neighborhood of 0,

From (1) it follows that F’ has at most rank one in fl; hence, I F’(z, w) has at
least rank one. Therefore, ’ is a complex manifold of dimension 1 or 0. So M is a
complex manifold of dimension 1 since M c M. Since f(M)= M, b_y analytic
continuation for f and f-1 we have that f is an automorphism of M which is
conjugate to an irrational rotation. Hence, the group generated by Ja is infinite
and has a fixed point; so M is biholomorphic to the unit disc A since M

Let r: A 2r be a biholomorphic map from A onto r with (0)= 0. For
0 < r < let M, n(A(0, r))..

LEMMA 2.5. Fix. r < 1. The open set f, F-t(2I,) can be exhausted by biholo-
morphic imaoes of the bidisc.

Proof of Lemma 2.5. Let n (nl, r2). Choose holomorphic functions h, h2 on
A such that

c%zl (tl)h2(tx c3rc2
gtt - (tl)hl(tl)- 1.

This is possible since dni/dtl, tgr[2/COt do not vanish simultaneously on A. Consider
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the map H defined on A x C as

n(t, t2) (:x(tx) + t2hx(t), 2(tl) d- t2h2(tl)).

For every r’ < there exists fi > 0 such that H is a biholomorphism from A,, x
onto its image; hence, Ar,, has a basis of neighborhoods biholomorphic to a bidisc.
As aconsequence, there exists a holomorphic function tp defined on a neighborhood
of M, and vanishing to first order exactly on M.
For e small enough let D f, { 1991 < e}. For e small enough define (z, w)

(- o F(z, w), (lie)go(z, w)). There exists eo > 0 such that, for 0 < e < Co, is a
biholom_orphism from D to A, x A.
On M, f is conjugate to a rotation; hence, f(f,)= fl,. Since f converges

uniformly on compact sets to F, it follows that for k large enough f(D) D’; so
there exists a subsequence nk such that f-"(D

LEMMA 2.6. The connected component f of Int K/ containing 0 is equal to

"1 F-X(/r)
Proof of Lemma 2.6. It is not a priori clear that F(f) f although F(f) f.

However, the local images of F on f are one-dimensional varieties. Hence, we can
abstractly think of F(f) as a connected normal compl%x variety r* over C2

containing M. We know that f(M) M; so f extends to M*, f(M*) M*. As in
Lemma 2.5, we pro_ve that M* is biholomorphic~ to a disc and that~ f is~ conjugate
to a rotation on M*. Suppose q e M* is on the boundary of M in M*. We can
construct a disc M containing 0 e M and q e M* such thatM has a neighborhood
U biholomorphic to a bidisc; this latter fact is proved as in Lemma 2.6. On U1, f
is conjugate to

f(2, W) (e2i"g d- 0(w), 0(w)).

At every point of (w 0) the matrix (fn), has an eigenvalue equal to e2". Since
Det f’[ < 1, the other eigenvalue decreases geometrically to 0. Therefore, there
is a neighborhood U2 ofM such that the sequence fn is normal on U2, and hence
qef. El

End of proof of Theorem 2.3. From Lemma 2.6 it follows that fl f can be
exhausted by biholomorphic images of polydiscs. Since F is a nonconstant bounded
holomorphic map on f, it follows that the infinitesimal Kobayashi metric of f is
not identically 0. A theorem of I-FS] implies that in this situation f is biholomorphic
to A x C or to A2. Butf e Aut f has a fixed point, andfn converges to a degenerate
mapping; therefor_e, f is not biholomorphi_c to A2.

Since F(fl)= M, F is a retraction on M and F o F Id. The biholomorphism
f A x C constructed in [FSI is such that O(r)= A x {0}; i.e., the first

component x satisfies x - o F.
if ff o f o -, then is a biholomorphic map on A x C, (z, 0) (2 z, 0),

and therefore (z, w) (2x z, 22 we"t), where u is a holomorphic function on A with
u(0) 0.
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For a holomorphic function v on A with v(0) 0, define

T(z, w) (z, e*w).

We have to determine v such that

(.) T.-t o o T,(z, w) (z, ’h w).

Equation (*) is equivalent to

u(z) + v(z) v(, z) O.

Let u(z) En>l anzn and v(z) n>x bnzn. Equation (*) is satisfied if and only if
for every n > 1

an + bn(1 27)= 0;

a

(1 2)"

Since 21 satisfies the Brjuno condition, then given e > 0, for n large enough,

Therefore, the series n> bnzn has a radius of convergence at least equal to 1.

It should be observed that the component f is a Runge domain. This is indeed
a general fact.

POPOSITION 2.7. Let f C be a polynomial automorphism of C. If o9 is a
component of Int K+, then o is a Runoe domain.

Proof. Recall that

K+ {q; fn(q)is bounded}.

Recall that a domain of holomorphy is Runge if and only if every holomorphic
function in U is uniformly approximable on compact sets by polynomials. If X is
a compact set in C, let denote the polynomial hull of X; i.e.,

"g { Ck’ lp()l < sup lP(z)l fr every plynmial p}
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Equivalently, U is Runge if and only if, for every compact X c U, X c U.
If X is a compact in Ck, let

X, {( e Ck; dist((, X) < r}.

Observe that (), = X,. Indeed, let p bc a polynomial and t/e Ck, I]t/]1 < r. If ( e .,
then

IP(( + /)l < sup Ip(z + r/)l < sup IPl
zEX Xr

which implies that + r/ X,.
Suppose X %,c Int K/. Let r > 0 sAlh that X, c Int K/ It follows from Propo-

sition 1.1 that X, K+. Since 0), X,, we have , Int/+. It is well known that
connected components of a Runge open set are Runge.

Problem. Let f be a polynomial automorphism ofCk such that f(0) 0 and the
eigenvalues (2i) of the matrix A f’(0) satisfy IAil < 1, 1, k. Let f be the
maximal connected open set containing 0 on which the sequence f" is normal.
Assume f is linearizable around 0. Is f biholomorphic to o x C-e, where o is a
bounded Reinhardt domain in Ce for some e, 0 < ve < k? When all 2 satisfy Ijl 1
andf is linearizable around 0, Herman [He] asks for a description of the Reinhardt
domains that one can obtain in this way.

3. Structure of K+ and K- for small a. Let P be a monic polynomial in C of
degree at least two. Recall that a point z belongs to the Julia set J(P) if and only if
the sequencef" (considered as maps to P) is not a normal family in a neighborhood
of z. The polynomial P is hyperbolic if and only if all the critical points of P are
attracted by attractive cycles (including ). Equivalently, P is hyperbolic if and
only if there are two constants C > 0, > 1, such that for every z J(P)

IP"’(z)l C,n.

It is standard to find a Riemannian smooth metric on C with the property that in
the new metric there is a > 1 such that for z J(P)

Ie’(z)l > .
In what follows, we will assume that such a metric has been chosen.

In this paragraph we study the dynamics of maps

O,,,(z, w)= (z2 + c + aw, az)

assuming that the polynomial Pc(z)= Z2"}" C is hyperbolic and that a is small
enough. The idea is as in Benedicks-Carleson I,BC] to consider # as a perturbation
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of the degenerate map

Vo,(z, w) (z’ + c, 0).

Let J(c) denote the Julia set of the polynomial Pc. Let /’ be the Mandelbrot set

’ {c; J(c)is connected}.

It is well known that, for c e C\’, J(c) is a Cantor set and that the polynomial Pc
is hyperbolic; see [De], [Do]. This happens in particular if Icl > 2.

It is however not known whether for c e Int(’) the polynomial Pc is hyperbolic.
We will study separately the case where c C\’ and the case where c belongs to
a hyperbolic component of Int /.
We recall the following definition of hyperbolicity; see [Sh]. Let f be a diffeo-

morphism of a smooth manifold N. Let A be a closed invariant set under f. Then
f is hyperbolic on A if there is a continuous invariant splitting for f’; i.e., there are
invariant continuous subbundles Es and Eu such that TNIA E Eu, and there is
a metric on N, and constants c > 0, 2 > 1, such that in this metric

c

THEOREM 3.1. Let c c C\//. Then there exists ao(c) > 0 such that, if lal < ao(c)
and g(z, w)= (z2 + c + aw, az), then the sets K+ and K- associated to g have the
following structure.

(i) K+ and K- are foliated by complex manifolds which intersect transversally.
Every leaf in the foliation + ofK+ (resp. in the foliation r- of K-) is dense
in K+ (resp. in K-) and is biholomorphic to C.

(ii) If K K+ c K-, then g is hyperbolic on K and K is a Cantor set.

(iii) The Hausdorff dimension ha, ofg +- has the following properties: ha,c(K+) > 2
and for any fixed a limc-.oo ha,c(K+) 2. We also have the inequalities

2 < h,,c(K-) < 2 +
log 2

log 1/lal

for the Hausdorff dimension of K-.
In the proof of Theorem 3.1 we basically deal with the horseshoe construction.
We recall the following facts from the dynamics of Pc(z) z2 / c. See [De] or

[Do].

LEMMA 3.2. Suppose c . There exist 3 real analytic simple closed curves ,, bounding D, D, D with he following properties.
(i) D D Z;

(ii) D c D, D. c D;
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(iii) 0 D3\D L) D2, c D3;
(iv) Pc maps each D biholomorphically to D3, 1, 2;
(v) If z q D3, then Pc(z) q D3 and P(z) --, as n --, .
For any sequence 2 (il, i., ...) where i e {1, 2}, let 2. (il, i.). The

domains D. and the curves x. tD. are defined inductively using the following
relations: ?,..../, Di,...i,, and P()it...i.+t)- ’Fi.+,. Let U. UI,I=nD,. Then
U. +1 U., c U. has empty interior, and J(c) is given by

J(c) 0 v,.

Since PC is hyperbolic, we know as above that there is Riemannian metric on C
and a constant > 1 such that

Ie(z)l > W on d(c).

By continuity there exists an integer M > 1 so that

Ie(z)l > ’ on Uu.

We fix R > 1 and R > Icl such that D3 A(0, R). Let

D D3 x {Iwl < R}.

We will make restrictions on a of the type lal < a(c); the conjunction of all restrictions
will give the constant ao(c) > 0 of the theorem.

LEMMA 3.3. There exists a(c) > 0 such that, if 0 < lal < a(c), the following holds.
(i) If (z, w) B and for some n > 1, g"(z, ’w) D, then gn+k(Z, W) q for every

k zk > 1 and gl w)--. c as k .
(ii) If (z, w) K/, then there exists no such that g"(z, w) D for every n > no.
Proof. (i)Iflwl < Randz D3,thenz2 + c + awisjustaperturbationofz2 + c;

therefore, #l(z, w) D3 and #(z, w) o as k .
(ii) Suppose (z,w)eC2, Iwl > R, and Izl >lwl, if a is small enough,

z2 + c + awl >> zl and clearly (z, w) K+.
Let (Zo, Wo) K/ and (z, w,) 0"(Zo, Wo) be the forward orbit, it follows from

the previous observation that, if Iwl > R, we must have Iz, < Iw, I. Hence,

Iw,+l laz=l lal Iw=l.

Therefore, for some no, IW,ol < R, and since (Z,o, W,o e K+, Z,o D3. Using (i), we
see that 0"(z, w) D for all n > no. E!

The main ingredient in the proof of Theorem 3.1 is the following estimate on the
derivative of
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PROPOSITION 3.4. Fix R >> 1. There are constants C, C2 > 0, 2 > 1, and
a(c, R) > 0 such that the followino holds.

Suppose (z#, w#), 0 < j < n, is an orbit in D and let

Then

(gn)’(Zo, Wo)=(an
Cn dn

2"
1

la.lC Ib.l Ic.I < C2 lal la.I, Id.I 3C2 lal la.I.

We prove at first a lcmma.

LEMMA 3.5. Given >> 1, let(l, ) C2 with [0[ </. There are constants C() >
O, > 1, such that the followino holds. Assume (z, w) D for O, k, where
(zj, w#) 0(z#_, w#_). Let k m + r with r < M + 2 and suppose Zo, z,, Uu.
Let

(ok)’(Zo’ WO)= (0)(Zm, Wm)O (Zm-1, Wm-1)’"Ot(Zo, WO)= Am+lAm...al

Denote

(Xl’ Yl) At(l, (X2, Y2) A2(x1, Yl), (Xm+l, Ym+l) Am+l(xm, Ym)"

Then
(i) for 1 <j < m 1, Ixj+xl > ,lxl and lYjl < 2c(e)lallxl < Ixjl; and
(ii) there exists 6 > 0 such that

IX.+ll > 1/2(26)’lxml

and

lYm+ll 4Clal IXm C(l)lallxm Ix.(26)" +x +x +1

Proof. Suppose m 0; then k r

(O’)’(z’w)=I2z’’’2z’-+ff ffl
where Ifl C lal. Since (zi, wi)e D, there is a constant 6 > 0 such that Izl O if
< r- 1; hence,

> (26)’.
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We then have

(gr)’(Zo, Wo)(l)=((2Zo...2z,.-l+ fl)+ f2, f3+ f,)= (xl, y).

If lal < a(C, R) is small enough, we have

Ixxl (2di)’ Clal- Clal (26)’ 2Clal/ 1/2(26)’

and

4ClaIRlye[ < Clal + ClaiR < 2ClaIR R < (2i).. Ixxl < Ixxl.

Suppose tn > 1. Then

(x, y) (2Zo + a, a).

On C we use the metric with respect to which Ie(z)l > on UM. The first part can
be reinterpreted with this metric as well. We have

+.___1Ix[ > 21Zol[1 >
\ 21Zol,/ 2

2 if a is small enough,

lYI Clal C’lallxl.

For 1 < j < rn we have by induction since z_l e UM and

(x, y) (2zg_x_ + ay_, ax_)

Ixl 2 Iz-x Ix-x I(1

For (x, /1, Y,n /) the estimate is just as in the case m 0, i.e., (xm /1, Ym/)
((2z.... 2z.+,_ + f)x,,, + f2Y,,,,fax. + fy.), where Ifl < Clal for someconstant
C. Recall that r < M + 2; hence,

1

4ClallY,+I < 2Clallx,,,I < (26). Ix.+xl.
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Proof of Proposition 3.4. We assume that a(c) is small enough such that, if
z 6 Ut for < m and Zm +x, z?1 D3, by the choice of a(c) we have that n m <
M + 2. We have

(g?1)’ (z’ w) () (ancn
We apply Lemma 3.5 to the vector (1, 0). It follows that there is a constant Cx such
that

Since for I1 R, a?1 + b?1 :/: 0,

Next, y?1 c71 + d?1. If 0, then Ic711 ly.I < Cglal Ix?11 < Cglal la.I. If 1,
then

Idnl Ic dl + Icl lYnl + Icl

< lYnl + Clallal < Clallxl / Clallal

< Clal[21al / Ibl] < 3Clallal. n

We now introduce some special neighborhoods of K/ c D. For each n let

s. {(z, w) o; o"(z, w) o}.

Then clearly, S71 Sn+x and n S71 K+ c D. The following lemma gives a descrip-
tion of Sn.
LEMMA 3.6. (i) For each n

S {(z, w), Iwl < R, 07(z, w)

(ii) For each fixed Iwl < R, S?1,w {z; (z, w) S71 } consists of 271 smoothly bounded
simply connected reoions. Moreover, for every (Zo, Wo) S71 there exists a unique holo-
morphic .function z p(w), Iwl < R, with zo p(wo) and 9(p(w), w) 9’(zo, Wo).
There is a constant C3 such that the diameter of each component of S71., is < C3/2n.

(iii) Each S71 has 271 connected components, S,, 271 (ix, i,), it {1, 2}, and
D c S,....+ c St, i.; moreover, S. c S,. if 271 :/: 2’..
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Proof. We assume that a is sufficiently small in order that all the previous results
hold. Assertion (i) follows easily from Lemma 3.3.

(ii) Let r be a defining function for D, i.e.,

{z; z e C, r(z) < O}

and Vr # 0 on Da. We have

OS. r% D {(z, w) e D; r(g’(z, ))

Let (a., b.) ((c0/0z), (cO’/Ow)). We know that Ib.I < (1/R)la.l; therefore,

1

Also, V(r o g) 0 on c3S c D since g" is a biholomorphism. It follows that S. has
a real analytic boundary and is almost vertical if/ is large enough (which we can
assume if a is small enough). Moreover, each S. is foliated by complex manifolds
given by (z, w) c. Each such level set is a graph over the w axis (i.e. z o(w))
since Ibl (1//)lal. it follows also that S, consists of finitely many components
and that the number of components is independent of w; indeed, {w Wo} is
transverse to OS.

Let I[ < R and A {(z, ), z e D3}. Let A...A,) be the components of
A cS,. We will prove inductively that #(n)= 2", that 0[A is biholomorphic
onto D3, and that $ has 2" components.
For n 1 we know that S has 2 components and that (1)= 2 and 1 are

biholomorphisms onto D3. Suppose the assertion holds for n. Then 0"(A), < 2,
is a graph over D3 given by

w  p(z)

Proposition 3.4 implies the existence of a constant C such that

Clal.

Therefore, if a is small enough, the graph w tp(z) intersects $1 transversally (i.e.,
S: c {w cp,(z)} has two components); so the assertion holds for n + 1.

Since Idg’/cOzl > C1 on A, it follows that the diameter of A is smaller than
C3/2n, where C3 is independent of n and of I/1 < R. This proves (ii) and (iii) is
immediate. 121

We now prove some of the assertions of Theorem 3.1 concerning K+. Since
K/ c D S. and each S. is foliated by "vertical" complex manifolds and since
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the diameter of each component of S.,w goes to zero, it follows that K/ D is
foliated by complex manifolds and that the leaves are of the form z p(w) with
p’(w)l < 1//. On K+ c D we have symbolic dynamics. To a leafL in D we associate
the sequence { ji}=l if L . Sj,...j., or equivalently, 9"(L) c Sj./,. Two leaves L,
L’ in D are in the same global leaf if and only ifji : j; for only finitely many i’s. The
action of O on the space of leaves is conjugate to the shift operator on the sequences
{ j}. It follows that each leaf is dense in K/.
We know that, for I/1 < R, S has 2" components S., I,l n, and that

diam(S) < C/2. Therefore, K K/ c {w fl} has a Hausdorff dimension less
than log 2/log 2. Since 2 is arbitrarily large when c is large, it follows that, for a
fixed, limc_.o ho,c(K+) 0. The fact that ho,c(K+) > 2 is the content of Corollary 1.4.
We now study K-.

LEMMA 3.7. There is a(c) > 0 such that, if lal < a(c), the followino holds. If
(z, w) K-, there exists no such that, for n > no, 0-"(z, w) O.

Proof. Recall that #-l(z, w) ((w/a), (z/a) (c/a) (w2/aa)). Suppose first that
Iwl > R and Izl < Iwl, Let (z’, w’) g-(z, w). We have

1( w
-Icl- Izl > T -h- R-Iwl > 21al 3 > 21wl

if a is small enough, and

Iwl 2

2lal 3 Iw’l.

So inductively, #-(z, w) --* ; hence,

K- r {(z, w); Iwl R and Izl Iwl} ,
Let A {(z, w); Izl R and Iwl Izl } A2(0, R)\D. If (z, w) e A, we have seen

in Lemma 3.3 that ff"(z, w) --, uniformly on A; therefore, if (z, w) e K-, necessarily
there is an no such that -o(z, w)e D. So we can assume (z, w)e D. If (z’, w’)
0-X(z, w), then necessarily z’ Da, and if Iw’l > R, then Iz’l < Iw’l and 0-"(z’, w’) ---}. So (z’, w’) D.

LEMMA 3.8. Let T #(Sn) and Ta 0(S) for 121 n. Then T,...j.+, Tj2...j.+
and OT. + c OT. c ODa x { wl < R}. We also have K- c D n T..

Proof. We have

Therefore, T,....+, T2....+,, and consequently T.+ = T.. Assume (z, w) 0T.+x c
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{(Z, W); Z D3}. Then (z’, w’) O-("+l)(z, w) satisfies Iw’l R; hence, (z", w")
g(z’, w’) g-"(z, w) satisfies Iw"l < R, and then (z, w) e T.

Suppose (z, w) K- o D. Lemma 3.7 implies that, for n > 1, 9-"(z, w) D. Hence,
g-"(z, w) S,, which means that for all n > 1, (z, w) e T. Assume that (z, w) e T.
Then, for all n, 9-"(z, w) S,, c D; so (9-"(z, w)) is bounded. Hence, (z, w) K- o D.

For each 2, Sa is foliated by the horizontal sections S c (w w0). The image
under 9" of each such leaf is a graph of the form w q(z). This was shown in the
proof of Lemma 3.6. To prove that the limit of these foliations is a foliation of
K-o D, we only need to show that for fixed the diameter of T o {z } ap-
proaches zero when 121-o .

Consider the foliation of Sx o D and let L {(z, w), z tp(w), Iwl < R} be a leaf.
The tangent to L is almost vertical if/ is large enough. We also know that g"(L) is
vertical and that ok(L), 1 < k < n, is almost vertical (Lemma 3.5). But

O’(z, w).(q(w), l) [2 aol(qg’(lW))=(2ztp’(w)+a)\ atp’(w)

In particular, 12zqg’(w) + al latp’(w)l since the vector is close to vertical and the
second component shrinks by the factor latp’(w)l. Similarly, the vertical vector
O"’(0(w), w)(tp’(w), 1) has length smaller than Claln, where C is a fixed constant. So
the diameter of Tx o (z ) is at most Cla[". It follows that the Hausdorffdimension
of (D o K-) o (z fl) K is less than log 2/log (1/lal), and we know it is positive
because the function G- is H61der continuous and has a nonremovable singularity
on K.

Using the same symbolic dynamics argument as for K/, we can show that each
leaf is dense in K-.
We prove that each global leaf is biholomorphic to C. Suppose L is a leaf of K/.

If is a closed curve in L, g"() can be contracted in g"(L) o D for large n. Hence,
L is biholomorphic to the unit disc or C. Assume there is a nonconstant holomorphic
function on L, Jhj < 1, h(p)= O, h(q)= 1/2, for some p, q L. Pulling the function
forward to g"(L) o D and observing that IIg(p) g(q)ll 0 and Ig(P)l < lal R, we
obtain a contradiction to the Schwarz lemma. So L is biholomorphic to C. The
argument for K- is quite similar.
To complete the proof of Theorem 3.1 we only need to prove that g is hyperbolic

onK=K/ oK-.
For q e K let Eu be the tangent plane to the leaf in K- through q and let Es be

the tangent plane of the leaf in K/ through q. Since K c D, then Eu and Es meet
transversally; so

TC2 E E,

and e’(q)E] Eat, #’(q)E Ea,,, with obvious notations. The leaves of K/ o D
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are almost vertical, and we have seen that

For E, we use the estimate of Proposition 3.4, namely,

(g,,),(z,w)=Ia,,Cn dn

Now an dominates the other terms and [an[ > C2 with 2 > 1. Therefore,

for some positive constant C’.
It is also clear that the subbundles E, and Es vary continuously since the foliations

on K/ and K- are uniform limits of smooth foliations on S, and T, respectively.

Remarks. 1. Suppose P is a polynomial in C such that all critical points of P are
in the basin of attraction of . Then P is a hyperbolic polynomial, and J(P) is a
Cantor set. We can show that there is a constant ao(P) > 0 such that for lal < ao(P)
the H6non map

9(z, w) (P(z) + aw, az)

is hyperbolic on K K+ c K- and such that K+ and K- are foliated by dense
leaves which are biholomorphic to C.

2. In [BS1] Bedford and Smillie show that, when O is hyperbolic on K, then J+
and J- have foliations by dense leaves biholomorphic to C.

We consider now the case where the H6non mapping has an attractive cycle in C2.
Let 09 be an open set in C. We will assume in what follows, that for every c 09

the polynomial Pc(z) z2 + c has an attractive cycle of order k: for example, if
Icl < 1/4, Pc(z) has an attractive fixed point, i.e., k 1. Also, if Ic I < 1/4, Pc(z) has
an attractive cycle of order 2.

It is a result due to Fatou (see [Do]) that in this case Pc has no other attractive
or indifferent cycle. Since the critical point is in the immediate basin of attraction
of the cycle, it follows that Pc is hyperbolic on J(c). Choose a Riemannian metric on
C such that there is a constant ), > 1 with the property that

IPd(z)l >

if z belongs to a neighborhood U of the Julia set J(c) of Pc. Let Ux, Uk be the
immediate basins ofattraction ofz,..., Zk. Without loss ofgenerality we can assume
that 0 U. Let Kc be the filled-in Julia set of Pc; i.e., z e Kc if and only if P(z) is a
bounded sequence. It is a result due to Sullivan I’Su] that any other component V
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of Kc\J(c) is preperiodic to {U1, Uk}; i.e., for some m > 1 and j, 1 <j < k

is a biholomorphic map.
We first fix some notations for the dynamics of Pc. Choose simple closed real

analytic curves o, , , in U with the following properties.
(i) o bounds a domain Do Kc, and we can assume P-I(Do) c Do.

(ii) j bounds a domain DjccU for l<j<k and for l<j<k, c
P-I(Uj+I\Dj+I) , 0 01.

(iii) ?, bounds a domain D, such that D D, U and , c P-I(UI\D1) .
The following theorem gives a description of K/ and K- for the H6non maps

associated to the polynomial

THEOREM 3.9. Suppose c 09 and let

g(z, w) (z2 + c + aw, az).

Fix R >> 1. There exists a positive constant ao(c, R) such that for 0 < lal < ao(c, R)
the following properties hold.

(i) g has an attractive cycle of order k, { pl, Pk }, and the interior ofK+ consists

of k connected components, each of which is the immediate basin of attraction

of one of p, p.
(ii) J+ is foliated by complex manifolds, biholomorphic to C, which are dense in

J/. The k basins have the same boundary J/.
(iii) /f I/1 < R, then K K+ c {w } is a connected compact set. If k 1,

then d(K) is of Lebesgue measure zero, and consequently, J+ is of measure
zero in C2.

(iv) K-\{pl,..., Pk} is also foliated by complex manifolds, biholomorphic to C,
and leaves are dense in K-. All leaves cluster at each pj, but no leaf has an
extension as a complex variety through any pj.

(v) The Hausdorff dimension of K- satisfies the inequalities

2 < ha,c(K-) < 2 +
log 2

log 1/lal

We will decompose the proof in a series of lemmas. We fix R > 1 such that
Kc = D(0, R). We will have various restrictions on a ofthe type lal < ao(c, R), and
we will always consider that the restrictions on a introduced in previous lemmas
are satisfied.

LEMMA 3.10. There exists ao > 0 such that for 0 < lal < ao the map

O(z, w) (z + c + aw, az)
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has an attractive cycle of order k, {pl, Pk}, and Dj x { wl < R} is contained in
the immediate basin of pj.

Proof. We have

Ok(Z, W) (Pk(Z) + P(Z, w), Q(z, w)) G(z, w, a, c)

where all the coefficients of P and Q contain positive powers of a. The rank of the
derivative of G(z, w, a, c) (z, w) at z z l, w 0, a 0 is two. So by the implicit
function theorem there arc two holomorphic functions Z(a), W(a) defined for
lal < ao such that

G(Z(a), W(a), a, c) (Z(a), W(a)).

We denote, for 1 < j < k, pj 0J-t(Z(a), W(a)). We can assume that, for [al < ao,
IG’(z, w, a, c)l < on a polydisc A2((Z(0), W(0)); ,). If (z, w) e/ x {Iwl < R} and
if a is small enough, then G(z, w, a, c) A2(Z(0), W(0), 6) for a fixed large
enough, and therefore G’(z, w, a, c) converges to (Z(a), W(a)). The same applies on
Dj x {Iwl < R},j 2,..., k.

LEMMA 3.11. Let (z, w) K+. Then there exists no such that, for n > no, [tn((z, w))
Do x {Iwl < R} =: D.If(z, w) K+caD, theng(z, w) D.If(z, w) K-,thereexists
no such that, for n > no, g-n(z, w) D.

The proof is very similar to Lcmma 3.3 and Lcmma 3.7, and we omit it.
Let := Do\J=/i. Wc want to estimate the derivative (g)’(zo, Wo) if the orbit

(zi, w) B(z_, w_t), 1 < < n, stays in

og .= . x {Iwl < R}.

LEMMA 3.12. Assume (zi, wi) 0(z-1, wi-t), 0 < 1 < n, is in ll. Given R >> 1, let
(1, ) e C2 with I1 < . Denote (xj, yj) (0J)’(Zo, Wo)(1, ), 1 < j < n. There exists
ao(c, R) > 0 and a constant C > 0, both independent of n, such that, if lal < ao(c, R),
then

(i) lYjl < 2Cglallxjl < Ixjl, and
(ii) Ixjl > (1/C)Aj, A (7 + 1)/2.

The proof is like the proof of Lemma 3.5, and we omit it.
As a consequence, we have the following estimate for (’)’.

PROPOSITION 3.13. Fix R >> 1. There exists ao(c, R) > 0 and positive constants
C, C2, > 1 such that, if (zj, wj), 0 < j < n is an orbit in ql and

(gn)’(Zo, Wo)=[an

then la, C &’, Ib, (1/R)lal, Ic, C2 lal lanl, [dnl C2 lal la, I.
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Now we define . {(z, w)e ; a’(z, w)e .}.

The following lemma can be deduced from the estimate on (#)’ in the previous
proposition.

LEMMA 3.14. Each ql has a real analytic boundary in {Iwl < R}, tgq/ is almost
vertical, and ?l is foliated by almost vertical complex discs of the form z qg(w),
Iwl < R, such that #(qg(w), w) is constant for Iwl < R.

We remark that, if we choose/ very large, then a(c, I) is very small, and then
the leaves z qg(w) are close to vertical; i.e., I,’1 << 1.

LEMMA 3.15. Fix I/1 < R. Fix

Then ql,,a is a connected domain with smooth real analytic boundary. The number of
holes in ql,a is independent of fl and is equal to k + (2- 1)(k- 1). They are
hierarchically ordered accordin# to their boundino curves

and with outer boundary ". Furthermore, yi,.x always surrounds yi,j for < n while
)," surrounds y" +.

Proof. The proof is by induction on n. Observe first that q/o q/has vertical
boundary in (C x Iwl < R) and that a//o, has k holes for every I1 < R. The lemma
is dear if we let 0 and a 0. Recall that we have assumed that 0, the critical
point of P(z), belongs to D U. The choice ofD Dk was such that P()
contains holes slightly larger than D,..., Dk. Also, P-() has (k 1) new holes
ofK\J(c) since P is 2 to 1. Hence, if a is small enough, c (w ) is also a simply
connected domain minus holes slightly larger than D,..., Dk and (k 1) new holes.
Assume the lemma is true for n. Let I1 < R. The map V maps a//,a properly to
x {[w] < R} and gtgq/.,# tg. So g: o1/.,# __. is a proper holomorphic map

which is an unbranched covering of degree 2". The estimate of the derivative of g"
in Proposition 3.13 implies that g"(U.,a) cuts Oq/t transversally; hence, for U.+,a
we obtain 2"(k- 1) extra holes from the (k- 1) extra holes of q/x. We list the

f. n+l n+lboundary curves of these new holes as O’+,t,..., ’.+,2-tk-}" E!

LEMMA 3.16. For I/ 1 < R, ("):ll.,# (").>x .>.Y" J is connected and has
empty interior.

Proof. Recall that there exists 2 > 1 such that I(oT)’l > C2" on q/. and that 07:
q/.,# @ is an unbranched cover of degree 2". Let (Zo, fl) q/.,#. Let tr be a curve
of length : from OT(Zo, fl) to the outer boundary of . Let 6 be the pullback of tr
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from Zo to the exterior boundary 7 of q/.a. The length of # in the z-direction is
smaller than /C2. Therefore, q/,a has empty interior and is connected. The
other assertions are clear. 121

LEMMA 3.17. Throuoh every point in J+ c (Iwl < R} a//, there is a unique

leaf contained in J+ of the form z cp(w), Iwl < R, with cp holomorphic. Moreover,
I’(w)l is arbitrarily small provided a is small enou#h.

Proof. Since q/.a has empty interior, it follows from Hurwitz’s lemma that
the limit of the foliations of dq/ is a foliation of q/. The other assertions are
clear from the previous discussion. 121

We now prove that the interior of K/ consists of k connected components, each
of which is the immediate basin of attraction of one of the points {p,..., Pk } in the
attractive cycle. Let (z, w) 6 K/. By Lemma 3.11 there exists no such that, for n > no,
g’(z, w) D. If g(z, w) is never in (.JJ._ D x {Iwl < R}, then go(z, w) q/, and
consequently g’(z, w)6 J+c {Iwl < R} and (z, w) J/. In particular, we have
shown that the only attractive cycle for g is {P1,..., Pk}. This proves part (i) of
Theorem 3.9.
Lemma 3.17 implies that J/ if foliated by complex manifolds. To prove density

of leaves in J/ we need the following lemma.

LEMMA 3.18. Let w (z) be a germ of a complex manifold at (Zo, Wo) J+.
Suppose I(z)l < R and that I’(z)l < 1. Then there exists an n such that #*[z, (z)]
( {Iwl < R}) is a locally horizontal manifold intersecting all leaves of J+
(Iwl < R).

Proof. That the manifolds #[z, (z)] are locally horizontal follows from the fact
that I(c/cz)l dominates the other derivatives as shown in Proposition 3.13.

Let F be the family of graphs w (z) defined for Iz zol < e and satisfying the
requirements in the lemma. Since 1(9/c9z)1 > c2", it follows that there exists r > 0
independent of e such that, for every graph in F(z, (z)), Iz zol < e, there is an N
such that g[z, (z)] = [z, (z)], where is defined in Iz z)l < r, (z, (z))) J+.
For the polynomial P(z) z + c there exists no such that, if Zo J(c) and A
{Iz- Zo[ < r/2}, then P(A) contains a fixed open neighborhood of J(c). Con-
sequently, if a is small enough, g’[gS[z, (z)]] meets all leaves in J/ c {Iwl <

To show that the global leaves of J’+ are dense in J+, it suffices to prove
density in J’+ (Do x {Iwl < R}). Let L be a leaf in ,/+ and let W be a neigh-
borhood ofp (Zo, Wo) J+ c(Do x {Iwl < R}). Let e > 0such that thediscA =:
{ Iz zol < , w Wo} is contained in W. Suppose z cp(w), Iwl < R, is contained
in Lo(Do x {Iwl < R}). By the above lemma there exists an n such that
cuts all leaves in Do x {Iwl R}. In particular, it intersects the leaf containing
#(o(w), w), Iwl < R. Hence, one of the leaves intersecting A lies globally in the
same leaf as L, and therefore L clusters at p. The proof that L is biholomorphic to
C is the same as in the case considered in Theorem 3.1.
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Let (Zo, Wo) e J/ and choosej 1,..,, k. We will show that (Zo, Wo) is a boundary
point of the basin of attraction of p. For no large, gnk(zo, WO) (Zl, ) . AS in
Lemma 3.16, we can find a curve # of length 0(1/2nk) in k,a from (zl, fl) to the
basin of attraction of p. Here, 2 > 1 is the constant from Proposition 3.13. Hence,
g-k(0) is a curve of length 0(1/2k) from (Zo, Wo) to the basin of attraction of p.

This completes the proof of part (ii) of Theorem 3.9.

We suppose now that k 1, and we prove that the Lebesgue measure ofJ/ is zero.

LEMMA 3.19. Let Pc(z)= z2 + c. For all Icl small enough there is a constant

), > xl/ and an open set U J(c) such that e(z)l > y on U, where denotes the
Euclidean norm.

The proof is left to the reader.
For I/1 < R we have seen that z g(z, fl) is a covering of ’,,a onto of degree

2n. To emphasize the dependence on a and c, we denote by g(z, w, a, c) the H6non
mapping we consider. We have

a(.lJ(a’c))=f __2 1
d 2, dtr(z)

-z gi (z,(z), fl, a, c)

where tr is the Lebesgue measure on C and g(zi(z), fl, a, c) z for 1 < < 2. The
domain is independent of (a, c) for (a, c) in a neighborhood of (ao, Co).

Observe that log tr(ll.a(a, c)) is a plurisubharmonic function of (, a, c). Con-
sequently, log tr(J(a, c)) lim x, log tr(.lj(a, c)) is also a plurisubharmonic
function.
On the other hand, for Icl << 1, lal << 1 and I/1 < R we have

where 2 is a constant such that I(d/dz)g(z, w, a, c)l > C2 in Proposition 3.13. But
if a is small enough, 2 can be chosen arbitrarily close to ; so we can assume 2 > x/.
Consequently, tr(J(a, c))= 0 for lal, Icl small enough and I1 < R. But since
log tr(Jtj(a, c)) is plurisubharmonic for lal < ao(c) provided, the polynomial z2 + c
has one attractive fixed point; we get that tr(J(a, c)) is identically zero.

Together with Lemma 3.16, this completes the proof of part (iii) of Theorem 3.9.

We prove assertion (iv). We first show that K-tn q/ is foliated by complex
manifolds.

LEMMA 3.20. Let (z, w) K-. There exists no such that, for n > no, g-(z, w)
Do x {Iwl < R} D.

Proof. Recall that g-(z, w) (w/a, z/a c/a w2/a3). Suppose first that Iwl >
R and Izl < Iwl. Then if (z’, w’) g-(z, w), we have Iw’l > 21wl and Iz’l < Iw’l.
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(Recall that a is small.) So 0-"(z, w) converges to infinity; i.e., K- does not intersect
Iwl > R, Izl < Iwl.

Let A ({(z, w); Izl < R, Iwl < R\D) {Izl > R, Iwl < Izl}. We have seen that,
on A, 0" converges uniformly to . Suppose (z, w) K- and infinitely many of the
#-"(z, w) belong to A. This contradicts convergence to infinity of" on A.

LEMMA 3.21. If (Z, W) K-\(Pl, Pk), then 9-"(z, w) clusters on J+ {Iwl
laiR}. Consequently, for n large enough, 9-n(z, W) q/ X {Iwl < R}.

Proof. Suppose at first that (z, w) K/. By Lemma 3.20, #-"(z, w) D for n large
enough. But then it follows even that, for each m, 9-n(z, W) qlm for n large enough.
Hence, all the cluster points of the sequence are in J/ c { Iwl < R}. Since the set of
cluster points is invariant under , it follows that they are in J/ c { Iwl < lal R}.

If (z, w) J/, there is nothing to prove; so we can assume (z, w)6 Int K+\
{P1,..., Pk}. Since int K/ is the basin of attraction of the cycle, then #-n(z, W)
clusters on J/. In all cases, for n large, 0-"(z, w)
We will prove that K- c q/is foliated. This will imply that K-\{p,..., Pk} is

foliated by complex manifolds. Observe however that there is no analytic disc
through pj in K-. Suppose O: A K- is a nonconstant analytic map from the unit
disc with values in K- and such that O(0) pj. Then -" o is a normal family on
A, a limit function h will satisfy h(0) p, and, except on tI)-t(p), h should have
values on J/, which is impossible.

Recall that q/. { (z, w) q/; 9n(z, w) q/}. Define . O"(q/.).

LEMMA 3.22. We have tT. +x all c and

Proof. If (z, w) 6 +x c q/, then 0-t" +l)(z, w)
o-#.; hence, (z, w) e .

For (z, w) O.+x c (59 x {Iwl < R}) let (z", w") O-t"+X)(z, w). We have
(z", w") Oq/.+x. Let (z’, w’) 9(z", w"). Clearly, Iw’l
q/. Hence, (z’, w’) 6 q/. and (z, w) ..

If (z, w) (’] ., then, for every n, 9-"(z, w) 6 q/; so (z, w) e K-. Suppose next that
(z, w) K- q/. We need to show that for every n, (z, w) .. Lemma 3.21 implies
that O-"(z, w) e ql for all large enough n. Therefore, O-"(z, w) ql. and (z, w) U. for
large enough n. Since ./x = "/., we have (z, w) 6 (’] r.. 121

The description of the dynamics of #- on K- c q/is contained in the following
lemma.

LEMMA 3.23. For each n, U. has a real analytic boundary relative to q/, whose
normal is almost vertical everywhere. Moreover, for each z the z-section r., of

consists of 2" components, each of which is simply connected with a real analytic
boundary. Furthermore, each component of "t/’., contains exactly two components of
1/’.+,. Moreover, we have diam(r.,z) < Clal, where C is a constant.

Proof. Using the horizontal foliation of q/. by level sets o fl and taking the
image under O", we obtain a foliation of /. We have shown in the proof of Lemma
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3.15 that the image of q/.,a under 0" is an unbranched covering over of degree 2".
The estimate on the derivative of 0" implies that locally each such leaf is of the form
w qg(z). We have that c3. c q/is foliated by #"(q/.,a) with I//I R. These manifolds
are almost horizontal. Therefore, the normal is almost vertical.

Fix z and I/1 < R. Let zl, z2, be the 2" points in q/.,a such that
#(zi,//) z, 1, 2". Let z q(w) be the almost vertical leaf of q/. such that
qg(//) z. By construction of the foliation of ’. we have 9(p(w), w) z for
1, 2". These graphs (qgi(w), w) are the preimage of .,zo since # is of degree 2"

Wand since the graphs are disjoint. Since # is biholomorphic, 92(q(), w), Iwl < R,
are the 2" components of,, zo" Observe that, as after Lemma 3.8, contracts vertical
vectors by a factor almost lal; hence, the diameter of a component of., is of order
of magnitude almost lal.

It remains only to show that each component of /.,= contains exactly two
components of /, +l,z. For fixed z let z q.,(w), 1,..., 2" be the preimages
of .,zO. Since # [0[p.+,(w), w)]] z, it follows that /(q.+:,(w), w) is contained
in one of the graphs (p.,(w), w). We have to prove that for every (n, j) there are at
most two (n + 1, i) for which the inclusion holds.
We study 9-1(qg,,(w), w). We have

a-(o,(w), w)= o.,(w) c

a a g

We want to show that there are at most two values of w, Iwl < R, such that the
second coordinate is equal to Wo with Iwol < R. But this is an immediate consequence
of Rouch6’s theorem. 121

We prove that K- q/is foliated by complex manifolds. Let Z. O"({z,/}) with
(z,/) q/, and I/1 R. As n varies, the Z. are disjoint and connected. Moreover,
locally in @, Z. is a graph of the form w ,.(z). We can therefore apply Hurwitz’s
theorem to prove that the analytic manifolds Z. converge to complex manifolds
that foliate K- c q/. (Recall that the diameter of the components of .,,o has limit
zero.) Since each of the Z, goes through all components of .,,o, it follows that each
leaf of K- is dense in K- c q/, and hence in K-.
Note that leaves ofK- q/enter the basins of attraction of { p 1, P }. Hence,

by the invariance under g, each p is a cluster point of K- {p}.
To show that each leaf is biholomorphic to C, consider a closed curve in a leaf

L. Then g-"()c K-c q/for all n large enough. Also, from the estimate of the
derivative of g it follows that the length of 0-"() --. 0 as n c. Hence, for large n,
g-"(?) is contractible in g-"(L). Hence, L is simply connected. We can show that L
has no nonconstant bounded holomorphic functions in the same way as for leaves
of K/ in Theorem 3.1.

This completes the proof of part (iv) of Theorem 3.9. 121

It only remains to prove part (v). The estimate on the Hausdorff dimension of
K- is quite simple. We know from the H61der continuity of Green’s function and
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the theorem of Carleson already mentioned that the Hausdorff dimension of K- c
{z Zo } is strictly positive. As in Corollary 1.4, the Hausdorff dimension of K- is
then strictly larger than 2. The fact that the 2 components of /,zo have a diameter
decreasing like lal gives the other estimate. This completes the proof of Theorem
3.9.

THEOREM 3.24. Suppose (a, c) is as in Theorem 3.9. If P(z)= z2+ c has an
attractive cycle of order k > 2, then J+ is nowhere a topological manifold. If P(z) has
an attractive fixed point and satisfies the followin# generic condition, condition (C),
then J+ is nowhere a c manifold.

Condition (C). The map satisfies condition (C) if there is a k [ such that g
has a fixed hyperbolic point P with eigenvalues 121 < 1, [#l > 1, and # I#l e2ie with
0 irrational.

Proof. IfPc(z) z2 + c has an attractive cycle oforder k > 2, then at every point
p e J/, J/ is on the boundary of at least 3 components. Therefore, J/ is not a
topological manifold.

Suppose now that Pc has an attractive fixed point. We will use the following
lemma.

LEMMA 3.25. Let f be a Hnon automorphism of C2. Let p be a hyperbolic fixed
point of fk. Let v, w be two nonzero vectors in C2 ;such that (fk)’(p)v 2V and
(fk)’(p)w ItW with 121 < 1 and Iltl > 1. Suppose lz Iltl e2i0. If the tangent cone to
J+ is not equal to Cv, then for some fl # 0 it contains any limit point of

Proof. Recall that the tangent cone C(p, J+) at p is the set of positive multiples
oflimits of(pn p)/llpn pll for pn e J+l{p} and limn pn p. Since J+ is stable under
f, it follows that C(p, J/) is stable under (fk),(p). Suppose v + flw C(p, J/),
fl 0". The limits of ((fn)’(p))/ll(fn)’(p)ll give all the limit points of

End of the proof of Theorem 3.24. Suppose p is a hyperbolic fixed point for
some #k and that the expansive value associated to it satisfies / I/le2, 0
irrational. The stable manifold V of f #k at p is contained in J+. Hence, Cv
C(p, J+). Since in our situation C(p, J+) Cv, by Lemma 3.25 we have in C(p, J+)
all the limits of {e2*Oflw} for some/3 0. Therefore, C(p, J+) is not contained in a
real hyperplane.
We want to show that J+ is not cg at any point of W. Since V is dense in J+,

this will prove the theorem.
Without loss of generality assume that J+ is 1 at q q/c W. Let Aq be a small

horizontal disc centered at q. Since W is almost vertical at q, A is transverse to J+
at q, and the intersection ofA with J+ is a cg curve in A. By the stable manifold
theorem (see [Sh]), gnk(Aq) converge to the germ Wf of the unstable manifold
through p. We therefore get that W ra J+ contains a cg curve y at p. Let h: (3 W
be a holomorphic parametrization of the global unstable manifold V. Then h
satisfies the equation gk(h())= h(/z). We may assume that h-l() can be pa-
rametrized as (s, tr(s)), tr’(0) 0. Using the functional equation satisfied by h, we see
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that we may assume a O. Since gnk is uniformly bounded on y, we get, using the
functional equation, that h is bounded uniformly on all the rays e2. Since 0 is
irrational, we deduce that h is bounded, which is impossible.

Remark. Condition (C) can be weakened to the following. If 0 (r/e)eQ, we
have to assume that log [#[ is large enough for the Phragmen-Lindel6f theorem to
apply. Indeed, h is an entire map of order 0 < log 2/log I1. If we know that h is
bounded on some ray in any open sector of angular width rr/, then h is bounded.

The following result gives a parametrization off (Iw[ < R)\K+.
TI4EOREM 3.26. For (a, c) as in Theorem 3.9, the open set fa (Iwl < R)\K+ is

biholomorphic to the domain (l(I > 1, Iwl < R).

Proof. For Iwl < R fixed, G+(z, w) log Izl / O(1) at infinity and G+ vanishes
on the compact K. Hence, z --, G+ (z, w) is the Green’s function ofK with pole at
infinity. It is easy to check that G+(z, w)= log Izl / O(1) at infinity, i.e., that
cap(K+) 1 for Iwl < R.
We have proved in Theorem 3.9 that K+ is connected for Iwl < R. Therefore, the

function z G+(z, w) has no critical point in CIK+. Let z--, H(z, w, a, c) be the
conjugate of G+(z, w, a, c) which is defined only modulo 2kTr, k e 3’. The func-
tion F(z, w, a, c) exp(G+(z, w, a, c) + ill(z, w, a, c)) is well defined, and tI): f --,

(lrl > 1, Iwl < R) defined by (z, w, a, c) (F(z, w, a, c), w) is a biholomorphism
depending holomorphically on the parameters.

Remark. Let tl)-((, w, a, c) (,((, w, a, c), w). For each fixed ( we get a leaf of
a foliation of fa. Using the 2-1emma ([MSS]), we see that this foliation extends to
give a foliation of f. Hurwitz’s lemma implies that this foliation on J+
coincides with the previous one.

In the following result we study the quasi-conformal geometry of slices d+o with
wol < R. We emphasize the dependence on the parameters (a, c).
Recall that a homeomorphism in C, f, is quasi-conformal if and only if f has

derivatives in Lo(C) and Of/O #(Of/Oz), where # L(R)(C) and Ilglloo < 1. For the
properties of quasiconformal mappings we refer to Lehto [Le].
A quasi circle is the image of a circle under a quasi-conformal homeomorphism

of the plane.
We will also use the following notion from [ST]. Let X be a subset of C. A

holomorphic motion of X in C is a map

f: T x X-oC

defined on an open disc T C containing 0 such that
(a) for any fixed x e X, f(x) f(t, x) is a holomorphie map;
(b) for any fixed t, f is injeetive; and
(e) fo is the identity on X.
The following result is proved in Sullivan ad Thurston [ST]; see also [MSS] and

[SI].
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THEOREM 3.27. A holomorphic motion of a set X C can be extended to a
holomorphic motion of C defined on T x C, and each map f is a quasi-conformal
homeomorphism of C onto C. Moreover, the map (t, x) f(t, x) is continuous.

THEOREM 3.28. Assume that, for c 5, Pc(z) z2 + c has an attractive cycle of
order k > 1. Suppose lal < ao(C) as in Theorem 3.9. Let J+o(a, c) be the slice of J+(a, c)
by the plane w Wo. Then, for Iwl < R, c e w, lal < ao(c) all the J,o(a, c) are quasi-
conformally equivalent. If k 1, Jwo(a, c) is a quasi circle.

Proof. We first prove that for (a, c) fixed, lal < ao(c), Iwl < R, the slice Jw(a, c)
is quasi-conformally equivalent to Jo(a, c). For x Jo(a, c), there is a leaf in (J/
Iwl < R) through x; the leaf is a graph z qgx(w). If T {w C, Iwl < R} and
X Jo(a, c), the map (x, w) ---, qgx(W) is a holomorphic motion of X in C. This is a
consequence of the fact that each graph (q,(w), w) is a leaf of a foliation and of the
fact that qg,(0) x. Theorem 3.27 implies that (w, x) ---, q,(w) is continuous and for
each w, x --, qgx(w) extends to a quasi-conformal homeomorphism. Hence, x --,

is a homeomorphism between Jo(a, c) and J(a, c).
Each dq/n(a, c) is foliated by graphs z cpn(w, a, c, x), where x varies in cW/(a, c)

(w 0). Each qg depends holomorphically on (w, a, c) as follows from Lemma 3.14.
These foliations converge to a foliation of J/(a, c), and the leaves are graphs
z q(w, a, c, x), where x varies in Jo(0, c). Moreover, each function (w, a, c)---,
qg(w, a, c, x) is holomorphic for x fixed.

Let c qg(0, 0, c, x). Fix c co and let T {a: lal < ao(c)}. Define h(a, )=
qg(0, a, c, x). The map h is a holomorphic motion of Jo(0, c) since, if g # g’, then
x # x’ and the corresponding graphs are disjoint.
We apply Theorem 3.27 to get that Jo(0, c) is quasi-conformally homeomorphic

to Jo(a, c) for lal < ao(c). Hence, all the J(a, c) are quasi-conformally homeo-
morphic.

If Pc(z) z2 + c has an attractive fixed point, it was proved in [MSS] that Jo(0, c)
is a quasi circle. Consequently, Jw(a, c) is also a quasi circle. 121

COROLLARY 3.29. Let 7(z, w) (z2 + c + aw, az). Suppose a, c are as in Theorem
3.28. Then J/ is of LebesTue measure O.

Proof. We have seen in Theorem 3.27 that, for Iwol < R, J+o(a, c) is quasi-
conformally equivalent to J(0, c) which is the Julia set for the polynomial Pc(z)
z2 + c. We have assumed that the polynomial Pc has an attractive fixed point of
order k > 1, and hence Pc is a hyperbolic polynomial. In that case it is a result due
to Sullivan [Su2] that the corresponding Julia set is of Lebesgue measure 0 in C.
Since the image of a set of Lebesgue measure 0 under a quasi-conformal homeo-
morphism is ofmeasure zero (see [LV, p. 150]), it follows that /J,o(a, c) is of Lebesgue
measure zero; hence, J/ has zero volume in C2. 121

I-BC]
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