
DISCRETE AND CONTINUOUS Website: http://aimSciences.org
DYNAMICAL SYSTEMS
Volume 21, Number 4, August 2008 pp. 977–1013

DEGREE GROWTH OF MATRIX INVERSION: BIRATIONAL

MAPS OF SYMMETRIC, CYCLIC MATRICES

Eric Bedford

Department of Mathematics, Indiana University
Bloomington, IN 47405, USA

Kyounghee Kim

Department of Mathematics, Indiana University
Bloomington, IN 47405, USA

Current Address : Department of Mathematics, Florida State University
Tallahassee, FL 32306

(Communicated by Mike Field)

Abstract. We consider two (densely defined) involutions on the space of q×q

matrices; I(xij) is the matrix inverse of (xij), and J(xij) is the matrix whose

ijth entry is the reciprocal x
−1
ij

. Let K = I ◦ J . The set SCq of symmetric,

cyclic matrices is invariant under K. In this paper, we determine the degrees
of the iterates Kn = K ◦ ... ◦ K restricted to SCq.

1. Introduction. Our interest is the dynamics of birational mappings in higher
dimension. A lot has been accomplished already in dimension 2 (cf. [15], [5], [17],
[16]), but little is known in higher dimension (see the survey in Guedj [G]). The
family of mappings defined below has attracted our interest because it exhibits a
rich blowup/blowdown behavior which cannot occur in dimension 2.

Let Mq denote the space of q × q matrices, and let P(Mq) denote its projec-

tivization. For a matrix x = (xij) we consider two maps. One is J(x) = (x−1
ij )

which takes the reciprocal of each entry of the matrix, and the other is the matrix
inverse I(x) = (xij)

−1. The involutions I and J , and thus the mapping K = I ◦ J ,
arise as basic symmetries in Lattice Statistical Mechanics (see [13], [9]). This leads
to the problem of determining the iterated behavior of K on P(Mq) (see [1], [2],
[4], [10]). A basic question is to know the degree complexity

δ(K) := lim
n→∞

(deg(Kn))1/n = lim
n→∞

(deg(K ◦ · · · ◦ K))1/n

of the iterates of this map. The quantity log δ is also called the algebraic entropy
(see [10]). We note that PMq has dimension q2 − 1, I has degree q − 1, and
J has degree q2 − 1. Thus a computer cannot directly evaluate the composition
K2 = K ◦ K (or even K = I ◦ J) unless q is small.

The q×q matrices correspond to the coupling constants of a system in which each
location has q possible states. In more specific models, there may be additional sym-
metries, and such symmetries define a K-invariant subspace S ⊂ P(Mq) (see [3]). In
general, the degree of the restriction K|S will be lower than the degree of K, and the
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corresponding question in this case is to know δ(K|S) = limn→∞(deg(Kn|S))1/n.
An example of this, related to Potts models, is the subspace Cq of cyclic matrices,
i.e., matrices (xij) for which xij depends only on j − i (mod q). A cyclic matrix is
thus determined by numbers x0, . . . , xq−1 according to the formula

C(x0, . . . , xq−1) =




x0 x1 xq−1

xq−1
. . .

. . .

. . .
. . . x1

x1 xq−1 x0




(1.1)

The degree growth of K|Cq was determined in [10]. Another case of evident im-
portance is SCq, the symmetric, cyclic matrices. The degree growth of K|SCq was
determined in [4] for prime q. In this paper we determine δ(K|SCq) for all q. In
doing this, we expose a general method of determining δ, which we believe will also
be applicable to the study of δ(K|S) for more general spaces S.

Main Theorem. The dynamical degree δ(K|SCq) = ρ2, where ρ is the spectral
radius of an integer matrix M . When q is odd, M is defined by (4.3–7); when
q = 2×odd, M is defined by (5.6–12); and when q is divisible by 4, M is defined by
(6.5–12).

The algorithm of the Main Theorem computes δq starting with the prime factor-
ization of q. In the Appendix we show how to carry out the algorithm efficiently in
the cases q = 30, 45, and 60.

The mappings K|Cq and K|SCq lead to maps of the form f = L ◦ J on PN ,

where L is linear, and J = [x−1
0 : · · · : x−1

N ]. In the case of K|Cq, we have L = F ,
the matrix representation of the finite Fourier transform, and the entries are qth
roots of unity. By the internal symmetry of the map, the exceptional hypersurfaces
Σi = {xi = 0} all behave in the same way, and δ for these maps is found easily by
the method of regularization described below. The family of “Noetherian maps”
was introduced in [12] and generalized to “elementary maps” in [7]. These maps
have the feature that all exceptional hypersurfaces behave like

Σi → ∗ → · · · → ei  Vi, (1.2)

which means that Σi blows down to a point ∗, which then maps forward for finite
time until it reaches a point of indeterminacy ei, which blows up to a hypersurface
Vi. The reason for deg(fn) < (deg(f))n comes from the existence of exceptional
hypersurfaces like Σi, called “degree lowering” in [18], which are mapped into the
indeterminacy locus.

As we pass from K|Cq to K|SCq, a number of symmetries are added. Because
of these additional symmetries, the dimension of the representation f = L ◦ J on
PN changes from N = q − 1 to N = ⌊q/2⌋. The new matrix L, however, is more
difficult to work with explicitly; its entries have changed from roots of unity to more
general cyclotomic numbers. The exceptional hypersurfaces all blow down to points,
but their subsequent behaviors are richly varied, showing phenomena connected to
properties of the cyclotomic numbers.

If f : PN
99K PN is a rational map, then there is a well-defined pullback map

on cohomology f∗ : H1,1(PN ) → H1,1(PN ). The cohomology of projective space is
generated by the class of a hypersurface H , and the connection between cohomology
and degree is given by the formula

(fn)∗H = (degfn) · H. (1.3)
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In our approach, we construct a new complex manifold π : X → PN , which will
be obtained by performing certain (depending on f) blow-ups over PN . This con-
struction induces a rational map fX : X 99K X which has the additional property
that

(fn
X)∗ = (f∗

X)n on H1,1(X), (1.4)

which we call 1-regular or 1-stable. Once we have our good model X , we find
δ(f) = δ(fX) by computing the spectral radius of the mapping f∗

X .
Diller and Favre [15] showed that such a construction of X with (1.4) is always

possible for birational maps in dimension 2. This method for determining δ then
gives a tool for deciding whether f is integrable (which happens when δ = 1) or has
positive entropy (in which case δ(f) > 1). This was used in the integrable case in
[11] and in both cases in [8], [21], and [22] .

We note that the space X which is constructed by this procedure is useful for
understanding further properties of f . For instance, it has proved useful in analyzing
the pointwise dynamics of f on real points (see [6]).

An important difference between the cases of dimension 2 and dimension > 2,
as well as a reason why the maps K|SCq do not fall within the scope of earlier
approaches, is that exceptional hypersurfaces cannot always be removed from the
dynamical system by blow-ups. In fact, the new map fX can have more indetermi-
nate components and exceptional hypersurfaces than the original map.

Our method proceeds as follows. After choosing subspaces λ0, . . . , λj as centers
of blowup, we construct X . The blowup fibers Λi over λi, i = 0, . . . , j, together
with H , provide a convenient basis for Pic(X). A careful examination of f−1 lets us
determine f−1

X H and f−1
X Λi, and thus we can determine the action of the linear map

f∗
X on Pic(X). In order to see whether (1.4) holds, we need to track the forward

orbits fnE for each exceptional hypersurface E. By Theorem 1.1, the condition
that fnE 6⊂ IX for each n ≥ 0 and each E is sufficient for (1.4) to hold. We develop
two techniques to verify this last condition for our maps K|SCq. One of them,
called a “hook,” is a subvariety αE 6⊂ IX such that fXαE = αE , and f jE ⊃ αE .
The simplest case of this is a fixed point. The other technique uses the fact that
f = L ◦ J is defined over the cyclotomic numbers, and we cannot have fn

XE ⊂ IX

for number theoretic reasons. This brings us to a second difference between the
cases of dimension 2 and dimension > 2: The map K|SCq in case q is not prime,
cannot be regularized to satisfy (1.4) by the method of point blowups alone.

Let us describe the contents of this paper. In §2 we discuss blowups and the map
J . We show how to write blowups in local coordinates, how to describe JX , and
how to determine J∗

X . We also give sufficient conditions for (1.4).
In §3, we show how this approach may be applied to K|Cq. In this case, the

exceptional orbits are of the form (1.2). We construct the space X by blowing up
the points of the exceptional orbits. After these blowups, the induced map fX has
no exceptional hypersurfaces, which implies that (1.4) holds. A calculation of f∗

X

and its spectral radius leads to the same number δ(K|Cq) that was found in [10].
In §4, we give the setup of the symmetric, cyclic case. When q is prime, the

map K|SCq exhibits the same general phenomenon: the orbits of all exceptional
hypersurfaces are of the form (1.2). As before, we construct X by blowing up the
point orbits, and we find that the new map fX has no exceptional hypersurfaces.
Thus we recapture the δ(K|SCq) from [4].
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When q is not prime, however, the map K|Cq develops a new kind of symmetry
as we pass to SCq. Now there are exceptional orbits

Σi → ∗ → · · · → pi  Wi  · · · Vi, (1.5)

where pi blows up to a variety Wi of positive dimension but too small to be a
hypersurface, yet Wi blows up further and becomes a hypersurface Vi.

In §5, we work with the case where q is a general odd number. We construct our
a blowup space π : X → SCq, and we obtain an induced map fX . If i is relatively
prime to q, then the orbit of Σi has the form (1.2), and after blowing up the singular
orbit, Σi will no longer be exceptional. On the other hand, if i is not relatively prime
to q, then the exceptional orbit has the form (1.5). Let r divide q, and let r̂ = q/r,
and define the sets Sr = {1 ≤ j ≤ (q−1)/2 : gcd(j, q) = r}. We will see below that
if i ∈ Sr and j ∈ Sr̂, then there is an interaction between the (exceptional) orbits
of Σi and Σj (see Figure 2). After blowing up along certain linear subspaces, we
find a 2-cycle hook αr ↔ αr̂ for all hypersurfaces Σi, i ∈ Sr ∪ Sr̂.

In §6, we consider the case q = 2 × odd. We construct a new space by blowing
up along various subspaces. We find that for each odd divisor r > 1 of q, the
exceptional varieties Σi, i ∈ Sr ∪ S2r act like the case where q is odd. As before,
we construct a hook αr ↔ αr̂ for all i ∈ Sr ∪ S2r ∪ Sr̂ ∪ S2r̂. However, there is
also a new phenomenon, which we call the “wringer” (see Figure 3), which consists
of an f -invariant 4-cycle of blowup fibers. All of the exceptional hypersurfaces Σi,
i ∈ S1 ∪ S2 enter the wringer. We find hooks for all of these hypersurfaces, which
shows that (1.4) holds for fX .

In §7, we consider the case where q is divisible by 4. Again, we construct X and
obtain a new map fX . In this case, fX has some exceptional hypersurfaces with
hooks. Yet a number of exceptional hypersurfaces remain to be analyzed. These
hypersurfaces are of the form Σi → ci → · · · : they blow down to points, and we
must show that no point of this orbit blows up, i.e., fn

Xci /∈ IX for all n ≥ 0. The
complication of one such orbit is shown in Figure 4. We approach this problem
now by taking advantage of cyclotomic properties of the coefficients of f . We show
that we can work over the integers modulo µ, for certain primes µ, and the orbit
{fn

Xci : n ≥ 0} is pre-periodic to an orbit which is disjoint from IX and periodic in
this reduced number ring.

In each of these cases, we regularize f by constructing an X such that (0.4)
holds, and we write down f∗

X explicitly. Thus δ(K|SCq) is the spectral radius of
this linear transformation, which is given as modulus of the largest zero of the char-
acteristic polynomial of f∗

X . We write down general formulas for the characteristic
polynomials in the cases q =odd and q = 2×odd.

We give some Appendices to show how our Theorems may be used to calculate
δ(f) in an efficient manner.

The structures of the sets of exceptional hypersurfaces are both complicated and
different for the various cases of q. So at the beginning of each section, we give a
visual summary of the exceptional hypersurfaces and their orbits.

2. Complex manifolds and their blow-ups. Recall that complex projective
space PN consists of complex N +1-tuples [x0 : · · · : xN ] subject to the equivalence
condition [x0 : · · · : xN ] ≡ [λx0 : · · · : λxN ] for any nonzero λ ∈ C. A rational
map f = [F0 : · · · : FN ] : PN → PN is given by an N + 1-tuple of homogeneous
polynomials of the same degree d. Without loss of generality we may assume that
these polynomials have no common factor. The indeterminacy locus I = {x ∈ PN :
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F0(x) = · · · = FN (x) = 0} is the set of points where f does not define a mapping to
PN . Since the Fj have no common factor, I has codimension at least 2. Clearly f is
holomorphic on PN −I, but if x0 ∈ I, then f cannot be extended to be continuous
at x0.

If S ⊂ PN is an irreducible algebraic subvariety with S 6⊂ I, then we define the
strict image, written f(S), as the closure of f(S − I). Thus f(S) is an algebraic
subvariety of PN , which is also called strict or proper transform. We say that S is
exceptional if the dimension of f(S) is strictly less than the dimension of S.

Let Γf denote the closure of the graph {(x, y) ∈ (PN −I)×PN : f(x) = y}, and
let πj : Γf → PN be the coordinate projections π1(x, y) = x and π2(x, y) = y. For

x ∈ I, we have f(x) = π2π
−1
1 (x) =

⋂
ǫ>0 closuref(B(x, ǫ)−I). For a set S we define

the total image f∗(S) := π2π
−1
1 (S). If S is a subvariety, we have f∗(S) ⊃ f(S).

A linear subspace is defined by a finite number of linear equations

λ = {x ∈ PN : ℓj(x) = 0, 0 ≤ j ≤ M}

where ℓj(x) =
∑

cjkxk and M ≥ 1. After a linear change of coordinates, we may
assume λ = {x0 = · · · = xM = 0}. Thus λ is naturally equivalent to PN−M−1. As
a global manifold, PN is covered by N + 1 coordinate charts Uj = {xj 6= 0} ∼= CN .
On the coordinate chart UN we have coordinates ζj = xj/xN , 0 ≤ j ≤ N − 1, so

λ ∩ UN = {(ζ0, . . . , ζN−1) ∈ CN : ζ0 = · · · = ζM = 0}.

We define the blowup of PN over λ in terms of a complex manifold X and a holo-
morphic projection π : X → PN . (See also [19].) Working inside the coordinate
chart UN , we set

π−1(UN ) ∩ X := {(ζ, ξ) ∈ CN × PM : ζjξk − ζkξj = 0, ∀0 ≤ j, k ≤ M}

and π(ζ, ξ) = ζ. We see that π−1 : CN − λ → X is well-defined and holomorphic,
but for ζ ∈ λ we have π−1(ζ) = PM . We write a fiber point ξ ∈ π−1(ζ) as (ζ; ξ) or
ζ; ξ. Abusing notation slightly, we may consider the curve

γξ : t 7→ ζ + tξ ∈ CN , (2.1)

and we say that γ lands at ζ; ξ ∈ X when we mean that limt→0 π−1γ(t) = ζ; ξ. It is
convenient for future computations that the exceptional hypersurface Λ := π−1λ =
PN−M−1 × PM is a product. Namely, given z ∈ PN−M−1 and ξ ∈ PM , we can
represent the line zξ = {z + tξ : t ∈ C}. This line is independent of choice of
representatives z and ξ; and the fiber point z; ξ is the limit in X of the point z + tξ
as t → 0. The fiber of Λ over a point x ∈ λ is illustrated in Figure 1.

Λ

λ

ξ1

2ξ

3
ξ

ξ1

2ξ

3
ξ

Figure 1. Blowup of a Linear Subspace.
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For future reference, we give a local coordinate system at a point p ∈ Λ. Without
loss of generality, we may suppose that p = (ζ; ξ), where ζ = (0, 0) ∈ CM+1 ×
CN−M−1 and ξ = [1 : 0 : · · · : 0] ∈ PM . Thus we set ξ0 = 1 and define coordinates
(ζ0, ξ1, . . . , ξM , ζM+1, . . . , ζN−1) for the point

(ζ; ξ) = ((ζ0, ζ0ξ1, . . . , ζ0ξM , ζM+1, . . . , ζN ); [1 : ξ1 : · · · : ξM ]) ∈ X. (2.2)

The blowing-up construction is clearly local, so we may use it to blow up a
smooth submanifold of a complex manifold. Suppose that f : PN → PN is locally
biholomorphic at a point p, that λ1 is a smooth submanifold containing p, and that
λ2 = fλ1. Let π : Z → PN denote the blowup of λ1 and λ2. Then for p; ξ in the
fiber over p ∈ λ1, we have fZ(p; ξ) = fp; dfpξ.

If we wish to blow up both a point p and a submanifold λ which contains p, we first
blow up p, and then we blow up the strict transform of λ. In the sequel, we will also
perform blowups of submanifolds which intersect but do not contain one another.
For example, let us consider the x1-axis X1 := {x2 = x3 = 0} ⊂ C3 and the x2-axis
X2 := {x1 = x3 = 0} ⊂ C3. Let π1 : M1 → C3 be the blowup of X1. The fibers
over points of X1 have the form π−1

1 (x1, 0, 0) = {(x1, 0, 0); [0 : ξ2 : ξ3]} ∼= P1. These
may be identified with the landing points of arcs which approach X1 normally as
in (2.1). Let us set E1 := π−1

1 0, and let X2 denote the strict transform of X2 inside
M1, i.e., X2 = π−1

1 (X∗
2 ). Thus X2 ∩ E1 = (0; [0 : 1 : 0]). Now let π12 : M12 → M1

denote the blow up of X2 ⊂ M1, and set π′ : π1 ◦ π12 : M12 → C3. It follows that
(π′)−1 is holomorphic on C3 − (X1 ∪ X2). Since π12 is invertible over points of
M1 − X2 ⊃ π−1

1 (X1 − {0}), the fiber points over X1 − {0} may still be identified
with the landing points of arcs approaching X1 normally. Similarly, we may identify
points of π−1

12 (X2 − π−1
1 0) as landing points of arcs approaching X2 normally.

In a similar fashion, we may construct the blow-up space π′′ := π2 ◦ π21 : M21 →
C3 by blowing up X2 first and then X1. We say that a map h : X1 → X2 is a
pseudo-isomorphism if it is biholomorphic outside a subvariety of codimension ≥ 2.
Thus (π′, M12) and (π′′, M21) are pseudo-isomorphic, since (π′′)−1 ◦ π′ extends to
a biholomorphism between M12 − (π′)−10 and M21 − (π′′)−10. In our discussion of
degree growth, we will be concerned only with divisors, and in this context pseudo-
isomorphic spaces are equivalent. Thus when we perform multiple blowups, we will
not be concerned about the order in which they are performed since the spaces
obtained will be pseudo-isomorphic.

Next we discuss the map J : PN
99K PN given by J [x0 : · · · : xN ] = [x−1

0 : · · · :
x−1

N ] = [x0̂ : · · · : xN̂ ], where we write xk̂ =
∏

j 6=k xj . The behaviors we will discuss

occur when N ≥ 3. For a subset T ⊂ {0, . . . , N} we use the notation

ΠT = {x ∈ PN : xt = 0 ∀t /∈ T }, Π∗
T = {x ∈ ΠT : xt 6= 0 ∀t ∈ T }

ΣT = {x ∈ PN : xt = 0 ∀t ∈ T }, Σ∗
T = {x ∈ ΣT : xt 6= 0 ∀t /∈ T }.

A point x is indeterminate for J exactly when two or more coordinates are zero.
That is to say

I(J) =
⋃

#T≥2

ΣT .

The total image of an indeterminate point is given by

Π∗
T ∋ p 7→ J∗p = ΣT , and Σ∗

T ∋ p 7→ J∗p = ΠT . (2.3)

The exceptional hypersurfaces for J are exactly the hypersurfaces Σi for 0 ≤ i ≤ N ,
and we have f(Σi) = ei := [0 : · · · : 0 : 1 : 0 : · · · ]. Let π : X → PN denote the
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blowup of the point ei, and let Ei := π−1ei
∼= PN−1. We introduce the notation

x′ = [x0 : · · · : xi−1 : 0 : xi+1 : · · · : xN ] and J ′x′ = [x−1
0 : · · · : x−1

i−1 : 0 : x−1
i+1 : · · · :

x−1
N ]. Thus near Σi we have

J [x0 : · · · : xi−1 : t : xi+1 : · · · : xN ] = ei + tJ ′x′. (2.4)

Letting t → 0, we find that the induced map JX : X 99K X is given by

JX : Σi ∋ x′ 7→ ei; J
′x′ ∈ Ei. (2.5)

The effect of passing to the blowup X is that Σi is no longer exceptional. Since J
is an involution, we also have

JX : Ei ∋ ei; ξ
′ 7→ J ′ξ′ ∈ Σi. (2.6)

Let T ⊂ {0, . . . , N} be a subset with i /∈ T and #T ≥ 2, and let ΣT denote its
strict transform inside X . We see that ΣT ∩Ei is nonempty and indeterminate for
JX , and the union of such sets gives Ei ∩ I(JX).

Now let us discuss the relationship between blowups and the indeterminate strata
of J . For T ⊂ {0, . . . , N}, #T ≥ 2, we have ΣT ⊂ I, and J∗ : Σ∗

T ∋ p 7→ ΠT . Let
π : X → PN be the blowup of PN along the subspaces ΣT and ΠT . Let ST = π−1ΣT

and PT = π−1ΠT denote the exceptional fibers. The induced map JX : X 99K X
acts to interchange base and fiber coordinates:

JX : ST 99K PT , ST
∼= ΣT × ΠT ∋ (x; ξ) 7→ (J ′′ξ; J ′x) ∈ ΠT × ΣT

∼= PT , (2.7)

where J ′′(ξ) = ξ−1 on ΠT , and J ′(x) = x−1 on ΣT . In particular, JX is a birational
map which interchanges the two exceptional hypersurfaces, and acts again like J ,
separately on the fiber and base, and interchanges fiber and base.

Now let π : X → PN be a complex manifold obtained by blowing up a sequence
of smooth subspaces. If r = p/q is a rational function (quotient of two homogeneous
polynomials of the same degree), we will say that π∗r := r ◦ π is a rational function
on X . We consider the group Div(X) of integral divisors on X , i.e. the finite sums
D =

∑
njVj , where nj ∈ Z, and Vj is an irreducible hypersurface in X . We say

that divisors D, D′ are linearly equivalent if there is a rational function on X such
that D − D′ is the divisor of r. We define Pic(X) to be the set of divisors on X
modulo linear equivalence.

For a rational map f : X 99K Y , there is an induced map f∗ : Pic(Y ) → Pic(X):
if D ∈ Pic(Y ), its preimage f−1(D) is well defined as a divisor on X − I because
f is holomorphic there. Taking its closure inside X , we obtain f∗D = (f−1)∗D,
the total transform of D under f−1. Let H = {ℓ = 0} denote a linear hypersurface
in PN . The group Pic(PN ) is generated by H . If f : PN

99K PN is a rational
map, then f∗H = deg(f)H . Let HX = π∗H be the divisor of π∗ℓ = ℓ ◦ π in X .
A basis for Pic(X) is given by HX , together with the (finitely many) irreducible
components of exceptional hypersurfaces for π. We may choose an ordered basis
HX , E1, . . . , Es for Pic(X) and write f∗ with respect to this basis as an integer
matrix Mf . It follows that deg(f) is the (1,1) entry of Mf .

Let us consider the blowup π : Y → PN of Σ0,...,M = {x0 = · · · = xM = 0},
with M < N . We write F(x) := π−1x for the fiber over x ∈ Σ0,...,M , and we let
Λ := π−1Σ0,...,M denote the exceptional divisor of the blowup. It follows that HY

and Λ give a basis of Pic(Y ). Let JY : Y 99K Y denote the map induced by J . For
j > M , the induced map JY |Σj : Σj 99K F(ej) may be written in coordinates in a
fashion similar to (2.5) and is seen to be a dominant map. Since F(ej) ∼= PN−M−1,
we see that Σj is exceptional.
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We have noted that Σ0,...,M ⊂ I and that Σ0,...,M ∋ p 7→ J∗p = Π0,...,M . The
indeterminacy locus IY of JY has codimension 2 and thus does not contain Λ. In
fact,

JY |F(p) : F(p) 99K Π0,...,M (2.8)

can be written in coordinates similar to (2.6) and is thus seen to be birational.
Now let L be an invertible linear map of PN , let f := L ◦ J , and let fY be the
induced birational map of Y . We write L = (ℓ0, . . . , ℓN ) for the columns of L. Thus
fΣj = ℓj. We now determine f∗

Y : Pic(Y ) → Pic(Y ) in terms of the basis {HY , Λ}.
Let ΓL denote the dimension M +1 subvariety such that fΓL = Σ0,...,M . Assuming
that ΓL 6⊂ Σ0,...,M , we may take its strict transform in Y to have

f−1
Y Λ = ΓL ∪

⋃

ℓj∈Σ0,...,M

Σj, or f∗
Y Λ =

∑

ℓj∈Σ0,...,M

Σj . (2.9)

We see that we have multiplicity 1 for the divisors Σj because the linear factor t in
(2.4), we mean that the pullback of the defining function will vanish to first order.
Now let us write the class of Σj ∈ Pic(Y ) in terms of the basis {HY , Λ}. First, we
see that Σj = {xj = 0} = H is the class of a general hypersurface in Pic(PN ), so
π∗Σj = HY . Since we have Σ0,...,M ⊂ Σj if and only if j ≤ M , we have

Σj = HY − Λ if j ≤ M, Σj = HY otherwise. (2.10)

For instance, if we have ℓ0, ℓN ∈ Σ0,...,M and ℓj /∈ Σ0,...,M for 1 ≤ j ≤ N − 1, then
we have

J∗
Y Λ = 2HY − Λ. (2.11)

Finally, we determine f∗
Y HY . We start by noting that in PN we have H = {ϕ =

0}, and on PN we have f∗H = J∗L∗H = J∗H = J−1{ϕ = 0} = N · H . Now we
want to use π∗ to pull this equation back to Pic(Y ), but in general π∗J∗ 6= (J ◦π)∗.
We have seen that JY maps Λ − I to the strict transform of Π0,...,M which is not

contained in a general hyperplane. Thus f−1
Y {ϕ = 0} will not contain Λ. Pulling

back by π∗, we have

π∗J∗H = N · HY = J∗
Y HY + mΛ (2.12)

for some integer m. Writing ϕ =
∑

cjxj , we have J∗(ϕ) =
∑

cj x̂j , which vanishes
to order M on Σ0,...,M , so m = M . To summarize the case where only ℓ0 and ℓN

belong to Σ0,...,M , we may represent f∗
Y with respect to the basis {HY , Λ} as the

matrix

MfY
=

(
N 2
−M −1

)
. (2.13)

If (Mf )n = Mfn , then the matrix Mf allows us to determine the degrees of the
iterates of f , since the degree of fn is given by the (1,1)-entry of Mfn . The following
result gives a sufficient condition for this to hold. Fornæss and Sibony [18] showed
that when X = PN , this condition is actually equivalent to (2.14). Theorem 2.1 is
a special case of Propositions 1.1 and 1.2 of [7].

Theorem 2.1. Let f : X 99K X be a rational map. We suppose that for all
exceptional hypersurfaces E there is a point p ∈ E such that fnp /∈ I for all n ≥ 0.
Then it follows that

(Mf )n = Mfn for all n ≥ 0. (2.14)
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Proof. Condition (2.14) is clearly equivalent to condition (1.4). Thus we need to
show that (f∗)2 = (f2)∗ on Pic(X). If D is a divisor, then f∗D is the divisor on X
which is the same as f−1D on X−I(f), since I(f) has codimension at least 2. Now
I(f2) = I(f)∪f−1I(f), and we have (f2)∗D = f∗(f∗D) on X−I(f)−f−1I(f). By
our hypothesis, f−1I(f) has codimension at least 2. Thus we have (f2)∗D = (f∗)2D
on X .

We note that if there is a point p ∈ E such that fnp /∈ I for all n ≥ 0, then the
set E −

⋃
n≥0 I(fn) has full measure in E. Thus the forward pointwise dynamics

of f is defined on almost every point of E. The following three results are direct
consequences of Theorem 2.1.

Corollary 2.2. If for each irreducible exceptional hypersurface E, we have fnE 6⊂ I
for all n ≥ 1, then condition (2.14), or equivalently (1.4), holds .

Proposition 2.3. Let f : X 99K X be a rational map. Suppose that there is
a subvariety S ⊂ X such that S, fS . . . , f j−1S 6⊂ I, and f jS = S. If E is an
exceptional hypersurface such that E, f2E, . . . , f ℓ−1E 6⊂ I, and f ℓE ⊃ S, then
there is a point p ∈ E such that fnp /∈ I for all n ≥ 0.

In this situation, we will say that S is a hook for E. Sometimes, instead of
specifying fS = S, we will say that f : S → S is a dominant map, which means
that the generic rank of f |S is the same as the dimension of the target space S.

Theorem 2.4. Let f : X 99K X be a rational map. If there is a hook for every
exceptional hypersurface, then (1.4) and (2.14) hold.

3. Cyclic (circulant) matrices.

Σi → Fi → Ei

Let ω denote a primitive qth root of unity, and let us write F = (ωjk)0≤j,k≤q−1,
i.e.,

F =
(
f0, . . . , fq−1

)
=




1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωq−1

1 ω2 ω4 ω6 . . . ω2(q−1)

...
...

...
...

...

1 ωq−1 ω2(q−1) ω3(q−1) . . . ω(q−1)2




.

Given numbers x0, . . . , xq−1, we have the diagonal matrix

D = D(x0, . . . , xq−1) =




x0

. . .

xq−1


 .

A basic property (cf. [D, Chapter 3]) is that F conjugates diagonal matrices to
cyclic matrices. Specifically,

C(x0, . . . , xq−1) = F−1D(x′
0, . . . , x

′
q−1)F,

where (x′
0, . . . , x

′
q−1) = F (x0, . . . , xq−1). Thus the map x 7→ F−1D(Fx)F gives an

isomorphism between Cq and Pq−1. The map I : Cq → Cq may now be represented
as

C(x0, . . . , xq−1)
−1 = F−1D(J(F (x0, . . . , xq−1))F.



986 ERIC BEDFORD AND KYOUNGHEE KIM

Thus K = I ◦ J : Cq → Cq is conjugate to the mapping

F−1 ◦ J ◦ F ◦ J : Pq−1
99K Pq−1,

where F : Pq−1 → Pq−1 denotes the matrix multiplication map x 7→ Fx. A
computation (see [D, p. 31]) shows that F 2 is q times the permutation matrix
corresponding to the permutation xj ↔ xq−j for 1 ≤ j ≤ q − 1, so F 4 is a multiple
of the identity matrix. On projective space, F 2 simply permutes the coordinates,
so we have F 2 ◦J = J ◦F 2. From this and the identity F−1 = F 3 we conclude that
(F−1JFJ)n = A(FJ)2n, where A = I if n is even and A = F 2 if n is odd. Thus we
have

δ(K|Cq) = (δ(FJ))2.

Following the discussion in §2, we know that the exceptional divisors of f := F ◦J
are Σj = {xj = 0} for 0 ≤ j ≤ q − 1. It is evident that J(fj) = f̄j = fq−j , so

Σj → fj → ej  FΣj .

We let π : X → Pq−1 denote the complex manifold obtained by blowing up the
orbits {fj, ej}, 0 ≤ j ≤ q − 1. Let Fj and Ej denote the blow-up fibers in X over
fj and ej . It follows that

f∗
X : Ej 7→ Fj 7→ Σj = HX −

∑

k 6=j

Ek (3.1)

Further, by §1 or [7] we have that fX satisfies (1.4), and

f∗
XHX = (q − 1)HX − (q − 2)

q∑

k=0

Ek. (3.2)

We take {HX , E0, F0, . . . , Eq−1, Fq−1} as an ordered basis for H1,1(X). Thus the
linear transformation f∗

X is completely defined by (3.1) and (3.2), and we may write
it in matrix form as:

f∗
X =




q − 1 0 1 0 1
−q + 2 0 0 . . . 0 −1

0 1 0 . . . 0
−q + 2 −1 . . . −1

0 0 . . . 0
. . .

−q + 2 −1 . . . 0 0
0 0 . . . 1 0




. (3.3)

It follows that deg(fn) is the upper left hand entry of the nth power of the matrix
(3.3). Using row and column operations, we find that the characteristic polynomial
of (3.3) is

(x − 1)q(x + 1)q−1(x2 + (2 − q)x + 1).

Summarizing our discussion, we obtain the degree complexity numbers which were
found earlier in [10]:

Theorem 3.1. δ(K|Cq) is ρ2, where ρ is the largest zero of x2 + (2 − q)x + 1.
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4. Symmetric, cyclic matrices: prime q.

Σ0 → A0 → E0

Σi → Ai → Vi → AVi → Ei

To work with symmetric, cyclic matrices, we consider separately the cases of q
even and odd. In §3 and §4 we will assume that

q is odd, and we define p := (q − 1)/2.

If the matrix in (1.1) is symmetric, it has the form

M(x0, x1, . . . , xp, xp, . . . , x1) = M(ιx), (4.1)

where ι(x0, . . . , xp) = (x0, x1, . . . , xp, xp, . . . , x1). Thus, in analogy with §3, we have
an isomorphism

Pp ∋ x 7→ F−1D(Fιx)F ∈ SCq.

With this isomorphism, we transfer the map F ◦ J : SCq 99K SCq to a map

f := A ◦ J : Pp
99K Pp

where A is a (p + 1) × (p + 1) matrix which will we now determine. It is easily
seen that the 0th column a0 is the same as the 0th column f0 = (1, . . . , 1). For
1 ≤ j ≤ p, the symmetry of ιx means that the jth column of A is the sum of the
jth and (q − j)th columns of F . Thus we have

A =
(
a0, . . . , ap

)
=




1 2 2 . . . 2
1 ω1 ω2 . . . ωp

...
...

...
...

1 ωp ω2p . . . ωp2


 ,

where we define

ωj = ωj + ωq−j .

Immediate properties are

ωj = ω−j , ωj = ωj+q, ωp+j+1 = ωp−j , ωjωk = ωj+k + ωj−k. (4.2)

Summing over roots of unity, we find

1 +

p∑

t=1

ωst = 0 if s 6≡ 0 mod q. (4.3)

By (4.2), the (j, k) entry of A2 is
∑

ωjtωtk = (1+
∑p

t=1 ω(j+k)t)+(1+
∑p

t=1 ω(j−k)t).

Thus, by (4.3), A2 = qI, so A acts as an involution on projective space.
As in the general cyclic case, we see that we have the orbit

Σ0 → a0 → e0.

Now we consider the orbit of Σi for i 6= 0. Let us define v1 = [1 : t1 : · · · : tp] ∈ Pp

to be the point whose entries are ±1 and which is given by

t2n = t2n+1 = (−1)n if p is even, so v1 = [1 : 1 : −1 : −1 : · · · ]

t2n−1 = t2n = (−1)n if p is odd, so v1 = [1 : −1 : −1 : 1 : · · · ].
(4.4)

Lemma 4.1. Ja1 = Av1.
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Proof. Ja1 = [1 : 2/ω1 : · · · : 2/ωp] = [t1 : 2t1/ω1 : · · · : 2t1/ωp]. Thus we must
show

t1 = 1 + 2

p∑

j=1

tj , and 2t1 = ωk(1 +

p∑

j=1

ωkjtj), ∀ 1 ≤ k ≤ p. (4.5)

The left hand equality is immediate from (4.4). Let us next consider the right hand
equation for k = 1. Using (4.2), we may rewrite this as

2t1 = ω1+t1(ω0+ω2)+t2(ω1+ω3)+t3(ω2+ω4)+t4(ω3+ω5)+· · ·+tp(ωp−1+ωp+1).

In order for the ω1 term to cancel, we need t2 = −1. For ω3 to cancel, we must
have t4 = −t2, etc. We continue in this fashion and determine tj = −tj−2 for all
even j. Using (4.2), we see that ωp−1 = ωp, so this equation ends like

· · · + tp−1(ωp−2 + ωp) + tp(ωp−1 + ωp).

Thus we have tp = −tp−1. Now we can come back down the indices and determine
tj−2 = −tj for all odd j. We see that these values of tj are consistent with (4.4),
which shows that the right hand equation holds for k = 1.

Now for general k, we have

2t1 = ωk + t1(ω0 + ω2k) + t2(ωk + ω3k) + t3(ω2k + ω4k) + t4(ω3k + ω5k) + · · ·

· · · + tp(ω(p−1)k + ω(p+1)k),

and we can repeat the argument that was used for k = 1.

We will make frequent use of the sets

Sr := {1 ≤ j ≤ p : gcd(j, q) = r}.

Thus S1 consists of all the numbers ≤ p which are relatively prime to q. This means
that S1 = {1, 2, . . . , p} if and only if p is prime. Now let us fix k ∈ S1. The numbers
ω1, . . . , ωp are distinct, and by the middle equations in (4.2), there is a permutation
π of the set {1, . . . , p} such that

{ωk, ω2k, . . . , ωpk} = {ωπ(1), . . . , ωπ(p)}

provided that p is prime. Let us define

vk = [1 : t′1 : · · · : t′p], t′π(j) = tj

with tj as in (4.4), so vk is obtained from v1 by permuting the coordinates.

Lemma 4.2. If k ∈ S1, then Jak = Avk.

Proof. As in Lemma 4.1, we will show that ωik(1+
∑

J ωJit
′
J) = 2t′k for all 1 ≤ i ≤ p.

By Lemma 4.1, we have ωI(1 +
∑

ωIjtj) = 2t1 for all 1 ≤ I ≤ p. First observe
that π(1) = k, so t′k = t1. Now set I = π(i) and J = π(j). It follows that the
second equation is obtained from the first one by substitution of the subscripts,
which amounts to permuting various coefficients.

Theorem 4.3. If k ∈ S1, then f maps:

Σk → ak → vk → Avk → ek.

Proof. We have fak = AJak = A2vk by Lemma 4.2, and this is equal to vk since
A is an involution. Next, fvk = AJvk = Avk, since Jvk = vk. Finally, fAvk =
AJAvk = AJJak = Aak = ek. The second equality follows from Lemma 4.2, and
the third equality follows because A is an involution.
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To conclude this Section, we suppose that q is prime. This means that S1 =
{1, . . . , p}. Let X be the complex manifold obtained by blowing up the points aj

and ej for 0 ≤ j ≤ p as well as vj and Avj for 1 ≤ j ≤ p. Let fX : X 99K X be
the induced birational map. It follows from §1 that fX has no exceptional divisors
and is thus 1-regular, i.e. fX satisfies (1.4). We note that {Σ0}X denotes the class
generated by the strict transform of Σ0 in Pic(X). To write this in terms of our
basis, we observe that of all the blowup points, the only ones contained in Σ0 are ei

for i ∈ S1. On the other hand, none of the blowup subspaces Π〈0 mod r〉 is contained
in Σ0. Thus HX is equal to {Σ0}X plus Ej for j ∈ S1, which gives the first line of
(4.6). By Theorem 4.3, then, we have:

f∗
X :E0 7→ A0 7→ Σ0 = HX −

∑

j 6=0

Ej

Ek 7→ Uk 7→ Vk 7→ Ak 7→ Σk = HX −
∑

j 6=k

Ej

HX 7→ pHX − (p − 1)

p∑

j=0

Ej .

(4.6)

The linear map f∗
X is determined by (4.6). Thus we may use (4.6) to write f∗

X as
a matrix and compute its characteristic polynomial. We could do this directly, as
we did in §3. In this case, simply observe that Theorem 4.3 implies that f = AJ
satisfies (1.2) and thus is an elementary map. A formula for the degree growth of
any elementary map was given in Theorem A.1 in [7]. By that formula we recapture
the numbers obtained in [4]:

Theorem 4.4. If q is prime, then δ(K|SCq) = ρ2, where ρ is the largest root of
x2 − px + 1.

5. Symmetric, cyclic matrices: odd q.

Σ0 → A0 → E0

i ∈ S1, Σi → Ai → Vi → AVi → Ei

i ∈ Sr, Σi → Ai → Fi ⊂ Pr → Λr

We observe that in the odd case, we have

{i/r : i ∈ Sr} = {j : gcd(j, q/r) = 1}. (5.1)

We will use this observation to bring ourselves back to certain aspects of the “rela-
tively prime” case. Let 1 < r < q be a divisor of q, and set q̃ = q/r, p̃ = (q̃ − 1)/2.

Let us fix an element k ∈ Sr and set k̃ = k/r. It follows from (5.1) that gcd(k̃, q̃) = 1.

The number ω̃ := ωr is a primitive q̃th root of unity. Let Ã denote the p̃× p̃ matrix
constructed like A but using the numbers ω̃j = ω̃j + ω̃q̃−j . Let ṽ1 = [1 : t̃1 : · · · : t̃p̃]
denote the vector (4.4). Let

ηr = [1 : 0 : · · · : 0 : t̃1 : 0 : · · · ] ∈ Π〈0 mod r〉 ⊂ Pp

be obtained from ṽ1 by inserting r − 1 zeros between every pair of coordinates.

Lemma 5.1. Let 1 < r < q be a divisor of q. Then Jar = Aηr, and far = vr.

Proof. As in the proof of Lemma 4.1 we note that Jar = [1 : 2/ωr : 2/ω2r : · · · :
2/ωpr]. Applying Lemma 4.1 to p̃, q̃, and ω̃, we have 2t̃1 = ω̃κ(1 +

∑
ω̃κj t̃j) for all

positive κ. Now by the definition of ω̃j we have 2t̃1 = ωκr(1 +
∑

ωκjr t̃j), which
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means that equation (4.5) holds for all positive k which are multiples of r. This
completes the proof.

Lemma 5.2. If k ∈ Sr, then ηk := fak is obtained from vr by permuting the
nonzero entries.

Proof. This Lemma follows from Lemma 5.1 exactly the same way that Lemma 4.2
follows from Lemma 4.1.

Let us construct the complex manifold πX : X → Pp by a series of blow-ups.
First we blow up e0 and all the aj . We also blow up the points vj , Avj and ej

for all j ∈ S1. Next we blow up the subspaces Π〈0 mod r〉 for all divisors r of q.
If r1 and r2 both divide q, and r2 divides r1, then we blow up Π〈0 mod r1〉 before
Π〈0 mod r2〉. As we observed in §1, we get different manifolds X , depending on the
order of the blowups of linear subspaces that intersect, but the results in any case
will be pseudo-isomorphic, and thus equivalent for our purposes. We will denote
the exceptional blowup fibers over aj , vj , Avj , and ej by Aj , Vj , AVj and Ej . We
use the notation Pr for the exceptional fiber over Π〈0 mod r〉.

Now let us discuss the exceptional locus of the induced map fX : X 99K X . As
in §4, we have

fX : Σ0 → A0 → E0 → AΣ0

Σj → Aj → Vj → AVj → Ej → AΣj ∀j ∈ S1.
(5.2)

Since A is invertible, fX is locally equivalent to JX , so by (2.5) and (2.6) we see
that none of these hypersurfaces is exceptional for fX .

Pic(X) is generated by H = HX , the point blow-up fibers, and the Pr’s. By
(5.2) we have

f∗
X :E0 7→ A0 7→ {Σ0}X = H − Ê, where we write Ê =

∑

i∈S1

Ei

Ei 7→ AVi 7→ Vi 7→ Ai 7→ {Σi}X =

= H − E0 − (Ê − Ei) − P̂ , ∀i ∈ S1, where P̂ =
∑

r

Pr.

(5.3)

The left hand part of the first line follows from (5.2). The right hand side of the
same line was seen already in (4.6). For the second line, we have HX = {Σi}X + · · · ,
where the dots represent all the blowup fibers lying over subsets of Σi. The the sums
of the E’s correspond to all the blowup points contained in Σi, and for the P̂ term
recall that if i ∈ S1 and r divides q, then i 6≡ 0 mod r, and thus Π〈0 mod r〉 ⊂ Σi.

If j /∈ S1, then j ∈ Sr for r = gcd(j, q). For η ∈ Π〈0 mod r〉 we let F(η) denote
the Pr fiber over η. For the special points ηj , we write simply Fj := F(ηj). For
each η, the induced map

fX : F(η) 99K Λr := AΣ〈0 mod r〉 (5.4)

is birational by (2.8). Since all the fibers map to the same space Λr, it follows that
Pr is exceptional. In particular, we have

fX : Σj 99K Aj 99K Fj 99K Λr. (5.5)

Thus by (2.5) Σj is not exceptional. A similar calculation shows that Aj 99K Fj is
dominant, and in particular, the Aj are exceptional for j ∈ Sr.
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Since each Fj is contained in Pr when j ∈ Sr, we have

f∗
X : Pr 7→

∑

j∈Sr

Aj . (5.6)

The multiplicities of Aj is 1 since f is locally invertible at aj . Also, for j ∈ Sr, we
have

f∗
X : Aj 7→ Σj = H − E0 − Ê − (P̂ −

∑

s∈Ir

Ps). (5.7)

α

α
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Λ
1

2

1
Σ

2

1

2
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F
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F
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Figure 2. Exceptional Orbits: Hooks.

In the sequel we will repeatedly use the notation r̂ := q/r, where 1 < r < q

divides q. Thus ˆ̂r = r. Let us define the point τr := [r − 1 : 0 : · · · : 0 : −1 : 0 : · · · :
0 : −1 : 0 : · · · ] ∈ Π〈0 mod r̂〉, and let us define ξr := [0 : 1 : · · · : 1 : 0 : 1 : · · · : 1 : 0 :
1 : · · · ] ∈ Σ〈0 mod r̂〉. We define αr ∈ Pr̂ to be the point whose base coordinates are
τr and whose fiber coordinates are ξr.

Now to show that (fn
X)∗ = (f∗

X)n we will follow the procedure which is sketched
in Figure 2. That is, we suppose that i1, i2 ∈ Sr and j1, j2 ∈ Sr̂, so the orbits are
as in (5.4). We will show that there is a 2-cycle αr ↔ αr̂ with αr ∈ Λr − I and
αr̂ ∈ Λr̂ − I. This 2-cycle will serve as a hook for Pr and for all Aj with j ∈ Sr

(see Proposition 2.3).

Lemma 5.3. fX(αr) = αr̂, and αr ∈ Pr̂ ∩ Λr.

Proof. Following the discussion in §2, we have J(τr; ξr) = (J ′ξr; J
′′τr) = (ξr; τ

′′
r ),

where τ ′′
r has the same coordinates as τr, except that the 0th coordinate is 1/(r−1).

Now

fX(αr) = AJ(αr) =




∑

j 6≡ mod r̂

aj ;
r

r − 1
a0 −

∑

j≡0 mod r̂

aj





=

(∑
aj − A(0);

r

r − 1
a0 − A(0)

)
,

where A(0) =
∑

j≡0 mod r̂ aj . Since A is an involution (see §4), we have AA0 =∑
j aj = qe0 = (1 + 2p)e0. Since r̂ is a divisor of q, we have

(xq − 1) = ((xr̂)r − 1) = (xr̂ − 1)(1 + xr̂ + x2r̂ + · · · + (xr̂)r−1).



992 ERIC BEDFORD AND KYOUNGHEE KIM

It follows that 1 +
∑(r−1)/2

k=1 ωk(jr̂) = 0 if j 6≡ 0 mod r; and the sum is equal to r

otherwise. Thus we have A(0) = r[1 : 0 : · · · : 0 : 1 : 0 : · · · ]. Taking the difference∑
aj −A(0) and using 2p+1 = r · r̂ we find that the base point of fX(αr) is τr̂.

Similarly, r/(r − 1)a0 −A(0) = r/(r − 1)ξr̂ + (r/(r − 1)− r)A(0). Since the fiber
of Pr

∼= Σ〈0 mod r〉 we have that the fiber point of fX(αr) is ξr̂. Thus by (5.4)
αr̂ = fX(αr) ∈ Λr̂. Replacing r by r̂, we complete the proof.

Theorem 5.4. The action on cohomology f∗
X is given by:

f∗
X : E0 7→ A0 7→ H − Ê, Pr 7→

∑

j∈Sr

Aj ,

Ei 7→ AVi 7→ Vi 7→ Ai 7→ H − E0 − (Ê − Ei) − P̂ , ∀i ∈ S1,

Aj 7→ Σj = H − E0 − Ê − (P̂ −
∑

s∈Ir

Ps)

H → pH − (p − 1)E0 − (p − 1)Ê −
∑

r

(p − (⌊
q − 1

2r
⌋ + 1))Pr.

where Ê =
∑

i∈S1
Ei, and P̂ =

∑
r Pr.

Proof. Everything except the last line is a consequence of (5.4), (5.6) and (5.7). It
remains to determine f∗

XH , which is the same as J∗
XH . We recall from §2 that

J∗
XH is equal to N ·H minus a linear combination of the exceptional blowup fibers

over the indeterminate subspaces that got blown up. Here N = p, the dimension
of the space X . The multiples of the exceptional blowup fibers are, according to
(2.12) and (2.13), given by −M , where M is one less than the codimension of the
blowup base. This gives the numbers in the last line of the formula above.

Let us consider the prime factorization q = pm1

1 pm2

2 · · · pmk

k . For each divisor

r > 1 of q, we set µr := ⌊ q−1
2r ⌋ + 1, κr = #Sr, and κ = q−1

2 −
∑

r κr. We define

Tpi
(x) = κpi

∏

r 6=pi

(x2 − κr), T0(x) =
∏

r

(x2 − κr) +
∑

r

Tr(x),

Tr(x) =
κr

x2 − κr




∑

s∈Ir−{r}

Ts(x)



 + κr

∏

s6=r

(x2 − κs), for r 6= pi.

(5.8)

Theorem 5.5. The map fX satisfies (1.4), and the dynamical degree δ(K|SCq) is
ρ2, where ρ is the largest root of

(x − p)(x4 − 1)
∏

r

(x2 − κr) + κ(x − 1)
∏

r

(x2 − κr)

+ (x − 1)(x2 + 1)T0(x) +
∑

r

(x − µr)(x
4 − 1)Tr(x).

(5.9)

Proof. We have found hooks for all the exceptional hypersurfaces of fX , so (1.4)
holds by Theorem 2.4. The proof that formula (5.9) gives characteristic polynomial
of f∗

X is given in Appendix E.
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6. Symmetric, cyclic matrices: q = 2×odd.

Σ0/p → A0/p → E0/p

i ∈ S1 ∪ S2, Σi → Ai → Wringer

i ∈ Sr ∪ S2r, Σi → Ai → Fi(⊂ Pe/o,r) → Λe/o,r

For the rest of this paper we consider the case of even q. Let us set p = q/2
and ι(x0, . . . , xp) = (x0, . . . , xp−1, xp, xp−1, . . . , x1). For even q, the matrix in (1.1)
is symmetric if and only if it has the form M(ι(x0, . . . , xp)). As in §3, we have an
isomorphism

Pp ∋ x 7→ F−1D(Fιx)F ∈ SCq.

With this isomorphism we transfer the map F ◦ J to the map

f := A ◦ J : Pp
99K Pp.

Matrix transposition corresponds to the involution xj ↔ xp−j for 1 ≤ j ≤ p − 1.
Thus the elements x0 and xp have special status. In particular, the 0th column of
A = (a0, . . . , ap) is equal to the 0th column of F , i.e., a0 = f0 = (1, . . . , 1), and the
pth column is ap = fp = (1,−1, 1,−1, . . . ). For 1 ≤ j ≤ p − 1

aj = fj + fp−j = (ωj0, . . . , ωjp)

where ωj = ωj + ωq−j . In particular, since q = 2×odd, we have ωjp = +2 if j is
even and ωjp = −2 if j is odd, and

ωp−j = ωp+j = −ωj . (6.1)

Since q is even, we have

A = (a0, . . . , ap) =




1 2 2 . . . 2 1
1 ω1 ω2 . . . ωp−1 −1
...

...
...

...
...

1 ωp−1 ω2p−2 . . . ω(p−1)2 1
1 −2 2 . . . 2 −1




. (6.2)

It is evident that

f : Σ0 → a0 → e0, Σp → ap → ep. (6.3)

Arguing as in §4, we see that A is an involution on projective space. Since p is odd,
every divisor r of p satisfies

S2r = {1 ≤ j ≤ p : (j, q) = 2r} = {j even : (j/2, p/r) = 1} = {p−j : j ∈ Sr}. (6.4)

We will use the notation ηi := f(ai) and

Πeven := Π〈0 mod 2〉, Πodd := Π〈1 mod 2〉.

Lemma 6.1. If i ∈ S1, then ηi ∈ Πodd. If i ∈ S2, then ηi ∈ Πeven.

Proof. Let us consider first the case i = 2 ∈ S2. We will show that v2 = [1 : 0 : ±1 :
0 : ±1 : 0 : · · · ], which evidently belongs to Πeven. Note that ω̃ := ω2 is a primitive
pth root of unity, and since p is odd, −ω̃ is a primitive pth root of −1. We will
solve the equation Ja2 = Av2 with v2 = [1 : 0 : t2 : 0 : t4 : 0 : · · · ]. Since q = 2p,
we have Ja2 = [1 : 2/ω2 : 2/ω4 : · · · : 2/ω2p−2 : 1]. Thus the equation Ja2 = Av2

becomes the system of equations ω2i(1+
∑(p−1)/2

j=1 ω2ijt2j) = 2t2 for 0 ≤ i ≤ p. Now
we repeat the proof of Lemma 5.1 with q replaced by p and with ω replaced by ω̃,
and we find solutions t2j = ±1. This yields v2 ∈ Πeven, as desired. Finally, we pass
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from the case i = 2 to the case of general i ∈ S2 by repeating the arguments of
Lemma 4.2.

Now consider i = 1 ∈ S1. We have Ja1 = [1 : 2/ω1 : 2/ω2 : · · · : 2/ωp−1 : −1].
Since p− 1 ∈ S2, we have ηp−1 = [1 : 0 : t2 : 0 : · · · : tp−1 : 0] ∈ Πeven. The equation
satisfied by vp−1 is ωk(p−1)(1 +

∑
t2jω2jk) = tp−1 for 0 ≤ k ≤ p. Using (6.1), we

convert this equation to

ωk(
∑

t2jωp−2jk − 1) = tp−1, if k is odd

ωk(
∑

t2jω2jk + 1) = tp−1, if k is even.

By (4.2) and (6.1) we have ωp−2j(2ℓ+1) = ωp−2j(2ℓ+1)+2ℓp and ω2j·2ℓ = ω2ℓp−2ℓ2j .
Now setting k = 2ℓ + 1 when k is odd and k = 2ℓ when k is even, we have

ω2ℓ+1(
∑

t2jω(2ℓ+1)(p−2j) − 1) = 2tp−1

ω2ℓ(
∑

t2jω(2ℓ)(p−2j) + 1) = 2tp−1

It follows that η1 = [0 : tp−1 : 0 : tp−3 : · · · : t2 : 0 : 1] ∈ Πodd. For general i ∈ S1,
we use the argument of Lemma 4.2.

Lemma 6.2. Let r be an odd divisor of q. For j ∈ Sr, we have ηj := faj ∈
Π〈r mod 2r〉, and η2j := fa2j ∈ Π〈0 mod 2r〉.

Proof. First we consider i = 2r ∈ S2r. Since ω̃ = ω2r is a primitive (p/r)th root of
unity, and p/r is odd, we repeat the proof of Lemma 5.1 to show that fa2r = η2r

where η2r = [1 : 0 : · · · : 0 : ±1 : 0 : · · · ] ∈ Π〈0 mod 2r〉. The same reasoning as in
Lemma 4.2 shows that for general i ∈ S2r we have fai = ηi ∈ Π〈0 mod 2r〉

Now consider i = r ∈ Sr. Since p/r is odd ω̃ = ωr is a primitive p/rth root
of −1. As before Jar = [1 : 2/ωr : 2/ω2r : · · · : 2/ω(p−1)r : −1]. With the same
argument in the proof of Lemma 6.1 we have

ω̃k(
∑

t̃2jω̃k(p/r−2j) − 1) = 2t̃p/r−1, if k is odd

ω̃k(
∑

t̃2jω̃k(p/r−2j) + 1) = 2t̃p/r−1, if k is even.

By the definition of ω̃k we have

ωkr(
∑

t̃2jωkr(p/r−2j) − 1) = 2t̃p/r−1, if k is odd

ωkr(
∑

t̃2jωkr(p/r−2j) + 1) = 2t̃p/r−1, if k is even

which means far = ηr ∈ Π〈r mod 2r〉. For general i ∈ Sr, we use the argument of
Lemma 4.2.

Lemma 6.3. We have:

AΠodd = {x0 = −xp, x1 = −xp−1, . . . , x(p−1)/2 = −x(p+1)/2}

AΠeven = {x0 = xp, x1 = xp−1, . . . , x(p−1)/2 = x(p+1)/2},

and fAΠodd = Πodd, fAΠeven = Πeven.

Proof. Let us first consider the case AΠodd. A linear subspace AΠodd is spanned
by column vectors {a1, a3, . . . , ap}. When j is odd, aj = [2 : ωj : ω2j : · · · : ω(p−1)j :
−2]. By (6.1) we have ω(p−k)j = ωpj−kj = −ωkj for all 1 ≤ k ≤ p−1. It follows that
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AΠodd ⊂ {x0 = −xp, x1 = −xp−1, . . . , x(p−1)/2 = −x(p+1)/2}. Since A is invertible
{a1, a3, . . . , ap} is linearly independent. It follows that

dim AΠodd =
p − 1

2
= dim {x0 = −xp, x1 = −xp−1, . . . , x(p−1)/2 = −x(p+1)/2}.

With the fact that ω(p−k)j = ωkj for even j, the proof for AΠeven is similar.

With this formula for AΠodd, we see that it is invariant under J . Now since A is
an involution, we have fAΠodd = Πodd.

Let us construct the complex manifold π : X → Pp by a series of blow-ups. First
we blow up the points e0, ep and aj for all j. Next we blow up the subspaces Πeven,
Πodd, AΠeven, and AΠodd. Then we blow up the subspaces Π〈0 mod 2r〉, Π〈r mod 2r〉

and Π〈0 mod r〉 for all r /∈ S1∪S2. We continue with our convention that if r2 divides
r1 then we first blow up Π〈0 mod 2r1〉, Π〈r1 mod 2r1〉, then Π〈0 mod r1〉, and then the
corresponding spaces for r2. We will use the following notation for (π-exceptional)
divisors of the blowup:

π : Pe → Πe, APe → AΠe, Po → Πo, APo → AΠo,

and for every proper divisor r of p we will write:

π : Pe,r → Π〈0 mod 2r〉, Po,r → Π〈r mod 2r〉, Pr → Π〈0 mod r〉.

For 1 ≤ i ≤ p − 1, we let Fi = F(ηi) denote the fiber over ηi. We define Λr

as the strict transform of AΣ〈0 mod r〉 in X , and Λe/o,r as the strict transforms of
AΣ〈0/r mod 2r〉.

We will do two things in the rest of this Section: we will compute f∗
X on Pic(X),

and we will show that fX : X 99K X is 1-regular. It is frequently a straightforward
calculation to determine f∗

X and more difficult to show that the map satisfies the
condition (1.4). Let us start by computing f∗

X . We will take H = HX , E0/p, Ai,
i = 0, . . . , p, Pe/o, APe/o, Pe/o,r, Pr as a basis for Pic(X). We see that Σ0 contains
ep as well as Πodd, as well as Π〈r mod 2r〉 ⊂ Πodd; and Σ0 contains no other centers
of blow-up. Thus we have

H = {Σ0} + Ep + P̂o, where P̂o = Po +
∑

r

Po,r. (6.5)

This gives

f∗
X : E0 7→ A0 7→ {Σ0} = H −Ep − P̂o, Ep 7→ Ap 7→ {Σp} = H −E0 − P̂e, (6.6)

where P̂e = Pe +
∑

r Pe,r. Next, consider a divisor r of p = q/2, so r is odd. If
i ∈ Sr, then i is odd, and the set Σi contains the following centers of blowup: e0,
ep, Πeven, Π〈s mod 2s〉 and Π〈0 mod s〉 for all s which divide p but not r. Thus we
have

H = Σi + E0 + Ep + P̂e − (P̂o −
∑

j∈Ir

Po,j) − (P̂ −
∑

j∈Ir

Pj) (6.7)

where Ir is the set of numbers 1 ≤ k ≤ p− 1 which divide r, and P̂ =
∑

r Pr. Thus
we have

i ∈ Sr f∗
X : Ai 7→ H − E0 − Ep − P̂e − (P̂o −

∑

j∈Ir

Po,j) − (P̂ −
∑

j∈Ir

Pj)

i ∈ S2r Ai 7→ H − E0 − Ep − P̂o − (P̂e −
∑

j∈Ir

Pe,j) − (P̂ −
∑

j∈Ir

Pj)
(6.8)
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By a similar argument, we have

i ∈ S1 f∗
X : Ai 7→ H − E0 − Ep − P̂e − (P̂o − Po) − P̂

i ∈ S2 Ai 7→ H − E0 − Ep − P̂o − (P̂e − Pe) − P̂
(6.9)

If i ∈ S1, then fai ∈ Πodd. Further fAΠodd = Πodd and fXΠo = AΠe. We observe
that for every divisor r, we have Pr → Λr, Pe/o,r → Λe/o,r, so APo and Ai, i ∈ S1

are the only exceptional hypersurfaces which is mapped by fX to π−1(Πodd). Thus
we have

f∗
X : Po 7→ APo +

∑

i∈S1

Ai, Pe 7→ APe +
∑

i∈S2

Ai, APe/o 7→ Po/e (6.10)

For a divisor r of p we have

f∗
X : Pe,r 7→

∑

i∈S2r

Ai, Po,r 7→
∑

i∈Sr

Ai, and Pr 7→ 0 (6.11)

By §2, we have

f∗
X : H 7→ pH − (p − 1)(E0 + Ed) − (p − (p + 1)/2)(Pe + Po)

−
∑

r

(p − (p/r + 1)/2)(Pr,e + Pr,o) −
∑

r

(p − p/r − 1)Pr
(6.12)

Theorem 6.4. Equations (6.6–6.12) define f∗
X as a linear map of Pic(X).

Next we discuss the exceptional locus of the induced map fX : X → X. As in
§4, we have

fX : Σ0 → A0 → E0 → AΣ0, and Σp → Ap → Ep → AΣp.

Using (2.5), (2.6) and (2.8), we see that Σ0/p, A0/p, and E0/p are not exceptional.

Lemma 6.5. For i ∈ S1 ∪ S2, Σi is not exceptional for fX, and fX |Ai : Ai 99K

Fi ⊂ Pe/o is a dominant map; thus Ai is exceptional.

Lemma 6.6. The maps fX : Pe 99K APo 99K Po 99K APe 99K Pe are dominant. In
particular, Pe, APo, Po, and APe are not exceptional.

Proof. Since AΠodd and AΠeven are not indeterminate, it is sufficient to show that
only for Pe and Po. We will show the mapping fX : Pe 99K APo is dominant.
The proof for Po is similar. The generic point of Pe is written as x; ξ where x =
[x0 : 0 : x2 : 0 : · · · : xp−1 : 0] and ξ = [0 : ξ1 : 0 : ξ3 : · · · : 0 : ξp]. It follows
that fX(x; ξ) =

∑
i: odd(1/ξi)ai;

∑
j: even(1/xj)aj . It is evident that the mapping is

dominant and thus Pe is not exceptional.

By Lemma 6.6, there is a 4-cycle {Pe, APo, Po, APe} of hypersurfaces, which we
call “the wringer”; this is pictured in Figure 3. For i ∈ S1, the orbit fX : Σi 99K

Ai 99K Fi enters this 4-cycle, which illustrates Lemma 6.5. The fibers ε ⊂ Pe are
the fibers F(ej) for even j, 1 < j ≤ p−1, and the fibers ε = F(ei) ⊂ Po correspond
to i odd. If, for some n ≥ 0, we have fn

XFi ⊂ ε ⊂ IX , then the next iteration will
blow up to a hypersurface.

Let us identify Πe, and Πo, with Pp̃, p̃ = (p − 1)/2 as follows:

i1 : [x0 : 0 : x2 : 0 : · · · : xp−1 : 0] ∈ Πe ↔ [x0 : x2 : · · · : xp−1] ∈ Pp̃

i2 : [0 : x1 : 0 : x3 : · · · : 0 : xp] ∈ Πo ↔ [xp : xp−2 : · · · : x1] ∈ Pp̃
(6.13)
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Σ

Σ

ε

ε

F

F

Figure 3. Exceptional Orbits: The Wringer.

Thus we may identify ιe := (i1, i2) : Pe
∼= Πe; Πo → Pp̃ × Pp̃ and ιo := (i2, i1) :

Po
∼= Πo; Πe → Pp̃ × Pp̃. The number q̃ = q/2 is odd, so the map fq̃ = Aq̃ ◦ J on

Pp̃ is one of the maps discussed in §5. Let us define:

h1 := Pp̃ × Pp̃ ∋ (x ; ξ) 7→ (fq̃(ξ) ; fq̃(x)) ∈ Pp̃ × Pp̃

h2 := Pp̃ × Pp̃ ∋ (x ; ξ) 7→ (fq̃(x) ; Aq̃ ◦ φx(ξ)) ∈ Pp̃ × Pp̃
(6.14)

where for each v = [v0 : · · · : vp̃] ∈ Pp̃ we set φv : [w0 : · · · : wp̃] 7→ [w0v
−2
0 : · · · :

wp̃v
−2
p̃ ]. If we set h := h2 ◦ h1, then since i2 reverses the coordinates, we have

f2
X = ι−1

o ◦ h ◦ ιe on Pe, and f2
X = ι−1

e ◦ h ◦ ιo on Po.

In other words, ιe and ιo conjugate the action of f2
X on the wringer to the map h

on Pp̃ × Pp̃.
If i ∈ S2, then ı̃ = i/2 is relatively prime to q̃, and we write ṽı̃ ∈ Pp̃ for the

vector in Lemma 4.2. Thus we have ιe(ηi) = ṽı̃, and we have ιeFi = {ṽı̃} × Pp̃.
Similarly, if i ∈ S1, ı̃ = (p − i)/2 is relatively prime to q̃, and we have ιo(ηi) = ṽı̃,
and we may identify Fi with the vertical fiber over ṽı̃.

For x ∈ Pp̃, let L(x) ⊂ Pp̃ denote the line containing a0 = (1, . . . , 1) and x.
Recall that ṽı̃ = [1 : ±1 : ±1 : · · · ] = [1 : t1 : · · · : tp̃], and define the set
Iı̃ = {1 ≤ k ≤ p̃ : tk = −1}. It follows that L(eı̃) = {x0 = xk, k 6= ı̃}, and

L(ṽı̃) = {[x0 : · · · : xp̃] : x0 = xk, k /∈ Ii; xℓ = xm, ℓ, m ∈ Iı̃}.

Thus L(eı̃) = {[x0 : x0 : · · · : x1 : · · · : x0]}, where all the entries are x0, except for
one x1 in the ı̃ location, and L(ṽı̃) = {[x0 : · · · : x1 : · · · ]}, where all the entries are
x0 except for a x1 in each location in Iı̃.

If i ∈ S1 ∪ S2, we write Bi := L(ṽı̃) × L(ṽı̃) and Di = L(eı̃) × L(eı̃).

Lemma 6.7. h : Bi ↔ Di.

Proof. Let us first consider h(Bi). Using defining equations for L(ṽı̃) we have that
1 dimensional linear subspace L(ṽı̃) is invariant under J . Thus fq̃L(ṽı̃) is a linear
subspace containing fq̃a0 = e0 and fq̃ ṽı̃. Let us set fq̃ṽı̃ = [α0 : · · · : αp̃]. It follows
that fq̃L(ṽı̃) = {[x0 : · · · : xp̃] : αkx1 = α1xk, k = 2, . . . , p̃} and Jfq̃L(ṽı̃) = {[x0 :
· · · : xp̃] : α1x1 = αkxk, k = 2, . . . , p̃}. Since Jfq̃L(ṽı̃) is again a 1 dimensional
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linear subspace, we have f2
q̃ L(ṽı̃) = Aq̃ ◦ Jfq̃L(ṽı̃) is a linear subspace. Note that

e0 ∈ Jfq̃L(ṽı̃) and Aq̃e0 = a0. By the Theorem 4.3, we have f2
q̃ ṽı̃ = eı̃. Thus we

have f2
q̃ L(ṽı̃) = L(eı̃). Now consider a generic point in h1L(ṽı̃). By the previous

computation a generic point in h1L(ṽı̃) is [y0 : · · · : yp̃]; [ζ0 : · · · : ζp̃] where αky1 =
α1yk and αkζ1 = α1ζk for k = 2, . . . , p̃. It follows that α1(ζ1/y2

1) = αk(ζk/y2
k). Thus

we have Aq̃ ◦ φy(ζ) ∈ L(eı̃) and therefore h(Bi) = Di.
For h(Di), we note that L(eı̃) is invariant under J and Aq̃, J are both involutions.

Using the previous argument, we have Aq̃JAq̃L(ṽı̃) = L(eı̃) = JL(eı̃) and therefore
f2

q̃ L(eı̃) = L(ṽı̃). Recall that fq̃L(eı̃) = {[x0 : · · · : xp̃] : α1x1 = αkxk, k = 2, . . . , p̃},

and with the same reasoning for fq̃L(ṽı̃), we have h(Di) = Bi.

By Lemma 6.7, we may simplify notation and write h|Bi and h|Di in the form

h([x0 : x1], [y0 : y1]) = ([x′
0 : x′

1], [y
′
0 : y′

1]).

For the following we write h in affine coordinates h(x, y) = (x′, y′). In order to
write h|Bi and h|Di more explicitly, we will use the following result:

Lemma 6.8. For i ∈ S1 ∪ S2, we set α(i) :=
∏p̃

ℓ=1

∑
j∈Iı̃

ωjℓ and β(i) :=
∏p̃

ℓ=1 ωℓı̃.

It follows that (α(i))2 = (β(i))2 = 1, and the coefficient tı̃ = ±1 in ṽı̃ satisfies

p̃∑

k=1

∏

ℓ 6=k

∑

j∈Iı̃

ωjℓ = tı̃α
(i),

p̃∑

k=1

ωk

∏

ℓ 6=k

∑

j∈Iı̃

ωjℓ = (2 − p)tı̃α
(i)

p̃∑

k=1

∏

ℓ 6=k

ωjℓı̃ = ⌊
p̃ + 1

2
⌋tı̃β

(i),

p̃∑

k=1

ω2kı̃

∏

ℓ 6=k

ωℓı̃ = −(1 + 2⌊
p̃ + 1

2
⌋)tı̃β

(i).

Proof. Recall that for each i ∈ S1 ∪ S2, we have ı̃ ∈ S1(q̃) and ṽı̃ = [1 : t1 : · · · :
tp̃] = [1 : ±1 : · · · : ±1] and Aq̃ ṽı̃ = [α0 : · · · : αp̃] where α0 = 1 + 2

∑
tj and

αk = 1 +
∑

tjωjk. Since tk = ±1 and 1 +
∑

ωjk = 0 for all k 6= 0, it follows that
1 +

∑
tjωjk = −2

∑
j∈Iı̃

ωjk. By Lemma 3.2, we have Jaı̃ = Aq̃ ṽı̃ and α0 = tı̃. It

follows that [tı̃ : 2tı̃/ωı̃ : · · · : 2tı̃/ωp̃ı̃] = [tı̃ : −2
∑

j∈Iı̃
ωj : · · · : −2

∑
j∈Iı̃

ωp̃j ] and
therefore we have ∑

j∈Iı̃

ωkj = −tı̃/ωkı̃. (6.15)

Thus we have α(i) = (−tı̃)
p̃
∏p̃

ℓ=1 1/ωℓı̃. Recall that ωj = ωj + ωq̃−j is real for
all j and tı̃ = ±1. Since ωı̃ is a q̃th primitive root of unity, we have xq̃ − 1 =

(x − 1)
∏q̃−1

ℓ=1 (x − ωℓı̃). By letting x = −1 we get

|α(i)|2 =
1

|β(i)|2
=

p̃∏

ℓ=1

1

ωℓı̃ · ωq̃−ℓı̃

p̃∏

ℓ=1

1

(1 + ωq̃−ℓı̃)(1 + ωℓı̃)
= 1

Notice that
∑p̃

k=1

∏
ℓ 6=k

∑
j∈Iı̃

ωjℓ = (−tı̃)α
(i)
∑p̃

k=1 ωkı̃ = tı̃α
(i). Similarly we

have
∑p̃

k=1 ωk

∏
ℓ 6=k

∑
j∈Iı̃

ωjℓ = (−tı̃)α
(i)
∑p̃

k=1 ω2
kı̃. Recall that ω2

kı̃ = 2+ω2kı̃ and

2ı̃ is relatively prime to q̃. It follows that
∑p̃

k=1 ω2
kı̃ = 2p̃ − 1 = p − 2.

Note that
∑p̃

k=1

∏
ℓ 6=k ωℓı̃ =

∏
ℓ ωℓı̃

∑p̃
k=1 1/ωkı̃. By (6.15) we have

∑p̃
k=1

∏
ℓ 6=k ωℓı̃ = (−tı̃)

∏
ℓ ωℓı̃

∑
j∈Iı̃

∑p̃
k=1 1/ωkj . Recall (4.4), we have #Iı̃ =

⌊(p̃ + 1)/2⌋. It follows that
∑p̃

k=1

∏
ℓ 6=k ωℓı̃ = tı̃⌊(p̃ + 1)/2⌋

∏p̃
ℓ=1 ωℓı̃. Using (4.2)

we have ω2kı̃ + 2 = ω2
kı̃. It follows that

∑p̃
k=1 ω2kı̃

∏
ℓ 6=k ωℓı̃ =

∏
ℓ ωℓı̃

∑p̃
k=1 ωkı̃ −
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2
∑p̃

k=1

∏
ℓ 6=k ωjℓı̃. By the previous computation, it follows that

∑p̃
k=1 ω2kı̃

∏
ℓ 6=k ωℓı̃ = −(1 + 2⌊ p̃+1

2 ⌋)tı̃
∏p̃

ℓ=1 ωℓı̃.

Lemma 6.9. If p̃ is even, then

h|Bi =

(
−p̃ + (−p̃ + 1)y

1 + y
,
y2 − 2xy + p̃2(x − 1)(y + 1)2 + x + p̃(x − 1)(y2 − 1)

2y2 − p̃(x − 1)(y + 1)2 − x(y2 + 2y − 1)

)

h|Di =

(
−p̃y − 1

(p̃ − 1)y + 1
,

2p̃2(y − 1)x2 + x2 − p̃(x − 4)(y − 1)x − 2yx + 3y − 2

(2(1 − y)p̃2 − 3(1 − y)p̃ + 2 − y)x2 + (−4yp̃ + 4p̃ + 2y − 4)x − y + 2

)

and a similar formula holds for p̃ odd.

Proof. This is a direct calculation using the definitions of h1 and h2 and the iden-
tities on Lemma 6.8.

Lemma 6.10. If i ∈ S1 ∪ S2, then the point (−1, 1) ∈ Bi is preperiodic, that is
h(−1, 1) has period 4. Thus (−1, 1) ∈ Bi is a hook for Ai.

Proof. The preperiodicity of (−1, 1) follows from the formula in Lemma 6.9. To see
that (−1, 1) is a hook, we argue as follows: Suppose i is even. Then fXAi = Fi ⊂ Pe,
and Fi is the fiber over ηi. We need to show that for all n ≥ 0, fn

XFi 6⊂ IX . We
have identified ιe : Pe → Pp̃ × Pp̃, and under this identification F(ηi) is taken to
ṽı̃ × Pp̃. Thus ιe(Fi) ∩ Bi corresponds to the line [1 : −1] × Pp̃, which contains
the point which we represent in affine coordinates as (−1, 1). Although it is true
that h1(−1, 1) corresponds to a point of indeterminacy of fX , the rest of h1([1 :
−1]×P1) is disjoint from IX . It follows that h([1 : −1]×P1) is a curve in Di which
passes through h(−1, 1). Since the 4-cycle {h(−1, 1), h2(−1, 1), h3(−1, 1), h4(−1, 1)}
is disjoint from IX , our result follows.

From §2 we have the following:

Lemma 6.11. When 1 < r < p divides p, fX induces dominant maps Pe,r 99K Λe,r,
Po,r 99K Λo,r, and Pr 99K Λr. In particular, the hypersurfaces Pe,r, Po,r, and Pr

are exceptional.

Next we will construct hooks for the subspaces Pe,r , Po,r, and Pr. Let us define
τ ′ = [t′0 : · · · : t′p] and τ ′′ = [t′′0 : · · · : t′′p ] where t′0 = −t′p = t′′0 = t′′p = −(pr− p)/(p +

r), t′jp/r = (−1)j, t′′jp/r = 1 for 1 ≤ j ≤ r− 1, and t′i = t′′i = 0 for all other i. We set

τe,r := τ ′ + τ ′′ ∈ Π〈0 mod 2 p
r
〉, τo,r := τ ′ − τ ′′ ∈ Π〈 p

r
mod 2 p

r
〉.

Lemma 6.12. We have τ ′ =
∑

i odd, i6≡0 mod r ai and τ ′′ =
∑

i even, i6≡0 mod r ai.
Thus

τe,r, τo,r ∈ AΣ〈0 mod 2r〉 ∩ AΣ〈r mod 2r〉 = AΣ〈0 mod r〉.
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Proof. Since ω is a pth root of −1, we have

(ωp + 1) = −(ω + 1)(−1 + ω − ω2 + · · · + ωp−2 − ωp−1) = 0.

We also have ωq−k = ωp · ωp−k = −ωp−k, so ω1 − ωp−1 = ω1 + ωq−1 = ω1,
ω3 − ωp−3 = ω3 + ωq−3 = ω3, . . . and −ω2 + ωp−2 = ωp+2 + ωp−2 = ωp−2, etc. It
follows that

−1 + ω − ω2 + · · · + ωp−2 − ωp−1 = ω1 + ω3 + · · · + ωp−2 − 1 = 0.

Similarly for all odd k 6= p, ωk is a pth root of −1 and
∑

i odd ωki − 1 = 0.
Since ω2 is a pth root of unity, we have

((ω2)p − 1) = (ω2 − 1)(1 + ω2 + ω4 + · · · + ω(p−1)2) = 0.

Since ωq−2k = ω2p−2k, we have ω2 + ω(p−1)2 = ω2. Similarly, ω4 + ω(p−2)2 =
ωq−2(p−2) + ω(p−2)2 = ω(p−2)2, etc. It follows that

1 + ω2 + ω4 + · · · + ω(p−1)2 = ω2 + ω6 + · · · + ω(p−1)2 + 1 = 0.

For all even k 6= 0 we have
∑

i odd ωki + 1 = 0, and we may combine the cases of k
even and odd to obtain

∑

i odd

ai = (p + 1)[1 : 0 : · · · : 0 : −1].

Since r is a divisor of p, ωr is a primitive p/rth root of −1 and ((ωr)p/r + 1) =
(ωr + 1)(1− ωr + ω2r + · · ·+ ω(p/r−1)r). Repeating the previous argument with ωr

and p/r, we have
∑

i odd, i≡0 mod r

ai

= (p/r + 1)[1 : 0 : · · · : 0 : −1 : 0 : · · · : 0 : 1 : 0 : · · · : −1] ∈ Π〈0 mod p/r〉.

Subtracting
∑

i odd ai from
∑

i odd, i≡0 mod r ai, it follows that

τ ′ =
∑

i odd, i6≡0 mod r

ai ∈ AΣ〈0 mod r〉.

The proof for τ ′′ is similar.

Let us define u′
e,r = (u′

i) ∈ Pp to be the vector such that u′
i = 1 if i ≡ p/r mod

2p/r and u′
i = 0 otherwise. We set u′′

e,r = (u′′
i ) where u′′

i = 0 if i ≡ 0 mod p/r and
u′′

i = 1 otherwise. Let us define u′
o,r = (u′

i) ∈ Pp to be the vector such that u′
i = 1

if i ≡ 0 mod 2p/r and u′
i = 0 otherwise. We set u′′

o,r = (u′′
i ) where u′′

i = 0 if i ≡ 0

mod p/r and u′′
i = (−1)i otherwise. We let ℓe,r to be the line containing u′

e,r and
u′′

e,r, and let αe,r be the line in Pe,r̂ lying over the basepoint τe,r and having fiber
coordinate in ℓe,r. We define αo,r similarly.

Lemma 6.13. Each of the sets αe,r ∩ IX and αo,r ∩ IX consists of 2 points, and
αe,r∪αo,r ⊂ Λr. fXαe,r ⊂ Pr∩Λe,r̂, and fXαo,r ⊂ Pr∩Λo,r̂. Finally, f2

Xαe,r = αe,r,
and f2

Xαo,r = αo,r.

Proof. Let us consider the case αe,r. By Lemma 6.11, fX : Pe,r → Λe,r and by
Lemma 6.12 αe,r ⊂ Pe,r̂. It follows that fXαe,r ⊂ Λe,r̂. A generic point ζ in αe,r
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has a form τr,o + τr,e; [0 : 1 : · · · : 1 : x : 1 : · · · : 1 : 0 : 1 : · · · 1 : x] for some x ∈ C∗.
Applying the map f , we have

ζ
J
7→ [0 : 1 : · · · : 1 :

1

x
: 1 : · · · : 1 : 0 : 1 : · · · : 1 :

1

x
]; [

(p + r)

(pr − p)
: 0 : · · · : 0 : 1 : 0 : · · · ]

A
7→ (τp/r,o + τp/r,e +

1

x

∑

i≡p/r mod 2p/r

ai); (
(p + r)

(pr − p)
a0 +

∑

i≡0 mod 2p/r

ai).

By Lemma 6.12, there exist nonzero constants β1, β2, and β3 such that

τp/r,o + τp/r,e +
1

x

∑

i≡p/r mod 2p/r

ai ∈ Π〈0 mod r〉

=[β1 : 0 : · · · : 0 : β2 : 0 : · · · : 0 : β2 : 0 : · · · : 0] ∈ Π〈0 mod 2r〉

+ [
β3

x
: 0 : · · · : 0 : −

β3

x
: 0 : · · · : 0 :

β3

x
: 0 : · · · ] ∈ Π〈0 mod r〉.

It follows that fXαe,r ⊂ Pr∩Λe,r̂. Again by Lemma 6.11, we know that f2
Xαe,r ⊂ Λr.

For the fiber for fXζ, the jth-coordinate of 1
αa0 +

∑
i≡0 mod 2p/r ai are all equal for

j 6≡ 0 mod r. It follows that

fX : ζ 7→ fXζ

7→ τr,o + τr,e; (
1

β1 + β3/x
a0 +

1

β2

∑

i≡r mod 2r

ai +
1

β2 − β3/x

∑

i≡0 mod 2r

ai).

Note that both αe,r f2
Xαe,r are 1-dimensional linear subspaces in fiber over τe,r .

Using the computation in Lemma 6.12 we have f2
Xαe,r = αe,r. We use a similar

argument for αo,r.

Corollary 6.14. Let r > 1 be an odd divisor of q. Then for j ∈ Sr, αo,r is a hook
for Aj, and Po,r and Pr; and αe,r is a hook for A2j , Pe,r, and Pr.

Let us consider the prime factorization q = 2pm1

1 pm2

2 · · · pmk

k . For each divisor

r > 1 of q, we set µ := p+1
2 , κ = #S2 = #S1, µr := p/r+1

2 , and κr = #S2r = #Sr.

Theorem 6.15. Condition (1.4) holds for fX , and δ(K) = ρ2 where ρ is the largest
root of

(x − p)(x2 − κ − 1)
∏

r

(x2 − κr) + 2κ(x − µ)
∏

r

(x2 − κr)

+ 2(x − 1)T0(x) + 2
∑

r

(x − µr)(x
2 − 1)Tr(x)

with the polynomials Tj(x) are defined in (5.8).

Proof. We have determined all the exceptional hypersurfaces for fX and have found
a hook for each of them. Thus by Theorem 2.4, condition (1.4) holds for fX . Thus
δ(f) is the spectral radius of f∗

X . Consider f∗
X as in Theorem 6.4 and let χ(x) denote

its characteristic polynomial. We may now determine χ(x) as in Theorem 5.5 (see
Appendix E). We find that χ(x) is the polynomial above times a polynomial whose
roots all have modulus one.
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7. Symmetric, cyclic matrices: q = 2×even.

Σ0/p → A0/p → E0/p

Σ p
2
→ A p

2
→ AΠodd → L

i ∈ S1 Σi → ai → ∗ ∈ A p
2

i ∈ Sr ∪ S2r Σi → Ai → Fi ⊂ Pe/o,r → Λe/o,r

i ∈ Sρ Σi → Fi ⊂ Γρ̌ → λi ⊂ Γρ

In this case we set p = q/2, and our mapping is given by f = A ◦ J , with A as
in (6.2). Since q is divisible by 4, we have additional symmetries:

ωjp/2 = 0 if j is odd, ωjp/2 = (−1)j/2 if j is even, and ωp/2+j = −ωp/2−j (7.1)

As before, we have

Σ0 → a0 → e0, Σp → ap → ep. (7.2)

However, now we encounter the phenomenon that A contains several 0 entries, for
instance

Σp/2 → ap/2 = [1 : 0 : −1 : 0 : 1 : 0 : · · · ] ∈ Πeven. (7.3)

We will write q = 2mqodd and consider two sorts of divisors ρ and r, which satisfy:

ρ|(q/4), and r = 2m−1r′, r′|qodd. (7.4)

We will use the notation ρ̌ := q/(4ρ). Note that this is again a divisor of the form
ρ.

Lemma 7.1. Suppose that r = 2m−1r′, and r′ divides qodd. If i ∈ Sr, then fai ∈
Π〈r mod 2r〉, and if j ∈ S2r, then faj ∈ Π〈0 mod 2r〉.

Proof. Since ω̃ = ω2r is a primitive p/rth root of unity and p/r is odd, the proof is
the same as Lemma 6.2.

Lemma 7.2. Suppose that 1 < ρ < q/4 divides q/4. Then every i ∈ Sρ is an odd
multiple of ρ, and we have Sρ = {p − j : j ∈ Sρ}, and ai ∈ Σ∗

〈ρ̌ mod 2ρ̌〉.

Proof. Since 2ρ is also a divisor of q, every i ∈ Sρ is an odd multiple of ρ. Suppose
j ∈ Sρ, then we have j = kρ where gcd(k, q/ρ) = 1 and p−j = ρ(p/ρ−k). It follows
that gcd(p/ρ−k, q/ρ) = 1 and p− j ∈ Sρ. We observe that jρ̌ · i = jρ̌ ·kρ = jk ·q/4.
By (7.1) it follows that ωjρ̌i = 0 if j is odd, ωjρ̌i = ±2 if j is even, and ωji 6= 0
otherwise.

Lemma 7.3. If i ∈ S1, then ai ∈ Σ∗
p/2.

Proof. Since i is relatively prime to q, i is odd and ωp/2·i = 0 by (7.1). ωi is a qth
primitive root of unity, and therefore {ω0, ω1, . . . , ωp} = {ω0i, ω1i, . . . , ωpi} as a set.
It follows that each ai has exactly one zero coordinate.

Now we construct the space π : X → Pp by a series of blowups. We blow
up a0, e0, ap, ep, and ap/2. For each divisor of the form r in (7.4), we blow up
ai for all i ∈ Sr ∪ S2r. As before, Ai denotes the blowup fiber of ai. We also
blow up Π〈0 mod 2r〉 and Π〈r mod 2r〉; we denote the blowup fibers as Pe,r and Po,r,
respectively. For each divisor of the form ρ in (7.4) (or equivalently ρ̌), we blow up
Σ〈ρ mod 2ρ〉; we denote the blowup fiber by Γρ. Let fX : X → X denote the induced
birational map.



DEGREE GROWTH OF MATRIX INVERSION 1003

Let us take H = HX , E0/p, A0/p, A p
2
, Ai, i ∈ Sr ∪ S2r, Pe/o,r , and Γρ as a basis

for Pic(X). As in §6, we have

f∗
X : E0 7→ A0 7→ {Σ0} = H −Ep − P̂o, Ep 7→ Ap 7→ {Σp} = H −E0 − P̂e, (7.5)

where P̂e/o =
∑

r Pe/o,r. And for a divisor r of q in (7.4), we have

f∗
X : Pe,r 7→

∑

i∈S2r

Ai, Po,r 7→
∑

i∈Sr

Ai

i ∈ Sr Ai 7→ H − E0 − Ep − P̂e − (P̂o −
∑

j∈Ir

Po,j)

i ∈ S2r Ai 7→ H − E0 − Ep − P̂o − (P̂e −
∑

j∈Ir

Pe,j)

(7.6)

We see that Σp/2 contains e0/p, Π〈0 mod 2r〉 and Π〈r mod 2r〉 as well as Γρ. Let us

suppose q = 2m · odd. We set Γ̂ =
∑

ρ:2m−2·odd Γρ. Since aj ∈ Σp/2 for all odd j, if

p/2 is odd we have

H = Σp/2 + E0 + Ep + P̂e + P̂o + Γ̂ + Ap/2. (7.7)

Thus we have

f∗
X : Ap/2 7→ {Σp/2} = H − E0 − Ep − P̂e − P̂o − Γ̂ − Ap/2 if p/2 is odd

Ap/2 7→ {Σp/2} = H − E0 − Ep − P̂e − P̂o − Γ̂ if p/2 is even
(7.8)

Let us consider a divisor ρ of q in (7.4). We have

f∗
X : Γρ̌ 7→

∑

i∈Sρ

{Σi}. (7.9)

We observe that Σ〈ρ mod 2ρ〉 ⊂ Σodd·ρ and ap/2 = [1 : 0 : −1 : 0 : · · · : ±1] ∈ Σj for
all odd j. Thus for i ∈ Sρ we have

ρ even {Σi} = H − E0 − Ep − P̂e − P̂o − Γρ,

ρ odd {Σi} = H − E0 − Ep − Ap/2 − P̂e − P̂o − Γρ.
(7.10)

Thus we have

ρ even f∗
X : Γρ 7→

∑

i∈Sρ̌

{Σi} = #Sρ̌(H − E0 − Ep − P̂e − P̂o − Γρ̌),

ρ odd Γρ 7→
∑

i∈Sρ̌

{Σi} = #Sρ̌(H − E0 − Ep − Ap/2 − P̂e − P̂o − Γρ̌).

(7.11)

By §2, we have

f∗
X : H 7→ pH − (p − 1)(E0 + Ed) − (p − (p/2 + 1))Ap/2

−
∑

r

(p − (p/r + 1)/2)(Pe,r + Po,r) −
∑

ρ

(ρ − 1)Γρ
(7.12)

This accounts for all of the basis elements of Pic(X), so we have:

Theorem 7.4. Equations (6.5–12) define f∗
X as a linear map of Pic(X).

Let us set L = {ap/2; Πodd} ⊂ Ap/2.



1004 ERIC BEDFORD AND KYOUNGHEE KIM

Lemma 7.5. fX : Ap/2 99K AΠodd ⊂ Σp/2, AΠodd 6⊂ IX , and fX : AΠodd 99K L.

In particular, f2
X defines a dominant rational map of L to itself.

Proof. A generic point of an exceptional divisor Ap/2 can be expressed as ap/2; ξ =
[1 : 0 : −1 : 0 : · · · ]; [ξ0 : ξ1 : ξ2 : · · · ]. Thus we have

fX(ap/2; ξ) = A[0 : 1/ξ1 : 0 : 1/ξ3 : 0 : · · · : 1/ξp−1 : 0] =
∑

i: odd

1

ξi
ai ∈ AΠodd.

From the computation, it is clear that the rank of fX |Ap/2 is equal to the dimension
of AΠodd. With (7.1) and the same reasoning as in Lemma 6.3, we have

AΠodd = {x0 = −xp, x1 = −xp−1, . . . , xp/2−1 = −xp/2+1, xp/2 = 0}

Now the generic point x of AΠodd is x = [x0 : x1 : · · · : xp/2−1 : 0 : −xp/2−1 : · · · :
−x0], and AΠodd ⊂ Σp/2. Now

fX(x) = ap/2; A[1/x0 : · · · : 1/xp/2−1 : 0 : −1/xp/2−1 : · · · : −1/x0] ∈ L,

and the mapping is dominant. By the previous computation for Ap/2, f2
X : L 99K L

is dominant.

From §2 we have the following:

Lemma 7.6. Let r be a divisor of the form (7.4). If i ∈ Sr, we let Fi denote the fiber
of Po,r over fai. In this notation, we have dominant maps: fX : Σi 99K Ai 99K Fi.
In fact, for every fiber F of Po,r, fX : F 99K AΣ〈r mod 2r〉 is a dominant map.
Similarly, suppose j ∈ S2r. With corresponding notation, we have dominant maps
fX : Σi 99K Ai 99K Fi ⊂ Pe,r and fX : F 99K AΣ〈0 mod 2r〉.

Proposition 7.7. AΠodd ⊂ AΣ〈0 mod 2r〉 ∩ AΣ〈r mod 2r〉 is a hook for the spaces:
Ap/2, and Pe,r, Po,r, Ai, i ∈ Sr ∪ S2r, for every divisor r in (7.4).

Lemma 7.8. fXa1 = ap/2; [0 : p − 1 : 0 : 3 − p : 0 : p − 5 : 0 : · · · : ±1 : 0] ∈ L. If
i ∈ S1, then fXai is obtained from fXa1 by permuting the nonzero coordinates.

Proof. Using Lemma 7.3 and 7.5 which show that fXa1 ∈ L, we can set fXa1 =
ap/2; [0 : ξ1 : 0 : ξ3 : 0 : · · · : ξp−1 : 0]. Recall that a1 = [2 : ω1 : · · · : ωp/2−1 :

0 : −ωp/2−1 : · · · : −2]. Applying fX we have ξk = 1 + 2
∑p/2−1

j=1 ωkj · 1
ωj

for

k = 1, 3, . . . , p − 1. If k = 1, we have ξ1 = 1 + 2
∑p/2−1

j=1 ωj/ωj = p − 1. For k ≥ 1,

we will show that ξk + ξk+2 = (−1)(k−1)/22. Let us recall the last equality in (4.2).
ωj · ω(k+1)j = ω(k+1)j−j + ω(k+1)j+j = ωkj + ω(k+2)j . It follows that

ξk + ξk+2 = 2 + 2

p/2−1∑

j=1

(ωkj + ω(k+2)j) ·
1

ωj
= 2 + 2

p/2−1∑

j=1

ω(k+1)j .

When k+1 ≡ 2 mod 4, ω(k+1)j is a pth root of unity and therefore
∑p/2−1

j=1 ω(k+1)j =

1+
∑p/2−1

j=1 ω(k+1)j−1 = 0. If k+1 ≡ 0 mod 4, ω(k+1)p/4+(k+1)j = (−1)(k+1)/4ω(k+1)j

and
∑p/2−1

j=1 ω(k+1)j + 2 = 0. Thus we get ξk + ξk+2 = 2 if k + 1 ≡ 2 mod 4, and
ξk +ξk+2 = −2 if k+1 ≡ 0 mod 4. For general i ∈ S1, we use the same permutation

argument as in Lemma 4.2. In fact, if we set fXai = ap/2; [0 : ξ
(i)
1 : 0 : ξ

(i)
3 : · · · ],

then ξ
(i)
i = p − 1, and ξ

(i)
k + ξ

(i)
k+2i = 2 if k + i ≡ 2 mod 4, and ξ

(i)
k + ξ

(i)
k+2i = −2 if

k + i ≡ 0 mod 4.
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Figure 4. An Exceptional Orbit: q = 12.

In Figure 4 we consider q = 12, p = 6. Thus L has dimension 2, and we plot
points of the orbit f2n+1a1, n ≥ 0, in an affine coordinate chart inside L.

Let us define i1 : Πodd ∋ [0 : x1 : 0 : · · · : xp−1 : 0] 7→ [x1 : x3 : · · · : xp−1] ∈ P
p
2
−1

and J1 := i−1
1 ◦ J

P
p
2
−1 ◦ i1 : Πodd → Πodd. Similarly, let i2 : AΠodd ∋ [x0 : x1 :

· · · : xp/2−1 : 0 : −xp/2−1 : · · · : −x0] 7→ [x0 : x1 : · · · : xp/2−1] ∈ P
p
2
−1, and define

J2 := i−1
2 ◦ J

P
p
2
−1 ◦ i2 : AΠodd → AΠodd. Now we define ϕ := i1(AJ2 ◦ AJ1)i

−1
1

as a p/2-tuple of polynomials with coefficients in Z[ω]. Thus ϕ is a map of Z[ω]p/2

to itself. The map ϕ also induces a map of Pp/2−1 to itself, and i1 conjugates this
map of projective space to f2

X : L → L.

Lemma 7.9. For j ∈ S1, there is a polynomial Rj ∈ Z[ω] such that xj |Rj, and

ϕ[x1 : x3 : x5 : · · · : xp−1] = 2(p/2)2[p − 1 : 3 − p : · · · : ±1]x̂1
p/2

+ R1(x)

= Vj x̂j
p/2 + Rj(x)

where Vj is obtained from 2(p/2)2[p−1 : 3−p : · · · ;±1] by permuting the coordinates.

Proof. Let us set [y1 : y3 : · · · : yp−1] = ϕ[x1 : x3 : · · · : xp−1]. A direct computation

gives that yi is equal to 2(
∑

s: odd x̂s)
∏p/2−1

k=1 (
∑

s: odd ωksx̂s) times

p/2−1∏

k=1

(
∑

s: odd

ωksx̂s

)
+ 2

(
∑

s: odd

x̂s

)
·

p/2−1∑

ℓ=1



ωjℓ

∏

k 6=ℓ

(
∑

s: odd

ωksx̂s)



 .

Recall that x̂s = 0 on
⋃

j 6=s{xj = 0} and x̂s 6= 0 on {xs = 0} ∪
⋂

j 6=s{xj 6= 0}. It
follows that on Σ∗

1,

yj = (

p/2−1∏

k=1

ωk)2 · [1 + 2

p/2−1∑

ℓ=1

ωjℓ ·
1

ωℓ
] · x̂1

p/2 ∀j : odd.

Let us write Ω =
∏p/2−1

k=1 ωk. With the previous Lemma, it is clear that we have
a polynomial R1 such that x1 is a divisor of R1 and ϕ(x) = Ω[p − 1 : 3 − p : · · · :
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±1] · x̂1
p/2−1

+R1(x). We want to show that Ω = ±p/2. Now Ω =
∏p/2−1

k=1 ω−k(1 +

ω2k) = (
∏p/2−1

k=1 ω−k) · (
∏p/2−1

k=1 1+ω2k). Since ω is a primitive qth root of unity and
4 is a divisor of q we see that

q−1∏

k=1

ωk = ±(

p−1∏

k=1

ωk)2 = ±(

p/2−1∏

k=1

|ωk|)4 = 1.

For all 1 ≤ k ≤ p/2 − 1, ω2k is a p/2th root of −1 and therefore

(xp/2 + 1) = (x + 1)(1 − x + x2 − · · · + xp/2−1) = (x + 1)

p/2−1∏

k=1

(x − ω2k).

Setting x = −1, we have − p
2 =

∏p/2−1
k=1 (1 + ω2k). For j ∈ S1, we reason as in the

proof of Lemma 4.2.

Lemma 7.10. For i ∈ S1, fn
Xai /∈ IX for all n ≥ 0.

Proof. By Proposition 7.7, i1fXa1 = [p − 1 : 3 − p : p − 5 : · · · : ±1]. Let us
set u1 = (p − 1, 3 − p, p − 5, · · · ,±1). It suffices to show that ϕn(u1) /∈ i1IX for
all n ≥ 0. For this we need to know that for each n, at most one coordinate of
ϕnu1 can vanish. Let us choose a prime number p/2 < µ ≤ p − 1. One of the
coordinates of u1 is equal to ±µ. Suppose it is the jth coordinate. Then 2j − 1
must be relatively prime to q, so we can apply Lemma 7.9. Working modulo µ, we
see that ϕu1 = bjuj, where uj is obtained from u1 by permuting the coordinates,

and bj = 2(p/2)2((u1)ĵ)
p/2. For each k 6= j, the kth coordinate of u1 is nonzero

modulo µ. Thus bj is a unit modulo µ, and so ϕu1 is a unit times a permutation of

u1. The permutation preserves the set S1, so if j2 denotes the coordinate of i−1
1 ϕu1

which vanishes modulo µ, then j2 ∈ S1. Thus we may repeat this argument to
conclude that, modulo µ, ϕnu1 is equal to a unit times a permutation of u1. Thus
at most one entry of ϕnu1 can vanish, even modulo µ.

From (6.1), (6.2) and (7.1) we have the following:

Lemma 7.11. Consider a divisor ρ in (7.4). We have

AΠ〈ρ mod 2ρ〉 = {x0 = −x2ρ̌ = x4ρ̌ = −x6ρ̌ = · · · = ±x2ρρ̌,

x1 = −x2ρ̌−1 = −x2ρ̌+1 = x4ρ̌−1 = x4ρ̌+1 = · · · = ±x2ρρ̌−1, . . . ,

xρ̌−1 = −xρ̌+1 = −x3ρ̌−1 = x3ρ̌+1 = · · · = ±x2ρρ̌−ρ̌+1}.

Proof. By (6.1), (6.2) and (7.1) , it is easy to check that aj , j ≡ ρ mod 2ρ satisfies
all the equations.

Lemma 7.12. Consider a divisor of the form ρ in (7.4). Then AΠ〈ρ mod 2ρ〉 ⊂

Γρ̌. Let us use the notation Λρ := π−1AΠ〈ρ mod 2ρ〉 for the exceptional fiber over
AΠ〈ρ mod 2ρ〉. Then we have a dominant mapping fX : Γρ 99K Λρ. Furthermore,

f2
X : Λρ 99K Λρ is a dominant mapping, so Λρ is a hook for Γρ.

Proof. A linear subspace AΠ〈ρ mod 2ρ〉 is spanned by akρ, k :odd. For j odd, the jρ̌-
th coordinate of akρ is ωjρ̌·kρ = ωjk·p/2 = 0 by (7.1). If follows that AΠ〈ρ mod 2ρ〉 ⊂
Γρ̌.

Let us conisder a generic point x; ξ in Γ∗
ρ. Using the previous argument, it is clear

that the base of fX(x; ξ) is in AΠ〈ρ mod 2ρ〉 ⊂ Γρ̌. The fiber point of fX(x; ξ) is [0 :
· · · : 0 : ζρ̌ : 0 : · · · : 0 : ζ3ρ̌ : · · · ] where ζkρ̌ = 1/x0 +

∑
j 6≡ρ mod 2ρ ωjkρ̌1/xj ± 1/xp.
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Furthermore, for the generic point x; ξ in Λρ̌, x ∈ AΠ〈ρ̌ mod 2ρ̌〉 and ξ ∈ Π〈ρ mod 2ρ〉.
Using Lemma 7.11, we have the fiber point of fX(x; ξ) ∈ Π〈ρ̌ mod 2ρ̌〉. Replacing ρ
by ρ̌ we have a dominant mapping from Λρ to Λρ.

Σ

F

Λ ρ

Λρ

Γρ

Γρ

Figure 5. Moving fibers.

It remains to track the orbit of Σi for i ∈ Sρ. In this case, fXΣi = Fi, which
is a fiber of Γρ̌. What happens here is that fX : Γρ̌ ↔ Γρ; as was seen in §2,
Γρ̌ and Γρ are both product spaces, and we will show that all subsequent images

f2n+1
X Fi are horizontal sections of Λρ̌ ∩ Γρ. A horizontal section may be written

as (base space) × {ϕ2n+1}, where ϕ2n+1 is a fiber point (see Figure 5). In order to
show that f2n+1

X Fi 6⊂ IX , we track the “moving fiber” point ϕ2n+1 in the same way
we tracked the orbit of fXai for i ∈ S1.

Lemma 7.13. If i ∈ Sρ, then let Fi be the fiber in Γρ̌ over ai. Let φρ = ρ[0 : 0 :
· · · : 0 : p/ρ − 1 : 0 : · · · : 0 : 3 − p/ρ : 0 : · · · ] ∈ Π〈ρ mod 2ρ〉, and set φi obtained
by permuting the nonzero coordinates. λi = AΠ〈ρ̌ mod 2ρ̌〉; φi ⊂ Γρ. Then we have
dominant maps fX : Σi 99K Fi 99K λi.

Proof. Let us first consider the case i = ρ. Repeating the argument in previous
sections, fX : Σρ 99K Fρ is a dominant mapping. For a generic point aρ; ξ, ξ =
[0 : · · · : ξρ̌ : 0 : · · · : 0 : ξ3ρ̌ : · · · ] ∈ Π〈ρ̌ mod 2ρ̌〉 and Π〈ρ̌ mod 2ρ̌〉 is invariant
under J . Since A is linear and invertible , the rank of fX |Fρ is the same as the
dimension of Λρ. Now we will show that the constant fiber for fXFρ is φρ. Since
Λρ ⊂ Γρ, the fiber coordinate is [0 : · · · : 0 : ξρ : 0 : · · · : 0 : ξ3ρ : 0 : · · · ], and
ξkρ = 1 +

∑
j 6≡ρ̌ mod 2ρ̌ ωkjρ · 1/ωjρ for an odd k. If k = 1, we have

ξρ = 1 +
∑

j 6≡ρ̌ mod 2ρ̌

ωjρ · 1/ωjρ = 1 + (p − 1) − r = r(p/r − 1).



1008 ERIC BEDFORD AND KYOUNGHEE KIM

For a general k, using (4.2)

ξkρ + ξ(k+2)ρ = 2 +
∑

j 6≡ρ̌ mod 2ρ̌

(ωkjρ + ω(k+2)jρ) · 1/ωjρ

= 2 +
∑

j 6≡ρ̌ mod 2ρ̌

ω(k+1)jρ = ρ(2 +

ρ̌−1∑

j=1

ω(k+1)jρ).

Following the same reasoning as in Lemma 7.8, we have ξkρ + ξ(k+2)ρ = 2 if k +1 ≡
2 mod 4, and ξkρ + ξ(k+2)ρ = −2 if k + 1 ≡ 0 mod 4. For general i ∈ Sρ, we follows
the discussion in Lemma 4.2.

For each divisor ρ in (7.4), let us set Lρ = AΠ〈ρ̌ mod 2ρ̌〉; Π〈ρ mod 2ρ〉. Let us

identify Lρ
∼= Pp/(2ρ)−1 by a projection π : (x; ξ) → ξ, and let ϕρ : Pp/(2ρ)−1

99K

Pp/(2ρ)−1 be the induced map corresponding to f2
X : Lρ 99K Lρ. As we saw before

Lemma 7.9, we may choose the coordinates of ϕρ to be homogeneous polynomials
with coefficients in Z[ω].

Lemma 7.14. For j ∈ Sρ, there is a polynomial Rρ,j ∈ Z[ωρ] such that xj |Rj, and

ϕρ[x1, x3, x5, . . . , xp/ρ−1] = (ρ̌)2ρ−2(p/2)2[p/ρ− 1 : 3 − p/ρ : · · · ;±1](x1̂)
ρ̌ + Rρ,1(x)

= Vj(xĵ)
ρ̌ + Rρ,j(x)

where Vj is obtained from (ρ̌)2ρ−2(p/2)2[p/ρ − 1 : 3 − p/ρ : · · · ;±1] by permuting
the coordinates.

Proof. Following the discussion in Lemma 7.9. Let us set ϕρ[xρ : x3ρ : · · · :
xp/ρ−1] = [yρ : y3ρ : · · · : yp/ρ−1]. On Σ∗

ρ ⊂ {xρ = 0}, we have

yjρ = ρ · (

ρ̌−1∏

k=1

ωkρ)
2ρ · [1 + 2

ρ̌−1∑

ℓ=1

ωjℓρ ·
1

ωℓ
] · (x1̂)

ρ̌ ∀j : odd

and
∏ρ̌−1

k=1 ωk = a unit in Z[ωρ] · p/(2ρ). Combining Lemma 7.13 followed by the
same discussion in Lemma 4.2 we have the desired result.

Lemma 7.15. For j ∈ Sρ, fn
Xλj 6⊂ IX for all n ≥ 0.

Proof. We apply Lemma 7.14 modulo µ following the line of argument of Lemma
7.10.

To summarize: in this Section we have constructed the space X and determined
f∗

X on Pic(X). Further, we have shown that for every exceptional hypersurface E
of fX , we have fnE 6⊂ I for all n ≥ 0. Thus we can apply Theorems 2.1 and 2.4 to
conclude:

Theorem 7.16. The map fX satisfies (1.4), and δ(f) is the spectral radius of the
linear transformation f∗

X, which is defined in (7.5–7.12).

Appendix A. q = 45 = 32 · 5. Let us carry out the algorithm implicit in Theo-
rems 5.4 and 5.5. If q = 45, then p = 22. The divisors are r = 3, 5, 9, 15, and we
have S1 = {1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22}, S3 = {3, 6, 12, 21}, S5 = {5, 10, 20},
S9 = {9, 18}, and S15 = {15}. Let us define E(1) =

∑
i∈S1

Ei, AV (1) =
∑

i∈S1
AVi,
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V (1) =
∑

i∈S1
Vi. And for each divisor r, we set A(r) =

∑
i∈Sr

Ai. By the symme-
tries of the equations defining f∗

X we see that we may rewrite them in terms of the
new, consolidated basis elements as

E0 7→ A0 7→ H − E0 − E(1)

E(1) 7→ AV (1) 7→ V (1) 7→ A(1) 7→ 12H − 12E0 − 11E(1) − 12P̂

P3 7→ A(3) 7→ 4H − 4E0 − 4E(1) − 4P̂ + 4P3

P5 7→ A(5) 7→ 3H − 3E0 − 3E(1) − 3P̂ + 3P5

P9 7→ A(9) 7→ 2H − 2E0 − 2E(1) − 2P̂ + 2P3 + 2P9

P15 7→ A(15) 7→ H − E0 − E(1) − P̂ + P3 + P5 + P15

H 7→ 22H − 21E0 − 21E(1) − 14P3 − 17P5 − 19P9 − 20P15.

The characteristic polynomial of this linear transformation is (x + 1)(x − 1)2 times
24−264x−290x2+310x3+559x4+109x5−410x6−300x7+136x8+144x9−20x10−
21x11 + x12, which gives a spectral radius ρ ≈ 21.6052, and δ(K|SC45) ≈ 466.784.

Appendix B. Spectral radius for q = 45. Let us demonstrate how to use the
formula in Theorem 5.5. For q = 32 · 5 we have κ3 = 4, κ5 = 3, κ9 = 2, κ15 = 1,
and κ = 12. µ3 = 8, µ5 = 5, µ9 = 3, and µ15 = 2. For prime divisors we have

T3(x) = 4(x2 − 3)(x2 − 2)(x2 − 1), T5(x) = 3(x2 − 4)(x2 − 2)(x2 − 1).

For non-prime divisors we have

T9 =
2

x2 − 2
T3(x) + 2(x2 − 4)(x2 − 3)(x2 − 1) = 2x2(x2 − 3)(x2 − 1)

T15 =
1

x2 − 1
[T3(x) + T5(x)] + (x2 − 4)(x2 − 3)(x2 − 2) = (x4 − 12)(x2 − 2).

Thus we get

T0 = (x2 − 4)(x2 − 3)(x2 − 2)(x2 − 1)+
∑

r

Tr(x) = −72+ 150x2 − 76x4 + 8x6 + x8.

Finally, plugging into the formula (5.9) gives us (x−1)(24−264x−290x2+310x3 +
559x4 + 109x5 − 410x6 − 300x7 + 136x8 + 144x9 − 20x10 − 21x11 + x12).

Appendix C. q = 30 = 2 · 3 · 5. Now let us demonstrate how to use the algorithm
in Theorem 6.15. If q = 30, then p = 15, and the odd divisors are r = 3 and 5.
Thus S1 = {1, 7, 11, 13}, S2 = {2, 4, 8, 14}, S3 = {3, 9}, S6 = {6, 12}, S5 = {5},
and S10 = {10}. The linear transformation f∗

X has symmetries under e ↔ o and
j ↔ p− j. Further, since Pr 7→ 0, we do not need to consider Pr for the purpose of
computing the spectral radius. Thus we define the symmetrized elements

E = E0 + E15, A = A0 + A15, A(r) =
∑

j∈Sr∪S2r

Aj

Pw = Po + Pe, APw = APo + APe, Pw,r = Po,r + Pe,r,
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where r denotes a divisor of p. We see that we may take all of these elements,
together with H , as the basis of an f∗

X-invariant subspace of H1,1(X). We have:

E 7→ A 7→ 2H − E − Pw − Pw,3 − Pw,5

APw 7→ Pw 7→ A(1) + APw

A(1) 7→ 8H − 8E − 4Pw − 8Pw,3 − 8Pw,5

A(3) 7→ 4H − 4E − 2Pw − 2Pw,3 − 4Pw,5

A(5) 7→ 2H − 2E − Pw − 2Pw,3 − Pw,5

Pw,3 7→ A(3), Pw,5 7→ A(5)

H 7→ 15H − 14E − 7Pw − 12Pw,3 − 13Pw,5.

We may also define anti-symmetric elements E′ = E0 − E15, P ′
w = Pe − Po,

AP ′
w = APe −APo, etc., as well as

∑
j∈Sr

tjAj −
∑

k∈S2r
t′kAk, for any odd divisor

r and
∑

tj =
∑

t′k. By the symmetries of f∗
X , the anti-symmetric elements define

a complementary invariant subspace. The spectral radius, however, is given by
the transformation above. Its characteristic polynomial is x(x + 1)(x − 1)2 times
−6− 16x+ 11x2 + 32x3 − 6x4 − 14x5 + x6, which gives a spectral radius ρ ≈ 14.26,
and δ(K|SC30) ≈ 203.347.

Appendix D. q = 60 = 22 · 3 · 5. Finally, let us illustrate the algorithm of Theo-
rem 7.16 for q = 60. In this case, p = 30, and in (7.4) notation, the divisors are r =
2, 6, 10, and ρ = 3, 5. We have S1 = {1, 7, 11, 13, 17, 19, 23, 29}, S2 = {2, 14, 22, 26},
S3 = {3, 9, 21, 27}, S4 = {4, 8, 16, 28}, S5 = {5, 25}, S6 = {6, 18}, S10 = {10},
S12 = {12, 24}, S20 = {20}. As before, we work with the symmetrized elements

A = A0 + A30, E = E0 + E30

A(r) =
∑

j∈Sr∪S2r

Aj, Pr = Po,r + Pe,r .

Thus f∗
X maps these symmetrized elements as:

A15 7→ H − E − Γ5 − Γ3 − P2 − P6 − P10

E 7→ A 7→ 2H − E − P2 − P6 − P10

P2 7→ A(2) 7→ 8H − 8E − 4P2 − 8P6 − 8P10

P6 7→ A(6) 7→ 4H − 4E − 2P2 − 2P6 − 4P10

P10 7→ A(10) 7→ 2H − 2E − P2 − 2P6 − P10

Γ5 7→ 4H − 4E − 4A15 − 4P2 − 4P6 − 4P10 − 4Γ3

Γ3 7→ 2H − 2E − 2A15 − 2P2 − 2P6 − 2P10 − 2Γ5

H 7→ 30H − 29E − 14A15 − 22P2 − 27P6 − 28P10 − 2Γ5 − 4Γ3.

The spectral radius of this transformation is the largest root of 512+256x−1760x2−
720x3 + 2304x4 + 756x5 − 1494x6 − 256x7 + 441x8 − 5x9 − 29x10 + x11, which is
≈ 28.6503. Thus δ(K|SC60) ≈ 820.841.

Appendix E. Characteristic polynomial for q = odd. Here we give a sketch
of the proof of Theorem 5.5. We set

D(a) =

(
−x a
1 −x

)
, U(a) =

(
0 a
0 0

)
, and
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Mn(a1, . . . , an) =




D(a1) U(a2) . . . U(an)

D(a2)
...

. . . U(an)
D(an)




,

where the empty spaces are filled by zeros.

Lemma E.1. det(Mn(a1, . . . , an)) =
∏n

j=1(x
2 − aj). Any of the blocks U(aj) may

be replaced by 2 × 2 blocks of zeros without changing the determinant.

Proof. By adding 1/x · (2i − 1)th row to 2ith row for all 1 ≤ i ≤ n, we obtain the
diagonal matrix with diagonal entries −x,−x+a1/x,−x,−x+a2/x, . . . ,−x+an/x.
The result follows immediately.

Let us define H(a) =
(
0 a

)
,

B =

(
0 0
1 −x

)
, and M ′

n(a1, . . . , an) =

(
Mn(a1, . . . , an−1) C(an)

E(a1) B

)
,

where C(an) is the 2(n− 1)× 2 column matrix obtained by stacking (n− 1) copies
of U(an) vertically, and E(a1) is the 2 × 2(n − 1) matrix obtained by starting on
the left with U(a1) and following with zeros.

Lemma E.2. det(M ′
2(a1, a2)) = −a1a2, and

det(M ′
n(a1, . . . , an))

=a1




n−1∑

k=2

k−1∏

j=2

(x2 − aj) · detM ′
n−k+1(ak, . . . , an) − an

n−1∏

j=2

(x2 − aj)



 .

Proof. We first expand in minors along the next to last row which contains a1 in the
second slot and then expand in minors along the second row which has only one entry
1 in the first slot. It follows that det(M ′

n(a1, . . . , an)) = a1 · det(M ′′
n−1(a2, . . . , an))

where B′ =
(
1 −x

)
and

M ′′
n−1(a2, . . . , an) =




H(a2) H(a3) . . . H(an)

D(a2) U(a3)
...

. . . U(an)
B′




.

Now we use the first row to compute minors. It is not hard to see that each minor
can be computed from the matrix of the form

(
Mk−3(a2, . . . , ak−2) ∗

0 M ′′
n−k+1(aK , . . . , an)

)
.

The result follows using Lemma E.1 and its proof.

Proof of Theorem 5.5. We use the symmetry of Mf noted in Appendix A and work

with a symmetrized basis for Pic(X): H = HX , Pr, A(r), E0, A0, E(1), AV (1),
V (1), A(1). We order the basis so that if r1|r2 then Pr1

, A(r1) appears before Pr2
,

A(r2); thus we we start with the prime factors of q. To compute the characteristic
polynomial, we consider a matrix Mf − xI. For a simpler format, we add first row
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to the row corresponding to Pr, E0 and E(1). After the series of row operations, we
have the determinant of (Mf − xI) is equal to the deteminant of




p − x H(a1) H(a2) · · · H(aκ) H(1) H(0) H(1)
V (b1 − x) D(a1) U(a2) · · · U(aκ) U(1)

V (b2 − x) D(a2)
. . . U(aκ) U(1)

...
. . . U(aκ) U(1)

V (bκ − x) D(aκ) U(1)
V (1 − x) D(1)
V (1 − x) D(0) U(1)

0 U(1) D(0)




where the empty spaces are filled by zeros and each aj bj is determined by a proper

divisor of q and κ is the number of proper divisors, and V (a) =

(
a
0

)
. Now we

expand in the minors along the first column. For the (j, 1)-minor we move the first
row to the jth row and then expand in minors along the jth row. The rest of the
computation follows using Lemmas E.1 and E.2.
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