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Abstract. In this paper we study laminar currents in P
2. Given a sequence of irreducible alge-

braic curves (Cn) converging in the sense of currents to T , we find geometric conditions on the
curves ensuring that the limit current T is laminar. This criterion is then applied to meromorphic
dynamical systems in P

2, and laminarity of the dynamical “Green” current is obtained for a
wide class of meromorphic self maps of P

2, as well as for all bimeromorphic maps of projective
surfaces.
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1. Introduction

On the two extreme sides of positive closed currents are smooth positive forms
and currents of integration over varieties. One could suspect that the “general”
closed positive current should be reminiscent of the geometric structure of currents
of integration together with a measure theoretic structure arising from positivity.
This was conjectured in the fundamental article [Su], where the foundations of
the geometric theory of currents were settled.

There are examples, however, showing that this is not so simple: the famous
Wermer example provides a positive closed (1, 1) current in the bidisk whose
support contains no analytic disk (see [DS]).

Laminar currents were introduced by Bedford, Lyubich and Smillie [BLS] as
a class of geometric currents in dimension two, flexible enough for applications.
A positive (1, 1) current is uniformly laminar, if it is locally described by inte-
gration over families of disjoint graphs, it is laminar if it is an increasing limit of
uniformly laminar currents (see section 2 for details). This definition fits elegantly
into Pesin theory, providing a powerful tool in complex non uniformly hyperbolic
dynamics.

In the present paper we are interested in constructing laminar currents in P
2.

Laminar currents appeared as currents of integration over entire curves in [BLS],
[Ca], and as limits of dynamically defined rational divisors in [BS5]. It is well
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known that all positive closed currents in P
2 are limits of sequences of rational

divisors [De2]. Suppose d−1
n [Cn] converges in the sense of currents to T . Under

which geometric conditions on Cn is T laminar? We prove (section 3) the follow-
ing simple criterion, independent of holomorphic dynamics : for an irreducible
algebraic curve Cn of degree dn in P

2 we denote by gn the geometric genus of
Cn (i.e. the genus of the normalization of Cn), and if x ∈ Sing(Cn) is a singular
point, we let nx(Cn) be the number of local irreducible components at x.

Theorem 1. Suppose the Cn are irreducible curves such that d−1
n [Cn] ⇀ T . Then,

using the notations above, if

gn +
∑

x∈Sing(Cn)

nx(Cn) = O(dn)

then T is laminar.

Note that, by the genus formula, sequences of smooth curves do never satisfy
the assumption of the theorem. Furthermore all currents in P

2 are limits of smooth
divisors so the condition of the theorem is not necessary.

The proof of the theorem is modeled on the results of Bedford, Lyubich and
Smillie [BLS], [BS5], who proved laminarity of T when the curves Cn are iter-
ates of some line by a polynomial automorphism of C

2. This corresponds in this
theorem to the case gn = 0 and Cn is singular at one point I , with nI (Cn) = 1.

This criterion can in turn be applied to obtain new examples of laminar cur-
rents in holomorphic dynamics on P

2. Let Md be the space of rational maps
of degree d, which has the structure of a projective space. We say that a subset
U ⊂ Md is Zariski residual if it contains a countable intersection of Zariski open
sets. It is known [Si] that the existence of the dynamical “Green” current is valid
on the Zariski residual set of dominating algebraically stable maps (for details see
section 4).

Theorem 2. There exists a Zariski residual set U ⊂ Md , such that if f ∈ U and
its topological degree dt (f ) satifies dt (f ) < d, then the Green current of f exists
and is laminar.

Concerning the case of bimeromorphic maps (dt = 1) of smooth connected
projective surfaces, it is possible to state a more precise result. It is a combination
of results of Cantat [Ca] and Diller-Favre [DF], that if such a map has positive
topological entropy, then its Green current always exists (in a sense to be precised,
see section 5).

Theorem 3. Let a bimeromorphic map of positive topological entropy of a
projective surface. Then its Green current is laminar.

The precise outline of the paper is as follows : in section 2 we recall the
definition of laminar currents, in section 3 we prove theorem 1. Sections 4 and 5
are respectively devoted to the proofs of theorems 2 and 3.
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2. Laminar currents

In this section we collect some definitions and results from [BLS] (see also [BS5],
[Ca]; some observations below are taken from Cantat’s thesis). All definitions are
local so we consider an open subset � of C

2, and T is a positive (1, 1) current in
�.

We let Supp(T ) denote the (closed) support of T , ‖T ‖ the trace measure and
M(T ) the mass norm (for general references on positive currents see e.g. [LG],
[De1]).

Definition 2.1. T is uniformly laminar if for all x ∈ Supp(T ) there exists open
sets V ⊃ U � x, with V biholomorphic to the unit bidisk D

2 so that in this co-
ordinate chart T |U is the direct integral of integration currents over a measured
family of disjoint graphs in D

2, i.e. : there exists a measure λ on {0} × D, and
a family (fa) of holomorphic functions fa : D → C such that fa(0) = a, the
graphs �fa

of two different fa’s are disjoint, and

T |U =
∫

{0}×D

[�fa
∩ U ] dλ(a).

It is easily proven that the holonomy map is automatically continuous, and
in particular there is an embedded lamination in Supp(T ); moreover T is closed,
since it is closed in all coordinate charts U . Unfortunately this definition is much
too restrictive for dynamical purposes: for example there is no uniformly laminar
current in P

2 except integration currents on smooth curves. Indeed a uniformly
laminar current not charging curves would have (homological) self intersection 0
[HM] (this observation first appeared in a slightly different form in [CLS]).

To avoid technicalities we give an adapted definition of laminar currents. The
new terminology was suggested to us by the referee.

Definition 2.2. T is laminar in � if there exists an increasing sequence of currents
(T (i))i≥0, such that for every i there exists a finite subdivision Qi of � (up to a
set of zero ‖T ‖ measure) into disjoint open subsets and

T (i) =
∑

Q∈Qi

T
(i)
Q

is the sum of the currents T
(i)
Q , uniformly laminar in Q ∈ Qi , and such that

lim
i→∞

T (i) = T .

Note that replacing Q(i) by the subdivision Q(1) ∧ · · · ∧ Q(i) consisting of the
open sets Q1 ∩ · · · ∩ Qn, Qi ∈ Q(i), one can always assume that the sequence
of subdivisions increases also. This definition contains the one given in [BLS] :
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direct integral of currents of integration over a measured family of disjoint disks
in � (see [BLS] Proposition 6.2).

Some of the difficulties occuring when dealing with laminar currents are
illustrated in the following examples.

Example 2.3. An interesting example of laminar current in P
2 is studied in detail

in Demailly [De2]: let T = ddc max(log+ |z| , log+ |w|). Demailly proves that

T =
∫

S1
[{eiθ } × D]dλ(θ) +

∫

S1
[D × {eiθ }]dλ(θ) +

∫

S1
[Vθ ]dλ(θ),

where D is the unit disk, λ is the Lebesgue measure on the unit circle S1, and
Vθ = {

(z, w) ∈ C
2, z = eiθw, |z| > 1

}
. So T is a closed laminar current, with

continuous local potential (in the whole of P
2). Nevertheless T ∧T (the Lebesgue

measure on the unit torus) has positive mass, and there is a set of positive ‖T ‖
measure of disks with transversely intersecting analytic continuations.

LetTr = ddc max(log+ ∣∣ z
r

∣∣ , log+ ∣∣w
r

∣∣), and consider the currentT ′ = ∫ 2
1 Trdr .

T ′ is positive and closed, and can be decomposed as

T ′ =
∫ 2

1

∫

S1
[{reiθ } × D]dλ(θ)dr +

∫ 2

1

∫

S1
[D × {reiθ }]dλ(θ)dr

+
∫ 2

1

∫

S1
[rVθ ]dλ(θ)dr.

Let T ′
3 be the third term on the right side, and let φ be a (1,1) test form,

〈T ′
3, φ〉 =

∫ (∫

rVθ

φ

)
drdλ(θ) =

∫ (∫

Vθ

1|z|>rφ

)
drdλ(θ)

=
∫ (∫

Vθ

α(|z|)φ
)

dλ(θ),

where α(s) = min(s − 1, 1) on [1, +∞). Approximating α(|z|) from below by
locally constant functions proves that T ′ also satisfies our definition 2.2 of laminar
currents. Observe that T ′ cannot be locally written as a direct integral of disjoint
disks, because α is not locally constant.

An explicit computation proves that T ′ ∧ T ′ is (a positive constant times)
Lebesgue measure on the annulus 2Vθ\Vθ , integrated over θ . In particular T ′ ∧T ′

is absolutely continuous with respect to the trace measure of T ′, although T ′ is
laminar.

Remark 2.4. It is possible to prove that if T is a laminar current in P
2 and T is the

limit of a sequence of curves satisfying the criterion of theorem 1, then if T has
continuous potential in some open set �, T ∧ T = 0 in �. This implies that the
Demailly example 2.3 cannot be approximated by such a sequence of curves. We
postpone this issue to a future paper.
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3. Laminar currents as limits of divisors in P
2

It is well known that any positive closed current in P
2 is the limit in the weak

sense of currents, of a sequence of rational divisors [De2]. In this section we prove
that under some geometric conditions on the (irreducible) divisors, the limit is a
laminar current; this criterion turns out to be useful in some dynamical problems
(see section 4).

We begin with some notation : (Cn) is a sequence of (possibly singular) irre-

ducible curves in P
2, with dn = deg(Cn) → ∞, such that

1

dn

[Cn] ⇀ T , where

⇀ denotes the weak convergence of currents. We denote by:

– π : Ĉn → Cn the resolution of singularities of Cn;
– gn the geometric genus of Cn, i.e. gn = genus(Ĉn);
– νx(Cn) the multiplicity of Cn at x; νx(Cn) is the number of intersection points

of Cn with a generic line near x;
– nx(Cn) the number of local irreducible components of Cn at x ∈ Cn, that is,

nx(Cn) = #π−1(x).

Theorem 3.1. Let (Cn) be a sequence of irreducible curves in P
2 of degree dn →

∞, such that the sequence of rational divisors d−1
n [Cn] ⇀ T. Then, using the

notations above, if

gn +
∑

x∈Sing(Cn)

nx(Cn) = O(dn) (1)

then T is laminar.

The condition of the theorem is of course not necessary: take an arbitrary
sequence of curves (Cn), and pick a sequence rn → ∞, such that d−1

n [hrn(Cn)]
tends to the line at infinity in the sense of currents where hr(z, w) = (rz, rw).
A less trivial example is the current ddc max(log+ |z| , log+ |w|) considered in
example 2.3, which is the limit of the sequence 1

n
[Dn] where Dn is the smooth

curve (in homogeneous coordinates [z : w : t]) of equation zn + wn + tn = 0.
Concerning this last current, we have in fact the following finer result (see remark
2.4): T is not approximable in the weak sense by a sequence of divisors d−1

n [Cn]
satisfying (1).

The remaining of this section will be devoted to the proof of theorem 1. The
basic idea to count good and bad components is similar to [BLS], [BS5], but this
theorem is independent of any dynamical context.

Let p ∈ P
2 and πp be the central projection P

2\{p} → P
1 ([GH]); we consider

a subdivision Q of P
1 into disjoint simply connected open sets (which we will

call “squares”) which have the same area with respect to the Fubini-Study metric
ωP1 ; we also suppose that the boundaries of the squares are piecewise smooth.
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Such a subdivision Q will be called admissible. Note that π−1
p (Q) is isomorphic

to Q × C (Q ∈ Q).
We say that a connected component � of Cn ∩π−1

p (Q) is good if πp : � → Q

is a homeomorphism (i.e. � is a graph over Q), bad if not. The multiplicity of
the bad component � is the topological degree deg(πp|�). The number of bad
components of Cn for the projection πp with respect to Q is by definition always
counted with multiplicity. We denote this number by bcp(Cn,Q).

It is clear that if p /∈ Cn the component � over Q is bad if and only if for some
z ∈ Q the line (pz) is tangent to Cn or hits a singular point of Cn. The next lemma
says that the number of bad components for a generic projection is maximal and
does not depend on the subdivision provided it is fine enough. Such a lemma is
necessary because we will have to make n → ∞ with Q fixed, so we cannot find
a subdivision which is fine enough for all curves Cn.

Lemma 3.2. Fix p such that: p /∈ Cn, p does not lie on any line joining two
singular points of Cn, nor any line through a singular point and tangent to Cn at
some smooth point (this is a Zariski dense condition).

Let

bcp(Cn) = sup
{
bcp(Cn,Q), Q admissible subdivision of P

1} ,

then if Q is an admissible subdivision of P
1 such that the critical points of

πp|Cn
(including singular points of Cn) lie over different squares of Q, then

bcp(Cn,Q) = bcp(Cn).

Proof. We are looking for admissible subdivision maximizing the number of bad
components, with p fixed as stated in the lemma. It is clear that the number of
bad components decreases if some singular fiber (pz) = π−1

p (z) of the projection
– that is a fiber tangent to Cn or meeting a singular point of Cn – lies over the
boundary of a square Q. Then we can assume Q is chosen so that no singular
fiber lies over ∂Q for Q ∈ Q.

Now fix � a bad component of multiplicity d over Q ∈ Q; suppose π−1
p (zs

1),

. . . , π−1
p (zs

k) are the singular fibers. We take an admissible subdivision of Q into
squares {Qi, 1 ≤ i ≤ �} separating the singular fibers. Without loss of generality
we assume for 1 ≤ i ≤ k, Qi � zs

i . Bad components for the new subdivision
are over Q1, . . . , Qk, with respective multiplicities d1, . . . , dk. We have to prove
that

∑
i di ≥ d.

Suppose this is false. Fix a regular fiber π−1
p (zr) and paths γi in Q joining zs

i

to zr . There are d local good plaques over a small neighborhood of zr . For each
1 ≤ i ≤ k and z ∈ γi near zs

i there are di local plaques over z corresponding to
the bad component over Qi ; follow them by analytic continuation along γi . We
get no more than

∑
di < d plaques over zr . The remaining d − ∑

di plaques
correspond by analytic continuation along −γi to good plaques at each singular
fiber π−1

p (zs
i ), giving rise to global good components over Q, a contradiction.



Laminar currents in P
2 751

Any further refinement of the subdivision will produce the same number of
bad components. ��
Proposition 3.3. Let Cn be an irreducible curve in P

2, and p a (Zariski-) generic
point in P

2. Then (notations as in the beginning of the section):

bcp(Cn) ≤ 2 (2gn − 2 + 2dn) +
∑

x∈Sing(Cn)

nx(Cn).

Proof. We first list the generic assumptions we make for choosing p:

– p /∈ Cn,
– p does not lie on any line joining two singular points of Cn,
– p does not lie on any line through a singular point and tangent to Cn in some

smooth point,
– p does not lie in any tangent line to a singular point of Cn.

then for an admissible subdivision Q separating the critical fibers as in the
preceding lemma, the bad components of Cn are exactly:

– components through some singular point x of Cn : the multiplicity of such a
component for πp is νx(Cn), because the multiplicity of Cn at x is the number
of points of intersection between Cn and a generic (as above) line near the
singularity;

– components through smooth points x of Cn such that the tangent line TxCn

is the line (px) : the multiplicity of such a component is the local degree of
πp|Cn

near x. If we choose coordinates so that p = [0 : 1 : 0] lies in the
line at infinity (t = 0) (in homogeneous coordinates [z : w : t]) and Cn has
(reduced) equation (Pn = 0), then Cn has a vertical tangent at x and the local
degree of πp is the intersection multiplicity Ix(Pn,

∂Pn

∂w
) (this formula is false

for singular points).

The remaining of the proof is now a careful examination of the Riemann-
Hurwitz formula (see [GH]) for the projection πp ◦ π : Ĉn → P

1 (recall that
π : Ĉn → Cn is the resolution of singularities). πp ◦ π is a branched covering,
let R be the set of its critical points, and v(x) be its local degree near x ∈ R. The
Riemann-Hurwitz formula states:

χ(Ĉn) = 2 − 2gn = dnχ(P1) −
∑

x∈R
(v(x) − 1), (2)

with χ(P1)=2. We want to relate this to the number of bad components for the pro-
jection πp. First, remark that there may be points x ∈ Ĉn with π(x) ∈ Sing(Cn)

but x /∈ R (e.g. if the singularity is an ordinary multiple point); for those x,
v(x) = 1. Let S = R ∪ π−1(Sing(Cn)), we then have

∑

x∈S
(v(x) − 1) =

∑

x∈R
(v(x) − 1).
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We claim that
bcp(Cn) =

∑

x∈S
v(x).

Indeed if x ∈ S\π−1(Sing(Cn)), the local degree of πp ◦π at x is equal to that of
πp at π(x), and if y0 ∈ Sing(Cn) the multiplicity of Cn at y0, that is the number
of intersection points between Cn and the line π−1

p πp(y), y near y0, is exactly
∑

x∈π−1(y0)

v(x).

Let S1 = S\π−1(Sing(Cn)) and S2 = π−1(Sing(Cn)). We infer
∑

x∈S
v(x) =

∑

x∈S1

v(x) +
∑

x∈S2

v(x).

Now for x ∈ S1 we have v(x) ≥ 2, so v(x) ≤ 2(v(x) − 1), and on the other hand
∑

x∈S2

v(x) =
∑

x∈S2

(v(x) − 1) + #π−1(Sing(Cn))

=
∑

x∈S2∩R
(v(x) − 1) +

∑

y∈Sing(Cn)

ny(Cn).

Thus
∑

x∈S
v(x) ≤ 2

∑

x∈S1

(v(x) − 1) +
∑

x∈S2∩R
(v(x) − 1) +

∑

y∈Sing(Cn)

ny(Cn),

and by noting that S1 ⊂ R, i.e. all points in S1 are critical for πp ◦ π , and using
the Riemann-Hurwitz formula (2) we get the desired estimate. ��
Remark. The inequality v(x) ≤ 2(v(x) − 1) used above might seem far from
being sharp, however if we choose p outside the finitely many inflexive tangents
to Cn, this is an equality.

Theorem 1 is now a consequence of the following proposition, which is a
generalization of the reasoning of [BS5].

Proposition 3.4. Let (Cn) be a sequence of curves in P
2, of degree dn → ∞, such

that the sequence dn
−1[Cn] ⇀ T . Assume that for (Baire-) generic p, bcp(Cn) =

O(dn). Then T is laminar.

Note that the hypotheses on Cn are slightly weaker than in theorem 1, in par-
ticular we do not make any irreducibility hypothesis, so that this proposition could
apply in various contexts not particularly involving proposition 3.3 (the reason for
the baire genericity here is that we have to choose p in a countable intersection of
Zariski open sets). The main difference with [BS5] is that we make no assumption
on the support of T , leading to several difficulties.
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Proof. We still consider the projection πp : P
2\ {p} → P

1, and we denote by ωP1

and ωP2 the respective Fubini-Study forms. We will construct a laminar current
T∞ ≤ T , with

〈T∞, π∗
pωP1〉 = 〈T , π∗

pωP1〉.
Note that the form π∗

pωP1 which is singular at the point p, is integrable with
respect to all positive closed currents because in local coordinates it expresses
as ddc log |Z − p| (see the classical proof of the existence of the Lelong number
at p).

Let Q be an admissible subdivision of P
1, recall that the “squares” have the

same ωP1 -area. Then for a good component � over Q ∈ Q

〈[�], π∗
pωP1〉 =

∫

�

π∗
pωP1 =

∫

πp(�)

ωP1 = AreaP1(Q)

and for a bad component � of multiplicity m,
∫

�

π∗
pωP1 = mAreaP1(Q).

Let G(Q, n) be the set of good components of Cn over Q, and

TQ,n = 1

dn

∑

Q∈Q

∑

�∈G(Q,n)

[�] ≤ Tn = 1

dn

[Cn].

By lemma 3.2, bcp(Cn) dominates the number of bad components for the sub-
division Q, and we get

〈Tn − TQ,n, π
∗
pωP1〉 ≤ bcp(Cn)

dn

AreaP1(Q) ≤ CAreaP1(Q).

We need a normal families argument to get some laminar structure on cluster
values of the sequences of currents. For this, we remark that MP2(TQ,n) ≤ 1 (MP2

denotes the mass norm with respect to ωP2 ), hence

#




� ∈
⋃

Q∈Q
G(Q, n), MP2([�]) > 1 − η




 ≤ dn

1 − η
(3)

where η is some fixed positive constant (s.t. 1 − η � AreaP1(Q)).

Lemma 3.5. The family of holomorphic functions f : Q → C such that

MP2([�f ]) =
∫

�f

ωP2 ≤ 1 − η

is normal, where �f is the graph of f in Q×C ⊂ P
2, and η is some fixed positive

constant.
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Proof of the lemma. Suppose the result is false. By the Zalcmann lemma there
exist a sequence Q � xn → x ∈ Q, a sequence of positive numbers ρn converg-
ing to zero, and a sequence of holomorphic functions in Q satisfying the volume
assumption, such that fn(xn + ρnz) converges uniformly on compact sets in C to
a non constant entire map h. Thus the graph of ζ �→ fn(xn + ζ ) over the disk
D(0, ρn) is close to the graph �n of the map ζ �→ h(ζ/ρn). As n → ∞ the cluster
set of the sequence of graphs (�n) contains the vertical line {x} × C, which is
impossible because of the area bound. An alternate approach for this lemma is to
use Bishop’s Theorem [Bi]. ��

Let G ′(Q, n) ⊂ G(Q, n) the set of components of volume ≤ 1 − η in P
2. By

dropping the components of G(Q, n)\G ′(Q, n) we get a new current T ′
Q,n

, and by
(3) we have

〈Tn − T ′
Q,n, π

∗
pωP1〉 ≤ (C + 1/(1 − η))AreaP1(Q) = C ′AreaP1(Q). (4)

Now we extract a subsequence nj such that T ′
Q,nj

⇀ TQ ≤ T |Q×C for every
Q, where T ′

Q,n = T ′
Q,n

|Q×C. We have to show that TQ is uniformly laminar. The
proof is very similar to [BS5] so we only sketch it.

Let Lx be the line π−1
p (x), x ∈ Q, and

λQ,nj
(x) = 1

dnj

∑

�∈G′(Q,nj )

[� ∩ Lx] = T ′
Q,nj

∧ [Lx];

it is a consequence of the theory of slicing currents that the sequence λQ,nj
(x)

converges weakly for almost all x ∈ Q. As ∪nG ′(Q, n) is a normal family, the
family of graphs meeting some compact subset of a line Lx is equicontinuous.
Then if ϕ is a test function in Q×C, the family

∫
Lx

ϕ λQ,n(x) is equicontinuous as
a function of x. Thus we get that λQ,nj

(x) converges weakly to a measure λQ(x)

for all x ∈ Q.
It remains to prove that G ′(Q, nj ) “converges” to a lamination by graphs in

Q × C. The fact that λQ is a transverse measure is then a consequence of weak
convergence and equicontinuity.

Lemma 3.6 ([BS5]). Fix x0 ∈ Q. Let G ′(Q) be the set of holomorphic f : Q →
C such that f is the limit of some sequence of fnj

∈ G(Q, nj ) and f (x0) ∈
Supp(λQ(x0)). Then the graphs of

{
f, f ∈ G ′(Q)

}
form a lamination in Q× C.

Proof of the lemma. one has to show

– for each y ∈ Supp(λQ(x0)), there is a unique f ∈ G ′(Q), s.t. f (x0) = y0;
– two distinct graphs are disjoint.

(this is more subtle than the Hurwitz Theorem since good components of different
G ′(Q, nj ) may intersect, we use the convergence of currents instead)
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It suffices to show the following fact : “if a sequence fnj
∈ G ′(Q, nj ) satisfies

fnj
(x0) → y0 ∈ Supp(λQ(x0)) then the sequence converges”. Suppose not: there

exists two subsequences fni
j

→ f i , f i(x0) = y0, i = 1, 2, and f 1 �= f 2. If

y0 is not an atom of λQ(x0), we can assume (f 1)′(x0) �= (f 2)′(x0) : indeed we
take a sequence gn1

j
∈ G ′(Q, n1

j ) such that gn1
j
(x0) converges to y ′

0 near y0. By

extracting a further subsequence if necessary, we get a limit function g1 whose
graph does not intersect that of f 1 by the Hurwitz theorem, and so has transversal
intersection with �f2 (e.g.[BLS] Lemma 6.4).

As y0 ∈ Supp(λQ(x0)), λQ(x0)(B(y0, ε)) > α, and λQ,ni
j
(x0)(B(y0, ε)) >

α/2 for j large enough. Moreover all graphs of G ′(Q, ni
j ) near fni

j
(x0) have slope

close to (f i)′(x0). This contradicts the convergence TQ,nj
⇀ TQ.

If y0 is an atom of λQ(x0) of mass α, there is a sequence of intervals Inj
shrink-

ing to y0 with mass more than 3α/4 for λQ,nj
. If there are two distinct limiting

graphs for points in Inj
, we contradict the convergence of currents again. ��

We have thus far proven that TQ is a uniformly laminar current on Q×C, and
let

TQ =
∑

Q∈Q
TQ ≤ T .

By successively refining Q we get an increasing sequence TQ� converging to
some laminar current T∞. Because of the estimate (4), we have 〈T∞, π∗

pωP1〉 =
〈T , π∗

pωP1〉.
We claim that for generically chosen p, this last relation forces T = T∞.

Indeed, let S = T − T∞ ≤ T , S is a positive current, thus is representable by
integration. This means that there is a positive measure νS (which is in fact the
trace measure ‖S‖ of S), and a measurable field of (1,1) vectors Sx such that
S = ∫ 〈Sx, ·〉dνS . If 〈S, π∗

pωP1〉 = 0, the (1,1) vector Sx is a.e. tangent to the
pencil of lines through p. Now the set of points p ∈ P

2 such that there is a set of
positive ‖T ‖ measure of x such that Tx is directed by the pencil through p is at
most countable. It suffices to choose p outside this at most countable exceptional
set to achieve the desired result. ��

Observe that there is no need in proposition 3.4 for the [Cn] to be closed
currents. More precisely we have shown:

Proposition 3.7. Let (Cn) be a sequence of complex submanifolds, possibly with
boundary, in P

2. Assume that dn
−1[Cn] ⇀ T , where T is a positive, closed cur-

rent. Assume also that for a generic projection πp, and any admissible subdivision
Q of P

1, the total mass with respect to π∗
pωP1 of the set of bad components of

[Cn] is ≤ CdnAreaP1(Q) (C is some fixed constant).
Then T is laminar.
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This proposition applies for example for entire curves in P
2, in which case

the control of the number of bad components comes from the Ahlfors’ Covering
Theorem (see [BLS], [Ca]). This yields the following corollary, which solves a
question posed by Cantat (in the special case of P

2):

Corollary 3.8. Let f : C → P
2 be an injective holomorphic mapping. Let

A(r, f ) = [f (D(0, R))]

MP2([f (D(0, R))])
.

Then all closed currents in P
2 which are limits of subsequences A(rj , f ) are

laminar.

4. Applications to holomorphic dynamics in P
2

In this section we prove Theorem 2. We will define a Zariski-generic set U (a
countable intersection of Zariski open sets) in the space Md of rational maps of
degree d in P

2, such that if f ∈ U and dt (f ) < d, then the dynamical “Green”
current of f exists and is laminar. All rational maps considered are supposed to be
dominating, i.e. with generically nonvanishing Jacobian determinant. We roughly
describe the equations defining U . The existence of the Green current requires an
assumption (algebraic stability) to control the “algebraic growth” of iterates of f .
We also have to understand the “topological growth” of preimages of a generic
line, which leads to an additional hypothesis (H). Both hypotheses (AS) and (H)
lead to a generic set in Md (prop. 4.1).

Let us be more specific. We consider a rational self map of P
2 of degree d,

given by its graph �f ⊂ P
2 × P

2, �f is an irreducible, possibly singular surface.
We let X be the minimal desingularization of �f , with the natural projections π1,
π2 : X → P

2

X
π2

���
��

��
�

π1

����
��

��

P
2

P
2

f �������

π1 is a composition of point blow-ups and π2 is a holomorphic map with the same
topological degree as f .

Let I (f ∞) = ∪n≥1f
−nI (f ) be the total indeterminacy set of f (for back-

ground on iteration of rational maps on P
2 see [Si]). The first hypothesis is classi-

cal, and is a necessary condition for the Green current to describe the asymptotic
distribution of the preimages of a generic hypersurface of P

2; namely we assume
f is algebraically stable (AS) which means that I (f ∞) is at most countable. In
this case it follows from [RS] and [Si] that there exists a current T describing
the asymptotic distribution of preimages of hyperplanes. More precisely we have:



Laminar currents in P
2 757

suppose f is an AS rational self map of P
2, then there exists a pluripolar set E in

P̌
2 (the dual space of P

2), such that if L /∈ E,

1

dn
(f n)∗[L] ⇀ T.

The second hypothesis is the following: for a generically finite holomorphic
map h : X → Y between complex manifolds, we define E(h) to be the set of
points in X where h is not locally finite. E(h) is a subvariety of X [Fi]. We say
that f satisfies (H) if

π2(E(π1) ∩ E(π2)) ∩ I (f ∞) = ∅. (H)

We give another equivalent version of (H). Let � : X → �f denote the res-
olution of singularities, which is a composition of finitely many point blow-ups
and η1, η2 be the natural projections �f → P

2, s.t. πi = ηi ◦ � . We claim that
�(E(π1) ∩ E(π2)) ⊂ �f is a finite set of points, which means that the curves of
E(π1) ∩ E(π2) come from the resolution of singularities of �f . Indeed if a curve
D ⊂ �f projects to some point p by η1, i.e. D ⊂ ({p} × P

2) ∩ �f , then as η2

restricted to {p} × P
2 is 1-1, η2(D) is a curve, i.e. D is not contracted by η2. So

(H) is equivalent to
η2(�(E(�)) ∩ I (f ∞) = ∅.

In case Sing(�f ) is zero dimensional, �(E(�)) = Sing(�f ), this means that
up to the determination of the singularities of �f , and the knowledge of I (f ∞)

(which is necessary in order to know if f is AS), it is practically possible (though
in fact probably rather difficult) to determine whether f satisfies (H) or not.

The next proposition shows that (H) is satisfied in many interesting cases.

Proposition 4.1. (i) An algebraically stable birational map satisfies (H);
(ii) (H) and (AS) are generically satisfied in the (algebraic) set of rational maps

of P
2, and in the set of polynomial mappings of C

2.

Remark that it is unclear whether (H) and (AS) are generic in subsets of maps
with fixed topological degree.

Proof. (i) suppose x ∈ π2(E(π1) ∩ E(π2)) ∩ I (f ∞), say x ∈ I (f n). As f is bi-
rational, π2(E(π2)) = I (f −1), hence x ∈ I (f n) ∩ I (f −1). In particular, f −1(x)

is not finite, contradicting that f is AS.
(ii) The set Md of dominating meromorphic maps of degree d in P

2 is a
Zariski open subset of a projective space P

N . The subset of algebraically stable
maps is a countable intersectionAd = ∩nAn (An is defined by {f ∈ Md s.t. I (f n)}
is finite) of Zariski open proper subsets of Md [Si]. We show that maps satisfying
(H) are generic in Ad . The set of maps f such that

π2(E(π1) ∩ E(π2)) ∩ I (f n) �= ∅
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is algebraic in An and its complement is not empty since there are maps in Ad

satisfying (H) (e.g. Hénon maps of degree d).
The case of polynomial maps of degree d in C

2 is similar. ��
Example. we present an explicit family of maps P

2 → P
2, non birational, whose

generic element satisfies AS and (H). Let g = (g1, g2) = (p(z) − aw, az) be
a Hénon map of degree d(g) ≥ 3. Let f = (g2

1, g
2
2); f is a polynomial map,

d(f ) = 2d(g) ≥ 6 and dt (f ) = 4. We have I (f ) = I (g) = [0 : 1 : 0] in
homogeneous coordinates [z : w : t], and f ((t = 0)\I ) = [1 : 0 : 0] =: q �= I

so I (f ∞) = I (f ) and f is AS.
Let L be a linear automorphism C

2 → C
2 and denote also by L its extension

P
2 → P

2. We get d(L ◦ f ) = d(f ), dt (L ◦ f ) = dt (f ), I (L ◦ f ) = I (f ) = I

and if L(q) �= I , L◦f is AS and I ((L◦f )∞) = I . We now prove that for generic
L, L ◦ f satisfies (H).

Let id ⊗ L be the map P
2 × P

2 � (x, y) �→ (x, Ly); one checks that �L◦f =
(id ⊗ L)(�f ) in P

2 × P
2. Recall that the condition (H) concerns a finite subset

S(f ) := �(E(π1)∩E(π2)) of �f . Hence π2(S(L◦f )) = π2((id⊗L)(S(f ))) =
Lπ2(S(f )).As π2(S(f )) is a finite subset of the line at infinity and I ((L◦f )∞) =
I is fixed, for generic L we get π2(S(L ◦ f )) �= I and we are done. ��

Theorem 2 is a consequence of proposition 4.1 and the following proposition.

Proposition 4.2. Let f be a rational self map of P
2, of algebraic degree d, and

topological degree dt < d. We assume that f is AS and satisfies the hypothesis
(H) above. Then the Green current T is laminar.

Note that the result holds in particular for all AS birational maps. In the next
section we will show that for birational maps the “AS” hypothesis is in fact
unnecessary.

Proof. We want to use theorem 1 with the sequence of currents d−1
n (f n)∗[L] =

d−1
n [f −n(L)]. Let Cn = f −n(L). We have to show that

gn +
∑

x∈Sing(Cn)

nx(Cn) = O(dn) (5)

with notations as in the first section. We will estimate the two terms separately,
for generic L. Let us first discuss the genericity assumptions made on L:

(G1) we choose L s.t. the convergence d−1
n (f n)∗[L] ⇀ T holds;

(G2) the hypothesis (H) says that ∪n≥0f
n(π2(E(π1) ∩ E(π2))) is an at most

countable set. We take L missing this countable number of points.

We will prove the estimate (5) by induction on n. This leads us to introduce the
following diagram, which illustrates the step from n−1 to n in terms of the graphs
of the rational maps f n. Suppose we have constructed a surface Xn−1 (which is a
proper modification of the graph of f ) with the following diagram:
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Xn−1
π2,n−1

���
��

��π1,n−1

����
��

�

P
2

P
2

f n−1
�������

Then we define Xn such that we have the following diagram, where Xn is smooth
and minimal among the possible graphs:

Xn

ω

���
��

��
��

�
η

����
��

��
��

π2,n

��

π1,n

��

Xn−1

π2,n−1

���
��

��
��

�

π1,n−1
��

�

����
�

P
2

X

π2

���
��

��
��

�
π1

����
��

��
��

P
2

f n−1
���������

P
2

f
���������

Such a Xn always exists since there is a natural rational map X → Xn−1

birationally equivalent to f ; Xn is not a priori a minimal desingularization of the
graph of f n. Note that all arrows are holomorphic, π1,n, π1, η are compositions
of points blow-ups, dt (ω) = dt , dt (π2,n−1) = dn−1

t . This allows us to state the last
(Zariski) generic hypothesis on L

(G3) by definition, π2,n(E(π2,n)) ⊂ P
2 is finite for all n, we take L missing

the union of these sets. Moreover, Bertini’s theorem says that π−1
2,n(L) is

smooth, irreducible and of mutiplicity 1 for generic L (see [GH], and [FL]
for irreducibility). We choose such an L.

The proof of the estimate (5) splits up into two lemmas.

Lemma 4.3. Let f be as in theorem 2, L a line in P
2 satisfying hypotheses (G2)

and (G3), and Cn = f −n(L), then
∑

x∈Sing(Cn)

nx(Cn) = O(dn).

Before we begin the proof, we want to give a heuristic argument, which gives
a true proof for birational mappings. We have seen that

∑
nx(Cn) =: Nn is

the number of points in π−1(Sing(Cn)), where π is the resolution of singu-
larities. Now if f is birational, f −n|L : L → Cn is a (non minimal a priori)
resolution of singularities. The hypothesis (G3) ensures that L ∩ I ((f −1)∞) = ∅
and so

∑
nx(Cn) is not greater than the number of points in L ∩ E(f −n), and

E(f −n) = Crit (f −n). To conclude, note that the critical set of a rational self
mapping of P

2 has degree at most 3d − 3, where d is the degree of f , and that
for an AS birational map f and f −1 have the same degree. This argument gives
in fact the proof of theorem 2 for birational maps (since gn = 0 in this case).
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For non invertible maps, given Cn−1, with set of singularities S , we want
to analyze Sing(Cn). The set Sing(Cn) contains points of f −1(S), which has
cardinality not greater than dt · #S , preimages of points of f (I (f )) ∩ Cn−1, and
possibly other points (the preimage of a smooth curve, even by a holomorphic
map need not in general be smooth). In fact the sense of the Bertini argument in
(G3) is precisely that the latter set is empty. We have to estimate the number of
local irreducible components at these points. We thus can expect a formula such
as Nn ≤ dtNn−1 + cdn−1 which is indeed the case.

We also recall for future reference some properties of divisors and intersection
products on compact surfaces (see [GH]): a divisor is a formal linear combination
of subvarieties with integer coefficients, we write D ≥ D′ if D′−D is an effective
divisor, that is a divisor with nonnegative coefficients. The intersection product
C ·C ′ of two curves is the sum of intersection multiplicities at common points; the
product · is extended by bilinearity to divisors, and depends only on cohomology
classes in H 2(X, Z), where X is the ambient surface. Given a holomorphic map
h : X → Y there are natural pull back and push forward operations h∗ and h∗ on
divisors, which satisfy h∗D · h∗D′ = dt (h)(D · D′), and h∗D · D′ = D · h∗(D′)
provided these expressions make sense.

Proof of lemma 4.3. By (G3) Ĉn := π−1
2,n(L) is smooth and irreducible. As π1,n is

a composition of point blow-ups, π1,n : Ĉn → Cn is a resolution of singularities.
Hence ∑

x∈Sing(Cn)

nx(Cn) ≤ #Ĉn ∩ E(π1,n).

We introduce E(π1,n) the exceptional divisor, which is the sum (with coefficients
equal to 1) of irreducible components of E(π1,n), and #Ĉn∩E(π1,n) ≤ Ĉn ·E(π1,n)

(generically equal).
Now π1,n = π1 ◦ η, so E(π1,n) ⊂ E(η) ∪ η−1E(π1). Hence

E(π1,n) ≤ η∗E(π1) + Eη

since of course all coefficients in the second member are ≥ 1. From this we infer

E(π1,n) · Ĉn ≤ η∗E(π1) · Ĉn + E(η) · Ĉn (6)

because the pull back of a curve from P
2 intersects positively any effective divisor.

We claim that E(η) · Ĉn ≤ ω∗E(π1,n−1) · Ĉn. Indeed

E(η) =
k∑

i=1

Vi

with Vi a rational curve; suppose without loss of generality that Ĉn cuts V1, . . . Vl .
By (G3), π2,n is a branched covering near Ĉn and so for 1 ≤ i ≤ l, ω(Vi) is not a
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point. As π2 ◦ η = π1,n−1 ◦ ω, and Vi ⊂ E(π2 ◦ η), we have ω(Vi) ⊂ E(π1,n−1),
1 ≤ i ≤ l. This implies

ω∗(E(π1,n−1)) ≥
l∑

i=1

Vi

which yields the desired result. We deduce

E(η) · Ĉn ≤ ω∗E(π1,n−1) · Ĉn = ω∗E(π1,n−1) · ω∗(Ĉn−1)

= dt (E(π1,n−1) · Ĉn−1), (7)

with Ĉn−1 = π−1
2,n−1(L).

On the other hand, we have η∗E(π1) · Ĉn = cdn−1. Indeed

η∗E(π1) · Ĉn = E(π1) · η(Ĉn)

with η(Ĉn) an irreducible curve in X which projects down to Cn−1 by π2 and to Cn

by π1. By the hypothesis (G2), π−1
2 (Cn−1) is irreducible so η(Ĉn) = π−1

2 (Cn−1),
and we know the cohomology class {Cn−1} of Cn−1 in P

2, {Cn−1} = dn−1 {L}.
From this we can evaluate the intersection product in cohomology

η∗E(π1) · Ĉn = {E(π1)} · {η(Ĉn)} = {E(π1)} · π∗
2 {Cn−1}

= dn−1 {E(π1)} · π∗
2 {L} . (8)

We can thus conclude from (6), (7), (8) that Nn = E(π1,n) · Ĉn satisfies Nn ≤
dtNn−1 + cdn−1, dt < d, and it is then a standard result that Nn = O(dn). ��

It seems more difficult to find a heuristic argument for the next lemma, so we
systematically use the terminology of divisors.

Lemma 4.4. Let f be as in theorem 2, L a line in P
2 satisfying hypotheses (G2)

and (G3), Cn = f −n(L), and gn the geometric genus of Cn, then gn = O(dn).

Proof. We apply the Riemann-Hurwitz formula for the branched covering π2,n :
Ĉn → L, and use induction again. We first write down the formula in the language
of divisors [GH].

Let h : X → Y be a dominating holomorphic map of smooth surfaces. We
define the ramification divisor Rh to be the divisor locally defined by the holo-
morphic function Jac(h) (Jacobian determinant). If h is a branched covering, the
order of vanishing of Jac(h) can be interpreted in terms of the local topologi-
cal degree of h near the divisor. If C ⊂ Y and C ′ ⊂ X are smooth curves s.t.
h−1(C) = C ′, then the Riemann Hurwitz formula between Euler characteristics
reads (this holds without the branched covering assumption)

χ(C ′) = dtχ(C) − Rh · C ′.



762 R. Dujardin

If k : Y → Z is another map, the usual chain rule reads

Rk◦h = h∗Rk + Rh.

The Riemann Hurwitz formula for π2,n : Ĉn → L then states

2 − 2gn = χ(Ĉn) = dn
t χ(L) − Rπ2,n

· Ĉn,

then as dt < d we only have to show Rπ2,n
· Ĉn = O(dn).

By the chain rule,
Rπ2,n

= ω∗Rπ2,n−1 + Rω,

hence

Rπ2,n
· Ĉn = ω∗Rπ2,n−1 · Ĉn + Rω · Ĉn = dt (Rπ2,n−1 · Ĉn−1) + Rω · Ĉn (9)

As before, it only remains to see that Rω · Ĉn = cdn to get the desired result.
By the genericity hypothesis (G3) we know that ω is a branched covering near

Ĉn. In particular if an irreducible component R of Rh intersects Ĉn, the order of
vanishing of the Jacobian along R is ≤ dt − 1 since it is exactly e − 1, where
e is the local degree in the neighborhood of R. Moreover the chain rule for the
commutative diagram π1,n−1 ◦ ω = π2 ◦ η yields

ω∗Rπ1,n−1 + Rω = η∗Rπ2 + Rη,

so
Rω ≤ η∗Rπ2 + Rη.

By dropping all components of Rη which do not meet Ĉn, we can write

Rω · Ĉn ≤ η∗Rπ2 · Ĉn + D · Ĉn,

with D some divisor supported in E(η) with coefficients ≤ dt −1 by the discussion
above, that is D ≤ (dt − 1)E(η). By the preceding lemma

E(η) · Ĉn ≤ E(π1,n) · Ĉn ≤ Cstdn.

To conclude, η∗Rπ2 · Ĉn can be estimated in cohomology in X as in the
preceding lemma, using (G2),

η∗Rπ2 · Ĉn = Rπ2 · η(Ĉn) = {Rπ2} · {η(Ĉn)} = dn−1{Rπ2} · π∗
2 {L}

and we are done. ��
Remark. It might be possible to get rid of the hypothesis (H), by a more precise
control of the multiplicities of the curves Cn at the indeterminacy points, but this
seems difficult and is beyond the scope of this article.
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5. Birational invariance and applications.

“Birational invariance” is the following easy proposition:

Proposition 5.1. Let T be a positive closed current in the (compact) surface X

and h : X → Y a birational map.
Then T is laminar iff h∗T is laminar.

Proof. by the structure theorem for birational maps [GH] it suffices to show the
following:

i if π : X → Y is a point blow up and T a positive closed current on X, T

laminar ⇒ π∗T laminar;
ii if π : X → Y is a point blow-up and T a positive closed current on Y , T

laminar ⇒ π∗T laminar.

The first point goes as follows: we can write T = T1 + c[E], where E is the
exceptional divisor of the blow up (π(E) =: p), and T1 gives no mass to E. T1

is in fact the trivial extension through E of T |X\E , which is of course laminar
(restriction of a laminar current). Now π : X\E → Y\ {p} is a biholomorphism,
and π∗(T |X\E) = π∗(T1|X\E) = (π∗T1)|Y\{p} so (π∗T1)|Y\{p} is laminar. We con-
clude that π∗T itself is laminar because a neighborhood U of p can be covered up
to a set of ‖π∗T ‖-measure 0 by countably many disjoint open subsets of U\ {p}.

For the second part, write π∗T = T1 + ν(T , 0)[E] where T1 is the trivial
extension through E of (π∗T )|X\E . T1 is laminar because T |Y\{p} is, and we get
that T is laminar by subdividing into smaller subdisks all disks in T intersecting
E. ��

We now prove theorem 3 :
Let M be a connected smooth projective surface, and f a birational selfmap of
M , of positive topological entropy. It is a result of J. Diller and C. Favre [DF] that
there exists a proper modification π : M̂ → M (π is a composition of point blow
ups), such that f lifts to an algebraically stable map f̂ : M̂ → M̂ (of positive
entropy also). Either f̂ is an automorphism, in which case the results of Can-
tat [Ca] yield the existence of a natural laminar Green current on M̂ , or f̂ has
indeterminacy points, and the existence of the Green current is proved in [DF];
moreover in the latter case M̂ is birational to P

2. We define the Green current of
f to be T (f ) = π∗T (f̂ ). By proposition 5.1 laminarity of T (f ) is equivalent to
laminarity of T (f̂ ), so we focus on f̂ . Abusing notation we write f for f̂ and M

for M̂ .
We only need to treat the case when f has indeterminacy points. We define

λ1 = λ1(f ), the first dynamical degree of f to be the spectral radius of the linear
map f ∗ : H 1,1(M) → H 1,1(M). In P

2, λ1 = d (see [DF], [RS], [Gu] for details
and references). One has htop(f ) ≤ log λ1 so λ1 > 1 [Fr]. Let L be an element
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of the linear system of hyperplane sections of M . Bertini’s theorem implies that
a generic L is smooth and irreducible. Moreover for generic L

1

λn
1

(f n)∗[L] ⇀ cT,

where c is some positive constant independent of L ([DF] Theorem 6.5, see also
[Si] Theorem 1.10.1). Without loss of generality we assume c = 1. Let Cn =
f −n(L), and gn,

∑
nx(Cn) be defined as in section 3. We want to prove

gn +
∑

x∈Sing(Cn)

nx(Cn) = O(λn
1).

As f is birational gn = g(f −n(L)) is independent of n so we only bound the
second term.

We adapt lemma 4.3 to this context. First note that the divisor L is ample
(because as a line bundle it is the restriction of the hyperplane bundle [GH]), in
particular its intersection product with any effective divisor is nonnegative. If we
draw the same diagram as in the preceding section, replacing P

2 by M , we get that
the intersection product of π∗

2,n(L) with any effective divisor in Xn is nonnega-
tive. If moreover we choose L satisfying the generic assumptions (G2): L misses
the countable set ∪n≥0f

n(π2(E(π1) ∩ E(π2))) (by algebraic stability of f −1) and
(G3): L misses ∪nπ2,n(E(π2,n)) and π−1

2,n(L) is smooth and irreducible for every
n, we can read again lemma 4.3, replacing P

2 by M and d by λ1 (dt = 1).
To conclude, we apply theorem 1 in P

2. Let h : M → P
2 be a birational map,

and consider the sequence of curves h(f −n(L)) = h(Cn), at the level of currents
we have

1

λn
1

[h(Cn)] = h∗

(
1

λn
1

[Cn]

)
⇀ h∗T .

We can decompose [h(Cn)] = [�n] + [En] where [�n] is the (irreducible) proper
transform of Cn, and [En] is some divisor subordinate to E(h−1).

The sequence (1/λn
1)[En] converges to a divisor, which does not affect the lam-

inarity of h∗T , and it remains to prove that the sequence of curves �n satisfy the
hypotheses of theorem 1. The term gn is invariant by the birational transformation
h, and ∑

x∈Sing(�n)

nx(�n) ≤
∑

x∈Sing(Cn)

nx(Cn) + #Cn ∩ C(h).

the first term is O(λn
1) by the preceding discussion, and the second is O(λn

1) (C(h),
the critical set, contains the indeterminacy points of h by definition) because the
spectral radius of the action f ∗ on H 2(M, Z) is ≤ λ1. Thus h∗T is laminar, and
so is T by proposition 5.1. ��
Remark. With the same method it is possible to derive laminarity of the Green
current for AS rational maps of rational surfaces, satisfying dt < λ1 and (H).
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