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ABSTRACT. We consider two (densely defined) involutions on the space of ¢ x g
matrices; I(x;;) is the matrix inverse of (z;;), and J(z;;) is the matrix whose
ijth entry is the reciprocal :(::31 Let K = I oJ. The set SCq4 of symmetric,
cyclic matrices is invariant under K. In this paper, we determine the degrees
of the iterates K™ = K o ... o K restricted to SCq.

1. Introduction. Our interest is the dynamics of birational mappings in higher
dimension. A lot has been accomplished already in dimension 2 (cf. [15], [5], [17],
[16]), but little is known in higher dimension (see the survey in Guedj [G]). The
family of mappings defined below has attracted our interest because it exhibits a
rich blowup/blowdown behavior which cannot occur in dimension 2.

Let M, denote the space of ¢ X g matrices, and let P(M,) denote its projec-
tivization. For a matrix = (z;;) we consider two maps. One is J(z) = (x;l)
which takes the reciprocal of each entry of the matrix, and the other is the matrix
inverse I(z) = (z;;)~!. The involutions I and .J, and thus the mapping K = I o J,
arise as basic symmetries in Lattice Statistical Mechanics (see [13], [9]). This leads
to the problem of determining the iterated behavior of K on P(M,) (see [1], [2],
[1], [10]). A basic question is to know the degree complexity

§(K) := lim (deg(K™)Y™ = lim (deg(K o ---o0 K))¥/"

of the iterates of this map. The quantity logd is also called the algebraic entropy
(see [10]). We note that PM, has dimension ¢* — 1, I has degree ¢ — 1, and
J has degree ¢> — 1. Thus a computer cannot directly evaluate the composition
K? =Ko K (or even K = I o J) unless ¢ is small.

The ¢ x ¢ matrices correspond to the coupling constants of a system in which each
location has ¢ possible states. In more specific models, there may be additional sym-
metries, and such symmetries define a K-invariant subspace S C P(My) (see [3]). In
general, the degree of the restriction K|S will be lower than the degree of K, and the

2000 Mathematics Subject Classification. Primary: 37F10; Secondary: 14J99.
Key words and phrases. Degree growth, Birational maps.

977



978 ERIC BEDFORD AND KYOUNGHEE KIM

corresponding question in this case is to know §(K[S) = lim,, . (deg(K™|S))Y/".
An example of this, related to Potts models, is the subspace C, of cyclic matrices,
i.e., matrices (z;;) for which x;; depends only on j — i (mod ¢). A cyclic matrix is

thus determined by numbers zg, ..., z4—1 according to the formula
i) T Tg—1
o e e
C(l‘o,...,wq_l): a1 (11)
. . 1
I Tg—1 Zo
The degree growth of K|C, was determined in [10]. Another case of evident im-

portance is SC,, the symmetric, cyclic matrices. The degree growth of K|SC, was
determined in [4] for prime ¢. In this paper we determine §(K|SC,) for all ¢. In
doing this, we expose a general method of determining ¢, which we believe will also
be applicable to the study of §(K|S) for more general spaces S.

Main Theorem. The dynamical degree §(K|SC,) = p?, where p is the spectral
radius of an integer matrix M. When q is odd, M is defined by (4.3-7); when
q = 2xodd, M is defined by (5.6-12); and when q is divisible by 4, M is defined by
(6.5-12).

The algorithm of the Main Theorem computes d, starting with the prime factor-
ization of ¢. In the Appendix we show how to carry out the algorithm efficiently in
the cases ¢ = 30,45, and 60.

The mappings K|C, and K|SC, lead to maps of the form f = Lo J on PV,
where L is linear, and J = [z : --- : #y']. In the case of K|C,, we have L = F,
the matrix representation of the finite Fourier transform, and the entries are gth
roots of unity. By the internal symmetry of the map, the exceptional hypersurfaces
3; = {x; = 0} all behave in the same way, and § for these maps is found easily by
the method of regularization described below. The family of “Noetherian maps”

was introduced in [12] and generalized to “elementary maps” in [7]. These maps
have the feature that all exceptional hypersurfaces behave like
Ni— koo VG (1.2)

which means that ¥; blows down to a point %, which then maps forward for finite
time until it reaches a point of indeterminacy e;, which blows up to a hypersurface
Vi. The reason for deg(f™) < (deg(f))™ comes from the existence of exceptional
hypersurfaces like 3;, called “degree lowering” in [18], which are mapped into the
indeterminacy locus.

As we pass from K|C, to K|SC,, a number of symmetries are added. Because
of these additional symmetries, the dimension of the representation f = L o .J on
PV changes from N = ¢ —1to N = |¢/2]. The new matrix L, however, is more
difficult to work with explicitly; its entries have changed from roots of unity to more
general cyclotomic numbers. The exceptional hypersurfaces all blow down to points,
but their subsequent behaviors are richly varied, showing phenomena connected to
properties of the cyclotomic numbers.

If f: PN --s PV is a rational map, then there is a well-defined pullback map
on cohomology f*: HUY(PN) — HYY(PY). The cohomology of projective space is
generated by the class of a hypersurface H, and the connection between cohomology
and degree is given by the formula

(f")'H = (degf") - H. (1.3)
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In our approach, we construct a new complex manifold 7 : X — P, which will
be obtained by performing certain (depending on f) blow-ups over P?. This con-
struction induces a rational map fx : X --+ X which has the additional property
that

(f%)" = (fx)" on H"'(X), (1.4)

which we call 1-regular or 1-stable. Once we have our good model X, we find
d(f) = d(fx) by computing the spectral radius of the mapping f%.

Diller and Favre [15] showed that such a construction of X with (1.4) is always
possible for birational maps in dimension 2. This method for determining § then
gives a tool for deciding whether f is integrable (which happens when § = 1) or has
positive entropy (in which case §(f) > 1). This was used in the integrable case in
[11] and in both cases in [8], [21], and [22] .

We note that the space X which is constructed by this procedure is useful for
understanding further properties of f. For instance, it has proved useful in analyzing
the pointwise dynamics of f on real points (see [0]).

An important difference between the cases of dimension 2 and dimension > 2,
as well as a reason why the maps K|SC, do not fall within the scope of earlier
approaches, is that exceptional hypersurfaces cannot always be removed from the
dynamical system by blow-ups. In fact, the new map fx can have more indetermi-
nate components and exceptional hypersurfaces than the original map.

Our method proceeds as follows. After choosing subspaces Ao, ..., \; as centers
of blowup, we construct X. The blowup fibers A; over A;, i = 0,...,7j, together
with H, provide a convenient basis for Pic(X). A careful examination of f~! lets us
determine f §1H and f )}11\1-, and thus we can determine the action of the linear map
fx% on Pic(X). In order to see whether (1.4) holds, we need to track the forward
orbits f"FE for each exceptional hypersurface E. By Theorem 1.1, the condition
that f*E ¢ Tx for each n > 0 and each F is sufficient for (1.4) to hold. We develop
two techniques to verify this last condition for our maps K|SC,. One of them,
called a “hook,” is a subvariety ap ¢ Ix such that fxap = ag, and f/E D ag.
The simplest case of this is a fixed point. The other technique uses the fact that
f = Lo J is defined over the cyclotomic numbers, and we cannot have f{ E C Zx
for number theoretic reasons. This brings us to a second difference between the
cases of dimension 2 and dimension > 2: The map K|SC, in case ¢ is not prime,
cannot be regularized to satisfy (1.4) by the method of point blowups alone.

Let us describe the contents of this paper. In §2 we discuss blowups and the map
J. We show how to write blowups in local coordinates, how to describe Jx, and
how to determine J%. We also give sufficient conditions for (1.4).

In §3, we show how this approach may be applied to K|C,. In this case, the
exceptional orbits are of the form (1.2). We construct the space X by blowing up
the points of the exceptional orbits. After these blowups, the induced map fx has
no exceptional hypersurfaces, which implies that (1.4) holds. A calculation of f%
and its spectral radius leads to the same number §(K|C,) that was found in [10].

In §4, we give the setup of the symmetric, cyclic case. When ¢ is prime, the
map K|SC, exhibits the same general phenomenon: the orbits of all exceptional
hypersurfaces are of the form (1.2). As before, we construct X by blowing up the
point orbits, and we find that the new map fx has no exceptional hypersurfaces.
Thus we recapture the 6(K|SC,) from [4].
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When ¢ is not prime, however, the map K|C, develops a new kind of symmetry
as we pass to SC,;. Now there are exceptional orbits

where p; blows up to a variety W, of positive dimension but too small to be a
hypersurface, yet W; blows up further and becomes a hypersurface V;.

In §5, we work with the case where ¢ is a general odd number. We construct our
a blowup space 7 : X — SC,, and we obtain an induced map fx. If 7 is relatively
prime to ¢, then the orbit of ¥; has the form (1.2), and after blowing up the singular
orbit, 3; will no longer be exceptional. On the other hand, if 7 is not relatively prime
to ¢, then the exceptional orbit has the form (1.5). Let r divide ¢, and let # = ¢/r,
and define the sets S, = {1 <j < (¢—1)/2: ged(4,q) = r}. We will see below that
if i € S, and j € Sy, then there is an interaction between the (exceptional) orbits
of ¥; and X, (see Figure 2). After blowing up along certain linear subspaces, we
find a 2-cycle hook «,. <+ a; for all hypersurfaces ¥;, i € S, U Sy.

In §6, we consider the case ¢ = 2 x odd. We construct a new space by blowing
up along various subspaces. We find that for each odd divisor » > 1 of ¢, the
exceptional varieties Y;, i € S, U Sy, act like the case where ¢ is odd. As before,
we construct a hook «, < «; for all i € S,. U Sy, U Sz USs:. However, there is
also a new phenomenon, which we call the “wringer” (see Figure 3), which consists
of an f-invariant 4-cycle of blowup fibers. All of the exceptional hypersurfaces ¥;,
1 € S1 U Sy enter the wringer. We find hooks for all of these hypersurfaces, which
shows that (1.4) holds for fx.

In §7, we consider the case where ¢ is divisible by 4. Again, we construct X and
obtain a new map fx. In this case, fx has some exceptional hypersurfaces with
hooks. Yet a number of exceptional hypersurfaces remain to be analyzed. These
hypersurfaces are of the form ¥; — ¢; — --- : they blow down to points, and we
must show that no point of this orbit blows up, i.e., fitc; ¢ Ix for all n > 0. The
complication of one such orbit is shown in Figure 4. We approach this problem
now by taking advantage of cyclotomic properties of the coefficients of f. We show
that we can work over the integers modulo pu, for certain primes u, and the orbit
{f%¢; : n > 0} is pre-periodic to an orbit which is disjoint from Zx and periodic in
this reduced number ring.

In each of these cases, we regularize f by constructing an X such that (0.4)
holds, and we write down f% explicitly. Thus 6(K|SC,) is the spectral radius of
this linear transformation, which is given as modulus of the largest zero of the char-
acteristic polynomial of fi. We write down general formulas for the characteristic
polynomials in the cases ¢ =odd and ¢ = 2xodd.

We give some Appendices to show how our Theorems may be used to calculate
d(f) in an efficient manner.

The structures of the sets of exceptional hypersurfaces are both complicated and
different for the various cases of q. So at the beginning of each section, we give a
visual summary of the exceptional hypersurfaces and their orbits.

2. Complex manifolds and their blow-ups. Recall that complex projective

space PV consists of complex N + 1-tuples [zg : - - - : 2] subject to the equivalence
condition [rg : -+- : n] = [Axg : -+ : Azy] for any nonzero A € C. A rational
map f = [Fy :---: Fx] : PY — P¥ is given by an N + 1-tuple of homogeneous

polynomials of the same degree d. Without loss of generality we may assume that
these polynomials have no common factor. The indeterminacy locus T = {x € PV :
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Fy(z) = --- = Fy(x) = 0} is the set of points where f does not define a mapping to
P¥. Since the F; have no common factor, Z has codimension at least 2. Clearly f is
holomorphic on P — Z, but if 2y € Z, then f cannot be extended to be continuous
at zg.

If S ¢ PY is an irreducible algebraic subvariety with S ¢ Z, then we define the
strict image, written f(S), as the closure of f(S —Z). Thus f(S) is an algebraic
subvariety of PV, which is also called strict or proper transform. We say that S is
exceptional if the dimension of f(.9) is strictly less than the dimension of S.

Let I'¢ denote the closure of the graph {(z,y) € (PY —7)x PV : f(z) =y}, and
let m; : Ty — P¥ be the coordinate projections 71 (z,y) = x and m2(z,y) = y. For
x € I, we have f(x) = momy H(z) = Nes closuref(B(x,e)—Z). For aset S we define
the total image f.(S) := mamr; *(S). If S is a subvariety, we have f.(S) D f(S).

A linear subspace is defined by a finite number of linear equations

A={zePV :((z)=0,0<j<M}

where £;(z) = > ¢jrzr, and M > 1. After a linear change of coordinates, we may
assume A = {zg = -+ = xpy = 0}. Thus ) is naturally equivalent to PV~ -1 Ag
a global manifold, P is covered by N + 1 coordinate charts U; = {z; # 0} = CV.
On the coordinate chart Uy we have coordinates (; = z;/zn, 0 < j < N —1, so

ANUx ={(Co,..,¢n1) €CYN i ¢o=--- =y =0}

We define the blowup of PN over A in terms of a complex manifold X and a holo-
morphic projection 7 : X — P¥. (See also [19].) Working inside the coordinate
chart Uy, we set

T UN) N X = {(G) € CY x P (i — G =0, YO < j b < M}
and 7(¢,€) = ¢. We see that 771 : CN — X\ — X is well-defined and holomorphic,

but for ¢ € A we have 771(¢) = PM. We write a fiber point £ € 771(¢) as (¢;€) or
(; €. Abusing notation slightly, we may consider the curve

Ye it (& e CN (2.1)

and we say that « lands at (;¢ € X when we mean that lim; o7 1v(t) = ;€. Tt is
convenient for future computations that the exceptional hypersurface A := 7'\ =
PN-M-1 » PM ig a product. Namely, given z € PY=™~1 and ¢ € PM, we can
represent the line 2§ = {z + £ : t € C}. This line is independent of choice of
representatives z and £; and the fiber point z;¢ is the limit in X of the point z 4 t£
as t — 0. The fiber of A over a point x € A is illustrated in Figure 1.

FIGURE 1. Blowup of a Linear Subspace.
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For future reference, we give a local coordinate system at a point p € A. Without
loss of generality, we may suppose that p = ((;&), where ¢ = (0,0) € CM+1 x
CN-M=1and ¢ =[1:0:---:0] € PM. Thus we set £, = 1 and define coordinates
(Cos&1s -5 &0, Cargry - - -, (v—1) for the point

(Cag) = ((<07<0§17"'7<0€M7<M+15"'1<N);[1 :51 s §M]) € X. (22)

The blowing-up construction is clearly local, so we may use it to blow up a
smooth submanifold of a complex manifold. Suppose that f : PY — P¥ is locally
biholomorphic at a point p, that A; is a smooth submanifold containing p, and that
Ao = fA. Let w: Z — P" denote the blowup of A\; and As. Then for p; & in the
fiber over p € A1, we have fz(p; &) = fp; dfp€.

If we wish to blow up both a point p and a submanifold A which contains p, we first
blow up p, and then we blow up the strict transform of A. In the sequel, we will also
perform blowups of submanifolds which intersect but do not contain one another.
For example, let us consider the xi-axis Xy := {x3 = 23 =0} C C3 and the zy-axis
Xo = {21 =23 =0} C C3. Let m; : M; — C3 be the blowup of X;. The fibers
over points of X; have the form 7, *(21,0,0) = {(21,0,0);[0: & : &]} = P, These
may be identified with the landing points of arcs which approach X7 normally as
n (2.1). Let us set By := 7T1_10, and let X5 denote the strict transform of X5 inside
Ml, i.e., X2 = 7T1_1(X§) Thus X2 n El = (0, [0 01 O]) Now let T2 M12 — M1
denote the blow up of Xo C My, and set 7’ : m o w1 : Mis — C3. It follows that
(7')~! is holomorphic on C* — (X; U X3). Since 72 is invertible over points of
My — X5 D m; ' (Xy — {0}), the fiber points over X; — {0} may still be identified
with the landing points of arcs approaching X7 normally. Similarly, we may identify
points of 7r1_21 (X — 7y 10) as landing points of arcs approaching X5 normally.

In a similar fashion, we may construct the blow-up space " := my o ma; : Mo —
C? by blowing up X, first and then X;. We say that a map h : X; — X5 is a
pseudo-isomorphism if it is biholomorphic outside a subvariety of codimension > 2.
Thus (7', M12) and (7", Ma;) are pseudo-isomorphic, since (7”)~% o 7/ extends to
a biholomorphism between M, — (/)10 and Ma; — (7)~10. In our discussion of
degree growth, we will be concerned only with divisors, and in this context pseudo-
isomorphic spaces are equivalent. Thus when we perform multiple blowups, we will
not be concerned about the order in which they are performed since the spaces
obtained will be pseudo-isomorphic.

Next we discuss the map J : PV --» PV given by J[zg : -+ : an] = [zg
zy'] =[x+ v5], where we write 2, = [ 24 zj- The behaviors we will discuss
occur when N > 3. For a subset 7' C {0, ..., N} we use the notation

Oy ={zcPV iz, =0Vt ¢ T}, h={xcllr:z #0VtecT}
Yr={zecPV iz, =0VtecT}, Sr={scSr:a A0Vt¢ T}

A point z is indeterminate for J exactly when two or more coordinates are zero.
That is to say

1'...'

()= |J =r.
#T>2
The total image of an indeterminate point is given by

I 2p— Jip=3%p, and X5 3pe Jop=Ilp. (2.3)

The exceptional hypersurfaces for J are exactly the hypersurfaces 3; for 0 <7 < N,
and we have f(3;) =e; :==[0:---:0:1:0:---]. Let 7: X — P¥ denote the
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blowup of the point e;, and let E; := 7 'e; = PV~ We introduce the notation

o =lxg:-riaim1 0 ay - an] and J ':[:Calz---:x;_ll:0::10;_11:---:
z']. Thus near ; we have
Jwo -t g ity an] = e+t (2.4)

Letting t — 0, we find that the induced map Jx : X --» X is given by
Jx %22 —epJa € By (2.5)

The effect of passing to the blowup X is that ¥; is no longer exceptional. Since J
is an involution, we also have

Jx  E; > ei;f’ — Jlfl € 3. (26)

Let T C {0,...,N} be a subset with ¢ ¢ T and #T > 2, and let X1 denote its
strict transform inside X. We see that X7 N F; is nonempty and indeterminate for
Jx, and the union of such sets gives E; N Z(Jx).

Now let us discuss the relationship between blowups and the indeterminate strata
of J. For T C {0,...,N}, #T > 2, we have ¥y C Z, and J, : ¥4 3 p — IIp. Let
7 X — PY be the blowup of PV along the subspaces X7 and I, Let S = 7~ '2p
and Pr = 7 'II; denote the exceptional fibers. The induced map Jx : X --» X
acts to interchange base and fiber coordinates:

Jx : St --» Pr, St =Yy xIIr > (LL',S) — (J”ﬁ;J’:v) elly x X7 = Prp, (27)

where J”(£) = €71 on Iy, and J'(z) = 27! on ¥r. In particular, Jx is a birational
map which interchanges the two exceptional hypersurfaces, and acts again like J,
separately on the fiber and base, and interchanges fiber and base.

Now let 7 : X — P be a complex manifold obtained by blowing up a sequence
of smooth subspaces. If » = p/q is a rational function (quotient of two homogeneous
polynomials of the same degree), we will say that 7*r := r o is a rational function
on X. We consider the group Div(X) of integral divisors on X, i.e. the finite sums
D = %" n;V;, where n; € Z, and V; is an irreducible hypersurface in X. We say
that divisors D, D’ are linearly equivalent if there is a rational function on X such
that D — D’ is the divisor of r. We define Pic(X) to be the set of divisors on X
modulo linear equivalence.

For a rational map f : X --» Y, there is an induced map f*: Pic(Y) — Pic(X):
if D € Pic(Y), its preimage f~1(D) is well defined as a divisor on X — Z because
f is holomorphic there. Taking its closure inside X, we obtain f*D = (f~1).D,
the total transform of D under f~!. Let H = {¢ = 0} denote a linear hypersurface
in PY. The group Pic(PY) is generated by H. If f : PV --» P¥ is a rational
map, then f*H = deg(f)H. Let Hx = n*H be the divisor of 7*¢ = Lo 7 in X.
A basis for Pic(X) is given by Hy, together with the (finitely many) irreducible
components of exceptional hypersurfaces for 7. We may choose an ordered basis
Hx,E,...,E;s for Pic(X) and write f* with respect to this basis as an integer
matrix M. It follows that deg(f) is the (1,1) entry of M.

Let us consider the blowup 7 : Y — PN of ¥y = {29 = --- = 2 = 0},
with M < N. We write F(z) := 7w~ 'z for the fiber over x € ¥ s, and we let

.....

.....

and A give a basis of Pic(Y). Let Jy : Y --» Y denote the map induced by J. For
j > M, the induced map Jy |X; : 3; --» F(e;) may be written in coordinates in a
fashion similar to (2.5) and is seen to be a dominant map. Since F(e;) & PN -M-1
we see that ¥; is exceptional.
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We have noted that X M 2p— Jup=1I . The
indeterminacy locus Zy of Jy has codimension 2 and thus does not contain A. In
fact,

.....

Jy|F(p): F(p) --» o, 1 (2.8)

can be written in coordinates similar to (2.6) and is thus seen to be birational.
Now let L be an invertible linear map of PV, let f := Lo J, and let fy be the
induced birational map of Y. We write L = (fo, ..., ¢n) for the columns of L. Thus
fE; = ¢;. We now determine f5 : Pic(Y) — Pic(Y) in terms of the basis {Hy, A}.
Let I', denote the dimension M + 1 subvariety such that fI';, = ¥ . Assuming
that I'r, & 3o, v, we may take its strict transform in Y to have

FA=TLu () %, or ffA= > N (2.9)

We see that we have multiplicity 1 for the divisors X; because the linear factor ¢ in
(2.4), we mean that the pullback of the defining function will vanish to first order.
Now let us write the class of ¥; € Pic(Y) in terms of the basis {Hy,A}. First, we
see that ; = {z; = 0} = H is the class of a general hypersurface in Pic(PY), so
m*3; = Hy. Since we have Yo . s C Y; if and only if j < M, we have

.....

Y;j=Hy —-Aif j<M, X;=Hy otherwise. (2.10)

For instance, if we have {y,{n € o, and £ ¢ Eg . ar for 1 < j < N —1, then
we have

JiA = 2Hy — A. (2.11)

Finally, we determine f3-Hy. We start by noting that in PV we have H = {p =
0}, and on PV we have f*H = J*L*H = J*H = J '{p = 0} = N - H. Now we
want to use 7* to pull this equation back to Pic(Y'), but in general 7* J* # (Jom)*.
We have seen that Jy maps A —Z to the strict transform of Ily . 5 which is not
contained in a general hyperplane. Thus f;-'{¢ = 0} will not contain A. Pulling
back by 7*, we have

7 J*H = N - Hy = J:Hy + mA (2.12)

for some integer m. Writing ¢ = > ¢;x;, we have J*(¢) = >_ ¢;Z;, which vanishes
to order M on X . a, so m = M. To summarize the case where only £y and {x
belong to ¥, a, we may represent fy with respect to the basis {Hy, A} as the

matrix
N 2
My, = (_M _1> : (2.13)

If (My)™ = Myn, then the matrix M, allows us to determine the degrees of the
iterates of f, since the degree of f™ is given by the (1,1)-entry of M ». The following
result gives a sufficient condition for this to hold. Fornaess and Sibony [18] showed
that when X = P this condition is actually equivalent to (2.14). Theorem 2.1 is
a special case of Propositions 1.1 and 1.2 of [7].

Theorem 2.1. Let f : X --» X be a rational map. We suppose that for all
exceptional hypersurfaces E there is a point p € E such that f"p ¢ T for alln > 0.
Then it follows that

(Mg)" =My for all n > 0. (2.14)
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Proof. Condition (2.14) is clearly equivalent to condition (1.4). Thus we need to
show that (f*)? = (f?)* on Pic(X). If D is a divisor, then f*D is the divisor on X
which is the same as f~1D on X —Z(f), since Z(f) has codimension at least 2. Now
I(f2) = Z(f)UfVZ(f), and we have (f2)° D = f*(£*D) on X —Z(f)—f~'Z(f). By
our hypothesis, f~1Z(f) has codimension at least 2. Thus we have (f?)*D = (f*)?D
on X. O

We note that if there is a point p € E such that f"p ¢ T for all n > 0, then the
set £ —J,,>0Z(f") has full measure in E. Thus the forward pointwise dynamics
of f is defined on almost every point of E. The following three results are direct
consequences of Theorem 2.1.

Corollary 2.2. If for each irreducible exceptional hypersurface E, we have f"E ¢ T
for all n > 1, then condition (2.14), or equivalently (1.4), holds .

Proposition 2.3. Let f : X --» X be a rational map. Suppose that there is
a subvariety S C X such that S, fS...,f7"'S ¢ I, and fiS = S. If E is an
exceptional hypersurface such that E, f?E.... . f*"'E ¢ I, and f*E O S, then
there is a point p € E such that f™p ¢ T for alln > 0.

In this situation, we will say that S is a hook for E. Sometimes, instead of
specifying fS = S, we will say that f : S — S is a dominant map, which means
that the generic rank of f|S is the same as the dimension of the target space S.

Theorem 2.4. Let f : X --» X be a rational map. If there is a hook for every
exceptional hypersurface, then (1.4) and (2.14) hold.
3. Cyclic (circulant) matrices.

Let w denote a primitive gth root of unity, and let us write F' = (wjk)ogj7k§q_1,
ie.,

1 1 1 1 1
1 w w? w3 .. Wit
2 4 6 2(g—1)
FZ(va---,qul): 1 w w w W
1 Wil 21 B3 o @1)?
Given numbers xg,...,24—1, we have the diagonal matrix
o

D = D(xo, .. .,qul) =
LTg—1

A basic property (cf. [D, Chapter 3]) is that F' conjugates diagonal matrices to
cyclic matrices. Specifically,

C(xo,...,xq-1) = F'D(xf, ..., 2, |)F,

where (x(,...,2}, ;) = F(o,...,24-1). Thus the map 2 — F~'D(Fz)F gives an
isomorphism between C, and P¢~1. The map I : C, — C, may now be represented
as

C(xg,...,0q-1)" " = F'D(J(F(xg,...,24-1))F.
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Thus K =10.J:C; — Cq4 is conjugate to the mapping
FloJoFoJ:Pi ! __sPpit

where F : P9~! — P91 denotes the matrix multiplication map = — Fz. A
computation (see [D, p. 31]) shows that F? is ¢ times the permutation matrix
corresponding to the permutation x; < z,_; for 1 <j < g —1, so F* is a multiple
of the identity matrix. On projective space, F'? simply permutes the coordinates,
so we have F?2o.J = Jo F2. From this and the identity F~! = F® we conclude that
(F7YJFJ)" = A(FJ)*", where A = I if n is even and A = F? if n is odd. Thus we
have

3(K|Cy) = (3(FT))*.

Following the discussion in §2, we know that the exceptional divisors of f := FoJ
are ¥; = {z; =0} for 0 < j < ¢— 1. It is evident that J(f;) = f; = fq—;, so

Zj—>fj—>6jWF2j.

We let 7 : X — P! denote the complex manifold obtained by blowing up the
orbits {f;,e;}, 0 < j < ¢—1. Let F; and E; denote the blow-up fibers in X over
f; and e;. It follows that

fx: Ej—Fj—%;=Hx - > E (3.1)
ki

Further, by §1 or [7] we have that fx satisfies (1.4), and

q

fxHx =(q—1)Hx — (q—2) > _ Ey. (32)
k=0

We take {Hx, Eo, Fo, ..., E4_1,F,—1} as an ordered basis for H*!(X). Thus the
linear transformation f% is completely defined by (3.1) and (3.2), and we may write
it in matrix form as:

g—1 0 1 0 1
—q+2 0 0 0 -1
0 1 0 0
« | —q+2 -1 -1
—q+2 ~1 0 0
0 0 1 0

It follows that deg(f™) is the upper left hand entry of the nth power of the matrix
(3.3). Using row and column operations, we find that the characteristic polynomial
of (3.3) is

(z =)z + 1) (@? + (2 - g)a + 1).

Summarizing our discussion, we obtain the degree complexity numbers which were
found earlier in [10]:

Theorem 3.1. §(K|C,) is p?, where p is the largest zero of 2% + (2 — q)z + 1.



DEGREE GROWTH OF MATRIX INVERSION 987

4. Symmetric, cyclic matrices: prime q.
20 — AO — E()
Y- A —-Vi—> AV, - E;

To work with symmetric, cyclic matrices, we consider separately the cases of ¢
even and odd. In §3 and §4 we will assume that

q is odd, and we define p := (¢ — 1)/2.
If the matrix in (1.1) is symmetric, it has the form
M (20,1, Tpy Tpy -+, 1) = M(Lz), (4.1)

where ¢(zg, ..., 2p) = (X0, Z1,-- ., Tp, Tp,...,x1). Thus, in analogy with §3, we have
an isomorphism
PP 3>z F7'D(Fux)F € SC,.
With this isomorphism, we transfer the map F'o.J : SC; --+ SC, to a map
f=AoJ:PP--5 PP

where A is a (p + 1) x (p + 1) matrix which will we now determine. It is easily
seen that the Oth column ag is the same as the Oth column f, = (1,...,1). For
1 < j < p, the symmetry of 1z means that the jth column of A is the sum of the
jth and (¢ — 7)th columns of F. Thus we have

1 2 2 ... 2
1w w ... wy

A= (a07 7ap) = )
1 wp weyp .. wp2

where we define
wj = w! +wi.
Immediate properties are
Wj =W, Wi =Witgy Wptjl = Wp—j, Wik = Witk Wik (42)

Summing over roots of unity, we find

P
1+Zwst=O if s 0 mod q. (4.3)

t=1

By (42), the (], k) thI‘y of A2 is ij'twtk == (1+Ef:1 w(j+k)t)+(1+zf:1 w(j—k)t)-
Thus, by (4.3), A% = g, so A acts as an involution on projective space.
As in the general cyclic case, we see that we have the orbit

Eo—>a0—>60.

Now we consider the orbit of 3; for i # 0. Let us define vy = [1:¢; :---:ty] € PP
to be the point whose entries are +1 and which is given by

ton =topt1 = (—=1)" if piseven, so vy =[1:1:—-1:-1:---]

top—1 =to, = (—1)" ifpisodd, so vy =[1:—-1:=1:1:---].

Lemma 4.1. Ja; = Av;.
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Proof. Jai = [1:2/wy -+ 1 2/wp] = [t1 : 2t1/wy : - ¢ 2t1/wp]. Thus we must
show
P P
tp=142> t;, and 20 =wi(l+ Y wit;), V1<k<p. (4.5)
i=1 i=1

The left hand equality is immediate from (4.4). Let us next consider the right hand
equation for k£ = 1. Using (4.2), we may rewrite this as

2t1 = w1+t (wo+wa)+ta (w1 +ws) +ts(watwa)+ta(ws+ws)+- - +tp(wp—1+wpt1).
In order for the wy term to cancel, we need to = —1. For w3 to cancel, we must
have ¢4 = —t2, etc. We continue in this fashion and determine t; = —t;_o for all
even j. Using (4.2), we see that w,_1 = wp, so this equation ends like

st 1 (wp—2 + wp) + tp(wp—1 + wp).

Thus we have t, = —t,_1. Now we can come back down the indices and determine
tj_o = —t; for all odd j. We see that these values of ¢; are consistent with (4.4),
which shows that the right hand equation holds for k£ = 1. O

Now for general k, we have
2t1 = wi, + t1(wo + war) + ta(wik + wak) + t3(wak + wak) + ta(wsk +wsi) + -
st (Wp-1k T Wpik),

and we can repeat the argument that was used for k = 1.

We will make frequent use of the sets

Sp={1<j<p: ged(j,q) =r}
Thus 57 consists of all the numbers < p which are relatively prime to g. This means
that S; = {1,2,...,p} if and only if p is prime. Now let us fix k € S;. The numbers
wi,...,wp are distinct, and by the middle equations in (4.2), there is a permutation
m of the set {1,...,p} such that

{wr, war, - wpk} = {wr(1), - Wa(p) }

provided that p is prime. Let us define

vp =Lty ty], gy =t
with ¢; as in (4.4), so v, is obtained from vy by permuting the coordinates.

Lemma 4.2. Ifk € Sy, then Jay = Avg.

Proof. Asin Lemma 4.1, we will show that w;i (14>~ ; wyit’;) = 2t} forall1 <i < p.
By Lemma 4.1, we have wr(1 + > wyjt;) = 2t for all 1 < I < p. First observe
that (1) = k, so t), = t;. Now set I = n(i) and J = 7(j). It follows that the
second equation is obtained from the first one by substitution of the subscripts,
which amounts to permuting various coefficients. O

Theorem 4.3. If k € S, then f maps:
Ek—>ak—>’l}k—>A’U;€—>€k.

Proof. We have fa, = AJas = A%v; by Lemma 4.2, and this is equal to vy since
A is an involution. Next, fup = AJv = Avy, since Jvp = vg. Finally, fAv, =
AJAv, = AJJa, = Aayr, = e. The second equality follows from Lemma 4.2, and
the third equality follows because A is an involution. O
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To conclude this Section, we suppose that ¢ is prime. This means that S; =
{1,...,p}. Let X be the complex manifold obtained by blowing up the points a;
and e; for 0 < j < p as well as v; and Av; for 1 < j < p. Let fx : X --» X be
the induced birational map. It follows from §1 that fx has no exceptional divisors
and is thus 1-regular, i.e. fx satisfies (1.4). We note that {3¢}x denotes the class
generated by the strict transform of ¥y in Pic(X). To write this in terms of our
basis, we observe that of all the blowup points, the only ones contained in ¥y are e;
for i € S1. On the other hand, none of the blowup subspaces I1(g mod ») is contained
in ¥y. Thus Hy is equal to {Xo}x plus E; for j € Sy, which gives the first line of
(4.6). By Theorem 4.3, then, we have:

f;( EOHAO’_’EO:HX_ZEJ
770
EkHUk’_’Vk’_’Ak’_’Ek:HX—ZEj
J#k

p
Hyx —pHx —(p—1))_Ej.
=0

The linear map f% is determined by (4.6). Thus we may use (4.6) to write f% as
a matrix and compute its characteristic polynomial. We could do this directly, as
we did in §3. In this case, simply observe that Theorem 4.3 implies that f = AJ
satisfies (1.2) and thus is an elementary map. A formula for the degree growth of
any elementary map was given in Theorem A.1 in [7]. By that formula we recapture
the numbers obtained in [1]:

Theorem 4.4. If q is prime, then §(K|SC,) = p?, where p is the largest root of
22 —px+1.

5. Symmetric, cyclic matrices: odd q.
Yo — Ay — Ey
1€51, Y- A -V, - AV, - E;
1€8,, Y —A; —F, CP.— A,
We observe that in the odd case, we have

{i/r:ie S} ={j: ged(j,q/r) =1}. (5.1)
We will use this observation to bring ourselves back to certain aspects of the “rela-
tively prime” case. Let 1 < r < ¢ be a divisor of ¢, and set ¢ = ¢/r, p= (¢ —1)/2.

Let us fix an element k € S, and set k = k/r. It follows from (5.1) that ged(k, §) = 1.
The number @ := w” is a primitive ¢gth root of unity. Let A denote the p x p matrix

constructed like A but using the numbers ©; = @7 + @77, Let &y = [1: 41 : -+ : t5]
denote the vector (4.4). Let
nTz[l:O:---:O:fl:O:---]€H<Omodr>CPP

be obtained from ©7 by inserting r — 1 zeros between every pair of coordinates.
Lemma 5.1. Let 1 < r < q be a divisor of q. Then Ja, = An,, and fa, = v,.

Proof. As in the proof of Lemma 4.1 we note that Ja, = [1: 2/w, : 2/wo, : -+ :
2/wpr]. Applying Lemma 4.1 to p, G, and @, we have 2f; = @, (1 + > @,;t;) for all
positive k. Now by the definition of @; we have 2t; = w,, (1 + 3 wy;rt;), which
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means that equation (4.5) holds for all positive k which are multiples of r. This
completes the proof. O

Lemma 5.2. If k € S,, then n, = fai is obtained from v, by permuting the
nonzero entries.

Proof. This Lemma follows from Lemma 5.1 exactly the same way that Lemma 4.2
follows from Lemma 4.1. O

Let us construct the complex manifold 7x : X — PP by a series of blow-ups.
First we blow up eg and all the a;. We also blow up the points v;, Av; and e;
for all j € S1. Next we blow up the subspaces Il(g mod ) for all divisors 7 of g.
If 1 and r2 both divide ¢, and rg divides r1, then we blow up Il(g meq »,) before
0 mod ry)- As we observed in §1, we get different manifolds X, depending on the
order of the blowups of linear subspaces that intersect, but the results in any case
will be pseudo-isomorphic, and thus equivalent for our purposes. We will denote
the exceptional blowup fibers over a;, v;, Av;, and e; by A;, V;, AV, and E;. We
use the notation P, for the exceptional fiber over Iy mod r)-

Now let us discuss the exceptional locus of the induced map fx : X --» X. As
in §4, we have

fx 30— Ag — Ey — AXp

EJ—>AJ—>‘/J—>AV;—>E]—>AE] Vj e Sy. (52)

Since A is invertible, fx is locally equivalent to Jx, so by (2.5) and (2.6) we see
that none of these hypersurfaces is exceptional for fx.

Pic(X) is generated by H = Hx, the point blow-up fibers, and the P,’s. By
(5.2) we have

f% :Eo— Ay — {So}x = H—E, where we write E = Z E;
1€851

=H-FEy—(E-E)-P, Vic$, where P=) P,

The left hand part of the first line follows from (5.2). The right hand side of the
same line was seen already in (4.6). For the second line, we have Hx = {¥;} x+- -,
where the dots represent all the blowup fibers lying over subsets of ;. The the sums
of the E’s correspond to all the blowup points contained in ¥;, and for the P term
recall that if ¢ € S and r divides ¢, then 7 # 0 mod r, and thus Iy meq ) C 2.

If j ¢ Si, then j € S, for 7 = ged(j,q). For n € Iy moa ry We let F(n) denote
the P, fiber over n. For the special points 7n;, we write simply F; := F(n;). For
each 7, the induced map

fX : ‘7:(,'7) - AT = AZ(O mod r) (54)

is birational by (2.8). Since all the fibers map to the same space A, it follows that
P, is exceptional. In particular, we have

fx: Ej -—> Aj -2 .7:]‘ - A, (55)

Thus by (2.5) ¥, is not exceptional. A similar calculation shows that A; --» F; is
dominant, and in particular, the A; are exceptional for j € .S;.
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Since each F; is contained in P, when j € S,, we have
fi P YA (5.6)
JES,

The multiplicities of A; is 1 since f is locally invertible at a;. Also, for j € .S;., we
have

fx:Aj =S =H-Ey—E—(P-)_ P (5.7)

. — Ajl——> T,

3. A;
iy - iy - Tiz

FIGURE 2. Exceptional Orbits: Hooks.

In the sequel we will repeatedly use the notation # := ¢/r, where 1 < r < ¢
divides gq. Thus 7 = r. Let us define the point 7. :=[r—1:0:---:0:—=1:0:---:
0:=1:0:---] €Il mod 7y, and let us define & :=[0:1:---:1:0:1:---:1:0:
L] € X0 mod #)- We define o, € P; to be the point whose base coordinates are
7 and whose fiber coordinates are &,.

Now to show that (f%)* = (f%)™ we will follow the procedure which is sketched
in Figure 2. That is, we suppose that i1,is € S, and ji,j2 € S#, so the orbits are
as in (5.4). We will show that there is a 2-cycle «; < «; with o, € A, —Z and
ap € Ay —Z. This 2-cycle will serve as a hook for P, and for all A; with j € S,
(see Proposition 2.3).

Lemma 5.3. fx(a,) = ap, and o, € Pr N A,

Proof. Following the discussion in §2, we have J(7;&,) = (J'&5 J"'m) = (&5 7)),
where 7/ has the same coordinates as 7., except that the Oth coordinate is 1/(r —1).
Now

Ix(ay) =AJ(ay) = Z aj;rilao— Z a;

jZ mod 7 7=0 mod 7

.
_ (Z%‘—A(O)?T_lao—f‘l(o))=

where A©) = > =0 mod # @j- Since A is an involution (see §4), we have AA, =
>-;a; = geo = (1 +2p)eo. Since 7 is a divisor of ¢, we have

(29—-1)= (") = 1) =" -1 +a" +2* +- + (") ).
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It follows that 1 + Z;ﬂ:ll)/z Wi = 0 if j # 0 mod r; and the sum is equal to r
otherwise. Thus we have A =¢[1:0:---:0:1:0:---]. Taking the difference
>aj— A©) and using 2p+ 1 = r-# we find that the base point of fx(ap)is . O

Similarly, r/(r — 1)ag — A®) = r/(r — 1)& + (r/(r — 1) —r)AL?). Since the fiber
of P, 2 ¥() moa ry We have that the fiber point of fx(c,) is &. Thus by (5.4)
ap = fx(a,) € As. Replacing r by 7, we complete the proof.

Theorem 5.4. The action on cohomology f% is given by:

f;(iEoi—)Ao’—?H—E, Pr’_’ZAja
JjES,
Ei— AVi—V;— Aj— H—Ey—(E—E;)—P, Vies8,
Aj— Y =H-E—E—(P-) P)
sel,

H—pH—-(p-1)Eo—(p-1)E-)Y (p—(|

T

q—1
2r

I+ 1)P..

where B = > E;, and P = >, P

i€S1
Proof. Everything except the last line is a consequence of (5.4), (5.6) and (5.7). It
remains to determine f%H, which is the same as JyH. We recall from §2 that
JY H is equal to N - H minus a linear combination of the exceptional blowup fibers
over the indeterminate subspaces that got blown up. Here N = p, the dimension
of the space X. The multiples of the exceptional blowup fibers are, according to
(2.12) and (2.13), given by —M, where M is one less than the codimension of the

blowup base. This gives the numbers in the last line of the formula above. O
Let us consider the prime factorization ¢ = pi"'p3™---p,"*. For each divisor

r > 1 of ¢, we set u, := L%J + 1, kp = #S,, and Kk = q%l — >, kr. We define

Tpi(2) = kp, [[ @ = r), Tole) = [[ (2% = 50) + D Ti(a),

r#p; r
(5.8)

Tr(x) = 3 Z T5($) + Ry H($2 _’is)v fOfr?’épi'

T2 — Ky
sel.—{r} S#ET

Theorem 5.5. The map fx satisfies (1.4), and the dynamical degree 6(K|SCy) is
p2, where p is the largest root of

(=)t~ D[* — 5) + sl — 1) [ — )

T

" (5.9)
+(x— D)@+ Do) + Y (x — pe)(@* = )T ().

Proof. We have found hooks for all the exceptional hypersurfaces of fx, so (1.4)
holds by Theorem 2.4. The proof that formula (5.9) gives characteristic polynomial
of f% is given in Appendix E. O
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6. Symmetric, cyclic matrices: ¢ = 2xodd.
Yo/p = Aojp = Eosp
1€ 51USy, ¥; — A; — Wringer
1€ S, U S2T7 Y — Ay — -7:’L(C Pe/o,r) - Ae/o,r

For the rest of this paper we consider the case of even ¢. Let us set p = ¢/2

and ¢(xg, ..., xp) = (Toy. -+, Tp—1,Tp,Tp—1,...,21). For even ¢, the matrix in (1.1)
is symmetric if and only if it has the form M (c(zo,...,xp)). As in §3, we have an
isomorphism

PP >z F7'D(Fux)F € SC,.
With this isomorphism we transfer the map F' o J to the map
fi=AoJ:PP--s PP

Matrix transposition corresponds to the involution z; < x,_; for 1 < j7 < p —1.
Thus the elements xy and x,, have special status. In particular, the Oth column of
A = (ag,...,ap) is equal to the Oth column of F, i.e., ap = fo = (1,...,1), and the
pth column is ap, = f, =(1,-1,1,—1,...). For 1 <j<p—1

aj = fj+ fp—j = Wjo,- - - wip)

where w; = w/ + w977, In particular, since ¢ = 2xo0dd, we have wj, = +2 if j is
even and wj, = —2 if j is odd, and

Wp—j = Wptj = —Wj. (6.1)
Since ¢ is even, we have

1 2 2 2 1

1 w1 wo e Wp—1 -1
A= (ag,...,ap) = | : : : : - (6.2)

1 Wp—1 W2p-2 e w(p_l)z 1

1 -2 2 . 2 -1

It is evident that

f:X0—ap— e, Ip—ap,—ep (6.3)

Arguing as in §4, we see that A is an involution on projective space. Since p is odd,
every divisor r of p satisfies

Sy ={1<j<p:(jq) =2r} ={jeven: (j/2,p/r) =1} ={p—j:j € Sr}. (6.4)
We will use the notation n; := f(a;) and
IMeven := H(O mod 2)> Ilogq := H(l mod 2)-
Lemma 6.1. Ifi € Sy, then n; € yqq. If i € So, then n; € leyen-

Proof. Let us consider first the case i = 2 € S3. We will show that vo =[1:0: %1 :
0:=+1:0:---], which evidently belongs to Ilsyen. Note that & := w? is a primitive
pth root of unity, and since p is odd, —@ is a primitive pth root of —1. We will
solve the equation Jag = Avg with vo = [1:0:¢3:0:¢4:0:---]. Since ¢ = 2p,
we have Jas = [1 : 2/wy : 2/wy 1 -+ 1 2/wap_o : 1]. Thus the equation Jay = Avy
becomes the system of equations wa;(1+ Zg-p:_ll)/z waijtej) = 2ty for 0 < i < p. Now
we repeat the proof of Lemma 5.1 with ¢ replaced by p and with w replaced by @,
and we find solutions t9; = 1. This yields vy € Ilcyen, as desired. Finally, we pass
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from the case i = 2 to the case of general ¢ € Sy by repeating the arguments of
Lemma 4.2. |

Now consider i =1 € S;. We have Jag = [1: 2/wq : 2/wy i -+ : 2/wy_q : —1].
Since p—1 € Sy, wehave n,_1 =[1:0:t2:0: -+ :t,_1 : 0] € Ileyen. The equation
satisfied by vp_1 is wip—1)(1 + > tojwasn) = tp—1 for 0 < k < p. Using (6.1), we
convert this equation to
wk(z tgjwpfgjk - 1) = tpfl, if k£ is odd

wk(z tQjWij + 1) = tpfl, if k£ is even.
By (42) and (61) we have Wp—2;5(20+1) = Wp—2j(20+1)+2¢p and W2j.20 = W2rp—202j-
Now setting k£ = 2¢ + 1 when k is odd and k& = 2¢ when k is even, we have

W2e+1(z tojW(2e41)(p—2j) — 1) = 2tp1

wgg(z tgjw(y)(p,gj) + 1) = 2tp_1

It follows that 1 = [0:tp—1 : 0:tp_3:---:ta:0: 1] € Ilyqq. For general i € Sy,
we use the argument of Lemma 4.2.

Lemma 6.2. Let r be an odd divisor of q. For j € S,, we have n; := fa; €
H(T mod 2r) > and T2j = fa2j € H(O mod 2r) -

Proof. First we consider i = 2r € S,. Since @ = w?" is a primitive (p/r)th root of
unity, and p/r is odd, we repeat the proof of Lemma 5.1 to show that fas, = 72,
where g, = [1:0:---:0:4+1:0:---] € Il{g mod 2ry. The same reasoning as in
Lemma 4.2 shows that for general i € Sa, we have fa; =n; € Ilig modq 2) O

Now consider ¢ = r € S,.. Since p/r is odd @ = w" is a primitive p/rth root
of —1. As before Ja, = [1 : 2/w, : 2/wa, : -+ 1 2/wy —1]. With the same
argument in the proof of Lemma 6.1 we have

1) o @u(psr—2g) — 1) = 2bpyp_y, i kis odd

1) o @u(psr—2j) + 1) = 2bpyp_1, i k is even.
By the definition of wy we have

Wir (Y Fojwir(pyr—aj) — 1) = 20,1, if K is odd

wkr(z bojWhr(p/r—2j) + 1) = 2,1, if k is even

which means fa, = 1, € Il(; moa 2r). For general i € S, we use the argument of
Lemma 4.2.

p—1)r *

Lemma 6.3. We have:

Allgaa = {20 = —Tp, T1 = —Tp—1,. .-, T(p—1)/2 = —T(p41)/2}
Allgven = {20 = Tp, T1 = Tp_1, ..., T(p—1)/2 = T(p4+1)/2}>
and fAHodd = 1_Iodd; fAHcvcn = Hcvcn-
Proof. Let us first consider the case All,qq. A linear subspace All,qq is spanned

by column vectors {a1,as,...,a,}. When jis odd, aj = [2:wj 1 waj - - w1y,
—2]. By (6.1) we have w,_py; = wpj_rj = —ws; forall 1 <k < p—1. It follows that
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Allgaa C{ro = —Tp, X1 = —Tp_1,. .., T(p—1)/2 = —T(p41)/2}- Since A is invertible
{ai1,as,...,a,} is linearly independent. It follows that

. -1 .
dim Allyqq = pT =dim {z0 = —2p, 21 = —Tp_1,..., T(p_1)/2 = —L(pt1)/2}-

With the fact that w(,_r); = wg; for even j, the proof for Alleye, is similar. O

With this formula for AIl,qq, we see that it is invariant under J. Now since A is
an involution, we have fAll,qq = [oqq.

Let us construct the complex manifold 7 : X — PP? by a series of blow-ups. First
we blow up the points eg, e, and a; for all j. Next we blow up the subspaces Ieyen,
Moda, Alleven, and Alloqq. Then we blow up the subspaces I1ig mod 2r), ILir mod 2r)
and (g mod ry for all 7 ¢ S1US>. We continue with our convention that if ro divides
r1 then we first blow up (g mod 2r1)» Hiry mod 2r1), then g moq .y, and then the
corresponding spaces for ro. We will use the following notation for (m-exceptional)
divisors of the blowup:

n: P, — 1., AP.— All., P, —1I, AP, — All,,
and for every proper divisor r of p we will write:
T Pe,r - H(O mod 27)5 Po,r - H(r mod 27)5 P. — H(O mod )+
For 1 < i < p—1, we let F; = F(n;) denote the fiber over 7,. We define A,

as the strict transform of A¥ (g 1104 »y in X, and A/, , as the strict transforms of

AZ(O/’I‘ mod 2r)-

We will do two things in the rest of this Section: we will compute f% on Pic(X),
and we will show that fx : X --» X is 1-regular. It is frequently a straightforward
calculation to determine fy and more difficult to show that the map satisfies the
condition (1.4). Let us start by computing f5. We will take H = Hx, Ey/,, As,
i=0,...,p, Pejo, AP. /o, Pejo,r, Pr as a basis for Pic(X). We see that ¥y contains
ep as well as Ioqq, as well as I, mod 27y C Hoaq; and g contains no other centers
of blow-up. Thus we have

H={%}+E,+P, where P,=P,+» P,,. (6.5)

This gives
fi: Bo— Ag— {0} =H—-E,—P,, E,— A,— {2,} =H—Ey—P., (6.6)

where Pe = P.+ ), P.,. Next, consider a divisor r of p = ¢/2, so r is odd. If
i € Sy, then i is odd, and the set ¥; contains the following centers of blowup: ey,
€py Weven, Il(s mod 25y and Ilg mod sy for all s which divide p but not r. Thus we
have

H=%i+E+E,+P.—(P,— Y Poj)—(P=> P (6.7)
JEL JEI-
where I, is the set of numbers 1 < k < p — 1 which divide r, and P= ZT P,. Thus
we have

i€S fxiAimH-E—E,—P.—(P,=Y Pj)—(P=)Y P)
Jelr Jelr

i € Sy, Ai’_’H_EO_Ep_po_(pe_ZPe,j)_(P_ZPj)
JEI jel,

(6.8)
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By a similar argument, we have
ieS fy:A—H-E—-FE,—~P.—(P,—P,)-P
i € Sy Aj—H-Fy—E,—P,—(P.—P,)—P
If ¢ € 51, then fa; € llyqq. Further fAIloqq = Ioqq and fxII, = All.. We observe
that for every divisor r, we have P. — A, Pojo, — Aejo s 50 AP, and A;, 1 € 51

are the only exceptional hypersurfaces which is mapped by fx to 7= (Il,qq). Thus
we have

fx 1P AP, + > A;, P AP+ Y Ai, APyjy > Py (6.10)
€S 1€ S2

(6.9)

For a divisor 7 of p we have
fx:Per— Y Ay Py Y Ay and P 0 (6.11)
i€ Sa, i€S,
By §2, we have
fx tH—pH—(p—1)(Eo+ Eq) — (p— (p+1)/2)(Pe + Fo)

_Z p/T‘+1 /2)(Pr,e+Pr,0)_Z(p_p/r_l)Pr (612)

T

Theorem 6.4. Equations (6.6-6.12) define f% as a linear map of Pic(X).

Next we discuss the exceptional locus of the induced map fx : X — X. As in
84, we have

fx 39— Ag — Ey — AYy, and ¥, — A, — E, — AY,.
Using (2.5), (2.6) and (2.8), we see that ¥, Ag/p, and E,, are not exceptional.

Lemma 6.5. For i € S; U Ss, X, is not exceptional for fx, and fx|A; : A; --»
Fi C Pejo is a dominant map; thus A; is exceptional.

Lemma 6.6. The maps fx : P. --» AP, --» P, --+ AP, --» P, are dominant. In
particular, P., AP,, P,, and AP, are not exceptional.

Proof. Since All,qq and Alleyen are not indeterminate, it is sufficient to show that
only for P. and P,. We will show the mapping fx : P. --+ AP, is dominant.
The proof for P, is similar. The generic point of P, is written as z;{ where x =

o :0:20:0: - :txpq:0and E =100:& :0: & :---:0:&)] It follows
that fx (2;8) = D24 0aa(1/8)@is 225 even(1/25)a;. It is evident that the mapping is
dominant and thus P, is not exceptional. |

By Lemma 6.6, there is a 4-cycle {P., AP,, P,, AP.} of hypersurfaces, which we
call “the wringer”; this is pictured in Figure 3. For i € Si, the orbit fx : ¥X; --»
A; --+ F; enters this 4-cycle, which illustrates Lemma 6.5. The fibers ¢ C P. are
the fibers F(e;) for even j, 1 < j < p—1, and the fibers ¢ = F(e;) C P, correspond
to i odd. If, for some n > 0, we have f%\F; C ¢ C Ix, then the next iteration will
blow up to a hypersurface.

Let us identify II., and II,, with P?, p = (p — 1)/2 as follows:

i1:[wo:0:me 0t pg :O]El‘[e<—>[9cozgcg:---:90,,_1]€P13

_ 6.13
ig:[0:x:0:@g:-- 0z €Il = [y i apo:---:x1] €PP ( )
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AP,
FIGURE 3. Exceptional Orbits: The Wringer.

Thus we may identify t. := (i1,i2) : P. = II; 11, — PP x PP and ¢, = (ia,i1) :
P, 2 1,; I, — P? x PP. The number ¢ = ¢/2 is odd, so the map f; = Az o J on
P? is one of the maps discussed in §5. Let us define:

hy = PP x PP 5 (x5 €) = (f3(8); fa(2)) € PP x PP 614
hy = PP x PP 3 (25 €) = (f3(); Ago ¢:(€)) € PP x PP o1y
where for each v = [vg : -+ : v;] € P? we set ¢, : [wg : -+ : wp] — [wovy? :

w,;vﬁ_z]. If we set h := hs o hq, then since i reverses the coordinates, we have

fr =1 ohot.on P, and f% =1 'ohot, on P,.

In other words, ¢, and ¢, conjugate the action of f% on the wringer to the map h
on PP x PP,

If i € Sy, then 7 = i/2 is relatively prime to ¢, and we write 9; € P? for the
vector in Lemma 4.2. Thus we have .(1;) = @7, and we have (.F; = {9;} x PP.
Similarly, if ¢ € S, i = (p — i)/2 is relatively prime to ¢, and we have 1,(n;) = 0;,
and we may identify F; with the vertical fiber over ;.

For z € PP, let L(x) C PP denote the line containing ag = (1,...,1) and z.
Recall that o7 = [1 : £1 : £1 : ---] = [1 : 1 : --- : t3], and define the set
L={1<k<p:ty=—1}. It follows that L(e;) = {zg = a, k # i}, and

L(v;) ={[zo: - xp] 1 w0 = ak, k & Liyze = o, £, m € L;}.

Thus L(e;) = {[xo : xo: -+ : a1 : -+ : xp]}, where all the entries are xg, except for
one z; in the 7 location, and L(0;) = {[xo : - -+ : x1 : -+ -]}, where all the entries are
x except for a x1 in each location in I;.

If i € S1 U S,, we write B; := L(’f){) X L(’f){) and D; = L(e;) X L(e;)

Lemma 6.7. h: B; < D;.

Proof. Let us first consider h(B;). Using defining equations for L(%;) we have that
1 dimensional linear subspace L(¥;) is invariant under J. Thus f3L(%;) is a linear
subspace containing fzap = eg and f30;. Let us set fg0; = [ @ -+ - & o). It follows
that fGL(0;) = {[xo : -+ x5] : a1 = arag, k= 2,...,p} and Jf3L(0;) = {[xo :

S xp)  anxy = agxk, k= 2,...,p}p. Since Jf;L(;) is again a 1 dimensional
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linear subspace, we have fZL(0;) = Ag o JfzL(v;) is a linear subspace. Note that
eo € Jf;L(0;) and Ageg = ag. By the Theorem 4.3, we have fgﬁ; = ¢;. Thus we
have f2L(0;) = L(e;). Now consider a generic point in hyL(%;). By the previous
computation a generic point in hy L(%3) is [yo : - : yp)i [Co ¢ - -+ : (5] where agy; =
a1yx and ol = a1y for k= 2,...,p. It follows that a1 (¢1/y?) = ax(Ck/y7). Thus
we have Ag o ¢, (¢) € L(e;) and therefore h(B;) = D;.

For h(D;), we note that L(e;) is invariant under J and Ag, J are both involutions.
Using the previous argument, we have A;JA;L(0;) = L(e;) = JL(e;) and therefore
fZL(ez) = L(?3). Recall that fzL(e;) = {[xo : -+ : @] : anar = apwp, k = 2,...,p},
and with the same reasoning for f;L(0;), we have h(D;) = B;. O

By Lemma 6.7, we may simplify notation and write h|B; and h|D; in the form
h(lwo = 1], [yo = 11]) = ([ = 1], [yo = wi))-

For the following we write h in affine coordinates h(x,y) = (2/,%’). In order to
write h|B; and h|D; more explicitly, we will use the following result:

Lemma 6.8. Fori e Sy USy, we set ) = Hle ZJ—GI; wje and B = Hle Wy
It follows that (D)2 = (8(")2 =1, and the coefficient t; = +1 in ¥; satisfies

ZHZwaz—ta ZwkHijg:(Z—p)tga(i)

=1(£k jEI; k=1 (#£kjEl;
d p+ 1 , P

ZHWJ& =[5 Jtiﬁ(l), Z zszwm = 1—|—2L )t 5

k=1t#k k=1 15k

Proof. Recall that for each i € S; U Sy, we have i € S1(¢) and 97 = [1 1 t1 : -+ :
ts] = [1:£1:---: 1) and Ag; = [ @ -+ : ap) where ap = 1+ 23 ¢; and
ap =1+ > tjwjk. Since t,, = £1 and 14+ > wj = 0 for all k # 0, it follows that
1+ > tjwjr = 22:]6] wjk. By Lemma 3.2, we have Ja; = Az0; and o = ;. It

follows that [t; : 2t;/wy : -+ 1 2t /wg] = [ty 0 =23 cpwj oot =2 wps] and
therefore we have
Z WEj = —tg/wkz. (615)
jel;
Thus we have o(® = (—t;)P Hz 1 1/wei. Recall that w; = w? + w?™7 is real for
all j and t; = +1. Since w' is a gth primitive root of unity, we have 2d -1 =
(z — 1) [TZ] (z — w'). By letting 2 = —1 we get

a@p= L 13[ 1 13[ 1 .
B _|6(Z)|2 - Pt we; . wszﬁ P (1 + wqfﬁ)(l + wgg) -

Notice that 22:1 ok 2o jer, wie = (—t7)a® 22:1 wri = t;a@ . Similarly we
have 22:1 Wk [Tpsn 2 jer, wie = (—t3)a® ?:1 w?;. Recall that w?; = 2+way; and
21 is relatively prime to ¢. It follows that > 7_ wi; =2p—1=p—2.

}\Tote that Ei:l HZ;H@ wey = Hf (.«fgg Ei:l 1/(4)]@. By (615) we have
Sohei ezpwar = (=) [I,we del— S r_11/wkj. Recall (4.4), we have #I; =
[(p+1)/2]. Tt follows that Ek 1 oy we = [ (6+1)/2] Hz 1wy Using (4.2)

we have woy; + 2 = wi;. It follows that Ek 1wkt [T wer = T, lezk 1 Whi —
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2 22:1 Hé;ék Wiies. By the previous computation, it follows that
S he ok [ war = —(1 4+ 2| B2 )t TT), wer. O

Lemma 6.9. If p is even, then

BB = (—15+ (=p+1)y ¢’ =20y +p*(x - Dy +1)°+x+pl@-1)(° - 1))

)

I+y 2y —plz =)y + 1) —2(y* + 2y — 1)
—py —1
hD; = —2— |
| ((p—l)y+1
2p°(y — 1)a® + 2% — p(z — 4)(y — Do — 2yz + 3y — 2 )
Q1 —-y)p? =31 —y)p+2—y)x* + (—4yp+4p+2y —4)z —y +2

and a similar formula holds for p odd.

Proof. This is a direct calculation using the definitions of h; and hy and the iden-
tities on Lemma 6.8. O

Lemma 6.10. Ifi € S; U Sy, then the point (—1,1) € B; is preperiodic, that is
h(—=1,1) has period 4. Thus (—1,1) € B; is a hook for A;.

Proof. The preperiodicity of (—1,1) follows from the formula in Lemma 6.9. To see
that (—1, 1) is a hook, we argue as follows: Suppose i is even. Then fx A; = F; C P.,
and F; is the fiber over 7;. We need to show that for all n > 0, f¥F; ¢ ITx. We
have identified ¢, : P. — PP x PP, and under this identification F(1;) is taken to
o7 x PP, Thus t.(F;) N B; corresponds to the line [1 : —1] x P?, which contains
the point which we represent in affine coordinates as (—1,1). Although it is true
that hq(—1,1) corresponds to a point of indeterminacy of fx, the rest of hy([1 :
—1] x P1) is disjoint from Zx. It follows that h([1 : —1] x P!) is a curve in D; which
passes through h(—1,1). Since the 4-cycle {h(—1,1), h?*(—1,1), h3(=1,1), h*(-1,1)}
is disjoint from Zx, our result follows. O

From §2 we have the following:

Lemma 6.11. When 1 < r < p divides p, fx induces dominant maps Pe , --+» Ac .,
Py --» Aoy, and P, --» A,.. In particular, the hypersurfaces Pe ,, Py, and P,
are exceptional.

Next we will construct hooks for the subspaces P, P, ,, and P,. Let us define

=t t;] and 77 =[tg - tg] where ¢, = —t;:t{)’ :tg =—(pr—p)/(p+
1), ) = (=1)7, ], =1for 1 <j<r—1, and t; =t/ = 0 for all other i. We set

/! 1" /! 1
Tep =T +T 6rI(O mod 22); Tor =T —T €H<£ mod 2£)-

; ] " o_ )
Lemma 6.12. We have 7" = 37, (14 i20 mod + @ and 7" =37, 01 20 mod r G-
Thus

Te,rs> To,r € AE(O mod 2r) N AZ(’I" mod 2r) = AZ(O mod 1)+
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Proof. Since w is a pth root of —1, we have

WP+ =—(w+D)(~1+w—w?+-FwP 2w =0
We also have w9™F = wP . wP™F = —wP=F g0 w! — WPt = W + Wi = wy,
w3 —wP B =W w3 =ws, ... and —w? 4+ wP 2 = wWPT2 L WP 2 = wp—2, etc. It
follows that

1

“ltw-—w+ PP =0 tws Wy —1=0.

Similarly for all odd k # p, w” is a pth root of —1 and Y, jqqwki — 1 = 0.
Since w? is a pth root of unity, we have

(WP =1) = (W = D1+ + '+ w2 =0

Since wi2F = W22k we have w? + wWP~Y2 = wy. Similarly, w? + W22 =

wq*Q(P*2) + w(p72)2 = w(p—2)2’ etc. It follows that

T+’ +wt + w2 =0t wg+ -+ wipryp + 1 =0.

For all even k # 0 we have ) . . wki +1 =0, and we may combine the cases of k
even and odd to obtain

d ai=@+1)[L:0:--:0: 1],

i odd

Since r is a divisor of p, w” is a primitive p/rth root of —1 and ((W")P/" + 1) =
(W 4+ 1)1 —w" +w? +--- 4+ w®/m=D7) Repeating the previous argument with w”
and p/r, we have

S

i odd, ¢=0 mod r
=(@/r+1)1:0:---:0:=1:0:---:0:1:0:---: =1] € Il{g mod p/r)-

Subtracting >, g @i from > . 14 =0 moa r %i» it follows that

’
T = Z a; € AE(O mod r)-
4 odd, i#0 mod r

The proof for 7" is similar. O

Let us define u, . = (u;) € P? to be the vector such that u; = 1 if i = p/r mod
2p/r and u} = 0 otherwise. We set u; . = (u}') where u{ = 0 if i =0 mod p/r and
u; = 1 otherwise. Let us define uj, , = (u}) € P? to be the vector such that u} = 1
if i = 0 mod 2p/r and uj = 0 otherwise. We set u . = (uj) where v} = 0ifi =0
mod p/r and u] = (—1)" otherwise. We let £, to be the line containing u/, . and
u’e’)r, and let ae, be the line in P, ; lying over the basepoint 7., and having fiber

coordinate in /. . We define «, , similarly.

Lemma 6.13. Each of the sets a., NIx and o, NZIx consists of 2 points, and
Qe rUor CAr. fxae, CP-NAcs, and fxao, C PrNA, #. Finally, fg(ozem = Qe,r,
and fg(ao)r = Q-

Proof. Let us consider the case ae,. By Lemma 6.11, fx : P., — A., and by
Lemma 6.12 a., C P, 7. It follows that fxoe, C A s A generic point ¢ in o
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has a form 7, o + 7 e;[0: 1+ 1o :1:---:1:0:1:---1: 2] for some x € C*.
Applying the map f, we have

T P S S ¢ k) A U
e R EEEEES E-E R SRR S AR .1.$],[(pr_p).o. 20:1:0:---]

A L p+r
= (Tp/r,o + Tp/re T " Z ai); (uao + Z ai),

i=p/r mod 2p/r (pr =) i=0 mod 2p/r

By Lemma 6.12, there exist nonzero constants (31, G2, and O3 such that

1
Tp/r,0 + Tp/r.e + E Z a; € H(O mod r)
i=p/r mod 2p/r

=[B1:0:---:0:82:0:---:0:32:0:---:0] €9 moa 2r)
+[&:O:~-~:O:—&:O:~-~:O:&:0:~-~]€H<omodr>-
x x x

It follows that fxae, C PrNA¢ 7. Again by Lemma 6.11, we know that fg(aew C A,
For the fiber for fx(, the j®"-coordinate of éao + > i=0 mod op/r Qi AT€ all equal for
7 # 0 mod r. It follows that

Ix (= fxC
1 1 1
m ot e (g gty D, wtg—an DL @)

i=r mod 2r i=0 mod 2r
Note that both ., f%aem are 1-dimensional linear subspaces in fiber over 7 ,.
Using the computation in Lemma 6.12 we have f%aem = Q,r. We use a similar
argument for a . O

Corollary 6.14. Let r > 1 be an odd divisor of q. Then for j € Sy, o is a hook
for Aj;, and P, and P.; and ae, is a hook for Asj, P.,, and P,.

Let us consider the prime factorization ¢ = 2pY"'py™ ---p**. For each divisor
r>1lofg weset =2 k= 48y = #51, pip := 2L and Ky = #S2, = #S,.

Theorem 6.15. Condition (1.4) holds for fx, and 6(K) = p? where p is the largest
root of

(@=p)@® — k=D ]]@* = r) + 260 — p) [[(2* = 50)

T T

+2(x = DTo(z) + 2> (& — pr)(@® — DT ()

with the polynomials T;(x) are defined in (5.8).

Proof. We have determined all the exceptional hypersurfaces for fx and have found
a hook for each of them. Thus by Theorem 2.4, condition (1.4) holds for fx. Thus
d(f) is the spectral radius of f%. Consider f% as in Theorem 6.4 and let x(z) denote
its characteristic polynomial. We may now determine x(z) as in Theorem 5.5 (see
Appendix E). We find that x(z) is the polynomial above times a polynomial whose
roots all have modulus one. O
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7. Symmetric, cyclic matrices: ¢ = 2xeven.
Yo/p = Aosp — Eosp
E% —>A% _’AHodd — L
i€S Xi—a;—x€Ap
ieS’I‘USQT‘ Ei_’JAi_)]:iCPe/o,T_)Ae/o,r
1eS, Y, —-FcCcl,—-NcCl,
In this case we set p = ¢/2, and our mapping is given by f = Ao J, with A as
n (6.2). Since ¢ is divisible by 4, we have additional symmetries:
wjp/? =0 lf] is Odd, u}jp/g = (—1)J/2 if _] is even, and U}p/2+j = —u}p/g_j (71)
As before, we have
Yo —ag— ey, Xp—ap— ep. (7.2)

However, now we encounter the phenomenon that A contains several 0 entries, for
instance

Ypj2 = Gpa=[1:0:=1:0:1:0:---] € Heyen- (7.3)
We will write ¢ = 2" goqq and consider two sorts of divisors p and r, which satisfy:
p|(q/4)7 and r = 2m_1T/7 Tl|qodd- (74)

We will use the notation p := ¢/(4p). Note that this is again a divisor of the form
p-

Lemma 7.1. Suppose that r = 2™ v/, and v’ divides qoaqa. Ifi € S,, then fa; €
H(T mod 2r); and lf.? € 527‘7 then faj € H(O mod 2r) -

Proof. Since @ = w?" is a primitive p/rth root of unity and p/r is odd, the proof is

the same as Lemma 6.2. O

Lemma 7.2. Suppose that 1 < p < ¢q/4 divides q/4. Then every i € S, is an odd

multiple of p, and we have S, ={p—j:j€S,}, and a; € 275 mod 25)-

Proof. Since 2p is also a divisor of ¢, every i € S, is an odd multiple of p. Suppose
j € S,, then we have j = kp where ged(k, ¢/p) = 1 and p—j = p(p/p—k). It follows
that ged(p/p—Fk,q/p) =1 and p—j € S,. We observe that jp-i = jp-kp = jk-q/4.
By (7.1) it follows that wjz = 0 if j is odd, wj; = £2 if j is even, and wj; # 0

otherwise. O
Lemma 7.3. Ifi € Sy, then a; € 22/2.

Proof. Since i is relatively prime to g, i is odd and w,,/5.; = 0 by (7.1). w'is a gth
primitive root of unity, and therefore {wo, w1, ...,wp} = {woi, w1, ..., wp; } as a set.
It follows that each a; has exactly one zero coordinate. O

Now we construct the space m : X — PP by a series of blowups. We blow
up ao, €o, ap, €p, and a,/y. For each divisor of the form r in (7.4), we blow up
a; for all i € S, U Ss,.. As before, A; denotes the blowup fiber of a;. We also
blow up Il(g moa 2y and Iy, 104 2,y; We denote the blowup fibers as P, and P, .,
respectively. For each divisor of the form p in (7.4) (or equivalently p), we blow up
¥ () mod 2p); We denote the blowup fiber by I'y. Let fx : X — X denote the induced
birational map.
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Let us take H = Hx, Ey;p, Ao/p, A%, Ai, i € 8. USa, Pejoyy and I')y as a basis
for Pic(X). As in §6, we have
fi: EBo— Ag— {0} =H—-E,—P,, E,— A, {3,}=H—Ey—P., (1.5)

where Pe/o =3, Pejor- And for a divisor 7 of ¢ in (7.4), we have
f;{ :Pe,r'_)ZAia Po,r’_’ZAi

1€So2r €Sy
i€ S, AiHH—EO_Ep_pe_(pO_ZPOJ) (7,6)
JEIL-
i€8y A H-Ey—E,—FP,— (P~ Y P)
JEI

We see that X, /5 contains eg/,, (g mod 2r) and I, moq 2ry as well as I'y. Let us
suppose ¢ = 2™ -odd. We set I' = Ep:ZM*Q-odd I',. Since a; € 3,5 for all odd j, if
p/2 is odd we have
H=%, 0 +E+E,+P.+ P, +T + Ay (7.7)
Thus we have
fx i Appp = S0y =H—Ey—E,—P.—P,—T — A, if p/2is odd

. PN 7.8
Apjp = {8yt =H—-Ey—E,—P.— P, - T if p/2 is even (78)
Let us consider a divisor p of ¢ in (7.4). We have
fx t Do > {5} (7.9)
i€S,
We observe that X, mod 2p) C Yodd.p and apo =[1:0:~1:0:---: £1] € ¥; for
all odd j. Thus for i € S, we have
peven {%)=H-E,—E,—P.—P,-T,,
{Z:} 0 P R pA (7.10)
podd (S} =H—Ey—E,— Ay, — B — P, —T,.
Thus we have
peven  fx 1T, Y {%;} =#8;(H - Ey— E, — P.— P, —T),
i€Ss
p odd D, > {8} =#S;(H — Eo — Ep — Ayjy — Po — P, —T).
i€Ss
(7.11)

By §2, we have
fx:HwpH—(p—1)(Eg+ Eq) — (p— (p/2+ 1)) Ay )2
S 0=/ +1)/2)(Per+ Poy) = > (p—1)r,  (T12)

p

This accounts for all of the basis elements of Pic(X), so we have:

Theorem 7.4. Equations (6.5-12) define f% as a linear map of Pic(X).

Let us set £ = {a,/2;oqad} C Ap)a-
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Lemma 7.5. fX : Ap/2 -—» Allqq C Ep/g, Allqa Q: Ix, and fX : Allggq --» L.
In particular, f% defines a dominant rational map of L to itself.

Proof. A generic point of an exceptional divisor A/, can be expressed as a,/;§ =
[1:0:=1:0:---];[& :&1 : & :---]. Thus we have

Ix(ap2;€) =A[0:1/61:0:1/&:0:---:1/§,1:0] = Z éai € Allyqq.
i: odd >

From the computation, it is clear that the rank of fx|A, ; is equal to the dimension
of All,qq. With (7.1) and the same reasoning as in Lemma 6.3, we have

Alloaa = {0 = —2p, T1 = —Tp_1,...,Tpj2—1 = —Tp/241,Tp/2 = 0}
Now the generic point x of Allygq is © = [xg 21 : -+ : Tpro—1 201 —xpp g ivee
—x0], and Alloqqa C ¥,/2. Now
Ix(@) =ap/o; Al zo i1 ap 1 :0: =1/ 2y 0y -0 —=1/x0] € L,
and the mapping is dominant. By the previous computation for A, 5, f%:L-->L
is dominant. O

From §2 we have the following:

Lemma 7.6. Let r be a divisor of the form (7.4). Ifi € S, we let F; denote the fiber
of Py over fa;. In this notation, we have dominant maps: fx : 3; --+ A; --+ F;.
In fact, for every fiber F of Po,, fx + F -=+ AX( mod 2r) 18 a dominant map.
Similarly, suppose j € So.. With corresponding notation, we have dominant maps

fX : Ez = Az -=> fz C Pe,r and fX cF--» AE(O mod 27) -+

Proposition 7.7. Alloaa C AX(g mod 2r) N AL mod 2r) 8 a hook for the spaces:
Apj2, and Py, Py, Aiy i € S, U Sop, for every divisor v in (7.4).

Lemma 7.8. fxa; = a,/2;[0:p—1:0:3—=p:0:p—=5:0:---:%1:0/€ L. If
1 € S1, then fxa; is obtained from fxai by permuting the nonzero coordinates.

Proof. Using Lemma 7.3 and 7.5 which show that fxa; € £, we can set fxa; =

apy2;[0: & 208320+ & 1 : 0. Recall that a; = [2 1wy - wpjo_y
0: —wpja—1 : -+ —2]. Applying fx we have & = 1+2Z§fl_lwkj . w_1] for
k=1,3,....p—1Ifk=1wehave &§ = 1+ 2572 wj/w; =p— 1. For k > 1,

we will show that &, 4+ &0 = (—1)*~1/22. Let us recall the last equality in (4.2).
Wi Wk+1)j = Wlkt1)j—j T Wkt1)j+5 = Whj T W(kt2)5- 1t follows that
p/2—-1 1 p/2—1
e+ &2 =2+2 Z (Wrj + W(kt2)5) - = 2+2 Z W(k41)5-
=1 J Jj=1
When k+1 = 2 mod 4, w®*+1)7 is a pth root of unity and therefore Effl_l W(k41)] =
1+E§i21_1 w(k—i—l)j_l =0. If k+1 = 0 mod 4, W(k+1)p/a+(k+1)j — (—1)(k+1)/4(.U(k+1)j
and Z?f{lw(kﬂ)j +2=0. Thus we get & + ko = 2 if K+ 1 = 2 mod 4, and
e+ E&kro = —2if k+1 =0 mod 4. For general i € S1, we use the same permutation
argument as in Lemma 4.2. In fact, if we set fxa; = ap/2;[0 : §£Z) :0: 5;1) s,
then §§i) =p—1, and 5,(:) + 5,(321- =2if k+7 =2 mod 4, and f,(f) + 5,(321- = —2if
k+1=0 mod 4. O
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FIGURE 4. An Exceptional Orbit: ¢ = 12.

In Figure 4 we consider ¢ = 12, p = 6. Thus £ has dimension 2, and we plot
points of the orbit f2"*1a,, n > 0, in an affine coordinate chart inside L.

Let us define 41 : Iloqa 2 [0: 21 : 0: -+t wp1 : 0] = [w1 t 3 0o+ 2t cPs!
and J; = ifl o Jpg,l 04y : oga — Moqa. Similarly, let is : Allgqq D [z0 @ 21 :
R oy e L i R I T R SRR P I < P%~!, and define
Jo = i2_1 o Jpg,l 0y : Allpga — Allpaqa. Now we define ¢ := i1(AJs o AJl)il_l
as a p/2-tuple of polynomials with coefficients in Z[w]. Thus ¢ is a map of Z[w]?/?
to itself. The map ¢ also induces a map of PP/2~1 to itself, and i; conjugates this
map of projective space to f% : L — L.

Lemma 7.9. For j € Sy, there is a polynomial R; € Z[w] such that x;|R;, and

Pl w5t aya] =2/ p—1:3—p o s 21T + By(a)
= V; &% + R;(x)
where V; is obtained from 2(p/2)*[p—1: 3—p: -+ ; £1] by permuting the coordinates.
Proof. Let us set [y1 :ys : -+ : Yp—1] = @[z1 : 23 -+ : xp_1]. A direct computation

gives that y; is equal to 2(3_,. ,q4q Ts) Hif{l (D s odd WksTs) times

p/2—1 p/2—1
1 (z wksfs>+z<z ) S o TS vt

k=1 s: odd s: odd (=1 k#L s: odd
Recall that ; = 0 on |J;,{7; = 0} and &5 # 0 on {z; = 0} U, {z; # 0}. It
follows that on X7,

p/2-1 p/2—1 1
;= 2.1 42 - —]-7"% Wi odd.
Yj (kl;[l wg)” - [1+ ; wie wg] Ty J: 0

Let us write Q = Hi/: 2171 wyg. With the previous Lemma, it is clear that we have
a polynomial Ry such that z; is a divisor of Ry and ¢(z) = Qp—1:3—p:---:
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+1] S T + Ry (x). We want to show that Q = £p/2. Now Q = fol wk(1+
w?k) = ( fol wkY Z/jfl 1+w?*). Since w is a primitive gth root of unity and
4 is a divisor of ¢ we see that

g—1 p—1 p/2—1
Hwk = :l:(H wh)? = ( H lwF)?t = 1.
k=1 k=1 k=1

Forall 1 <k <p/2-1, w?k is a p/2th root of —1 and therefore

p/2—1
@2+ =@+)1-z+a2”— - +2 ) =(z+1) [ (@-w).
k=1

Setting x = —1, we have —& = i/jl_l(l + w?F). For j € Sp, we reason as in the
proof of Lemma 4.2. O

Lemma 7.10. Fori € S1, fa; ¢ Ix for alln > 0.

Proof. By Proposition 7.7, i1fxa1 = [p—1:3—p:p—5:---: £1]. Let us
set up = (p—1,3—p,p—>5,---,+1). It suffices to show that ¢"(uy) ¢ i;Zx for
all n > 0. For this we need to know that for each n, at most one coordinate of
©™uy can vanish. Let us choose a prime number p/2 < p < p — 1. One of the
coordinates of u; is equal to +u. Suppose it is the jth coordinate. Then 25 — 1
must be relatively prime to ¢, so we can apply Lemma 7.9. Working modulo u, we
see that ¢u; = bju;, where u; is obtained from w; by permuting the coordinates,
and b; = 2(p/2)2((u1)3)p/2. For each k # j, the kth coordinate of uy is nonzero
modulo p. Thus b; is a unit modulo p, and so ¢u; is a unit times a permutation of
u1. The permutation preserves the set Sy, so if jo denotes the coordinate of il_lgpul
which vanishes modulo p, then jo € S;. Thus we may repeat this argument to
conclude that, modulo u, ¢"u; is equal to a unit times a permutation of u;. Thus
at most one entry of p™u; can vanish, even modulo . O

From (6.1), (6.2) and (7.1) we have the following;:
Lemma 7.11. Consider a diwvisor p in (7.4). We have

AL, mod 2p) = {T0 = —T2p = Tay = —Tep = - = £2pp,
Tl = —Top—1 = —Top4l = Tap—1 = Tapp1 = = £Top5-1,-- -,
Tj_1 = —Tpp1 = —T3p—1 = T3pp1 = - = TTopp—ptl}
Proof. By (6.1), (6.2) and (7.1) , it is easy to check that a;, j = p mod 2p satisfies
all the equations. O

Lemma 7.12. Consider a divisor of the form p in (7.4). Then Alli, moq 2p) C
5. Let us use the notation A, := 71"1AH<p mod 2p) Jor the exceptional fiber over
All(, mod 2p)- Then we have a dominant mapping fx : I -=» A,. Furthermore,
%A, --» A, is a dominant mapping, so A, is a hook for T,,.

Proof. A linear subspace All(, mod 2p) is spanned by ay,, k :odd. For j odd, the jp-
th coordinate of ay, is wjs.kp = Wjk.pr2 = 0 by (7.1). If follows that AIl;, o 2,y C
T, O

Let us conisder a generic point z; ¢ in I'). Using the previous argument, it is clear
that the base of fx (x;¢) is in All(, moa 25y C I's. The fiber point of fx(z;¢) is [0 :
000060000 Gapr o] where Gup = 1/0 + 305, moa 2 Wikpl/T5 £ 1/Tp.
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Furthermore, for the generic point z;§ in Aj, € All(5 od 25) and § € Tl mod 2p) -
Using Lemma 7.11, we have the fiber point of fx(2;¢) € Il;5 moa 25y- Replacing p
by p we have a dominant mapping from A, to A,.

Ny

FIGURE 5. Moving fibers.

It remains to track the orbit of ¥; for i € S,. In this case, fxX; = F;, which
is a fiber of I';. What happens here is that fx : I'; < I'y; as was seen in §2,
I'; and I', are both product spaces, and we will show that all subsequent images
f;"“]—'i are horizontal sections of A; N I',. A horizontal section may be written
as (base space) X {@an+1}, where @a,11 is a fiber point (see Figure 5). In order to
show that f;"“]—'i ¢ Tx, we track the “moving fiber” point s, +1 in the same way
we tracked the orbit of fxa, for ¢ € 5.

Lemma 7.13. If i € S,, then let F; be the fiber in I'; over a;. Let ¢, = p[0: 0 :
o 0:p/p=1:0:---:0:3=p/p:0:---] €1, mod 2p), and set ¢; obtained
by permuting the nonzero coordinates. \; = All(5 mod 25y; @i C I'p. Then we have
dominant maps fx : 3; -+ F; —=+ \;.

Proof. Let us first consider the case i = p. Repeating the argument in previous
sections, fx : ¥, --» F, is a dominant mapping. For a generic point a,;&, { =
0:-- &0 :0:&p -] € i mod 25 and Il mod 25 is invariant
under J. Since A is linear and invertible , the rank of fx|F, is the same as the
dimension of A,. Now we will show that the constant fiber for fxF, is ¢,. Since
A, C T, the fiber coordinate is [0 : -+~ :0:§, : 0:---:0:&, :0:---], and
Eoo =1+ 32525 mod 25 Whip * 1/wjp for an odd k. If k=1, we have

§=1+ Z wjp - 1/wjp =1+ (p—1) —r=r(p/r —1).
j#p mod 25
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For a general k, using (4.2)

Co+Eu2p =2+ D, (Whjp T Wat2)jp) - 1/wjp

J#p mod 2p
p—1
=2+ Y Wi = P2+ D Wkine):
j#p mod 2p Jj=1

Following the same reasoning as in Lemma 7.8, we have &y +§r42), = 2if k+1=
2 mod 4, and &k + §(ry2)p, = —2if K+ 1= 0 mod 4. For general i € S,, we follows
the discussion in Lemma 4.2. O

For each divisor p in (7.4), let us set £, = All(5 mod 25); H(p mod 2py- Let us
identify £, = PP/(29)=1 by a projection 7 : (2;¢) — &, and let ¢, : PP/2P)=1
P?/(27)=1 he the induced map corresponding to f% : £, -+ £,. As we saw before
Lemma 7.9, we may choose the coordinates of ¢, to be homogeneous polynomials
with coefficients in Z[w].

Lemma 7.14. For j € S,, there is a polynomial R, j € Z[w"] such that x;|R;, and

Polwr, @3, 25, Tppn] = (D)2 (0/2)?P/p — 13 —p/p - 1 £ (29)” + Rpa ()
= Vj(a5)” + Ry ;(x)
where V; is obtained from (p)**~%(p/2)%[p/p—1:3 —p/p: -+ ;£1] by permuting

the coordinates.

Proof. Following the discussion in Lemma 7.9. Let us set @,lz, @ x3, : --- :
Tp/p1] = [Yp 1 ¥sp -t Ypjp—1]. On X% C {x, = 0}, we have

-1 p—1
1 5 .
Yip =P (H wip)?? 1+ 2ijgp . w_g] (x7)? Vj: odd
k=1 =1

and Hg;} wy = a unit in Z[w”] - p/(2p). Combining Lemma 7.13 followed by the
same discussion in Lemma 4.2 we have the desired result. O

Lemma 7.15. Forje S,, feXj ¢ Ix for alln > 0.

Proof. We apply Lemma 7.14 modulo p following the line of argument of Lemma
7.10. 0

To summarize: in this Section we have constructed the space X and determined
f% on Pic(X). Further, we have shown that for every exceptional hypersurface E
of fx, we have f"E ¢ T for all n > 0. Thus we can apply Theorems 2.1 and 2.4 to
conclude:

Theorem 7.16. The map fx satisfies (1.4), and 6(f) is the spectral radius of the
linear transformation f%, which is defined in (7.5-7.12).

Appendix A. q =45 =32.5. Let us carry out the algorithm implicit in Theo-
rems 5.4 and 5.5. If ¢ = 45, then p = 22. The divisors are r = 3,5,9,15, and we
have S; = {1,2,4,7,8,11,13,14,16,17,19,22}, S5 = {3,6, 12,21}, S5 = {5, 10, 20},
So = {9,18}, and Si5 = {15}. Let us define EM =3 o B, AVD =3 . AV,

€S 1€S1 C
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v = > ies, Vi- And for each divisor r, we set A = > ies, Ai- By the symme-
tries of the equations defining f% we see that we may rewrite them in terms of the
new, consolidated basis elements as

Eo+— Ag— H — Eg — E®
EM s av®D v AW 127 —12F) — 11EM — 12P
Py A®) s AH — 4Ey — AEW — 4P + 4P
Ps— A®) s 3H — 3Ey — 3EY) — 3P + 3P;
Py— A 2H — 2E, — 2B — 2P + 2P + 2P,
Pis— AW s H - FEy—EY — P4 P34+ Ps+ Pis
H — 22H — 21Ey — 21E®Y —14P; — 17P5 — 19Py — 20P5.

The characteristic polynomial of this linear transformation is (x + 1)(z — 1)? times
24— 2642 — 29022+ 3102° 4+ 55921 + 10925 — 4102° — 30027 + 13625 + 1442° — 20210 —
212 + 22, which gives a spectral radius p &~ 21.6052, and §(K|SCy5) ~ 466.784.

Appendix B. Spectral radius for q = 45. Let us demonstrate how to use the
formula in Theorem 5.5. For ¢ = 3% -5 we have k3 = 4, k5 = 3, kg = 2, k15 = 1,
and k = 12. us =8, us = 5, g = 3, and 15 = 2. For prime divisors we have

Ts(z) = 4(z* = 3) (2% — 2)(2* — 1), Ts(z) = 3(z? — 4)(2* — 2)(2* — 1).

For non-prime divisors we have

Ty = —3;22_ 5Ts(@) +2(2% = 4)(@* = 3)(2* = 1) = 2°(2* = 3)(a” — 1)
Tis = xgl_ T [Ts(@) + Ts(2)] + (@7 = 4)(@” = 3)(2” = 2) = (2" —12)(2” - 2).
Thus we get

Ty = (2” —4)(2* = 3)(2® = 2)(2® = 1) + > _ Ty(x) = =72+ 1502> — 762" + 82° + 2°.

Finally, plugging into the formula (5.9) gives us (x — 1)(24 — 264z — 29022 + 31023 +
55924 + 1092° — 41025 — 30027 + 13628 + 1442° — 20210 — 211! + 212).

Appendix C. q=30=2"3-5. Now let us demonstrate how to use the algorithm
in Theorem 6.15. If ¢ = 30, then p = 15, and the odd divisors are r = 3 and 5.
Thus S; = {1,7,11,13}, So = {2,4,8,14}, S3 = {3,9}, S¢ = {6,12}, S; = {5},
and S1p = {10}. The linear transformation f% has symmetries under e < o and
j <> p—j. Further, since P, — 0, we do not need to consider P, for the purpose of
computing the spectral radius. Thus we define the symmetrized elements

E=FEy+ Ei5, A=A+ Ass, A = Z A;j
j€8,USan

Pw:Po+P67 APw:APo+APeu Pw,r: 0,7‘+Pe,ru
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where r denotes a divisor of p. We see that we may take all of these elements,
together with H, as the basis of an f%-invariant subspace of H'1(X). We have:

Evs A 2H — E— Py — Pys— Pus
AP, — P, — A" + AP,

AWM s 8H — 8E — 4P,, — 8P, 3 — 8P, 5
A®) s 4H — AE — 2P, — 2P, 3 — 4P, 5
A®) s 2H —2E — P, — 2P, 35— Py s
Pys— A® Py 5 AP

Hw— 15H — 14E — 7P, — 12P,, 3 — 13P,, 5.

We may also define anti-symmetric elements E' = FEg — Fi5, P, = P. — P,,
AP, = AP. — AP, etc.;as well as g tjA; — 37y ) 1) Ak, for any odd divisor
rand Y t; = > t,. By the symmetries of f%, the anti-symmetric elements define
a complementary invariant subspace. The spectral radius, however, is given by
the transformation above. Its characteristic polynomial is x(x + 1)(z — 1)? times

—6 — 162 + 1122 + 3223 — 62 — 142° + 25, which gives a spectral radius p ~ 14.26,
and 6(K|8630) = 203.347.

Appendix D. q =60 = 22 -3 5. Finally, let us illustrate the algorithm of Theo-
rem 7.16 for ¢ = 60. In this case, p = 30, and in (7.4) notation, the divisors are r =
2,6,10, and p = 3,5. We have S; = {1,7,11,13,17,19,23,29}, Sy = {2,14,22,26},
S3 = {3,9,21,27}, Sy = {4,8,16,28}, S5 = {5,25}, S = {6,18}, S1p = {10},
S12 = {12,24}, S30 = {20}. As before, we work with the symmetrized elements

A=Ay+ Asy, E=Ep+ Es
AT = 3" Aj, Po=Po,+ P,
JES,.USa,
Thus f% maps these symmetrized elements as:
Ais—H—-FE—-15-13—PFP,—F;— Pio
E— A—2H—-FE—P,— P;— Pig
Py A® s 8H — 8E — 4P, — 8Ps — 8Py
Py A©) s AH — AE — 2P, — 2Ps — 4Py
Pig— AUY s 20 — 2F — P, — 2P — Py
Ts—4H —4F — 4A15 — 4Py — 4P5 — 4Pg — 413
T3+— 2H —2F —2A15 — 2P, — 2P5 — 2P — 215
H— 30H — 29F — 14A15 — 22P, — 27Ps — 28 Pyy — 2I's — 41's.
The spectral radius of this transformation is the largest root of 51242562 —1760x%—

72023 + 2304zt + 756x° — 149425 — 25627 + 44123 — 52 — 29210 + 2! which is
~ 28.6503. Thus §(K|SCep) ~ 820.841.

Appendix E. Characteristic polynomial for q = odd. Here we give a sketch
of the proof of Theorem 5.5. We set

D(a)=<_1x _‘;) U(a)=<8 g) and
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D(ay) Ulaz) ... Ulay)

Mp(as, ,an) = D(a2) (an) |
Ulay,
D(an)

where the empty spaces are filled by zeros.

Lemma E.1. det(M,(a1,...,a,)) = [[;—, (2% — a;). Any of the blocks U(a;) may

j=1
be replaced by 2 x 2 blocks of zeros without changing the determinant.

Proof. By adding 1/x - (2¢ — 1)th row to 2ith row for all 1 < i < n, we obtain the
diagonal matrix with diagonal entries —z, —x+a;1 /2, —2, —x+az/x,...,—x+ay/z.
The result follows immediately. O

Let us define H(a) = (0 a),

where C'(ay,) is the 2(n — 1) X 2 column matrix obtained by stacking (n — 1) copies
of Ul(ay,) vertically, and E(a;) is the 2 X 2(n — 1) matrix obtained by starting on
the left with U(ay) and following with zeros.

Lemma E.2. det(Mj(a1,a2)) = —ajaq, and
det(M) (a1, ..., a,))

n—1k—1 n—1

=a1 Z H(I2 — a]) . detM,’/l_k_,’_l(a;k, oo .,an) — G, H(I2 _ QJ)

k=2 j=2 j=2

Proof. We first expand in minors along the next to last row which contains a; in the
second slot and then expand in minors along the second row which has only one entry
1 in the first slot. It follows that det(M] (a1,...,a,)) = a1 - det(M]'_(aa, ..., ay))
where B’ = (1 —z) and

H(as) H(as) H(ay)
M) (az,...,an) = D(az) Ufas)
Ulan)
B/

Now we use the first row to compute minors. It is not hard to see that each minor
can be computed from the matrix of the form

(MkB(GQa C,Qk—2) * )
O M;{_k_,,_l(alK;"'aan)

The result follows using Lemma E.1 and its proof. O

Proof of Theorem 5.5. We use the symmetry of My noted in Appendix A and work
with a symmetrized basis for Pic(X): H = Hx, P,, A", Ey, Ay, EV, AV,
VM AM . We order the basis so that if 71|ry then P,,, A1) appears before P,,,
A(2): thus we we start with the prime factors of ¢. To compute the characteristic
polynomial, we consider a matrix My — . For a simpler format, we add first row
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to the row corresponding to Py, Ey and E(). After the series of row operations, we
have the determinant of (M; — zI) is equal to the deteminant of

p—z H(ay) H(a2) --- H(ax) H(1) H(0) H(1)
V(b —2) D(a1) U(az2) Ulax) U(1)
V(by — ) D(a2) Ulas) U(1)
Ulax) U(1)
V(by — x) D(ay) U(1)
V(1 —ux) D(1)
V(1 —ux) D) U(1)
0 U(1) D(0)

where the empty spaces are filled by zeros and each a; b; is determined by a proper

0
expand in the minors along the first column. For the (j, 1)-minor we move the first
row to the jth row and then expand in minors along the jth row. The rest of the
computation follows using Lemmas E.1 and E.2. O

divisor of ¢ and & is the number of proper divisors, and V(a) = (a)' Now we
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