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§0. Introduction. The dynamics of automorphisms of complex surfaces is an active
area where there has been a productive interaction between questions of dynamics and
complex analysis. We will describe some questions and problems which arise out of complex
dynamics but which have a strong component of complex analysis. We will discuss two
general cases. The first is polynomial automorphisms of C2. By Friedland-Milnor [FM],
it suffices to restrict our attention to compositions of generalized Hénon mappings, which
have the form

f(x, y) = (y, p(y)− δx) (0.1)

where p(y) is a monic polynomial of degree at least 2, and δ ∈ C is a nonzero scalar. Some
basic dynamical properties of a general Hénon map are given in [H], [HO], [FS] and [BS].
An intriguing aspect here is that the mappings themselves are simple to write down, but
the dynamical questions have led to a rather elaborate theory. The results obtained have
been most successful/complete in the case of dissipative maps. This paper is devoted to
an outline of the conservative (volume-preserving) case, which corresponds to |δ| = 1. Our
theme will be that in the conservative case there seem to be more open questions than
proved results.

The second case we will discuss is rational surface automorphisms.* The dynamics of
a positive entropy automorphism of a compact, complex surface may be studied along the
same lines as the complex Hénon maps (see Cantat [C]). Here we consider the case where
X is a rational surface (that is, X is birationally equivalent to P

2). In the Appendix, we
explain why we do not consider other complex surfaces. Consider the family of birational
maps of P2 given by:

fa,b(x, y) =

(

y,
y + a

x+ b

)

(0.2)

The map fa,b may not look like an automorphism because the line {y+a = 0} is exceptional:
it is mapped to the point (−a, 0). However, let π : X → P2 be the blowup of P2 at the
point (−a, 0), and let L denote the lift of the line {y + a = 0} to X . If we lift fa,b to a
map of X , then the line L is no longer exceptional. Although this new map is not yet an
automorphism, there is an infinite family of cases (see Theorem 8.1) where fa,b induces an
automorphism after suitable further blowups.

All Hénon maps have constant Jacobian, which means that the holomorphic 2-form
η = dx∧dy satisfies f∗(η) = δη. If we extend f to a birational map of P2, then η becomes a
meromorphic 2-form, with a pole of order 3 at infinity. When we consider an automorphism

* A Hénon map cannot be expressed as an automorphism of a compact surface. This
is because by [FM], the dynamical degree of a Hénon map is an integer greater than 1,
whereas the dynamical degree of an automorphism of a compact surface cannot be rational,
unless it is 1 (see [BC]).
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f of a compact, complex surface X , we require that there is a meromorphic 2-form η on
X such that f∗η = δη for some |δ| = 1.

Acknowledgment. I wish to thank Prof. Shigehiro Ushiki for generously explaining
his computer work and sharing his ideas with me. His work and vision have been an
inspiration and motivation for my work.

§1. Fatou set of a conservative Hénon map. A traditional starting place for complex
dynamics is the dichotomy between the Fatou and Julia sets: the regions of regular and
chaotic dynamics. If f : X → X is a holomorphic map, we define the (forward) Fatou set
F+ to be the largest open subset of X such that the iterates form a normal family. This
means that any sequence {fnj} has a subsequence which converges uniformly on compact
subsets of F . This is equivalent to pre-compactness in the compact-open topology (which
is the topology of uniform convergence on compact subsets). The Fatou set is also the set
of points which are Lyapunov stable. If f is invertible, then the backward Fatou set F− is
defined similarly, with f replaced by f−1.

In analogy with the case of a one-dimensional polynomial map, we define the escape
locus U+ and boundedness locus K+ by

K+ = {q ∈ C
2 : {fn(q) : n ≥ 0} is bounded}, U+ := C

2 −K+

as well as the set J+ := ∂K+. It follows that the forward Fatou set is F+ = C2 − J+.
Similarly, we define K−, U− and J− using f−1 in place of f , and we set

J := J+ ∩ J−, K := K+ ∩K−

Let us recall that the Shilov boundary of a compact set X ⊂ C2, written ∂sX , is the
smallest closed set such that

max
x∈X

|P (x)| = max
x∈∂sX

|P (x)|

By the Maximum Principle, ∂sX ⊂ ∂X . We define J∗ := ∂sK.
In dimension 1, the set K is called the filled Julia set, and the Julia set itself is

J := ∂K. For complex Hénon maps, the sets K+, K− and K are analogues of the filled
Julia set, and the sets J+, J−, J and J∗ are all analogues of the Julia set. While J∗ may
seem to be the most exotic of these sets, it has a number of natural characterizations (see
[BLS]): (1) it is the support of the invariant measure µ, and (2) it is the closure of the set
of periodic points of saddle type. It is easily seen that J∗ ⊂ J , and equality J∗ = J holds
in a number of cases, but the problem of determining whether these two sets are always
equal has remained elusive.

We recall the following basic result:

Theorem 1.1 ([FM]). If f is a volume-preserving (composition of) complex Hénon maps,
then

int(K+) = int(K−) = int(K)
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This set is bounded, and if Ω is any connected component of int(K), then there is an N
such that fN (Ω) = Ω.*

A consequence of Theorem 1.1 is that F± = U± ∪ int(K). A Fatou component is
a connected component of F+. We observe that since Ω is the set of normality of a
sequence of polynomial mappings, it is a Runge domain, which means in particular that it
is polynomially convex.

Although U+ is a Fatou component, it is different from the others because it is the
basin of attraction of a point at infinity, whereas, as we will see in the next section,
all bounded Fatou components are rotation domains. Henceforth, we will consider only
bounded Fatou components.

One of the most basic quadratic maps pc(z) = z2 + c corresponds to c in the interior
of the main cardioid of the Mandelbrot set. In this case, pc has an attracting fixed point
zc, and the interior of K(pc) is the immediate basin of zc. The interior of K(pc) is a
Fatou component, and K(pc) itself is the closure of this component. In fact, K(pc) is
topologically equivalent to a closed disk, and its boundary J(pc) is a Jordan curve.

Let pc be as above, and let fδ(x, y) = (y, pc(y) − δx) be the Hénon map associated
with pc. It was shown in [HO] and [FS] that if |δ| > 0 is sufficiently small, then fδ has an
attracting fixed point, and the interior of K+ is the basin of attraction. Thus K+ is the
closure of a Fatou component. In fact, J+ is a topological 3-manifold, and (K+, J+) is
a topological manifold-with-boundary. Our first question is whether anything similar can
happen in the conservative case:

Question 1. If Ω is a Fatou component of a conservative Hénon map, is it possible that
Ω = K? Or is Ω always a strict subset of K?

§2. Rotation domains. We suppose that Ω is a conservative Fatou component with
f(Ω) = Ω, and we define the set of all limits of convergent subsequences

G := {g = lim
nj→∞

fnj : Ω → Ω}

If g = limnj→∞ fnj is such a limit, then g must preserve volume, and thus it is locally
invertible. It follows that g : Ω → Ω. Further, we may pass to a subsequence such that
mj := nj+1 − 2nj → ∞ and h := limj→∞ fmj exists. It follows that

g ◦ h = lim
j→∞

fnj ◦ fmj = lim
j→∞

fnj+1−nj = id

and thus h = g−1, so G is a group. Since Ω is a Fatou component, it follows that G is
compact in the compact-open topology. By a Theorem of H. Cartan (see Narasimhan [N]),
it follows that G is a Lie group. Thus the connected component G0 of the identity must be
a (real) torus.

* A component Ω is wandering if fn(Ω) ∩ Ω = ∅ for all nonzero n ∈ Z. It is an open
question, in the dissipative case |δ| < 1, whether polynomial automorphisms can have
wandering Fatou components.
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Theorem 2.1 ([BS2]). G0 is isomorphic to T
ρ with ρ = 1 or 2.

We conclude that Ω is invariant under a nontrivial torus of rotations, so we call it a
rotation domain, and we refer to ρ as the rank of the rotation domain.

Question 2. Does a rotation domain necessarily contain a fixed point?

Rank 1. We first discuss the case of rank 1. In this case, G0
∼= T1, and G0

is generated by the real part of a holomorphic vector field V on Ω. It follows that the
restriction of f to Ω is part of the flow generated by V, so f |Ω = exp(t1ℜ(V)) for some
t1 > 0. The zeros of V correspond to the fixed points of f in Ω; by [FM], there are a total of
d fixed points (counted with multiplicity) in C. Suppose that ω ∈ Ω, and V(ω) 6= 0. Since
G is compact, the orbit G · ω is a closed curve. It follows that the orbit G · ω is contained
in a Riemann surface Rω and a proper map ϕω : Rω → Ω. Now Rω is a Riemann surface
which carries a T1 of automorphisms, so it follows that Rω must either be the disk or an
annulus. We may write Rω as {|ζ| < 1} or r1 < |ζ| < r2. Then the restriction f |Rω

is
given by ζ 7→ αζ, where α = exp(2πia), a > 0, and a is the rotation number of f on the
curve G · ω. The fixed points of f are isolated, so a must be irrational. Further, since a
depends continuously on ω, we conclude that a must be constant. We call this the rotation
number of Ω, written rot(Ω).

The question arises whether the (abstract) torus action on Ω is equivalent to a more
familiar circle action. Let D ⊂ C

2 be a connected open set. We say that D is a (p, q)
domain if (eipθz, eiqθw) ∈ D whenever (z, w) ∈ D and θ ∈ R.

Question 3. Suppose that Ω is a rank 1 rotation domain. Is there a (p, q)-domain D ⊂ C2

and a biholomorphic Φ : Ω → D satisfying L ◦ Φ = Φ ◦ f , with L =

(

αp 0
0 αq

)

for some

α ∈ C, |α| = 1?

If there is such a domain D, then we may take p and q to be relatively prime, and
α = e2πir, where r = rot(Ω).

Question 4. Can the case pq < 0 occur in Question 3?

§3. Reinhardt domains. Let D ⊂ C2 be a connected open set. We say that D is
a Reinhardt domain if (eiθz, eiφw) ∈ D for all (z, w) ∈ D and all θ, φ ∈ R. A Reinhardt
domain is determined by its logarithmic image

log(D) := {(ξ, η) = (log |z|, log |w|) ∈ R
2 : (z, w) ∈ D}

A classical result asserts that D is holomorphically convex if and only if log(D) is convex.
If Ω is a rank 2 rotation domain, then by [BBD] the G-action on Ω may be conjugated to
the standard linear action on C2:

Theorem 3.1([BBD]). There are a Reinhardt domain D ⊂ C2, a linear map L =
(

α1 0
0 α2

)

, |α1| = |α2| = 1, and a biholomorphic map Φ : Ω → D such that Φ◦f = L◦Φ.

Question 5. What are the Reinhardt domains that can arise as rank 2 rotation domains?
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Note that Reinhardt D is the biholomorphic model of Ω, whereas Ω is a subset of dynamical
space. Thus the boundary of D is logarithmically convex and rather “tame”, whereas we
expect that Ω may have a possibly “wild”, fractal boundary.

The torus action on D has no fixed point except the origin (0, 0). In our case, Ω is
polynomially convex, and for polynomially convex sets we have H2(Ω; Z) = 0. There are
two possibilities: a polynomially convex Reinhardt domain is either:
(1) topologically equivalent to a ball (in which case it contains the fixed point (0, 0)), or
(2) topologically equivalent to disk × annulus (in which case it contains an invariant

annulus inside one of the coordinate axes).
In either case, log(D) will be an unbounded, convex subset of R2. It seems hard to imagine
that the Reinhardt model can be a domain that is “familiar,” so we ask (expecting the
answer “no”):

Question 6. Can there be a “Siegel bidisk”? That is, can Ω be biholomorphic to the bidisk
∆2 := {(x, y) ∈ C2 : |x|, |y| < 1}? More generally, can Ω be an analytic polyhedron?

Question 7. Can there be a “Siegel ball”? That is, can Ω be biholomorphic to the
standard ball B2 := {(x, y) ∈ C2 : |x|2 + |y|2 < 1}? More generally, can the boundary of Ω
be smooth?

§4. Existence of rotation domains. Let a linear map L =

(

λ1 0
0 λ2

)

be given, and

consider a map

F (x, y) = L

(

x
y

)

+
∑

j+k≥2

Fjkx
jyk, Fjk ∈ C

2 (4.1)

Consider a power series

Φ = (x, y) +
∑

j+k≥2

Φjkx
jyk, Φjk ∈ C

2 (4.2)

and the power series equation
Φ ◦ F = L ◦ Φ

A resonance is a relation of the form λj = λm1

1 λm2

2 , where j = 1 or 2, and m1, m2 ≥ 0,
m1 +m2 ≥ 2. Note that if λ1 = αp, λ2 = αq, then there are infinitely many resonances
whenever pq < 0. If pq > 0, there is a resonance if and only if α is a root of unity. If there
is no resonance, then it is possible to solve algebraically for the coefficients Φjk. In fact,
the solution Φjk is a rational function in the coefficients Fpq with p < j and q < k. The
solution Φ is a formal power series, and convergence is a question. A classic theorem of
C.L. Siegel (see Herman [H] and Pöschel [P] for subsequent developments) asserts:

Theorem 4.1 (Siegel . . . ). If λ1 and λ2 are “sufficiently irrational”, then the power
series Φ converges in a neighborhood of the origin.

The convergence of such a series has been much studied and is an example of a
“small divisor” problem. Let us restrict ourselves to noting that the condition “sufficiently
irrational” holds for almost every choice of (λ1, λ2) with |λ1| = |λ2| = 1. We say that λ1
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and λ2 are multiplicatively independent if λm1

1 λm2

2 = 1 implies m1 = m2 = 0. Otherwise,
there exists α such that λ1 = αp, λ2 = αq. (If pq < 0, there is a resonance between
λ1 and λ2, and the “sufficiently irrational” hypothesis of Siegel’s Theorem is not met.)
When we apply Siegel’s Theorem, the rotation domain Ω will have rank 2 if the λj ’s are
multiplicatively independent, and rank 1 otherwise.

If a quadratic Hénon map has a fixed point whose differential is diagonalizable with
eigenvalues λj , j = 1, 2, then it is conjugate to

Hλ1,λ2
: (x, y) 7→ (λ1x, λ2y) + (1,−1)(λ1x+ λ2y)

2 (4.3)

If Hλ1,λ2
is of the form (4.3), and if the eigenvaues |λ1| = |λ2| = 1 are suitable for Siegel’s

Theorem, then Hλ1,λ2
is linearizable in a neighborhood U of the origin. It follows that U is

contained in a Fatou component (rotation domain) Ω = Ωλ1,λ2
with H(Ω) = Ω. Although

the domain Ωλ1,λ2
is nonempty for almost every choice of |λ1| = |λ2| = 1, it is unstable,

because the roots of unity are dense in |λ1| = |λ2| = 1, and whenever λ1 and λ2 are roots
of unity, Hλ1,λ2

cannot be linearized, and thus Ωλ1,λ2
= ∅. In dimension 1, the dependence

of the radius of a Siegel disk on the multiplier λ is related to the Brjuno function (see [Ma]
and [MMY]).

Let us revisit Question 4 above in the special case where Ω contains a fixed point. In
this case, the eigenvalues have a resonance at the fixed point. Thus the generic polynomial
map cannot be linearized. Question 4 asks whether every map with this resonance will fail
to be linearizable.

We close this section with an easy complement to Siegel’s Theorem. This is Proposi-
tion 4.2, which allows us to conclude that any Fatou component with a fixed point could
have been constructed by linearization. Let us suppose that Ω is a rotation domain, and
suppose that (0, 0) ∈ Ω is a fixed point for F . Then DF (0, 0) is linearly conjugate to a

matrix L =

(

λ1 0
0 λ2

)

with |λ1| = |λ2| = 1. Let us consider the sequence of maps

Φn = n−1
(

Id+ L−1F + · · ·L−n+1Fn−1
)

Now Fn is bounded on any compact subset of Ω, so the Φn are bounded there, too.
Thus {Φn} is a normal family of mappings, and we can let Φ̃ := limj→∞ Φnj

denote any

sub-sequential limit. It is easy to see that Φ̃ linearizes F in a neighborhood of (0, 0):

Proposition 4.2. Φ̃ ◦ F = L ◦ Φ̃.

Question 8. Is there a construction that gives a Fatou component without a fixed point?

§5. Nonexistence of rotation domains. The simplest resonance is where one of the
eigenvalues is 1. Suppose f is a Hénon map with a fixed point z0. If the eigenvalues of
Df(z0) are 1 and λ, then f cannot be locally linearized at z0 because the linear map with
eigenvalues 1 and λ has a curve of fixed points, corresponding to the multiplier 1, but the
fixed points of f are isolated. The next simplest case is where the eigenvalues are α and
α−1 = ᾱ, and thus |α| = 1. This leads to an infinite number of resonances, each of which
is a possible obstruction to linearization.
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Much of the early interest in Hénon maps arose from the real, area-preserving case
(see [Hen]). A complex Hénon map preserves R2 when it has real coefficients. In this case,
the jacobian is δ = ±1, which means that a periodic point has multipliers λ and ±λ−1,
which forces a resonance. A fixed point for a generic area-preserving map with |λ| = 1
will be of “twist” type. The classical KAM theory asserts that near such a fixed point,
there will be a positive measure set of rotation numbers ω, and for each ω there will be
an invariant “KAM curve” γω. For a complex Hénon map, γω has a complexification to
an annulus γ̃ ⊂ K ⊂ C2. The “standard picture” of a twist map does not allow γω to be
inside the Fatou set.

We must ask whether, contrary to the generic picture, there is a map that can have
a rotation domain. We expect that the answer to the following question is “no” in each
case:

Question 9. Let h : R2 → R2 be an area-preserving real Hénon map.
(i) Is it possible for h to have a linearizable fixed (periodic) point?
(ii) Is it possible for the Fatou set F(h) to be nonempty?
(iii) Is it possible for F(h) ∩ R2 6= ∅?

§6. Computer pictures: the Ushiki approach. Computers have been very useful in
illustrating theorems and motivating new results in the study of complex Hénon maps. The
most useful computer picture has been the unstable slice picture, which was introduced
and widely used by J. Hubbard. To make such a picture, you start with a saddle fixed (or
periodic) point q. The “unstable slice” is Wu(q) ∩K+. The unstable manifold Wu(q) is
conformally equivalent to C, and it is not hard to compute the uniformization ψq : C →
Wu(q) ⊂ C2. The rate of escape function (Green function of K+) is given by

G+(x, y) := lim
n→∞

1

dn
log+ ||fn(x, y)||

In order view the unstable slice, we simply look at the level sets of G+ and its harmonic
conjugate. We refer the reader to [K] for an extended discussion of this and related pictures.
Two important features of this picture are:

(6.1) The unstable slice K+ ∩Wu(q) is invariant under f , and the resulting picture in the
ζ-plane C is invariant under a complex scaling ζ 7→ βζ.

(6.2) The restriction of G+ to the unstable manifold is subharmonic, and it is is harmonic
outside K+. Thus the level sets will be compatible with the maximum principle and
the mean value property.

While the unstable slice picture is quite useful in the dissipative case, the unstable slice
cannot “see” the Fatou set of a conservative map since Wu(q) ∩ Ω = ∅ for any bounded
Fatou component Ω. (For if a point belongs to Ω, then its backward/forward orbit stays
away from the boundary; but if a point belongs to Wu(q), its backward orbit converges to
q /∈ Ω.) The inability of the stable/unstable manifolds to “penetrate” the Fatou set may
be a reason why the conservative case seems more difficult than the dissipative case.
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We say that a map f is reversible by an involution τ if τ ◦ f ◦ τ = f−1 (see [GM]). For
instance, if δ = 1, then f(x, y) = (y, p(y)−x), and f is reversible by the involution (x, y) 7→
(y, x). If h is a polynomial automorphism, then the (constant) Jacobian determinant of
h−1 ◦ f ◦ h is the same as that of f . Thus f cannot be reversible by a (holomorphic)
polynomial automorphism unless δ = ±1.

Theorem 6.1 (Ushiki). A Hénon map is reversible by the (anti-holomorphic) involution
τ(x, y) = (ȳ, x̄) if and only if it has the form

f(x, y) = (y, βp(y) − β2x)

where p(y) is a real polynomial, and |β| = 1.

The fixed point set of τ is the conjugate diagonal:

Fix(τ) = ∆′ := {(ζ, ζ̄) : ζ ∈ C}

The Ushiki approach is to look at maps that are reversible under τ and look at the slice of
the interior of K by the conjugate diagonal ∆′. The new pictures will not have the same
“feel” as the unstable slice pictures because properties (6.1) and (6.2) above do not hold.
However, these slices are well suited to reversible maps, which seem to be a rich source
of rotational behavior. Restricting to reversible maps also has the benefit of reducing the
dimension of the (real) parameter space to two.

1

2

2

3

3

Figure 1. Hénon map f(x, y) = (y, eiθ(y2 + α) − e2iθ): α = 0.269423, θ = 1.02773.
Slice of K by conjugate diagonal
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1

2

2

3

3

Figure 2. Same Hénon map as Figure 1. Slice of K by complex line

Ushiki has made a number of pictures of K∩∆′ and has found a number of interesting
phenomena. One of Ushiki’s parameter values is used to make Figure 1, which shows two
slices of K for the reversible map f(x, y) = (y, eiθ(y2 +α)− e2iθx). The left hand image is
the slice of K by the conjugate diagonal (ζ, ζ̄) for .2 ≤ ℜ(ζ) ≤ .6, −.2 ≤ ℑ(ζ) ≤ .4; the right
hand image shows the slice of K by the “horizontal” line (ζ, .4 − .1 i), .3 ≤ ℜ(ζ) ≤ .56,
−.05 ≤ ℑ(ζ) ≤ .3. Points of K = {G+ + G− = 0} are black, and other points are
white/gray according to the value of G+ +G− > 0.

0.40 0.45 0.50 0.55 0.60 0.65

-0.2

-0.1

0.1

0.2

-0.3 -0.2 -0.1 0.1 0.2 0.3

-0.2

-0.1

0.1

0.2

Figure 3. First 5000 iterations of a point from region ‘1’; two projections.

The black components labeled ‘1’ in Figures 1 and 2 represent the same component of
the interior ofK: points from each of these regions have the same orbits. The point (ζ1, ζ̄1),
ζ1 = 0.396+0.19i is taken from region ‘1’. The orbit of this point is shown in Figure 3 under
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two projections: π1(x, y) = (Re(x), Re(y)) on the left, and π2(x, y) = (Re(x− y), Im(y))
on the right. The closure of the orbit appears to be union of three 2-tori. Region ‘1’
contains a point of period 3 and appears to be the slice of a 3-cycle of rotation domains of
rank 2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

Figure 4. 5000 and 50000 iterations of a point from region ‘2’.

0.3 0.4 0.5 0.6 0.7

-0.2

-0.1

0.1

0.2

0.30 0.35 0.40 0.45 0.50 0.55 0.60

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 5. Orbit (40000 points) from region ‘3’: two projections.
The black components labeled ‘2’ in Figure 3, represent the same connected component

of the interior of K in C2. The point (ζ2, ζ̄2), ζ2 = 0.36 + 0.298i, is taken from region ‘2’,
and Figure 3 shows the projection of points from the orbit of this point. Recall that by
Theorem 2.1, the closure of an orbit is either a closed curve or a 2-torus. Thus it would
appear that the orbits in Figure 3 are increasing to something whose closure would be a
(connected) 2-torus. If this is in fact the case, then region ‘2’ is contained in an invariant
Fatou component Ω2 which has rank 2. On the other hand, Ω2 cannot contain a fixed
point because the 2 fixed points of f are both of saddle type. Thus Ω2 would appear to
be “exotic”, which means that it is a rotation domain without a fixed point. There are
also other components, such as ‘3’, which appear to belong to “exotic” rotation domains,
which was a motivation for Ushiki to find Hénon maps like this.
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Problem 10. Prove mathematically that there are Hénon maps with exotic rotation
domains.

It may appear surprising that the 2-tori in Figures 3 and 4 are long and thin. If ‘1’,
‘2’, and ‘3’ actually represent rotation domains of rank 2, then as was noted in §2, each
of these domains is uniformized by a Reinhardt domain D, and each D has nonempty
intersection with one or both coordinate axes. The axes are not generic for the torus
action: the f -orbits of these points are dense in closed curves. So for a point of D which is
close to one of the axes, we expect the orbit to be dense in a long, thin torus which looks
almost like a closed curve.

Problem 11. Can a Hénon map have infinitely many rotation domains? Can it have an
infinite number of rotation domains with fixed (periodic) points?

This question is motivated by the fact that there seem to be so many black components in
Figure 1 and any one Fatou component should not create many slice components because
of the following rank 2 phenomenon:

Theorem 6.2. Let f be reversible by τ , and let Ω = f(Ω) be a rank 2 Fatou component
with Ω ∩ ∆′ 6= ∅. If Ω contains a fixed point, then Ω ∩ ∆′ is connected; otherwise it has
exactly two connected components.

Proof. Since f is τ -reversible, τ(Ω) is a Fatou component. Further, since Ω ∩ ∆′ 6= ∅,
it follows that Ω ∪ τ(Ω) is connected. Thus Ω = τ(Ω) is invariant under τ . Now we let
D ⊂ C2

z1,z2
be the Reinhardt model for Ω, and the conjugacy takes f to a diagonal map

L =

(

µ1 0
0 µ2

)

with |µ1| = |µ2| = 1. Let τ̂ denote the map ofD induced by this conjugacy.

Thus τ̂ is an anti-holomorphic and reverses L. Since L generates the standard torus action
on C2, it follows that τ̂ reverses the torus action. Now we may write τ̂(z) = (τ̂1, τ̂2),
where each τ̂j =

∑

aαz̄
α is a Laurent series in the anti-holomorphic variables (z̄1, z̄2). The

property of reversing the torus action means that for all θ1, θ2 ∈ R, we have

τ̂(eiθ1z1, e
iθ2z2) = (e−iθ1 τ̂1, e

−iθ2 τ̂2)

By checking the coefficients of the Laurent series, we conclude that τ̂(z1, z2) = (z̄1, z̄2).
The fixed point set of τ̂ is R2, so Ω∩∆′ corresponds to D∩R2. If Ω has a fixed point,

then D must contain the origin, and thus D∩R
2 is a connected set (which is logarithmically

convex). On the other hand, if Ω does not have a fixed point, then D must be disjoint from
one of the coordinate axes, say z1. Thus D ∩ R2 consists of two (logarithmically convex)
open sets, which are symmetric under the map (x1, x2) 7→ (x1,−x2). This completes the
proof.

Problem 12. Can a Hénon map have exactly one rotation domain? Or can the existence
of one rotation domain cause the existence of another?

The essence of this question is whether there might be some phenomenon for rotation
domains in the complex domain which is reminiscent of the island chains for twist maps:
one twist causes the existence of others.
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§7. Herman rings for dissipative maps? For dissipative maps, int(K+) can be
unbounded, and it is not known whether every Fatou component Ω ⊂ int(K+) is necessarily
periodic. Let us suppose that f(Ω) = Ω. We say that Ω is recurrent if there is a point
z0 ∈ Ω whose ω-limit set contains a point z1 ∈ Ω. In other words, there is a point z0 ∈ Ω
so that all the forward iterates do not converge to ∂Ω. In the dissipative case case, it is
shown in [BS2] that every recurrent, periodic Fatou component Ω is a basin; there are 3
possibilities:
(1) Ω is the basin of an attracting fixed point;
(2) Ω = B(S) is the basin of a Siegel disk; that is, ϕ : {|ζ| < 1} → S ⊂ C2 is a holomorphic

imbedding, and f |S is conjugate to an irrational rotation;
(3) Ω = B(A) is the basin of an annulus A ∼= {r1 < |ζ| < r2}, and f |A is conjugate to an

irrational rotation.
We may linearize maps (4.3) at the origin with suitable eigenvalues λj , j = 1, 2, and show
that cases (1) and (2) can occur. However the possibility of case (3) remains an unanswered
question. In case (3), we have the intriguing situation that B(A) is biholomorphically
equivalent to the product {r1 < |ζ| < r2} × C, yet it must also be polynomially convex.

Let us suppose that Ω is a rank 2 rotation domain for the case |δ| = 1, and let D
be its Reinhardt model. If Ω has no fixed point, then D ⊂ C2

z,w must intersect one of
the axes, say {w = 0}, so A := D ∩ {w = 0} must be an annulus, which corresponds
(biholomorphically) to an invariant annulus A ⊂ Ω.

Question 13. What happens to the invariant annulus A inside an exotic rotation domain
if we perturb the map slightly to become dissipative? Can it “persist”, or does it always
“disappear”?

The point here is that if A does not disappear, then we would have an example of case (3).

§8. Rational surface automorphisms preserving a 2-form. The rational surface
maps with invariant 2-form have been classified by Diller and Lin [DL]. Rational surface
automorphisms with invariant 2-forms have been given by [M2], [BK2], [D], and [Ue]. The
polynomial

χn(t) = tn(t3 − t− 1) + t3 + t2 − 1 (8.1)

is related to the family of rational surface automorphisms (0.2). It may be factored as
χn = CnSn, where Cn is a product of cyclotomic factors (all of whose zeroes are roots of
unity), and Sn is a Salem polynomial, which means that it has two real roots λ and λ−1,
with λ > 1, and all other roots have modulus 1.

Theorem 8.1 ([BK1]). There is a blowup π : X → P2 at n+3 points such that fa,b lifts
to an automorphism of X if and only if fn

a,b(−a, 0) = (−b,−a). If in addition n ≥ 7, then
the entropy of the automorphism fa,b is logλ, where λ > 1 is the largest real root of Sn.

Some of the automorphisms given in this Theorem have invariant curves and some
do not. The curve {y = x3} is a cubic with a cusp at infinity. We will let C denote the
image of this cubic under a linear automorphism of P2, and we let η = dx ∧ dy/p(x, y)
denote a 2-form with a simple pole along C. McMullen [M2] (see also [BK2] for a different
approach) shows that among the maps fa,b, there is a map with invariant curve for every
root of Sn.
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Theorem 8.2 ([M2]). If δ is a root of Sn, then there is an automorphism fa,b which
leaves the cubic curve C invariant and which satisfies f∗

a,bη = δη.

Let us change notation and write fδ for the map in Theorem 8.2. We note that for each
n ≥ 7, all but two of the roots of Sn have modulus 1, which means that all but two of the
fδ are conservative automorphisms.

1

1

2

Figure 6. Lyapunov exponent of map (8.2) with α ∼ .5695, β ∼ .3977.
Slice by conjugate diagonal ∆′ (left); ‘dot’ is fixed point p2. 8× zoom about p2 (right).

Theorem 8.3 (Ushiki). The maps fδ with |δ| = 1 are conjugate to

(x, y) 7→
(

y,
y + α

x+ iβ
+ iβ

)

(8.2)

with α, β ∈ R. This map is reversible by the involution τ(x, y) = (ȳ, x̄), and C ∩ Fix(τ) is
a real curve.

Now let F+ denote the Fatou set, and let Ω be a Fatou component such that f(Ω) = Ω.
We again consider the set of limits, G, as in §1, and we find that the connected component
of the identity G0 is a torus Tρ with ρ = 1 or 2 (see [BK3] for details). Thus all periodic
Fatou components are rotation domains of rank either 1 or 2. In particular, we see that
F− = F+, so in the case of a conservative automorphism we will denote it simply as F .

13
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Figure 7. Two orbits from Figure 6. Region ‘1’ (left); region ‘2’ (right).

The multipliers of Dfδ at the cusp point of C are δ−2, δ−3, so when |δ| = 1 each fδ

has is a rotation domain of rank 1. It was shown in [M2] and in [BK2] that in many cases
the maps fδ also have rank 2 rotation domains. We ask whether this always happens:

Question 14. Does fδ always have a rotation domain in addition to the one centered at
the cusp point? In other words, is the Fatou set for fδ always disconnected?

Let p2 ∈ C denote the other fixed point (not the cusp) of f . The eigenvalues of Df at
p2 are δ and δ−n, so there is a resonance. By Pöschel [P] there are two invariant complex
disks passing through p2. Ushiki’s computer work suggests more: an answer of “yes” the
following:

Question 15. Does the rotation domain containing the cusp contain the whole curve C?
In particular, is fδ linearizable at p2?

An immediate consequence of “yes” would be that fδ can have no wandering Fatou compo-
nent, since the invariant volume form η ∧ η̄ is bounded outside a neighborhood of C. Some
analogous resonant fixed points for (other) rational surface automorphisms were shown in
[BK3] to be linearizable.

Further Questions. All of the questions that we have asked about Fatou components
of Hénon maps apply equally to surface automorphisms. In order to avoid duplication, we
do not re-state them here. We note moreover that these same questions are interesting
also in the case where f is merely birational (not required to be everywhere regular) and
conservative.

How can we draw a computer picture of the Fatou set of a conservative surface auto-
morphism? In the case of Hénon maps, it suffices to draw the set K+ or K where orbits
are bounded, but there seems to be nothing analogous for other automorphisms. The
other useful object, the Green function G+, exists only because there is a super-attracting
invariant curve (the line at infinity). One alternate approach is to consider the maximal
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Lyapunov exponent of a point p ∈ X :

Λ(p) = lim sup
n→±∞

1

|n| log ||Dfn(p)||.

Here || · || denotes the operator norm of Df with respect to any norm on the tangent space
of X ; the limit is independent of choice of norm.

1

1

2

Figure 6. Lyapunov exponent of map (8.2) with α ∼ .5695, β ∼ .3977.
Slice by conjugate diagonal ∆′ (left); ‘dot’ is fixed point p2. 8× zoom about p2 (right).

If p belongs to the Fatou set, then Dfn is bounded in a neighborhood of p for all n ≥ 0,
and thus Λ(p) = 0. The converse, however, is not always true. For example, consider the
automorphisms fa,b as in Theorem 8.1 for n = 6 (that is, X is obtained by blowing up P2

at 9 points). These automorphisms have the property that deg(fn) ∼ n2, and thus the
derivative of fn grows quadratically. Thus Λ = 0, and fa,b has zero entropy. On the other
hand, these examples have an invariant fibration on which f acts as a “twist”, so F = ∅.

Let us restrict our attention now to the case of an automorphism with positive entropy
logλ > 0. In this case, there are positive closed currents T± which are invariant in the
sense that f∗T± = λ±1T±. Further, the wedge product of these currents defines a measure
µ := T+ ∧ T−, which is the unique measure of maximal entropy. The reader is referred
to Cantat [C] for a presentation of this material. In the thesis of A. Moncet [Mon], it was
shown: F := F+ ∩ F− is the complement of the support of T+ + T−, modulo periodic
curves.

We would now like to state a more computational-friendly (possible) description of
the Fatou set. There are two Lyapunov exponents λ1 ≥ λ2 with respect to µ. The larger
one is given by

λ1 = lim
n→∞

1

n

∫

log ||Dfn(p)||µ(p)
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In the conservative case, we have λ1 + λ2 = 0, so the larger one determines the smaller
one. In general (see [Duj1]) we have

λ1 ≥ logλ

2

Question 16. Suppose that U ⊂ X is an open set, and Λ(p) < log λ
2

for all p ∈ U . Does
it follow that U is contained in the Fatou set?

We have computed the set {Λ(p) < log λ
2

} to make Figures 5 and 7, under the assump-
tion that the answer to Question 16 is “yes”.
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Figure 7. Two orbits from Figure 6. Region ‘1’ (left); region ‘2’ (right).

Figures 5 and 6. For Figures 5 and 6, we have used a map corresponding to n = 7
in Theorem 8.1. The Salem polynomial S7 has degree 10. Eight of the roots of S7 have
modulus 1, and we may pair them up {δj , δ̄j}, 1 ≤ j ≤ 4, where fδ̄j

is conjugate to
the inverse of fδj

. This gives four essentially distinct conservative maps. When n = 7,
the automorphism fδ is obtained from P2 by blowing up 10 points, and the entropy is
log 1.17628, which was shown in [M2] to be the minimum possible for an automorphism of
a compact, complex surface. Figure 6 shows the map fδ with δ ∼ −0.2344 + 0.9721i. The
left hand image shows the slice by conjugate diagonal points p2 + (ζ, ζ̄), where p2 is the
resonant fixed point of Question 15, and −2.4 ≤ ℜ(ζ),ℑ(ζ) ≤ 2.4. The right hand frame
of Figure 6 is a detail, centered at p2.

The coloring of Figures 6 and 8 is opposite from Figures 1 and 2, where the Fatou
set was the interior of the black; here the white regions correspond to the Fatou set. Or
perhaps more precisely, Figures 1 and 2 show the basin of infinity in shades of white/gray,
while Figures 6 and 8 use shades of gray to show the Julia set. The region ‘1’ (whose
slice by the conjugate diagonal contains two components) was brought to our attention
by Ushiki. An orbit from ‘1’ is given on the left hand frame of Figure 6. It suggests that
‘1’ is part of a connected Fatou component Ω1 of rank 2. If this is so, then Ω1 must be
“exotic” since it cannot contain a fixed point. The reason for this is the fixed points of fδ
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are p1 and p2 which have been discussed earlier. Their eigenvalues are not multiplicatively
independent, and thus they cannot be contained in a rotation domain of rank 2. The right
hand frame of Figure 7 indicates that ‘2’ is contained in a rank 2 Fatou component of
period 50.

f f

b

Figure 8. Lyapunov exponent for map (x, y) 7→ (y, β(
√

2y + 1/y) − β2x)
β ∼ 0.4174 + .9086i satisfies χ4,1(β

2) = 0
Slice by conjugate diagonal ∆′ (left) and by complex diagonal (right).

Another family of birational maps is given by

gc,β(x, y) =
(

y, β(c y + 1/y) − β2x
)

, β2 = δ (8.3)

This map is reversible under τ(x, y) = (ȳ, x̄) if c ∈ R and |δ| = 1. This family preserves
the 2-form dx ∧ dy but differs from the family (8.2) because dx ∧ dy has a pole of order 3
along the line at infinity, whereas the family (8.2) has an invariant 2-form only for three
special curves of parameters, and the invariant 2-form has simple poles. However, by a
general result of [DL], there is a birational conjugacy under which the invariant 2-form of
(8.3) will be transformed to another 2-form with only simple poles.

Associated with (8.3) is the family of polynomials

χn,m(t) =
t(tnm − 1)(tn − 2tn−1 + 1)

(tn − 1)(t− 1)
+ 1 (8.4)

As was the case with (8.1), we may factor χn,m = Cn,mSn,m, where Cn,m is a product of
cyclic polynomials, and Sn,m is a Salem polynomial. The roots of this Salem polynomial
give us automorphisms of the form (8.3).
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Theorem 8.4 ([BK3]). Suppose that n ≥ 4, m ≥ 1 or n = 3, m ≥ 2. Let δ = β2 be a
root of Sn,m which is not a root of unity, and let c = 2 cos(jπ/n), where (j, n) = 1. Then
there is a blowup π : X → P2 such that gc,β induces an automorphism gX of X , and the
entropy of gX is log(λn,m) > 0, where λn,m is the largest root of Sn,m.

The construction of gX differs from the construction for the maps (0.2) and (8.2)
because the blowups to make the space X are iterated to height 3.
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Figure 9. Projection of an orbit of a point from region ‘e’ in Figure 8 (left); detail (right).

Figures 8 and 9. This is a map from Theorem 8.4 with n = 4, m = 1, j = 1. If
L ⊂ X denotes the strict transform of the line at infinity, then L is invariant under gX ,
and gX acts as a rotation of period 4 on L. There is a rank 1 rotation domain ΩL ⊃ L,
and the induced group is G(ΩL) ∼= Z/4Z ⊕ R/Z. The global nature of ΩL is discussed in
[BS3]. Figure 8 shows two slices of the Fatou set (white). On the left are the points for
a conjugate diagonal slice {(ζ, ζ̄), −1.4 < ℜ(ζ),ℑ(ζ) < 1.4}, and on the right a diagonal
slice {(ζ, ζ), −1.8 < ℜ(ζ),ℑ(ζ) < 1.8}. The regions marked ‘a’ correspond to ΩL. The two
fixed points in C2 were shown in [BK3] to be rotational of rank 2, and these are contained
in the components ‘b’ and ‘d’. The computer evidence suggests that the two regions ‘b’
are connected inside C2 and are disjoint from the two components ‘d’. The components ‘c’
and ‘g’ appear to be rank 2 rotation domains of period 6, and component ‘f’ appears to be
rank 2 with period 5. The projection of 220000 points of an orbit from ‘e’ is shown on the
left half of Figure 9. The detail on the right hand side lends evidence that the closure of
the orbit is connected. The component ‘e’ was shown to us by Ushiki as a possible exotic
rank 2 rotation domain. The reason why it might be exotic (why it cannot contain a fixed
point) is that there are only four fixed points. Two of them are contained in ΩL and one
in each domain ‘b’ and ‘d’. However, ΩL has rank 1 and cannot intersect ‘e’. Further
‘e’ is invariant under complex conjugation, so if ‘e’ intersects component ‘b’, then it must
intersect ‘d’, which contradicts the apparent disjointness of ‘b’ and ‘d’.
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Appendix. Compact surface automorphisms. We have considered only rational
surface automorphisms in our discussions above. We have not considered other surfaces
because of Theorem 10.1 of [C], which we summarize as follows:

Theorem ([C], [Nag]). Suppose that X is a compact complex surface and that F ∈
Aut(X) has positive entropy. Then there are three possibilities for X :
(i) X = C2/L is a complex torus.
(ii) X is a K3 surface (or certain quotients).
(iii) X is a rational surface. In this case, π : X → P2 is obtained from P2 by blowing up.

In case of the torus, every automorphism F lifts to an affine map. It must preserve
the lattice, so its determinant must be ±1. If F has positive entropy, then the eigenvalues
must be |λ1| < 1 < |λ2|. Thus it is hyperbolic, and it follows in this case that F = ∅.

In the case of a K3 surface, McMullen [M1] has shown that rotation domains exist.
He constructs lattices with a lattice automorphism which satisfies the conditions of the
Torelli Theorem. The Torelli Theorem gives the existence of a K3 surface X with an auto-
morphism F which will have the given behavior F ∗ on the cohomology lattice. Knowledge
of F ∗ and the holomorphic Lefschetz Index Formula give the existence of a unique fixed
point as well as the values of the eigenvalues λ1, λ2 of DF . He shows that the eigenvalues
have modulus 1 and are multiplicatively independent and thus are “suitably irrational” for
Siegel’s Theorem. This automorphism F thus has a rank 2 rotation domain with a fixed
point.

As was noted in [M1], this K3 surface X is necessarily non-algebraic and cannot be
exhibited explicitly. For if X is an algebraic K3 surface, then an automorphism F ∈
Aut(X) cannot have a rank 2 rotation domain with a fixed point since the jacobian δ =
λ1λ2 would be a root of unity.

Question 17. Can an automorphism of an algebraic K3 surface have a rotation domain?
Equivalently, can it have a have nonempty Fatou set?
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