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Abstract. Let {ha,b : a, b ∈ R, b �= 0} denote the Hénon family of quadratic polynomial
diffeomorphisms of R2, with b equal to the Jacobian of ha,b. In this paper, we describe the
locus of parameter values (a, b) such that 0 < |b| < 0.06, and the restriction of ha,b to its
non-wandering set is topologically conjugate to the horseshoe map. The boundary of the
horseshoe locus is shown to be characterized by a homoclinic tangency which is part of a
generic unfolding.

0. Introduction
The problem of understanding the dynamical behavior of diffeomorphisms has played a
central role in the field of dynamical systems. One way of approaching this question is to
ask about generic behavior in the space of diffeomorphisms. Another way to approach it is
to ask about behavior in some specific parametrized family. The family of diffeomorphisms
of R

2 introduced by Hénon has often played the role of such a test case. This is a two-
parameter family given by the formula

fa,b(x, y) = (a − x2 − by, x)

for b �= 0. There are regions of parameter space that are well understood. If we fix b, then
for a � 0 the non-wandering set of fa,b is empty. For a � 0, it is shown in [DN] that
the restriction of fa,b to its non-wandering set is hyperbolic and topologically conjugate
to the full two-shift. Such diffeomorphisms are called ‘horseshoes’. How the dynamics
change between these two extremes has been the subject of much investigation. The case
b = 0 is an interesting special case. In this case the map fa,b is not a diffeomorphism; in
fact, the dynamical behavior is essentially one-dimensional. The dynamical complexity of
fa,0 increases monotonically with a (see [MT]). For other values of b no such results are
known. In fact, in [KKY] it was shown that in some respects the behavior should not be
expected to be monotone. One way of measuring the topological complexity is through the
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topological entropy, htop(fa,b). This is a continuous real-valued function of the parameters,
which takes on values in the interval [0, log 2]. The case a � 0 corresponds to htop = 0.
The case a � 0 corresponds to htop = log 2. In this paper we study the set of parameters
(a, b) for which htop(fa,b) takes on its maximal value. We say that fa,b has maximal
entropy if htop(fa,b) = log 2. We analyze the ‘maximal entropy locus’ when the Jacobian
parameter b is small. The following will be a consequence of Theorems 1.1, 1.2, and 4.8.

THEOREM 1. For each b with |b| < 0.06, there is a unique a = ab so that htop(fa,b) <

log 2 for a < ab and htop(fa,b) = log 2 for a ≥ ab. Further, we have the following.
(1) If a > ab, fa,b is a hyperbolic horseshoe.
(2) If a = ab, fa,b has a quadratic tangency between stable and unstable manifolds of

fixed points. This tangency is homoclinic when b > 0 and heteroclinic when b < 0.

The next result discusses properties of the function b �→ ab defined in Theorem 1.

THEOREM 2. The function b �→ ab is continuous on the interval (−0.06, 0.06). It is
analytic on the subintervals (−0.06, 0) and (0, 0.06) but not differentiable at b = 0.
Furthermore, there is a generic unfolding of the homoclinic tangency at the parameter
(ab, b), i.e. at the point of tangency, the stable and unstable manifolds move past one
another with positive speed with respect to a.

The terminology ‘generic unfolding’ will be explained in greater detail in §5.
Part of Theorem 1 follows from a more general analysis of polynomial diffeomorphisms

of maximal entropy in degree d ≥ 2, which was carried out in [BS1] and [BS2].
In particular we proved in this more general context that a maximal entropy polynomial
diffeomorphism is either hyperbolic or has a quadratic tangency between stable and
unstable manifolds of periodic points. The contribution of this paper is to describe the
set of parameter values corresponding to these two types of behavior.

Although these results are stated for the diffeomorphisms fa,b : R2 → R2 our
methods give us very complete information about the corresponding complex extensions
fa,b : C2 → C2 for maximal entropy parameter values. In fact, it is the analysis
of these complex extensions that allows us to obtain information about the real Hénon
diffeomorphisms. In particular, we take advantage of the theory of intersections of complex
manifolds to analyze the complex extensions of the real stable and unstable manifolds.

In addition to proving Theorems 1 and 2, a goal of this paper is to develop the technique
of crossed mappings as a method of more general applicability in the analysis of families
of polynomial diffeomorphisms of C

2. These techniques are explored further in [BS3].
We note that this is not the first time that complex methods have been used to address

similar questions. Hubbard and Oberste-Vorth [O] used complex methods to improve the
result of Devaney–Nitecki, and Fornæss and Gavosto [FG1, FG2] have used complex
methods to show that there is a generic unfolding of a complex tangency for fa,b for certain
parameters (a, b).

1. The quadratic horseshoe locus: first approximation
We consider mappings of the form

fa,b(x, y) = (a − x2 − by, x) (1.1)
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FIGURE 1.

with b �= 0. Note that f may also be written in the form χ−1 ◦ f ◦ χ = (y, y2 − a − bx),
where we set χ(x, y) = (−y,−x). We say that fa,b is a (complex) horseshoe if fa,b
is hyperbolic on J = J (fa,b) and if f |J is topologically conjugate to the full 2-shift.
If, in addition, J ⊂ R2, we say that fa,b is a real horseshoe. Hubbard and Oberste-
Vorth have obtained estimates on the (complex) horseshoe locus; see [O] and [MNTU,
Proposition 7.4.6]. These are summarized in the following.

THEOREM 1.1. If b �= 0, and if |a| > 2(1 + |b|)2, then fa,b is a (complex) horseshoe. If,
in addition, b ∈ R, and a > 0, then fa,b is a real horseshoe.

Since horseshoes have entropy equal to log 2, the following result gives a large region
of parameter space where there are no horseshoes. This is the region to the left in Figure 1.

THEOREM 1.2. Define σ−(b) = 2− 13
8 b− 7

64b
2 and σ+(b) = 2+ 7

4b+ 5
16b

2. If (a, b) ∈ R2

satisfy b �= 0, |b| ≤ 1 and a ≤ max(σ−(b), σ+(b)), then the entropy of f |R2 is less than
log 2.

Proof. First we note that a fixed point of fa,b has the form (x, y), where

x = y = − 1
2 [b + 1 ±

√
(b + 1)2 + 4a]. (1.2)

Now we recall some results from [BS2]. If fa,b is a quadratic diffeomorphism of R2, and
if f |R2 has entropy log 2, then fa,b has two fixed points, which must be saddles. Further,
one of these points must be unstably one-sided, and the unstable eigenvalue of Df at this
fixed point is (strictly) greater than 4. The other fixed point has a negative eigenvalue in
the unstable direction, and this eigenvalue must be less than −2.

The differential is given in (x, y)-coordinates as

Df a,b =
(−2x −b

1 0

)
.
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The product of the eigenvalues is b, so we may write them as λ and b/λ. Thus, the trace of
the differential is

−2x = λ+ b

λ
.

If |b| ≤ 1, then λ �→ λ + b/λ is strictly increasing in λ for |λ| > 1. Thus, the condition
that there is an eigenvalue greater than 4 gives us the inequality

−2x > 4 + b

4
, (1.3)

and the condition that there is an eigenvalue less than −2 gives the inequality

−2x < −
(

2 + b

2

)
. (1.4)

(Note that the inequalities (1.3) and (1.4) refer to different fixed points and thus involve
different values of x.)

Now we substitute expression (1.2) into (1.3) and obtain

b + 1 ±
√
(b + 1)2 + 4a > 4 + b

4√
(b + 1)2 + 4a > 3 − 3

4
b

b2 + 2b + 1 + 4a > 9 − 9

2
b + 9

16
b2,

which gives a > σ−(b).
Similarly, we substitute (1.2) into (1.4) and find

b + 1 ±
√
(b + 1)2 + 4a < −2 − b

2

±
√
(b + 1)2 + 4a < −3 − 3

2
b

b2 + 2b + 1 + 4a > 9 + 9b + 9

4
b2,

where the last inequality is reversed because the quantities being squared are negative.
Thus, a > σ+(b). The case that one of these inequalities fails happens exactly when we
have a ≤ max(σ+(b), σ−(b)), and in this case the entropy is not equal to log 2. �

Figure 1 shows the information on parameter space that is given by Theorems 1.1
and 1.2, together with the region A which will be defined in §2. We see that the set
{|b| < 0.06} is contained in the union of the sets {entropy < log 2} and A, and the
horseshoe locus. Figure 1 considers only parameters |b| ≤ 1. In fact, we restrict our
attention without loss of generality to the case |b| ≤ 1 throughout this paper. Each of
the items discussed in the theorem, maximal entropy, the horseshoe property, and generic
unfolding, will hold for f if and only if it holds for f−1. Thus, the fact that f−1

a,b is
conjugate to fa/b2,1/b means that the regions that define these dynamical behaviors are

invariant under the involution (a, b) �→ (ab−2, b−1). In particular, this gives versions of
these theorems corresponding to the case |b| > (0.06)−1.
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FIGURE 2.

FIGURE 3.

2. Complex boxes and crossed mappings

In order to study the system f |K : K → K , we introduce an open cover by ‘boxes’ Bi
and study a family of ‘crossed mappings’ fi,j : Bi → Bj . We start by working with
p(z) = 2 − z2 and a covering of its Julia set [−2, 2]. The Green function for [−2, 2] is

G(z) = log

∣∣∣∣z + √
z2 − 4

2

∣∣∣∣.

For λ > 0, p induces a 2-fold branched covering p : {G < λ} → {G < 2λ}. The level sets
{G = λ} are ellipses with foci at ±2, and the gradient lines (the orthogonal trajectories)
are given by the family of hyperbolae with foci at ±2.

Let us fix c = 1
2 (

√
17 − 1) ∼ 1.5615 and d = 1

2 (1 +
√

7 + 2
√

17) ∼ 2.4523.
Let E ⊂ C be the domain bounded by the ellipse with foci at ±2 and passing through ±d .
It follows that p(E) is the ellipse with foci at ±2 and passing through ±(d2 − 2). We set
D0 := {ζ ∈ C2 : �(ζ ) < 0} ∩ E and D2 := {ζ ∈ C2 : �(ζ ) > 0} ∩ E as in Figure 2.
It follows that p(D0) = p(D2) = p(E)−[2, d2 − 2). LetD1 denote the region in E lying
between the hyperbolae with foci at ±2 and which pass through ±c as in Figure 3. Thus,
p(D1) is the region of the ellipse p(E) to the right of the hyperbola with foci at ±2 and
passing through 2 − c2. We have the following inclusions:

D0 ∪D1 ⊂ p(D0) = p(D2), D2 ⊂ p(D1).
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We may also compute certain distances related to these inclusions:

dist(∂p(D0),D0) = d2 − 2 − d

dist(∂p(D0),D1) = 2 − c

dist(∂p(D1),D2) = c2 − 2.

(2.1)

While calculating the distances between ellipses can be difficult in general, these
calculations are straightforward because the relevant ellipses are in a confocal family.
Thus, the minimal distances between these ellipses are realized by points on the real axis.
By the choices of c and d , we have

� := d2 − d − 2 = 2 − c = c2 − 2 ∼ 0.4384. (2.2)

Now choose e > d and set Bj = {(x, y) ∈ C2 : x ∈ Dj , |y| < e} = Dj × {|y| < e} for
j = 0, 1, 2. Thus, B0 ∪ B1 ∪ B2 = E × {|y| < e}. We introduce the set

A := {(a, b) ∈ C
2 : b �= 0, |a − 2| + e|b| < �} ≈ {|a − 2| + 2.4|b| < 0.43}.

PROPOSITION 2.1. If (a, b) ∈ A, then K ⊂ B0 ∪ B1 ∪ B2.

Proof. By [MNTU, p. 238], we know that K is contained in the bidisk {|x|, |y| < R},
where R is the larger root of the equation t2 − (1 + |b|)t − |a| = 0. By the condition
|a − 2| + e|b| < �, we conclude that we may take e sufficiently close to d , then we have

R ≤ 1 +�/e+ √
(1 +�/e)2 + 4(2 +�)

2
∼ 2.258 45.

Recall that pE is an ellipse with foci at ±2 and major axis of length d2 − 2 ∼ 4.013 78.
We then compute that its minor axis has length

√
(d2 − 2)2 − 4 ∼ 3.48.

To prove the proposition, we need to show that if (x, y) ∈ {|x|, |y| < R}, and if
x /∈ E, then (x, y) /∈ K . For such (x, y), the x-coordinate x ′ of f (x, y) satisfies
|x ′ − p(x)| < |a − 2| + |by| < |a − 2| + R|b| < � since |b| < �/e. Now let
D := {ζ ∈ pE : dist(ζ, ∂(pE)) > 1.034 65�}. Since x /∈ E, it follows that px /∈ pE,
and so the x-coordinate of f (x, y) does not belong to D. On the other hand, the minor
axis of pE is 3.48, so that D contains the disk of radius 3.48 − 1.034 65� ∼ 3.0264 > R.
Thus, f (x, y) /∈ K . �

The vertical and horizontal components of the boundaries are defined to be

∂vBj = (∂Dj )× {|y| ≤ e}, ∂hBj = D̄j × {|y| = e}.
We set G = {(0, 0), (0, 1), (1, 2), (2, 1), (2, 0)}, and we interpret G as a graph on the
vertices {B0, B1, B2} as in Figure 4.

PROPOSITION 2.2. If (a, b) ∈ A, then fa,b(∂vBi)∩ B̄j = ∅ and fa,b(B̄i )∩ ∂hBj = ∅ for
all (i, j) ∈ G.

Proof. By estimates (2.1) and (2.2) and the fact that p(∂D0) = p(∂D2), we have

dist(p(ζ ), ∂Dj ) ≥ �
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FIGURE 4. Graphs G for f (on left) and G−1 for f−1 (on right).

for ζ ∈ ∂Di and (i, j) ∈ �. Thus, if x ∈ ∂Di and |y| < e, the first coordinate of fa,b(x, y)
satisfies

|a − x2 − by − p(x)| ≤ |a − 2| + |by| < �.

This gives a − x2 − by /∈ D̄j , so f (∂vBi) ∩ B̄j = ∅.
Note that ∂hBj ⊂ {|y| = e}. The second coordinate of f is x, so the second condition

follows from the fact that D̄j ∩ {|y| = e} = ∅, independently of a and b. �

Let πv(x, y) = x and πh(x, y) = y denote the projections in the vertical and horizontal
directions. We let fi,j denote the mapping f : Bi ∩ f−1Bj → Bj . Following [HO],
we say that fi,j is a crossed mapping if for each y ∈ {|y| < e},

πv ◦ f : (Di × {y}) ∩ f−1Bj → Dj (2.3)

is proper. Given (i, j) ∈ G, then it follows from Proposition 2.2 that fi,j is a crossed
mapping (see [D] or [HO]). We say that the degree of fi,j as a crossed mapping is the
mapping degree of the map in (2.3) (which is independent of y). Similarly, we say that
f−1 : Bj ∩fBi → Bi , which we denote by f−1

j,i , is a crossed mapping if for each x ∈ Dj ,

πh ◦ f−1 : ({x} × {|y| < e}) ∩ fBi → {|y| < e} (2.4)

is proper. As was observed in [HO], fi,j is a crossed mapping if and only if f−1
j,i is.

The degree of f−1
j,i as a crossed mapping is defined as the mapping degree of the map in

(2.4) (which is independent of x). This, in turn, is the same as the degree of fi,j. We will
say that (B,G) is a system of crossed mappings, if fi,j induces a crossed mapping from Bi

to Bj for each (i, j) ∈ G. The following corollary is a consequence of Proposition 2.2.

COROLLARY 2.3. If (a, b) ∈ A, then (B,G) is a system of crossed mappings.

Let us say that a sequence I = i0i1 · · · in is admissible if (ik, ik+1) ∈ G for all k. We will
sometimes also say that a sequence J = j0j1 · · · jm is admissible if (jk, jk+1) ∈ G−1 for
all k. It will be clear from context whether we mean G or G−1. We define an orbit in a
system of crossed mappings as a bi-infinite sequence (pj , ij )j∈Z such that for all j ∈ Z,
pj ∈ Bij , (ij , ij+1) ∈ G, and f (pj ) = pj+1. Next we give conditions that guarantee that
every f -orbit (pj )j∈Z in K can be lifted to an orbit of the system of crossed mappings.

PROPOSITION 2.4. Suppose that K ∩ (B0 ∪ B1) ⊂ f (B0 ∪ B2) and K ∩ B2 ⊂ f (B1).
Then for q ∈ K there is an admissible sequence I = (in)n∈Z such that f nq ∈ Bin for
all n ∈ Z.

Proof. Let us start by making a sequence JM = {jn : −M ≤ n ≤ M} of finite length.
If we have determined jn already, then f n(q) ∈ Bjn ∩K . If jn = 0 or 1, then by hypothesis
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f n−1q ∈ (B0 ∪ B2) ∩ K . Thus, we may choose jn−1 ∈ {0, 2} such that f n−1q ∈ Bjn−1 ,
and in either case we have (jn−1, jn) ∈ G. Similarly, if jn = 2, then f nq ∈ B2 ∩ K , and
by hypothesis we have f n−1q ∈ B1. Thus, we set jn−1 = 1 and (jn−1, jn) = (1, 2) ∈ G.
Starting at n = M , we continue backwards and generate an admissible sequence JM .

Now we have admissible sequences J1, J2, . . . of increasing length. For each M , there
is a sequence IM that is a subsequence of infinitely many sequences Jkm . We may makeM
increasingly large and thus via a diagonal process extract an infinite sequence I . �

PROPOSITION 2.5. If a, b ∈ R ∩ A, then

(B̄0,r ∪ B̄1,r ) ∩ f (B0 ∪ B1 ∪ B2) ⊂ f (B0 ∪ B2)

B̄2,r ∩ f (B0 ∪ B1 ∪ B2) ⊂ f (B1).

Proof. We note that (B0 ∪B1 ∪B2 −B0 ∪B2)∩R
2 = {0}×(−e, e). Thus, to prove the first

inclusion, it suffices to show that (B̄0,r ∪ B̄1,r ) ∩ f ({0} × (−e, e)) = ∅. The x-projection
of the f -image of this set is

πv ◦ f ({0} × (−e, e)) = {a − x2 − by : x = 0, |y| < e} ⊂ (2 −�, 2 +�).

On the other hand, B̄0,r ∪ B̄1,r = [−d, c]×[−e, e]. Thus, (B̄0,r ∪ B̄1,r )∩f ({0}× (−e, e))
= ∅ since c +� = 2, which proves the first inclusion.

For the second inclusion, we note that

(B0 ∪ B1 ∪ B2 − B1) ∩ R
2 = ((−d,−c) ∪ (c, d))× (−e, e).

The x-projection of the f -image of this set is

{a − x2 − by : c < |x| < d, |y| < e} ⊂ (2 − d2 −�, 2 − c2 +�).

On the other hand, the x-projection of B̄2,r is [c, d], which is disjoint from (−∞,

2 − c2 +�) since 2 − c2 +� = c. �

Let V ⊂ Bi be a complex subvariety. We say that V is a horizontal multi-disk
(respectively vertical multi-disk) if each component of V is conformally equivalent to a
complex disk, and if ∂hBi ∩ V̄ = ∅ (respectively ∂vBi ∩ V̄ = ∅). With this terminology the
union of horizontal (respectively vertical) multi-disks is again a horizontal (respectively
vertical) multi-disk. We denote the set of horizontal (respectively vertical) multi-disks
by Dh(Bi) (respectively Dv(Bi)). If V ∈ Dh(B0) (respectively V ∈ Dv(Bi)), then
πv : V → Di (respectively πh : V → {|y| < e}) is proper, and we let δ(V ) denote
the degree of the corresponding projection. By Dm

h (Bi) (respectively Dm
v (Bi)) we denote

the set of horizontal (respectively vertical) multi-disks V such that for each componentW
of V , the degree δ(W) is no greater than m. We note the following:

If V ′ ∈ Dv(Bi) and V ′′ ∈ Dh(Bi), then #(V ′ ∩ V ′′) = δ(V ′)δ(V ′′). (2.5)

If fi,j is a crossed map, and if V ⊂ Bi is a subvariety for which ∂hBi ∩ V̄ = ∅, then

f̃i,j(V ) := f (V ) ∩ Bj is closed in Bj and satisfies ∂hBj ∩ ¯̃
V = ∅, and is thus a horizontal

subvariety. If deg(fi,j) denotes the degree as a crossed map, then we have

deg(fi,j)δ(V ) = δ(f̃i,j(V )). (2.6)
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PROPOSITION 2.6. If (a, b) ∈ A, it follows that

f̃1,2 : Dm
h (Bi) → D2m

h (Bj ) and f̃−1
2,1 : Dm

v (Bj ) → D2m
v (Bi),

and if (i, j) ∈ G, (i, j) �= (1, 2), then

f̃i,j : Dm
h (Bi) → Dm

h (Bj ) and f̃−1
j,i : Dm

v (Bj ) → Dm
v (Bi).

Proof. We will show that f̃i,j(V ) is conformally equivalent to a disk; the degree is given
by (2.6). Suppose that V is a horizontal disk in Bi . Then, taking boundary inside C2,
we have ∂V ⊂ ∂v(Bi). By Proposition 2.2, f (∂V ) ∩ ∂Bj = ∅. Thus, each component
of f (V ) ∩ Bj is closed in Bj . The second part of Proposition 2.2 implies that πv :
f (V )∩Bj → Dj is proper. Finally, we need to show that each componentW of f (V )∩Bj
is conformally equivalent to the disk. Since V is a disk, there is a conformal equivalence
ϕ : � → V ⊂ C2. Now the components of f V ∩ Bj correspond to the components
of {ζ ∈ � : f ◦ ϕ(ζ ) ∈ Bj } = {ζ ∈ � : πv ◦ f ◦ ϕ(ζ ) ∈ Dj }. Since D̄j is simply
connected, there is a subharmonic function s on C such that D̄j = {s ≤ 0}. It follows from
the maximum principle that each component of (πv ◦ f ◦ ϕ)−1(D̄j ) = {s ◦ f ◦ ϕ ≤ 0}
is simply connected. Finally, since πv ◦ f ◦ ϕ is an open mapping, each component of
(πv ◦ f ◦ ϕ)−1Dj is simply connected. �

The crossed mapping f0,0 from B0 to itself will be seen in §3 to have degree one,
so it follows from [HO] that there is a saddle fixed point p0 ∈ B0. Let us define Ws/u

0
to be the connected component of Ws/u(p0) ∩ B0, which contains p0. It follows that
W
s/u

0 ∈ D1
v/h(B0). Note that

Wu
0 =

⋂
n≥0

f nB0, Ws
0 =

⋂
n≥0

f−nB0. (2.7)

The maps f1,2 and f2,1 defined crossed mappings of B1 ∩ B2 to itself. In §3, they will be
seen to have degree one. Thus by [HO] there is a saddle point p1 ∈ B1 ∩ B2. We let Wu

1
denote the component of Wu(p1) ∩ B1 that contains p1. We show in Proposition 4.3 that
if (a, b) ∈ A, then it is a horizontal disk of degree one.

For admissible sequences I (for G) and J (for G−1), we use the notation

Wu
I = Wu

i0i1···in = f̃in−1in f̃in−2in−1 · · · f̃i0i1(Wu
i0
) (2.8)

Ws
J = Ws

j0j1···jn = f̃−1
jn−1jn

f̃−1
jn−2jn−1

· · · f̃−1
j0j1

(Ws
j0
). (2.9)

It follows that Ws/u

0 are vertical/horizontal disks of degree one in B0, and Ws
02 is a

vertical disk of degree one in B2. By Proposition 2.6, Wu
01 are vertical/horizontal disks of

degree one; and Wu
012 is a horizontal disk of degree two. This last statement includes two

possibilities: Wu
012 might consist of two disjoint disks of degree one or one disk on which

πv has degree two. In either case, Wu
012 intersects Ws

02 in B2 with multiplicity two, which
means that eitherWu

012∩Ws
02 consists of two distinct points, or the intersection is tangential.

3. Mappings of real boxes
Here we work under the additional condition that fa,b is a real mapping. In this section,
we will restrict our attention to the real parameter region

Ar := A ∩ R
2.
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Let τ be the involution of C2 defined by τ (x, y) = (x̄, ȳ). The fixed point set of τ is R2.
The condition that a, b ∈ R is equivalent to the condition that fa,b commutes with τ .
We say that a set S ⊂ C2 is real if τS = S. For instance τBi = Bi , so in this terminology
Bi is real. Let Dh/v,r (Bi) denote the set of horizontal/vertical disks in Dh/v(Bi) that are
real. If (a, b) ∈ Ar , then Proposition 2.6 applies to real disks to yield

f̃1,2 : Dm
h,r (B1) → D2m

h,r (B2) and f̃−1
2,1 : Dm

v,r(B2) → D2m
v,r(B1),

and

f̃i,j : Dm
h,r (Bi) → Dm

h,r (Bj ) and f̃−1
j,i : Dm

v,r(Bj ) → Dm
v,r(Bi)

for (i, j) ∈ G, (i, j) �= (1, 2).
We set Bri := Bi ∩ R2, which is a rectangle in R2 with sides parallel to the axes.

PROPOSITION 3.1. If V ∈ Dh,r (Bi), then V ∩ Bi,r consists of a non-empty, connected,
one-dimensional curve. In fact, there is a conformal uniformization h : � → V such that
h(ζ̄ ) = τ ◦ h(ζ ).
Proof. Let ϕ : � → V be a conformal uniformization of V . It follows that κ : � � ζ �→
ϕ−1 ◦τ ◦ϕ(ζ ) ∈ � is an anti-conformal involution of�. It follows that κ is an orientation-
reversing isometry for the Poincaré metric, so the fixed point set γ := {ζ ∈ � : κ(ζ ) = ζ }
is a Poincaré geodesic. Let ψ be a conformal automorphism of � that maps the real axis
(−1, 1) ⊂ � to γ . It follows that ψ−1 ◦ κ ◦ ψ is an isometric involution of � that fixes
(−1, 1), so it is simply the map ζ �→ ζ̄ . Thus, h = ϕ ◦ ψ is the desired uniformization. �

If f is a real map, then for (i, j) ∈ G, fi,j is a crossed mapping of the pair (Bri , B
r
j ).

PROPOSITION 3.2. If a, b ∈ Ar , then B0,r ∩ fB0 lies below B0,r ∩ fB2 inside B0,r , and
B1,r ∩ fB0 lies below B1,r ∩ fB2 inside B1,r . In particular, let I = 0i1 · · · in00 and
J = 0j1 · · · jm20 be admissible sequences. ThenWu

I lies belowWu
J inside B0,r . Similarly,

if K = 0k1 · · · kn01 and L = 0l1 · · · lm21 are admissible sequences, then Wu
K lies below

Wu
L inside B1,r .

Proof. The y-coordinate of f is πh ◦ f = x. Since B0 lies to the left of B2, it follows that
the y-coordinate of fB0,r is less than that of fB2,r . Thus, it lies below.

For the assertions about the pieces of unstable manifolds, we note that if I is a sequence
that ends in ij, then Wu

I ⊂ fBi ∩ Bj . Thus, for a sequence I that ends in 00 and
a sequence J that ends in 20, we will have Wu

I ⊂ B0,r ∩ fB0, which lies below
Wu
J ⊂ B0,r ∩ fB2. �

If (i, j) ∈ G, (i, j) �= (1, 2), then the crossed mapping fi,j has degree one. This means
that real, horizontal curves in Bi,r that run from left to right are taken to real, horizontal
curves in Bj,r that run either from left to right or from right to left. If the left-to-right
direction is preserved, we assign the symbol εu = + to f . Otherwise, we set εu = −.
Similarly, real, vertical curves in Bj,r that run from bottom to top are mapped under f−1

to real, vertical curves that either run from bottom to top or from top to bottom. If they run
from bottom to top, then we assign the symbol εs = + to f−1. Otherwise, εs = −.
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FIGURE 5. Graph induced by f (orientation-preserving).

FIGURE 6. Graph induced by f (orientation-reversing).

PROPOSITION 3.3. If (a, b) ∈ Ar , then the signs (εs, εu) are given as in Figures 5 and 6.

Proof. First we consider the degenerate case b = 0. The map a − x2 = πv ◦ fa,0(x, y)
is increasing on D0 ∩ R = (−d, 0) and decreasing on D2 ∩ R = (0, d). Thus, we have
εu = + on D0 ∩ R and εu = − on D0 ∩ R. This condition continues to hold for b �= 0.
Thus, we have εu = + on D0 and εu = − on D2. This continues to hold for b �= 0, so the
arrows of G emanating from B0 should be labeled (·,+), and the arrows emanating from
B2 should be labeled (·,−). In the orientation-preserving case, the only possible labels are
(+,+) and (−,−). In the orientation-reversing case, the only possible labels are (+,−)
and (−,+). Thus we have the labeling shown in the graphs in Figures 5 and 6. �

The crossed map f1,2 has degree two and is less easy to work with. The illustrations on
the right-hand sides of Figures 5 and 6 indicate its combinatorial behavior in the following
sense. The left-hand side of the vertical boundary of B1,r is {−c} × [−e, e], and the right-
hand side is {c}× [−e, e]. In the degenerate case b = 0, fa,0 maps the left boundary to the
point (a − c2,−c), which is to the left of B2,r ; and the right boundary goes to (a − c2, c),
which is directly above (a − c2,−c). If b �= 0, then the image of the left boundary will
continue to be to the left of B2,r and below the image of the right boundary. The use
we make of this combinatorial/topological information is given in Proposition 3.4, whose
proof is a straightforward consequence of the preceding discussion.

PROPOSITION 3.4. Suppose (a, b) ∈ Ar . Suppose, too, that A1 and A2 are curves
that cross B1,r from left to right and that A1 lies below A2 inside B1,r . If f preserves
orientation, then the curves C1 = f̃1,2A1 and C2 = f̃1,2A2 open to the left, and C2 lies
inside C1 as illustrated in Figure 7. If f reverses orientation, then the relative positions of
C1 and C2 are exchanged.
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FIGURE 7. Curve C2 lies inside C1: three possibilities.

In the sequel, we will work with parameter values in Ar . For these parameter values,
the boxes in B are product sets Dj ×�, and the non-empty intersections, i.e. D̄0 ∩ D̄1 and
D̄1 ∩ D̄2, are topological disks. The essential properties of the partially-defined mappings
fi,j : Bi → Bj which we will use are:

(B,G) is a family of real, crossed mappings, with the

topological configurations shown in Figures 5, 6, and 7.
(†)

We may summarize the discussion above by the following statement: If (a, b) ∈ Ar , then
(†) holds. We also introduce the two conditions

#(Ws
02 ∩Wu

012 ∩ B2,r ) = 2 if b > 0 and #(Ws
02 ∩Wu

12 ∩ B2,r ) = 2 if b < 0, (∗)

#(Ws
02 ∩Wu

01212 ∩ B2,r ) = 4 if b > 0 and #(Ws
02 ∩Wu

12012 ∩ B2,r ) = 4 if b < 0,
(∗∗)

where the intersections are counted with multiplicity.

Remark on notation. We have now defined a parameter domain Ar as well as three
conditions that may or may not hold for a given parameter value (a, b). The condition
(†) requires the boxes B to have specified behavior under f and f−1. The conditions (∗)
and (∗∗) define dynamical characteristics of fa,b. It will be shown below that (†) holds for
all parameters in Ar and that (∗∗) implies (∗).

PROPOSITION 3.5. If (†) holds, then (∗∗) ⇒ (∗).
Proof. We only treat the case b < 0 since the case b > 0 is similar. Let us suppose that
(∗) fails. We map Wu

1 forward under f̃1,2 to Wu
12. By Proposition 3.1, Wu

12 ∩ B2,r is a
non-empty, connected curve, and by Proposition 3.4 it forms a curve that opens to the left,
which by hypothesis does not intersectWs

02. This is pictured in the pair of boxes on the left-
hand side of Figure 8. Next we map Wu

12 forward under f̃2,0. Again by Proposition 3.1,
Wu

120 ∩ B0,r is a non-empty, connected curve. Since the sign of f2,0 is (·,−), the x-
direction of the curve is reversed, so Wu

120 ∩ B0,r opens to the right. By Proposition 3.2,
Wu

120 lies aboveWu
0 = Wu

00, which is drawn in gray as a visual aid to the reader, although
it is not necessary for the proof. (The gray dot is p0, and Wu

1 is above Wu
01 in B0,r by

Proposition 3.2.) Since the sign of f2,1 is (+, ·), the vertical orientation is preserved, so
Wu

121 contains Wu
1 as well as a curve below it. Since the sign of f2,0 is (+, ·), the vertical

orientation is preserved, so the upper part of Wu
120 with a single hash mark is identified
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FIGURE 8.

FIGURE 9.

FIGURE 10. Moving Wu
0 forward along the sequence 01212 (case b > 0).

with Wu
1 on the set B0,r ∩ B1,r . Since Ws

02 ∩Wu
12 = ∅, Wu

120 is disjoint from Ws
0 , so we

obtain the picture as in the right-hand pair of boxes in Figure 8.
Next we map Wu

120 forward under f̃0,1. This is shown in the left-hand picture of
Figure 9. Since f0,1 has signature (−, ·), the vertical orientation is reversed, so Wu

1201 lies
belowWu

121 andWu
01 in B1,r . Finally, we map forward under f̃1,2 and obtain the picture in

the right-hand box of Figure 9. The two arches ofWu
12012 lie insideWu

12 by Proposition 3.4.
Thus,Wu

12012 cannot intersect Ws
02, so condition (∗∗) does not hold. �

Figure 10 illustrates conditions (∗) and (∗∗) in the case b > 0. To understand Figure 10,
start in the left-hand box with Wu

0 and Ws
0 passing through the saddle point p0. We move

Wu
0 to box B1,r via the map f̃0,1, and to box B2,r via f̃0,2. The map f1,2 has degree two,

and f̃1,2W
u
01 = Wu

012 is a curve of degree two that opens to the left by Proposition 3.4.
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FIGURE 11. Alternative to Figure 10.

FIGURE 12. Moving Wu
1 forward along the sequences 1200, 1201, and 12012 (case b < 0).

By condition (∗), Wu
012 crossesWs

02. The crossed map f2,0 has degree one and sign (·,−),
so the left-opening, degree two curveWu

012 produces a degree two curveWu
0120 = f̃2,0W

u
012

in B0,r that opens to the right. Condition (∗) maps forward under f2,0, so Wu
0120 intersects

Wu
0 in two points.
The crossed map f2,1 has degree one, so f̃2,1W

u
012 = Wu

0121 has degree two and by
Proposition 3.2, it lies above Wu

01. Now (f̃0,2 ∪ f̃2,1)(W
u
012) is a curve in B0 ∪ B1 of

degree two, and since Wu
0120 ∩ B0,r is connected, it follows that Wu

0121 ∩ B1,r consists of
two curves of degree one. By Proposition 3.1, then it follows that the complex variety
Wu

0121 consists of two irreducible components. Now we map Wu
0121 ∩ B1,r under f̃1,2,

which has degree two. By Proposition 3.4,Wu
01212 = f̃1,2W

u
0121 lies inside Wu

012. By (∗∗),
Wu

01212 intersects Ws
02. Note that the arrangement of Wu

01212 corresponds to one of the
possibilities in Figure 7. Another possibility is given in the right-hand side of Figure 11.
This picture is mapped forward under f̃2,0, to show one possibility forWu

012120 inside B0,r .
Figure 12 deals with the orientation-reversing case and shows various unstable pieces

Wu
I starting with Wu

1 through p1 and moving forward along the sequences I = 1200,
1201, and 12012. The construction of this picture was explained in large part in the proof
of Proposition 3.5, so we do not repeat it here.

During the preceding discussion, we encountered a special case of the following
proposition.

PROPOSITION 3.6. Let � be a horizontal disk in B1 which is real. If (†) and (∗) hold,
then f̃2,1f̃1,2� is the union of two horizontal disks in B1.
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Proof. By Proposition 3.4, f̃1,2� ∈ D2
h,r (B2) is a real disk of degree two such that

f̃1,2� ∩ R
2 opens to the left. Applying (f̃2,0 ∪ f̃2,1) to f̃1,2�, we obtain a disk �′ of

degree two, which is horizontal in B0 ∪ B1. There can be at most one critical point for
the projection πv : �′ → B0 ∪ B1, and if there is a critical point, it must be real, since its
conjugate is also a critical point.

Since the sign of f2,0 ∪ f2,1 is (·,−), �′ ∩ R2 opens to the right. By Proposition 3.1,
f̃2,0f̃1,2� = �′ ∩ B0 intersects B0,r in a non-empty real curve. Thus, if there is a
critical point, then vertical projection πv : � ∩ (B0,r ∪ B1,r ) → (−d, c) has a critical
point. Since (∗) holds, this critical point must belong to B0,r , and since (a, b) ∈ A,
this point cannot belong to B1,r . In particular, it follows that πv has no critical point in
f̃2,1f̃1,2� = �′ ∩ B1. Thus, �′ ∩ B1 consists of two components, which are horizontal
disks in B1. �

When (∗∗) holds, we use Figures 10 and 12 to define S± as the closed subintervals of
the left-hand component of ∂vB2,r which meet each component of W̄u

012 ∪ W̄u
01212 if b > 0

(respectively each component of W̄u
12 ∪ W̄u

12012 if b < 0).

PROPOSITION 3.7. Suppose that b > 0 and that (†) and (∗∗) hold. Let I be an admissible
sequence starting with 0 and ending with k, and let � be a connected component of Wu

I .
Then we have the following.
• If k = 0, then � is disjoint from the component of B0,r − Wu

0 lying below Wu
0 .

If δ(�) �= 1, then δ(�) = 2, and � intersects Ws
0 ∩ B0,r , and �̄ intersects the

right-hand component of ∂vB0,r in two points.
• If k = 1, then δ(�) = 1, and � is disjoint from the topmost and bottommost

components of B1,r − (Wu
01 ∪Wu

0121).
• If k = 2, then � is disjoint from the innermost and outermost components of

B2,r − (Wu
012 ∪ Wu

01212). If δ(�) �= 1, then δ(�) = 2, and �̄ intersects both S+
and S−.

Proof. The proof proceeds by induction on the length of the sequence I . First, the case
I = 0 is clear. Now we suppose that the proposition holds for I = I ′i. We will show that
if (i, j) ∈ G, then the proposition holds for I = I ′ij by considering five cases.

Case (i, j) = (0, 0). Since f0,0 has sign (+, ·), f0,0 maps the component of B0,r −Wu
0

above Wu
0 to itself. So f̃0,0� is disjoint from the component of B0,r − Wu

0 below Wu
0 .

Now suppose that δ(�) = 2. f0,0 maps Ws
0 into itself, and the sign of f0,0 is (·,+),

so f̃0,0� intersectsWs
0 ∩B0,r , and �̄ intersects the right-hand component of ∂vB0,r in two

points.
Case (i, j) = (0, 1). By Proposition 3.2, f0,1(B0,r ) lies below Wu

0121. On the other
hand � is above Wu

0 and f0,1 has sign (+, ·), so f̃0,1� is above Wu
01 in B1,r . It remains to

show that f̃0,1� consists of two components of degree one. For this, we may assume that
δ(�) = 2, and � ∩ Ws

0 ∩ B0,r �= ∅. Consider how γ ′ = (f̃0,0 ∪ f̃0,1)(B0,r ∩ �) maps
across B0,r ∪ B1,r : the left-hand side of γ ′ intersects Ws

0 ∩ B0,r and the right-hand side
goes across the right-hand boundary of ∂vB1,r . Thus, γ ′ ∩ B1,r consists of two curves.
By Proposition 3.1, f̃0,1� ∩ B0,1 = γ ′ ∩ B1 consists of two disks of degree one.

Case (i, j) = (1, 2). This is a direct consequence of Proposition 3.4.
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Cases (i, j) = (2, 1) and (i, j) = (2, 0). Let � be as in case k = 2. We may
assume that δ(�) = 2. Since f2,0 and f2,1 have sign (·,−), it follows that γ ′ :=
(f̃2,0 ∪ f̃2,1)� ∩ (B0,r ∪ B1,r ) is a 2-fold curve opening to the right. Since �̄ intersects
both S+ and S−, we have � ∩Ws

02 ∩ B2,r �= ∅, and it follows that γ ′ ∩Ws
0 ∩ B0,r �= ∅.

By Proposition 3.2, γ ′ lies aboveWu
0 . This finishes the case ij = 20.

For the case (i, j) = (2, 1), we observe that by Proposition 3.6 f̃2,1� consists of two
components of degree one. �

In the following, we let B+
0,r denote the right-hand component of B0,r −Ws

0 .

PROPOSITION 3.8. Suppose that b < 0, and that (†) and (∗∗) hold. Let I be an admissible
sequence starting with 1 and ending with k, and let � be a connected component of Wu

I .
Then we have the following.
• If k = 0, then � is disjoint from the topmost and bottommost components of

B+
0,r − (Wu

120 ∪Wu
1200). If δ(�) �= 1, then δ(�) = 2, and � intersectsWs

0 ∩B0,r , and

�̄ intersects the right-hand component of ∂vB0,r in two points.
• If k = 1, then δ(�) = 1, and � is disjoint from the topmost and bottommost

components of B1,r − (Wu
1 ∪Wu

1201).
• If k = 2, then � is disjoint from the innermost and outermost components of

B2,r − (Wu
12 ∪ Wu

12012). If δ(γ ) �= 1, then δ(�) = 2, and �̄ intersects both S+
and S−.

Proof. This proof is analogous to the proof of Proposition 3.6; we omit the details. �

PROPOSITION 3.9. Suppose that (†) and (∗∗) hold. Let I be an admissible sequence of
the form I = 0i1 · · · in2 if b > 0 or I = 1i1 · · · in2 if b < 0. Then for each component� of
Wu
I , we have #(Ws

02 ∩ � ∩ B2,r ) = δ(�). In particular, if the intersection in the definition
of (∗∗) is not tangential, then there is no tangency between Ws

0 andWu
I .

Proof. This follows from the case k = 2 in Propositions 3.7 and 3.8. The only case to
consider is δ(�) = 2. Now if � is not one of the curvesWu

I in condition (∗∗), � ∩ B2,r is
trapped between an inner and an outer curve. Since its closure intersects both S+ and S−,
it must cross Ws

02 at least twice. These two intersections account for the total intersection
number, and so these intersections must be simple (non-tangential), and there can be no
further intersections. �

PROPOSITION 3.10. Suppose that (†) and (∗∗) hold. Let I be an admissible sequence of
the form I = 0i1 · · · in0 if b > 0 or I = 1i1 · · · in0 if b < 0. Then for each component �
ofWu

I , #(Ws
0 ∩� ∩B0,r ) = δ(�). In particular, if the intersection in the definition of (∗∗)

is not tangential, then there is no tangency between Ws
0 andWu

I .

Proof. This follows by applying the map f̃2,0, which has degree one, to the result of
Proposition 3.9. �

In particular, we see from Proposition 3.10 that all intersections are real. This allows us
to characterize the mappings of maximal entropy.

THEOREM 3.11. Suppose that (†) holds. If the real map fa,b has entropy equal to log 2,
then (∗∗) holds. Conversely, if S ⊂ {(a, b) ∈ R2 : b �= 0} is a connected set such that (∗∗)
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holds for all (a, b) ∈ S, and if fa0,b0 has entropy log 2 for some (a0, b0) ∈ S, then fa,b has
entropy log 2 for all (a, b) ∈ S.

Proof. The proof will be based on the following criterion from [BLS]: fa,b has (maximal)
entropy log 2 if and only if for all saddle points p and q , all (complex) intersection points
of Ws(p) ∩Wu(q) belong to R2.

We suppose first that the entropy of fa,b is log 2. If b > 0, we take p = q = p0.
By (2.6), δ(Ws

02) = 1 and δ(Wu
01212) = 4. If b < 0, we take p = p0 and q = p1. Again by

(2.6), we have δ(Wu
12012) = 4. By (2.5) we have #(Ws

02 ∩ �) = δ(Ws
02)δ(�) = 4 with

� = Wu
01212 if b > 0 and � = Wu

12012 if b < 0. By the criterion above, all (complex)
intersections between Ws

02 and � must belong to R2, so it follows that (∗∗) holds.
Now let us suppose that (∗∗) holds for all (a, b) ∈ S. Consider the subset S0 of points

(a, b) ∈ S such that the entropy of fa,b is equal to log 2. Since (a, b) �→ entropy(fa,b) is
continuous (see [N]), it follows that S0 is a closed subset of S. Since S is connected,
it suffices to show that S0 is an open subset of S. Let us fix a point (a0, b0) ∈ S0.
By Proposition 2.5 there is an open set U0 ⊂ C2 such that B̄0,r ∪ B̄1,r ∪ B̄2,r ⊂ U0,
and

U0 ∩ fa,b(B0 ∪ B1 ∪ B2) ⊂ fa,b(B0 ∪ B2)

U0 ∩ fa,b(B0 ∪ B1 ∪ B2) ⊂ fa,b(B1)

holds for (a, b) = (a0, b0). Thus, it holds for (a, b) in a small neighborhood of (a0, b0).
Thus, we also have thatKa0,b0 ⊂ R2 since fa0,b0 has maximal entropy. By Proposition 2.1,
then Ka0,b0 ⊂ B0,r ∪ B1,r ∪ B2,r ⊂ U0. Since (a, b) �→ Ka,b is upper semicontinuous,
it follows that for (a, b) sufficiently close to (a0, b0) we have Ka,b ⊂ U0, and thus fa,b
satisfies the hypotheses of Proposition 2.4.

Now we consider the case b > 0; the argument for the case b < 0 is similar and is
omitted. Let q ∈ Ws(p0) ∩Wu(p0) be any point of intersection. Replacing q by f−mq
if necessary, we may assume that q ∈ B0. Let I denote the admissible sequence given by
Proposition 2.4. For n sufficiently large, we have f nq ∈ Ws

0 , which is a neighborhood
of p0 inside Ws(p0). Thus, writing I (n) := i0i1 · · · in, we have f nq ∈ Wu

I(n).

By Proposition 3.10, it follows thatWs
0 ∩Wu

I(n) ⊂ R2. Since f nq ∈ Ws
0 ∩Wu

I(n), it follows

that q ∈ R2. Thus,Ws(p0) ∩Wu(p0) ⊂ R2, so that fa,b has entropy equal to log 2. �

Remark. There is an alternative approach to the ‘conversely’ part of this theorem. Namely,
we could use the arguments of this section to show that Ws

02 and Wu
I have certain trellis

properties, and then we can apply the work of Collins [C] to conclude that the real map f
has entropy log 2.

4. The quadratic horseshoe locus
In this section we analyze the real, maximal entropy bifurcations in a neighborhood
of (2, 0).

LEMMA 4.1. Suppose that (a, b) ∈ A, and suppose that �/3 ≤ δ ≤ e2 − 4 − 2�. If we
define B ′

0 and B ′
2 by

B ′
0 := {|x + 2| < δ, |y| < e}, B ′

2 := {|x − 2| < δ, |y| < e}
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then f induces crossed mappings from B ′
0 to itself and from B ′

0 to B ′
2. In particular, the

sets Ws
0 andWs

02 (as in (2.10)) are given by

Ws
0 =

⋂
n≥0

f−nB ′
0 and Ws

02 =
⋂
n≥1

B ′
2 ∩ f−nB ′

0.

Proof. Let us fix δ such that�/3 ≤ δ ≤ e2 − 4 − 2� and set B ′
0 := {|x+ 2| < δ, |y| < e}.

By the upper bound on δ, we have {|4 − x2| < �+ δ} ⊂ {|x| < e}. We compute

f−1B ′
0 ∩ {|y| < e} = {|2 + πvf (x, y)| < δ, |πhf (x, y)| < e, |y| < e}

⊂ {|2 + a − x2 − by| < δ, |x| < e, |y| < e}
⊂ {|4 − x2| < |a − 2| + |by| + δ, |x| < e}
⊂ {|4 − x2| < �+ δ, |x| < e}
⊂ {|2 − x| < √

4 +�+ δ − 2} ∪ {|2 + x| < √
4 +�+ δ − 2}

⊂
{
|2 − x| < �+ δ

4

}
∪

{
|2 + x| < �+ δ

4

}
.

In the next to last line we have removed the condition |x| < e by the upper bound condition
on δ. The last line uses the concavity of the square root. By the lower bound on δ, we have
(�+ δ)/4 < δ, so it follows that f−1B̄ ′

0 ∩ ∂vB ′
0 = ∅.

Next we consider a point (x ′, y ′) ∈ f−1(∂hB
′
0). By (2.4),

|y ′| =
∣∣∣∣1

b
(a − y2 − x)

∣∣∣∣ > e

�
(|y|2 − 4 − |a − 2| − |x + 2|)

>
e

�
(e2 − 4 −�− δ).

This last quantity is greater than e by the upper bound on δ, so (x ′, y ′) /∈ B̄ ′
0. Thus,

f induces a crossed mapping fromB ′
0 to itself. The proof that f induces a crossed mapping

from B ′
2 to B ′

0 is the same �

COROLLARY 4.2. If (a, b) ∈ A, then (∗) holds.

PROPOSITION 4.3. If (a, b) ∈ A, then the horizontal disk Wu
1 has degree one.

Proof. Let � ∈ D1
h,r (B1) be any real, horizontal disk passing through the saddle point

p1 ∈ B1. By Proposition 3.6, f̃2,1f̃1,2� consists of two horizontal disks of degree one.
One of these disks, which we will denote (f̃2,1f̃1,2)

#�, will contain p1. It follows that
(f̃2,1f̃1,2)

#n� is a sequence of horizontal disks of degree one, passing through p1, which
converge to Wu

1 as n → ∞. �

Now let us examine the case b = 0. The image of fa,0 is the parabola

� := fa,0(C
2) = {x = a − y2} = {(p(t), t) : t ∈ C},

where p(z) = a − z2. Throughout our discussion, we assume that |a − 2| < �. Thus,
a /∈ D0 ∪ D1, and so there are two holomorphic branches of p−1(z) = ±√

a − z over
D0 ∪D1. For j = 0, 1, � ∩ Bj consists of two components �′

j and �′′
j , each of which is a
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smooth graph of a branch of p−1. We note that fa,0 is injective on each component �′
j and

�′′
j , j = 0, 1. On the other hand, � ∩ B2 is connected, and fa,0 is two-to-one on � ∩ B2.

Let p0 = (t0, t0) denote the fixed point which belongs to B0. (The following
discussion can be adapted to work with the other fixed point p1 ∈ B1 ∩ B2, as well.)
Let ϕa : C → C denote the linearizing coordinate such that ϕa(0) = t0, ϕ′

a(0) = 1, and
p(ϕa(ζ )) = ϕa(λζ ), where λ := p′(t0). If we write ϕ = ϕa , it follows that

ψa,0(ζ ) := (ϕ(ζ ), ϕ(λ−1ζ ))

defines a mapping ψa,0 : C → � which satisfies fa,0 ◦ ψ(ζ ) = ψ(λζ ).
We wish to define the setsWu

I in the case b = 0. We letWu
0 be the connected component

of � ∩ B0 containing p0; Wu
01 is the connected component of � ∩ B1 which intersects

Wu
0 ; and Wu

012 = � ∩ B2. As we try to consider longer I , we run into the difficulty
that the mappings f̃i,j are not invertible. To deal with this, we identify Wu

I in terms of
the parameterization ψa,0 of �. To do this, let �0 ⊂ C be the connected component of
ψ−1
a,0(W

u
0 ) = ϕ−1(D0) that contains the origin. In general, we set

�I := λn�0 ∩ ϕ−nDi1 ∩ · · · ∩ ϕ−n(Din) = λn�0 ∩ ψ−n
a,0Bi1 ∩ · · · ∩ ψ−n

a,0(Bin), (4.1)

where I = 0i1 · · · in is an admissible sequence. We then identify Wu
I in terms of the map

ψa,0 : �I → Wu
I .

The usefulness of the case b = 0 is that it is the limit of the case b �= 0. When b �= 0,
we let ψa,b : C → Wu

p0
be the uniformization of Wu(p0), normalized by the condition

(πv ◦ ψa,b)′(0) = 1. In this case, (a, b, ζ ) �→ ψa,b(ζ ) is holomorphic, and we have

lim
b→0

ψa,b = ψa,0, (4.2)

with uniform convergence on compact subsets. Restricting this to the image of�I , we have

lim
b→0

Wu
I (fa,b) = Wu

I (fa,0), (4.3)

where the convergence is in the sense of the Hausdorff topology. Taking multiplicities of
W
s/u
I (fa,0) into account, the convergence also holds in the sense of currents.

LEMMA 4.4. If |a − 2| < �, then for I = 01212 and I = 12012, �I consists of two
connected components with disjoint closures. If b �= 0 is sufficiently small, then Wu

I

consists of two components.

Proof. Since p : D0 → p(D0) is a conformal equivalence, and p−1D0 ⊂ D0, we may
define a holomorphic map limn→∞ λnp−n : p(D0) → C. This is the inverse of ϕ, and
so ϕ : λ�0 → p(D0) is univalent. Thus, �01 = �0 ∩ ϕ−1(D1) is connected and
relatively compact in �0. Let c01 be the unique point of λ�0 such that ϕ(c01) = 0.
It follows that ϕ′(λc01) = (p ◦ ϕ(c01))

′ = p′(0)ϕ′(c0) = 0. Conversely, if ζ ∈ λ2�0,
and if 0 = ϕ′(ζ ) = p′(ϕ(λ−1ζ ))ϕ′(λ−1ζ )λ−1, then we must have p′(ϕ(λ−1ζ )) = 0
since ϕ′ �= 0 on λ�0. It follows that ζ = λc01, so λc01 is the unique critical point
in λ2�0. It follows that ψa,0(ζ ) = (ϕ(ζ ), ϕ(λ−1ζ )) has no critical point on λ2�0.
Since ψa,0(�012) = � ∩ B2 is simply connected, it follows that ψa,0 : �012 → � ∩ B2 is
univalent. By the argument above, λ2c01 is the unique critical point for ψa,0 in λ3�0.
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Now ψa,0(λ
2c01) = fa,0(a, 0) = (a − a2, a), which does not belong to B1, since

�(a − a2) < −c. It follows that ψa,0 is unbranched on the closure of λ3�0 ∩ ψ−1
a,0(B1).

Recall that fa,0 : Wu
012 = � ∩ B2 → fa,0(W

u
012) is a mapping of degree two. Thus,

Wu
0121 is the component of � ∩ B1 which is disjoint from Wu

01, and Wu
0121 has multiplicity

two. It follows that ψa,0 : �0121 → Wu
0121 is a covering of degree two. Since ψa,0 is

unbranched on the closure of�0121 ⊂ λ3 ∩ψ−1
a,0(B1), it follows that �0121 consists of two

components with disjoint closures.
Let us move forward one more step: since fa,0 is injective on Wu

0121, it follows that
ψa,0 gives a conformal equivalence between each component of λ�0121 and fa,0Wu

0121.
Intersecting λ�0121 with ψ−1

a,0(B2 ∩ fa,0(Wu
0121)) = ψ−1

a,0(B2 ∩ �) = ϕ−1(D2), then �I
consists of two components�′

I and �′′
I that have disjoint closures. If b �= 0 is sufficiently

small, then ψ−1
a,b(W

u
I ) will be close to �I . Thus, it (as well asWu

I ) has two components. �

Now we pass from unstable manifolds to stable manifolds. The vertical complex line
through the fixed point p0 is mapped to p0 under fa,0. If we write p0 = (t0, t0), then

Ws
0 = {(x, y) : x = t0, |y| < e} and Ws

02 = {(x, y) : x = t ′0, |y| < e},
where t ′0 ∈ C is the solution to p(t ′0) = t0 such that t ′0 �= t0. If (‡) holds, then

Ws
02 ∩ � = {(ζ,±√

a − ζ ) : ζ = t ′0}. (4.4)

This intersection consists of two distinct points unless t ′0 = a, which happens exactly when
a = 2. We can work our way backwards, taking successive preimages, to defineWs

J (fa,0)

for an admissible sequence J . As in the case of unstable manifolds, we have

lim
b→0

Ws
J (fa,b) = Ws

J (fa,0). (4.5)

PROPOSITION 4.5. Suppose that (a, b) ∈ A and |a−2| ≥ (e+�)|b|. Then for I = 01212
and I = 12012,Ws

02 intersects Wu
I in four distinct points, and thus the intersection is not

tangential.

Proof. We begin by noting

Wu
I ⊂ B2 ∩ fB0 ⊂ {|b−1(a − x − y2)| < δ, |y| < e}.

If we set δ = �/3, then by Lemma 3.5 we have

Ws
02 ⊂ B ′

2 ⊂
{
|x − 2| < �+ δ

4
, |y| < e

}
.

Thus,

Ws
02 ∩Wu

I ⊂
{
|x − 2| < �+ δ

4
, |a − x − y2| < δ|b|

}

⊂
{
|x − 2| < �+ δ

4
, |a − 2 − y2| < |b|δ + |x − 2|

}

⊂
{
|a − 2 − y2| < |b|δ + �+ δ

4

}

=: Ua,b.
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The set Ua,b is symmetric with respect to y �→ −y and is seen to be disconnected if
(and only if) it does not contain y = 0. This occurs exactly when |a − 2| ≥ |b|δ +
(�+ δ)/4. Now we recall that δ = �/3 and substitute the condition (‡), which gives
|a − 2| ≥ |b|�/3 + �/3 ≥ |b|�/3 + (|a − 2| + e|b|)/3, and this is equivalent to
|a − 2| ≥ (�+ e)|b|.

Now consider the case b = 0. By Lemma 4.4, �I consists of components �′
I and �′′

I .
Since a �= 2, the intersection (4.4) contains two points, which lie in different components
of Ua,b. Thus, ψa,0(�′

I ) and ψa,0(�′′
I ) each intersect Ws

02 in two points, which lie in
different components of Ua,0. If b �= 0, |a − 2| ≥ (e + �)|b|, then Wu

I consists of two
components (Wu

I )
′ = ψa,b(�

′
I (a, b)) and (Wu

I )
′′ = ψa,b(�

′′
I (a, b)). Further, the set Ua,b

continues to be disconnected, and by (4.3) each component ofUa,b will continue to contain
a point ofWs

02 ∩Wu
I

′. Since δ(Wu
I )

′ = 2 andWs
02 ∩ (Wu

I )
′ contains two distinct points, the

intersection is not tangential. A similar argument for (Wu
I )

′′ ∩Ws
02 shows that Ws

02 ∩Wu
I

has no tangency. �

Let us define

D := {(a, b) ∈ C
2 : |a − 2| < 0.2, |b| < 0.06}

TI := {(a, b) ∈ D : Ws
02 intersects Wu

I tangentially}.
In the definition of TI , we interpret the case b = 0 as follows. By §1, we know that
TI ∩ {b �= 0} is a complex subvariety of D − {b �= 0}. By (4.5) and (4.2), we have that
(TI ∩ {b �= 0}) ∪ (2, 0) is the closure of TI ∩ {b �= 0} in D. With this interpretation, TI is
a complex subvariety of D.

PROPOSITION 4.6. For I = 01212 and 12012, TI is a complex subvariety of D with the
following properties.
(i) The projection πh : TI → {|b| < 0.06} is a proper mapping of degree two.
(ii) TI is locally reducible at (2, 0).
(iii) There are real analytic functions κ±

I : [−0.06, 0.06] → R with κ−
I (t) < κ+

I (t) for
t > 0 such that TI ∩ R2 is the union of the graphs of κ+

I and κ−
I .

Proof. Note that with our values of e and �, (‡) holds for (a, b) ∈ D whenever b �= 0.
Further, the condition |a − 2| ≥ (e + �)|b| holds for (a, b) ∈ ∂vD. By Proposition 4.5,
then T̄I ∩ ∂vD = ∅. Thus, πh is a proper mapping. To determine the multiplicity of πh,
it suffices to determine the multiplicity at b = 0. If b = 0, then the only tangency occurs at
a = 2. NowWu

I = �∩B2, with multiplicity two, so in case a = 0,Ws
02 makes a tangential

intersection with each component of Wu
I . It follows that TI ∩ {b = 0} = {(2, 0)}, with

multiplicity two. Thus, πh has multiplicity two.
For (ii), let b = 0. By Lemma 4.4, �I consists of components �′

I and �′′
I that have

disjoint closures. Thus, for b �= 0 small, there are domains�′
I (a, b) and �′′

I (a, b) that are
mapped under ψa,b to the two components of Wu

I . Thus, for |b| < r0 small, we may split
TI into T ′

I = {(a, b) ∈ D : |b| < r0,W
s
02 intersectsWu

I (a, b)
′ tangentially}, and a similar

set T ′′
I for Wu

I (a, b)
′′.

Now we consider the projection πh : TI ∩ R2 → (−0.06, 0.06). This is a proper
mapping of degree two. Consider a point (a, b) ∈ TI ∩ R2 with b < 0 and suppose that
I = 12012. We may repeat the argument of Proposition 3.5 to conclude that Wu

12012
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consists of two curves in B2,r which open to the left. By γ ′ and γ ′′ we denote the
components of Wu

12012 such that γ ′ ∩ B2,r forms the inner curve, and γ ′′ ∩ B2,r forms
the outer curve.

Let us note at the outset that δ(γ ′) = δ(γ ′′) = 2, and so #(Ws
02∩γ ′) = #(Ws

02∩γ ′′) = 2.
If there is a tangency between γ ′ and Ws

02, then the tangency must be real. Otherwise,
if there were a point of tangency q ∈ B2 − B2,r , the complex conjugate q̄ would also be a
point of tangency, so the total intersection of γ ′ andWs

02 in B2 would be at least four.
Now suppose that the outer curve γ ′′ is tangential to Ws

02. Then this point of tangency
must have order two, and can be the only intersection with Ws

02 since the total intersection
satisfies #(Ws

02 ∩Wu
12012) = 2. Since γ ′′ ∩ B2,r opens to the left, it follows that γ ′′ ∩ B2,r

must lie to the left of Ws
02. Thus, γ ′ cannot intersect Ws

02 ∩ B2,r . Thus, there can be no
tangency between the complex disksWs

02 and γ ′.
Thus, in the case b �= 0, with a and b both real, there cannot be tangencies (necessarily

real) between both components ofWu
I andWs

02. In other words, if (a, b) ∈ T ′
I ∩R2, b �= 0,

then (a, b) /∈ T ′′
I ∩ R2. This gives a splitting of TI into two components in a neighborhood

of π−1
h (−0.06, 0.06). Since πh has degree one on T ′

I ∩R2 and T ′′
I ∩R2 these sets are given

as the graphs of real analytic functions. �

Let us set
κ(t) := max(κ+

01212(t), κ
−
12012(t)).

COROLLARY 4.7. We have {(a, b) ∈ D ∩ R
2 : b �= 0, (∗∗) holds} = {(a, b) ∈ D ∩ R

2 :
b �= 0, a ≥ κ(b)}.
Proof. We consider only the case b > 0; the other case is similar. For I = 01212, set
T ±
I := {a = κ±

01212(b)}. Thus, TI ∩ R2 = T +
I ∪ T −

I . As was noted in the proof of
Proposition 4.6, T −

I is the set of parameters for which one component of Wu
I is tangent

to Ws
02, and the other component is disjoint from Ws

02. T +
I is the set of parameters for

which one component of Wu
I is tangential to Ws

02, and the other component intersectsWs
02

in two points. �

Let us write

E := {(a, b) ∈ R
2 : fa,b has entropy < log 2}

H := {(a, b) ∈ R
2 : fa,b is a real horseshoe}.

THEOREM 4.8. We have

H ∩ D = {(a, b) ∈ D ∩ R
2 : a > κ(b), b �= 0},

E ∩ D = {(a, b) ∈ D ∩ R
2 : a < κ(b), b �= 0}.

Proof. By Theorem 3.11 and Corollary 4.7, the set of parameters (a, b) ∈ D∩R2 for which
the entropy is log 2 is exactly the set {a ≥ κ(b)}. On the other hand, if a > κ(b), then by
Proposition 3.9 there is no tangency. Since f has maximal entropy, it follows from [BS2]
that f is hyperbolic. Now D ∩ R2 ∩ {a > κ(b)} is a connected set of parameters for which
fa,b is hyperbolic. By Theorem 1.1, this set contains parameters for which fa,b is a real
horseshoe. It follows, then, from the structural stability of hyperbolic maps that all of these
maps are horseshoes. �
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5. Generic unfolding
In Theorem 5.2 we establish the ‘generic unfolding’ statement in Theorem 2. Let us fix
I = 01212 or I = 12012. In §4 we saw that for (a, b) ∈ D, b �= 0, the set Wu

I is
disconnected and may be split into

Wu
I (a, b) = Wu

I (a, b)
′ ∪Wu

I (a, b)
′′. (5.1)

Further, we saw that if (a0, b0) ∈ D ∩ R2 ∩ ∂H, then one of these components, say
Wu
I (a0, b0)

′, has a quadratic tangency withWs
02(a0, b0). This splitting may be done for all

(a, b) ∈ D ∩ R2 in such a way that we obtain a continuous family

D ∩ R
2 � (a, b) �→ Wu

I (a, b)
′.

The horizontal projection πh(x, y) = y, establishes a conformal equivalence

πh : Ws
02(a, b) → {|y| < e}.

For (a, b) ∈ D, b �= 0, we define the function

h(a, b) =
∏
i �=j
(πh(pi)− πh(pj ))

where the pi and pj in the product range over the four points of intersection Ws
02(a, b) ∩

Wu
I (a, b). Since πh|Ws

02(a,b)
is invertible, we see that h(a, b) �= 0 if and only if there are

four distinct points of intersection. Thus, h(a, b) �= 0 means that the multiplicities of all
four intersections are 1, and thus all four intersections are transverse. As in §4 we may
extend the definition of h to the case b = 0, and we see that h is analytic in D.

THEOREM 5.1. For (a, b) ∈ D ∩ R
2 ∩ TI with b �= 0, we have ∂h/∂a �= 0.

Proof. If b = 0, then by the discussion in §4, we see that a �→ h(a, 0) has a zero of order 2
at a = 2, and h(a, 0) �= 0 for {0 < |a − 2| < 0.2}.

By Theorem 4.5, none of the tangencies TI occur on the vertical boundary of D. Thus,
h �= 0 there. It follows that for each fixed value |b0| ≤ 0.06, the function

{|a − 2| < 0.2} � a �→ h(a, b0)

is analytic and has exactly two zeros (counted with multiplicity). One zero corresponds
to a point (a′, b0) ∈ T ′

I and the other corresponds to (a′′, b0) ∈ T ′′
I . We have seen

that T ′
I ∩ D ∩ R2 ∩ {b �= 0} is disjoint from T ′′

I ∩ D ∩ R2 ∩ {b �= 0}. Since the total
multiplicity is 4, each of these zeros must be a simple zero. In particular, we conclude that
(∂h/∂z)(a, b) �= 0 for (a, b) ∈ TI ∩ D ∩ R2 ∩ {b �= 0}. �

Let us discuss this situation further. We will consider a sequence of holomorphic
coordinate changes (x ′, y ′) = (x ′(x, y), y ′(x, y)), which, in addition, depend
holomorphically on the parameter (a, b). First, we may change coordinates so that
Ws

02(a, b) = {x = 0} since Ws
02(a, b) has degree one in B2. Now let us split Wu

I (a, b) as
in (5.1). We will show that we may introduce coordinates such that we have

Ws
02 = {x = 0} and Wu

I (a, b) = {x = c0(a, b)+ y2}. (5.2)
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The generic unfolding condition is that ∂c0(a, b)/∂a �= 0 for a = ab (see [PT, p. 35]).
Now let us fix b0 ∈ (−0.06, 0.06), b0 �= 0, and set a0 = ab0 . Thus, we have

Wu
I (a0, b0)

′ =
{
x =

∞∑
j=2

cj (y − y0)
j

}
,

where (0, y0) is the point of tangential intersection, and so c0 = c1 = 0. The coefficient c2

is non-zero because the intersection is quadratic (see [BS2]). Without loss of generality we
may assume that y0 = 0. Now for (a, b) near (a0, b0), we have

Wu
I (a, b)

′ = {x = c0(a, b)+ c1(a, b)y + c2(a, b)y
2 + · · · }.

Now since c2(a, b) �= 0 and c0(a0, b0) = c1(a0, b0) = 0, we may solve ỹ = ỹ(a, b) ∼
−c1/(2c2) such that

∂x

∂y
= c1(a, b)+ 2c2(a, b)ỹ + · · · = 0.

Replacing y by y − ỹ, we have

Wu
I (a, b)

′ = {x = c̃0(a, b)+ c̃2(a, b)y
2 + · · · }.

Finally, since c̃2 �= 0, we may change coordinates y ′ = σ(a, b)y to obtain (5.2).
Now we consider the function h(a, b) in the coordinates (x, y). We have Ws

02(a, b) ∩
Wu
I (a, b)

′ = {(0,±√−c̃0(a, b))}. Since Wu
I (a, b)

′ ∩Wu
I (a, b)

′′ = ∅, and Wu
I (a, b)

′′ has
no tangency for (a, b) near (a0, b0), we have

h(a, b) = −(
√

−c̃0(a, b)+
√

−c̃0(a, b))
2α(a, b) = 4c̃0(a, b)α(a, b)

where α is a non-vanishing analytic function. Since c̃0(a0, b0) = 0, we have

∂h

∂a
(a, b0) = ∂c̃0

∂a
(a, b0) · α(a, b0)

for a = a0. By Theorem 5.1, then, ∂c̃0(a0, b0)/∂a �= 0. Thus, we have the following.

THEOREM 5.2. We have that (a, b) �→ (Ws
02(a, b),W

u
I (a, b)) is a generic unfolding of a

tangency at the parameter value (a0, b0).
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