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POLYNOMIAL DIFFEOMORPHISMS OF C2:
VII. HYPERBOLICITY AND EXTERNAL RAYS

BY ERIC BEDFORD* AND JOHN SMILLIE*

ABSTRACT. - For a polynomial automorphism we study the topology of J , the analogue of the Julia set, in the
case where J is connected and hyperbolic. © Elsevier, Paris

RfisuMfi. - A partir d'un automorphisme polynomial de C2, nous etudions F analogue de F ensemble de Julia,
note J , dans Ie cas ou J est hyperbolique et connexe. © Elsevier, Paris

0. Introduction

In this paper we consider the dynamics of polynomial diffeomorphisms of C2. The
family of polynomial diffeomorphisms / : C2 —^ C2 contains the simplest invertible
holomorphic transformations with interesting dynamical behavior. Given a dynamical
system to investigate, a first problem is the identification of sets of dynamical interest, and
when such a set is identified, a second problem is then the description, up to topological
equivalence, of the dynamics on this set.

For this class of diffeomorphisms there is a natural candidate for a dynamically significant
set, namely the analogue of the Julia set J = Jf C C2 defined below. We are interested
in attacking the problem of finding a topological description of the restriction of / to J. A
paradigm for what we would like to achieve is the Douady-Hubbard theory of external rays
for polynomial maps of C, which we recall briefly. Douady and Hubbard show that when
the Julia set J of a polynomial map / is connected, and / is expanding on J, then the map
f\j is semiconjugate to the map z \-> z6' on the unit circle. Furthermore this semiconjugacy
can be realized concretely by external rays. An external ray is a gradient curve for the
Green function of the complement of the filled Julia set. Douady and Hubbard show that
each external ray limits on a well-defined point in the Julia set. It is this "landing map"
which provides the semiconjugacy from the space of external rays (which is the circle) to
J. This explicit description of maps with expanding connected Julia sets provides a first
step in the combinatorial description of parameter space.

Our aim in this paper is to lay the groundwork for a theory of polynomial
diffeomorphisms of C2 analogous to the Douady-Hubbard theory for 1-variable polynomial
expanding maps with connected Julia sets. We showed in [BS6] that external rays for
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polynomial diffeomorphisms can be defined when J is connected. In this paper we make
the additional assumption! that / is hyperbolic on J. This condition is analogous to the
expanding condition for maps in one variable. In §3 we establish a range of topological
conditions equivalent to connectivity. Assuming that J is connected we describe the
topology of the space of rays in §4. In §5 we show that the landing map from the space of
rays to J is defined, continuous, surjective and bounded-to-one. This allows us to describe
J as a quotient of the solenoid under an equivalence relation. In §6 we describe topological
conditions that this equivalence relation must satisfy. We also relate the properties of the
equivalence relation to the local topology of J and in §7 we identify a finite set of periodic
points that play a distinguished role.

To describe the results of this paper more precisely, we will recall some standard
terminology and known results. We denote by K^~ / K ~ the sets of points in C2 with
bounded forward/backward orbits under /. Let J± = OK± and let J = J4' D J ~ . We
refer to J as the Julia set of /. Let U± = C2 - K±. There are real valued functions G^
defined on C2 which play the role of Green functions. The functions G± are continuous,
non-negative, plurisubharmonic, equal to zero on K± and pluriharmonic on [/±.

The properties of stable and unstable connectivity were defined in [BS6]. Let p be
a periodic saddle point, and let W^^p) be its unstable manifold. We say / is unstably
connected if W^^p) D K^ has no compact components. It is shown in [BS6] that this
definition does not depend on which saddle point p is chosen. Stable connectivity is defined
analogously. Let J^ == J~ - K^. When / is unstably connected, J^ has a lamination
Ai~ by Riemann surfaces. Furthermore the restriction of G4" to a leaf of this lamination
is a harmonic function without critical points. An (unstable) external ray is then a gradient
curve of the restriction of G^ to a leaf (with respect to some conformal metric on the leaf).
We denote by £ the set of external rays. This set inherits a topology from the space J ^ .

The function detD/ is constant on C2. We say that / increases, preserves, or decreases
volume, depending on whether |detD/| is greater than, equal to, or less than, one. By
replacing f by f~1 if necessary we may assume that / is not volume increasing. This will
be a constant assumption throughout this paper. By Corollary 6.3, if J is connected (and
hyperbolic as we also constantly suppose), then / cannot preserve volume. In particular,
since / does not increase volume, it follows from [BS6, Corollary 7.6] that unstable rays
are defined exactly when J is connected, and stable rays are never defined.

We will review some results from [BS1] and [BS2] on hyperbolicity. When / restricted
to J is hyperbolic, then / is Axiom A. In this case S male's spectral theorem gives a
decomposition of the nonwandering set into basic sets. The basic sets are: J, which is the
unique (complex) index one basic set, and a finite set of periodic sinks S = { ^ i , . . . 5^}.
The stable set of J, W^J), is J^ = 9K^~ and the interior of K^ consists of the basins of
the sinks. The unstable set of J, TV^J), is J ~ - S and the interior of K~ is empty. The
sets W8^^) have dynamically defined Riemann surface laminations, H^, whose leaves
consist of stable/unstable manifolds of points. Each leaf of this lamination is conformally
equivalent to C. When / is unstably connected, the restriction of the lamination W to
J^ is the same as the lamination M~ given in [BS6].

t Generally speaking, the map / is assumed hyperbolic, and J is assumed connected thoughout this paper. In
parts of §3 and §5, J is not assumed to be connected.
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As was observed in [H] the function G^ is pluriharmonic on [/+, and the holomorphic
1-form QG^ defines a holomorphic foliation Q^ on [/+. In §2 we prove the useful technical
result that if / is hyperbolic and unstably connected, then the laminations Q^~ and W
fit together continuously, or, more precisely, Q^ U W is a Riemann surface lamination
of J^ U [/+ (Proposition 2.7). We note in Appendix A, however, that Q~ and W (the
corresponding objects for the inverse diffeomorphism) do not fit together continuously
in this case.

When / is hyperbolic, we will sharpen some of the topological criteria for unstable
connectivity given in [BS6]. The property of unstable connectivity is defined in terms
of slices of K^ by unstable manifolds. We say / is unstably connected when, for any
saddle point p, K^ ^{WU(p) has no compact components. In §3, we show that in the
hyperbolic case, the property of unstable connectivity is characterized by slices by more
general "transversals" (The use of the term transversal is meant to be suggestive. In fact
our transversals are very general complex one dimensional submanifolds). A typical result
from §3 is that, when / is hyperbolic, / is unstably connected if and only if a transversal
slices K^ (locally) into only finitely many components.

We give a second topological characterization of unstable connectivity in the hyperbolic
case, we recall the observation of [HOI] that the homology of the set [/+ is independent
of the mapping / and is given by H^L^; Z) ^ Z[^], where d denotes the degree of /
(see §1). Note that this homology group is not finitely generated. The condition that the
map / be unstably connected can be characterized by the finite generation of the homology
of a bounded portion of [/+. Precisely, / is unstably connected if and only if for every
bounded set B C C2 the image of the inclusion map

^ :Hi(Bn?7+;Z)^Hi([ /+;Z)

is finitely generated (Proposition 3.2 and Theorem 3.4).
In [BS6] it was shown that the property of unstable connectivity has consequences for

the topology of J ^ . In particular we can construct an abstract "model" for the space J^.
We recall some notation. Let E be the complex solenoid, the inverse limit of C* under the
map a : z ^—> z ' 1 . Let S+ C S denote the inverse limit of the set {z : \z\ > 1} under a, and
let Eo C S denote the inverse limit of the set [z : \z\ = 1} under a, which is the (real)
solenoid. The shift map a acts on each of these spaces (these are discussed further in §1).
We showed in [BS6] that when / is unstably connected there is a semiconjugacy $ between
the action of a on S+ and the action of f on J ^ . In §4 we show that when / is hyperbolic
and unstably connected there is a map ^ from S+ to J^ which is in fact a conjugacy.
The conjugacy ^ induces a conjugacy between So and the space of external rays £.

In §5 we derive geometric information about unstable manifolds. For every point p € J
the stable/unstable manifolds W8^^) are uniformized by C. This endows the manifolds
W3^^) with affine structures. In §5 we use the work of Ghys [G] to show that for any
hyperbolic mapping these affine structures vary continuously with p. The affine structure
gives us a tool for proving a John-type condition for the sets W^'^p) D [/+ inside W^^p).
This implies (Proposition 5.6 and Corollary 5.13) that when / is unstably connected the
sets K^ H Wu{p} and J+ D W^^p) are connected and locally connected. (For a general
unstably connected map we know only that K^ D W^ {p) has no compact components.)

We can use the function G^~ to parametrize external rays. For an external ray 7 € £ and
a real number r > 1, let 6^(7) be the point on 7 for which G^ == r. We say that 7 lands
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if lim^o ̂ (7) exists; when 7 lands we denote the limit by 6(7). We prove that external
rays land at well-defined points of J, and we prove that the landing map 7 i—^ 6(7) is a
continuous map from £ to J. We use the John property to show that the landing map is
a surjection and finite-to-one, with the number of preimages of a point being uniformly
bounded. The existence of the landing map allows us to represent J as a quotient of So
by an equivalence relation.

At this stage it is natural to ask what general sort of equivalence relations can arise to
give the restriction /|j. In §6 we show that the quotient map ^ : Eo —> J respects local
product structures. We give some additional conditions which this quotient must satisfy;
these arise from the topological condition that certain subset of J must be contained in
sets W^^p) and thus must be planar.

In §7 we consider a special kind of cut point of K ft W", which we call pinch points.
It is also shown (Theorem 7.1) that all pinch points of the slices Wu H K of the Julia
set lie on the stable manifolds of a finite set of "primary" periodic points. In Appendix
B we present an example and show how a computer picture may be used to illustrate
the results of this paper.

This paper is not the first to make a connection between polynomial diffeomorphisms
of C2 and solenoids. Such a connection first appears in the paper of Hubbard [H]. More
recently, Hubbard and Oberste-Vorth [HO VI] have established the existence of a "solenoid
at infinity" in connection with a certain compactification of C2. By contrast our use of
the solenoid is more closely connected with the topology of J. While the solenoid at
infinity exists for all parameter values, our "solenoid of external rays" exists only when
J is connected. Yet when the solenoid of external rays does exist it seems more directly
related to the dynamics of J than does the solenoid at infinity.

1. Notation and Preliminaries

We consider mappings of the form f = fi o ' ' ' o fm, where

fj^^y) = {y^pjW - ̂ jx\ (1.1)
with pj(y) = y^ + 0(?/^~2), and dj > 2. It is a result of [FM] that every polynomial
diffeomorphism of C2 which is not conjugate to a linear map or a shear is conjugate to a
map of this form. We let d = d\ - • • dn denote the degree of /.

The iterates of / have the form

fk^y)={ydk/d^l^\.^yd\l + . . . ) ) . (1.2)

The rate of escape to infinity in forward/backward time is given by

G±= Urn -^ 1/^(^)1. (1.3)
n—»-oo 0 " ' ' ' .

The function G^ is continuous and pluri-subharmonic on C2. Further, if we let U± denote
the points that escape to infinity in forward/backward time, then U± = {G± > 0}, and
G^ is pluri-harmonic on U±. Thus the complex 1-form 9G± is holomorphic on U± and
defines a plane field which determines a holomorphic foliation Q± on U±.
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We define the sets

y+ = {h/ | > \x\^ > logJZ}, V- = {\y\ < \x\^G- > log a}, (1.4)

and
V ={G^,G- <logR}. (1.5)

For R sufficiently large, fV^ C ^+, fV C V U V4', and for any point (x, y) e V~, the
orbit ^(x.y) can remain in V~ only for finitely many n > 0. If K± denotes the points
with bounded forward/backward orbits, then

00 00

[/+ = C2 - K^ = \J /-ny+, and U- = C2 - K- = |j f^V-. (1.6)
n=0 n==0

Laminations of sets occur at various points in our work. Loosely speaking, a lamination
C of a set X is a partition of X into subsets which are manifolds, such that the partition
is locally trivial. This means that each point has a neighborhood U such that the partition
of C\U into components of leaves, or "plaques" is homeomorphic to a product lamination.
For further details, see [C] or [MS].

We collect here some facts which will be useful in §3. Let us set TT^X, y) = y , and then
as in [HO VI], let us define an analytic function (^+ on V^ by the formula

^(x^y)= lin^or^))^ (1.7)
n—^oo

where we take the c^-th root so that (p^(x, y) = ?/+o(l) holds on V^~. It is immediate that
^+ ° / = {^Y and log \^\ = G^ hold on V^~. In particular, any analytic continuation
of (^+ is locally constant on the leaves of ^+. Indeed locally the plaques of the foliation
Q^ are just the level sets of (^+. In [BS6] we showed that if / is unstably connected,
then (^+ has an extension to J ^ .

We collect some background which will be useful in §4. The complex solenoid E is the
inverse limit of C* under the map z \—> zd (A more detailed discussion of the complex
solenoid is given in [BS]). We can realize this explicitly as the set of bi-infinite sequences
z = (zj) such that zj e C* and zf = ^+1. The space E has the topology of a closed
subset of the bi-infinite product (C*)^ The shift mapping a : E —^ S is defined by setting
a(z) = w, where wj = ^+1 = zf. The map a induces a homeomorphism of E.

We define the projection TT : E —^ C* by 7r(z) = ZQ. The set Tr'^w) has the topology of
a Cantor set. We define a modulus function on S by \z\ = \^(z)\. We have \a(z)\ = \z\d.
We set So = {z € E : \z\ == 1} and E+ = {z G E : \z\ > 1} . The map a induces
homeomorphisms on E+ and on Eo.

The complex solenoid is a topological group under coordinatewise multiplication. The
unit element "1" of this group is the element with all coordinates equal to 1. The subset Eo
is a subgroup. We let m^ : S —^ S denote the operation of multiplication by s. If s E So,
then ms maps E+ to itself. For z e C we define exp(^) G E by defining the n-th coordinate
to be [exp(^)]^ = e^. This gives a C-action on the solenoid by C 3 z i-̂  mexp(^). For
t € R we have exp(%t) e So This gives an R-action on the solenoid by R 3 t ̂  mexp(it).

The orbits of the C action on S are the leaves of a lamination of E. This lamination has
a dynamical interpretation as the lamination by unstable manifolds of a. The map from
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C to the orbit of a point w given by z \—> exp(z) ' w induces an affine structure on each
leaf. These affine structures on leaves come from an affine lamination on S. The subspace
S+ inherits the affine lamination structure from S even though it does not inherit the C
action. Each leaf of the lamination of S+ is affinely equivalent to a half-plane.

We use the extension of (^+ to construct a semi-conjugacy from J^ to S+ (cf. [BS6,
Theorem 3.2]). Specifically the map ^ : J+ -^ E+ given by [^(p)]n = ̂ (fp) is
continuous and satisfies a o <t> = $ o /.

The extension (^+ has the property that ^\M : M —> C — A is a holomorphic covering,
for every leaf M of M.~. As in Proposition 2.2 of [BS6], this may be lifted to a conformal
equivalence a : M —^ H to the right half plane H. For each 0 G R, we let re : H —> H
be the translation H 3 z H-^ z + 10. We may now define an R-action on J^ by pulling
the translation re back to the leaf M. We denote this action by {6,z) ̂  exp(i0) ' z. We
have exp(%0) o <[> = $ o exp(%0).

2. Continuity of the Stable Lamination

In this section we show that when / is a hyperbolic and unstably connected map, the
leaves of the foliation Q^ of U^ and the stable lamination V^8 of J^ fit together to make
a locally trivial lamination of U^ U J^~ (Theorem 2.7). In the process of proving this
result, we show that the external rays converge to well defined points of J and that this
"landing map" is continuous. We also obtain some results on the interplay between the
landing map and the stable manifolds.

We begin with a preliminary result about the landing map. We will investigate the
properties of the landing map more fully in §3.

PROPOSITION 2.1. — Let f be unstably connected and hyperbolic. Then the mapping
e : £ —> J is defined on all of £ and is continuous and equivariant.

Proof. - Since / is hyperbolic, there exist constants C < oo and A < 1 such that

IIDr^MI^CA71 (2.1)

for x in a neighborhood of J in J ~ . By applying the appropriate iterate of the map / and
changing the constant we may assume that this holds on J~ H {0 < G^~ < 1}.

Let Q denote the family of arcs 7 obtained by starting at points of J~ D {G^~ =1}
and following the gradient line of G+\WU(p) in the direction of decreasing G^~, so that 7
ends at a point of J~ D {G^~ = d~1} (note that these arcs are pieces of external rays, as
defined in §3 of [BS6]). The family Q has the properties:

(i) For every p G J~ n {G4' =1} there is a curve 7 G Q starting at p.
(ii) Every 7 € Q lies inside Wu{x) for some x G J.
The curves of f^Q connect J~ n {G4- = d-71} to J~ H {C?+ = d-71-1} inside Wu.

Let Q denote the paths of the form

7 = 7 U /-S U /-S U ...,

that is, 7 starts at a point p e J ~ H [G^ =• 1} and ends at a point j?i e J~ n {G^ == d~1}.
This is followed by /"^i, where 71 G ^ starts at /pi e J~ H {G^ = 1} and ends at
a point p2 ^ J"" H {G^ = d~1}.
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The endpoint map will be defined as e(s) = lim^oo ^n{s), where en(s) is obtained by
following the ray 75 to the level {G^ =1} and then following the curve 7 in to the level
{G?+ = d~n}. The map en : £ —^ J~ is continuous.

If we set

M = max Length(7), (2.2)
7^

then the curves in the family f~nQ all have length no greater than MC^. Thus for n < m

max \en(s) - e^)| < CM^X^ + . . . + A")^ CM(1 - A)-^^1,s^e

so the eyi converge uniformly, and the limit e: £ —> J exists and is continuous. D

Further properties of the endpoint map will be discussed in §5. Our next objective is
to show that the foliation Q^ of [/+ is compatible with the lamination of J^~ by stable
manifolds.

It will be useful to set up some of the machinery from the graph transform proof
of the stable manifold theorem. At each point p G J we can split the tangent space
TpC2 = E^ (B E8 This splitting depends continuously on the point p. We can also choose
a continuous adapted metric on the tangent spaces E^ and Ep so that D f : E ^ — > E^r ^
uniformly expands distances and D/ : E8 —> E8^ ^ uniformly contracts distances. At each
point p e J we choose a coordinate map Op : C2 —> C2. We choose Op to be an affine
map which takes 0 to p, takes the rr-axis to E^ and takes the y-axis to Ep. We also
require that Op take the standard metrics on the axes to the adapted metrics on the stable
and unstable tangent spaces.

Let Be(p) be the image of the set {(x, y) e C2 : |rr| < e, \y\ < e} under the map Op. A
vertical (resp. horizontal) disk in B^p) is a set which can be written as {(T(?/), y) : \y\ < e}
(resp. {{x^Y(x)) : \x\ < e}) for some holomorphic map T : [\z\ < e} —> {\z\ < e}. For
p G J we define the local stable/unstable manifold through p, written W^ (p) to be the
component of Be{p) H W s / u ( p ) containing p.

It is sometimes useful to consider the local unstable manifold of p relative to a nearby
point p ' \ For p G J we define W^\p,p'} to be the component of B^p') H W8^^)
containing p.

We may assume that e is chosen sufficiently small for the following properties to hold:

VERTICAL OVERFLOWING PROPERTY. - If A is a vertical disk in B^(p), then

r^nw1^))
is a vertical disk in Bg(/-l(p)).

STABLE MANIFOLD THEOREM. - W ^ ' ( p ) is a vertical/horizontal disk in B^{p).

SMOOTH LAMBDA LEMMA. - IfMis a smooth manifold which intersects W^'^p} transversally
at a point q, then there is an n such that the component ^//^(M) D -Bg(/71 (p)) containing
f~n(p) is a vertical disk in Be(fn(p)).

The first of these properties is easily verified. The second two properties are consequences
of the graph-transform proof of the Stable Manifold Theorem.
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For p e J and q e B^(p) - K^ we denote by Gf(q,p) the component of Q^{q) D B^(p)
containing q. We say that Gf{q,p) is vertical if it is a vertical disk in B^{p). Using the
compactness of J it is easy to show that there is a 8 > 0 such that for p G J and p ' e J
with d(p,pf) < 6, W^p,?'} is vertical and W^^-PQ is horizontal. The next Proposition
shows an analogous result for local leaves of the Q^ foliation.

PROPOSITION 2.2. - There is a 8 > 0 such that for p G J and q C ?7+ m^ d(p, ^) < 6,
G ^ ' ( q ' i p ) is vertical.

The proof will be given after a sequence of lemmas.

LEMMA 2.3. - IfGf(q,p) is vertical then GfU'1^), /^(p)) ^ vertical.

Proof. - If ^(g,?) is vertical then the component of G^{q) Fl Bg(p) containing q
is a vertical disk A in B^p). The vertical overflowing property of f~1 implies that
/"^(A) H B^f~l(p)) is a vertical disk in B^f~l(p)). The invariance of the foliation Q^
implies that /-l(^+(g)) = ^(.T1^))- ^us /^(A) H B^f-^p)) is the component of
G^U-^q^B^f-^p)) containing /-1^). This is the definition otGt(f~~\q), f~\p)).
D

LEMMA 2.4. - 77?^ ^ an a > 0 w rter ifGf(q,p) is vertical and d{pf,f~l(p)) < a
then 0(+(/-l((?)^/) ls vertical.

Proof. - The Vertical Overflowing Property implies that f^^B^p}) overflows the box
^(/"^P))- lf Ae box B^f"1^)) is changed slightly then the overflowing condition
still holds. Since the stable and unstable tangent spaces and the adapted metric vary
continuously with the point, a small change in the point causes a small change in the box.
Thus there is some a? such that d ( p ' , f~\p)) < a? implies that ^+(./>-1(<?),J/) is vertical.
The compactness of J allows us to find a positive lower bound a independent of p G J . D

LEMMA 2.5. - There is a (3 > 0 so that ifGf{q,p) is vertical for some p with d(q,p) < (3
then ^+(./>-l(g)y) is vertical for all p ' with d^f-^q),?') < (3.

Proof. - Choose /3 < a / 2 such that d(p,q) < (3 implies that d(f~l(p), /-l((?)) <
a/2^ If d(p^q) < (3 and d{p1 J-\q)) < (3 then d^p^f-^p)) < d{p'J-\q)) +
d(/-l((3^/-l(p)) < (^ so by Lemma 2.4, GfU^q,?') is vertical. D

We will say that a point q G U^ is good with respect to p G J if either d(p, q) > (3
or Gf(q,p) is vertical. We will say that a point q is good if it is good with respect to
any p e J with d(p, q) < (3. Lemma 2.5 says that if q is good with respect to some p
then /~l(g) is good. Note that a point q can be good "vacuously" if its distance from J
is greater than /?. In this case /-l((7) need not be good. On the other hand if q is good
and d{q,J) < (3 then, by Lemma 2.5, /^(q) is also good.

LEMMA 2.6. - There is an N^ such that every q with 0 < G^{q) <, 1/d1^1 and
G-(q) < 1/d^ satisfies d{q,J) < {3.

Proof. - Let V be the set of points within distance (3 of J . The set V U int K^ is an
open set containing the compact set K, and K is the set of common zeros of the functions
G^ and G~\ so there is some TVi such that the set

[q : G^{q) < l/^, G-(q) ̂  1/d^} CVUintK^.
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If we remove the set int K^~ = {q : G^{q) = 0} from the left hand side of the equation,
then we have

{q : 0 < G^{q) < 1/d^, G-{q) < 1/d^} C V. D

Proof of Proposition 2.2. - Let S(N^) = {q C J~ : 1/d^1 < G-^(q) ^ l/d^}. This
set is compact and serves as a fundamental domain for the action of / on J ^ . Fix a point
q G 5'(7Vi). Since / is hyperbolic each point of J_jT is in the stable manifold of some point
of J. Choose a p so that q G Wu{p}. Since G^ has no critical points on W^^p) D U~^~ the
leaf ^(^a is transverse to W^^p) at 9. The Smooth Lambda Lemma implies that there
is an n so that^"^/"77'^),/"71^)) is vertical. If this condition holds for a fixed value
of n, then Lemma 2.3 implies that it holds for all larger values of n. Choose an Uq large
enough for 0+(./>-7l(<7)J-n(p)) to be vertical and d^f^^q),/-"{p)) < /3. In fact there
is a neighborhood Uq of q consisting of points g' so that G~{~(f~n(q/)^ /"^(p)) is vertical
and d{f~n(q/)^ /^(p)) < /?• The set 5'(7Vi) is compact, so we can cover it by a finite
number of such open sets, say U q ^ , . . . , Uq^. Let U be the union of these neighborhoods,
and let A^ be the maximum of the riq/s. Thus for each q' e U there is an n < N-^ and a
p G J so that 0+(./'-7^((7)J-n(p)) is vertical and ^(/^((/U"71^)) < /?. Choose A^ so
that l/d^1 ^ G-^) ^ 1/d^1 and G~(q) < l/d^ implies that q <E (7.

We complete the proof by showing that any q satisfying 0 < G~^~(q) < l/d1^1^1^2^2 and
G~(q) <^ 1/d^ is good. Assume that q satisfies the above conditions. We can write q as
/-n((/) for a unique </ with l/d^1 < G^{q'} <, 1/d^. Now

^^ ^ G+(,) = G+C-^)) - ̂ G\q'} > ̂ ^

so that n > ̂  + 1. Since G-((/) = (1/^)6^- {q) < G-{q) < 1/d^ we see that ^ e U.
Since q' E U there is an integer i and a point p ' G J so that f~e{q/) is good with respect to
/-V) and d{f~\q'), f~\p'}) < /?. It follows from Lemma 2.5 that f-^^^q'} is good.

Now 0 <, i < N^ and n ^ N^ + 1, so i + 1 satisfies 0 ^ ^ + 1 < n. We observe that
for each m with 0 < m < n we have

G^r '̂)) < ̂ /) < ̂
and

G-^-^)) < G-(^) < ̂  < ̂ .
Thus by Lemma 2.6 d(/-m(g/), J) < /3.

In particular, d^f'^1^'), J) < /3. It follows that f~{w\q'} is good. By induction on
the size of the exponent m for which /"^(g') is good we see that q = /-n(9/) is good as
was to be proved. D

Let W8 be the lamination of J+ by stable manifolds. Let C8 be the partition of J^ U [/+
whose leaves are the leaves of W8 and ^+.

PROPOSITION 2.7. - If f is hyperbolic and unstably connected, then partition C8 is a
(locally trivial) lamination.

Remark. - In Corollary A2 in the Appendix, we show that under these hypotheses, there
are points of J^ where C^ is not locally trivial.
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Proof. - We must show that 0s is locally trivial. For points p e U^ the local triviality
of C8 is a consequence of the local triviality of the foliation Q^. Let p G J ^ . Consider the
restriction of the lamination C8 to the box B^(p). Let V C B^{p} be the union of leaves
which intersect the ^-ball around p. The leaves of the restriction of W8 to V are local
stable manifolds of the form W^(p^p). It follows from the remarks prior to Proposition
2.2 that these disks are vertical in B^(p). The leaves of the restriction of Q^ to V are
sets of the form Gf{p^p). It follows from Proposition 2.2 that these sets are vertical disks
in Be{p). If we view these vertical disks as graphs of functions in the box B^{p) they
constitute a holomorphic motion. It follows from the complex A-Lemma (see [MSS]) that
the restriction of C8 to V is homeomorphic to a product lamination. D

Remarks. - Related results, which give the conclusion of Proposition 2.7, have been
obtained by Pixton [P] and Buzzard [B]. They work, however, under the additional
hypothesis that the slice of H^ by a transversal is totally disconnected. In fact, it will be
shown in §4 (using Proposition 2.7) that this slice property also holds for our mappings.

PROPOSITION 2.8. - Ifp G J and q € U^ and d{p, q) < 8 then W^{p) n Gf{q,p) consists
of precisely one point.

Proof. - It follows from Proposition 2.2 that Gf(q,p) is vertical in Be(p). The constant
e was chosen so that W^(p) is horizontal in B^{p}. It follows from topology that vertical
and horizontal disks intersect in precisely one point. D

Choose a reference point p e J . Let q and q' be points in U^ so that q and q' are within
distance 6 of p. Assume also that e{q) and e{q') and the tails of external rays through q
and q' lie completely within the ball of radius 8 around p. For the next two propositions
we will use the term "local leaves" to mean local with respect to the box B^p).

PROPOSITION 2.9. - Ifq and q' lie on the same local Q^ leaf then e{q) and e(q') lie on
the same local }V8 leaf.

Proof. - Let V be the union of local C8 leaves which intersect the 5-ball around p.
We have an extension of the function (^+ to the set V D [/+. (^+ is constant on local
leaves so ^{q) = ^{q'\ The construction of external rays implies that for t > 0
(^(e^)) = ̂ (et{q')) so that e^) and e^q') are on the same local leaf. Now C8^
is a product lamination so e{q) = lim^o ^t{q) and e{q') == lim^o <°t((/) lie on the same
local W8 leaf. D

PROPOSITION 2.10. - Let p, q and q1 be chosen as above. Ifq and q1 lie on the same local
Q^ leaf and e(q) = e{q') then q = q1.

Proof. - The external ray through g, et(q), lies on a single unstable manifold. Since
the tail of this ray is contained in J?e(p), the external ray lies on a single local unstable
manifold. It follows that e(q) lies on the same local unstable manifold. We conclude that
q € W^(e(q)). Similarly ^ € W^e^)). Our hypothesis implies W^{e{q)) = W^e^'))
so that q and q' both lie on the same local unstable manifold. On the other hand q and g'
both belong to the same local leaf of Q^'. It follows from Proposition 2.8 on the uniqueness
of intersection points that q = q1. n

The following proposition describes one property of the landing map. We will collect
other properties in §6.
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PROPOSITION 2.11. - Ifx, y G U^ are sufficiently close and z G U^ is sufficiently close to
e{x) then there is a unique w close to z in Gf(z) ^ith e{y) = e(w).

Proof. - Define w = W^e(y))nQf(z). Then e(w) e W^(e{y)) ande(w) G QfW) =
Gf(e{x)) = Q^(e(y)). But e{y) G W^{e(y)) H Gf(e(y)) so the uniqueness of the
intersection implies that e{y) = e(w). D

For a point p G J+, we let R(p) denote the external ray containing p. We let Ro(p)
denote the bounded component of (R(p) U {e(p)}) - {p}.

LEMMA 2.12. - For any c > 0, there is an e > 0 such that, for any 8 > 0, there exists
T] > 0 such that ifpi,p2 € J ~ H {G+ = c}, c > dist(pi,p2) >. 6, and

N,= U B,(q)^Qf(q) (2.3)
ge^o(pj-)

/or j = 1,2, ^n TVi H 7V2 = 0.

Pwo/. - By Proposition 2.1, the mapping J^ 3 p ^ Ro{p) is continuous. Thus it is
uniformly continuous on the set [G^ = c}. Since e is locally injective (Proposition 2.10), it
follows that Ro(pi) H Ro(p2) = 0 if pi i=- p2 and dist(pi,p2)) < e. If e > dist(pi,p2) > 6,
then Ro(p]_) and Ro(p2) are uniformly separated by a distance T] > 0. n

3. Topological Characterizations

In this Section we give two characterizations of unstable connectivity for mappings
which are hyperbolic. The first condition involves slices by transversals, and the second
is closely related to the function (^+. In [BS6] it was shown that the property of being
unstably connected is characterized by the property that slices of K^~ by unstable manifolds
have only noncompact components. Here, in Theorems 3.1 and 3.6 we give conditions for
unstable connectivity in terms of slices by more general transversals. Then in Theorem 3.4
we show that for hyperbolic mappings the property of unstable connectivity is characterized
by the topology of the intersection of C2 - AT+ with large balls.

Let us define a transversal T to be the image of the closed unit disk under a continuous
map h: D —> C2 which is holomorphic on the interior. Further, to avoid trivialities assume
that T meets J^~ and that T is not contained in K^~.

THEOREM 3.1. - Let f be hyperbolic and unstably disconnected. Then for any transversal
T, K^ D T contains uncountable many point components in its interior.

Proof. - We prove this first in a special case. Say T = W^{p) with p e J. Let T^
denote the set of points p e J such that the component of p in W(p) n K^ is exactly
p. According to Theorem 7.1 of [BS6] for ^-almost every point p ' in J the set ^u has
full /^+ measure in Wu{pt). The point p is in the support of p, so we can find a p ' close
to p with this property. The point p ' is in the support of ^\WU(pl} so the set W^{p')
has positive ^+ measure. The measure /^+ has no atoms so any set of positive measure
is uncountable. Thus K^ n W^{p') has uncountably many point components. Using the
hyperbolic structure of / the set W^{p') is homeomorphic to a neighborhood of p in
Wu(p) by means of a homeomorphism that takes K^ n W^p') to K^ D Wu{p}. Thus
there are uncountably many point components of K^ n W(p) near p.
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Now we consider a general transversal. Since T meets K^~, but also meets the
complement of K^~, and since T is connected, T meets J^~. The set J^~ has a lamination
by stable manifolds. For q G J"^ H T let Lg be the local stable manifold through 9. Lemma
6.4 of [BLS] implies that the set of points q for which T meets Lq non-transversally is
discrete. On the other hand, the potential theory of G^~\T shows that TnJ^ has no isolated
points, so we can find a q for which T meets Lq transversally. The condition that T meets
Lq transversally is an open condition. Since stable manifolds of periodic saddle points are
dense in J^ we may find a periodic point p in J so that W8 (p) meets T transversally at
q G T. For n sufficiently large the dynamical Lambda Lemma gives the existence of a disk
D around q in T so that ^(D) is C1-close to Wu{p). In particular using the hyperbolicity
of / there is a neighborhood of ^(q) in ^(D) which is homeomorphic to a neighborhood
of p in W^^p) by a homeomorphism that preserves K+. We conclude that ^{D) H .K^
contains uncountably many point components. Since K^~ is invariant, D n ̂ + contains
uncountably many point components. D

In [BS6] it is shown that the property of unstable connectivity can be determined from
the topology of the intersections of K^~ with the unstable manifolds of periodic points.
According to Theorems 3.1 and 3.6, when / is hyperbolic we can determine the unstable
connectivity of / from the topology of T n K^ for any one-dimensional complex manifold
T which meets K^.

Now we discuss the analytic continuation of (^+. Since log \^\ == G^~ is pluriharmonic
on y"^, we may continue (^+ analytically along any path in [/+ starting in V^. The
problem of finding a continuation to a larger set is thus the question of whether this
continuation is single-valued. In fact this is a topological problem. The connection between
the cohomology class 77 and (^+ comes from the fact that if 7 is a closed curve in U^,
then any analytic continuation (p^ of (^+ along 7 satisfies

<^log^+ = 2^(7), (3.1)

where 6^ log (^+ denotes the difference between the values of log (^+ at the beginning and
end of 7.

There is a relation between holomorphic extensions of (^+ and homology. The form
(27^)-ldcG?+ is closed on ?7+ = C2-^, so it defines a cohomology class rj e H^L^; R).
This class can be evaluated on 7 G Hi^'^Z). We have:

"t^/,-""d^G^.
/7

If 7 is a 1-cycle supported on U^, then we may choose n sufficiently large so that
^7 C V^. If 7 is an integral 1-cycle, ^^7 is homologous in V~^~ (and thus in U^~)
to k[QD}, where D = {0} x {\y\ < 2R}. Clearly k = 0 if and only if 7 ~ 0. Since
J^dcG?+ = 27T, we have ^(.f^)) = k. Thus ^(7) = kd^, and so

^:Hi(^+;Z)^Z[d-1] (3.2)

is an isomorphism.
This topological condition for analytic continuation may also be stated as follows: Let

U C U~^ be a connected open set. The equation

l ogH=G+ (3.3)
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has a solution ^ which is holomorphic on U if and only if T] is an integral class, i.e.,
T] G ^(U\ Z). Furthermore, any two solutions ^i and ^2 satisfy ^i = ci/^-z where c is a
complex constant with \c\ = 1.

When / is unstably connected then [BS6, Theorem 6.3] shows that the function (^+
has an analytic extension on a neighborhood of J ^ . We say that (^+ extends uniformly
if there exists an open set U containing K such that (^+ has an analytic continuation to
U - K^. We note that by the functional equation, y?+ = ((^+ o f^V . Thus, if (^+ extends
uniformly, then it extends to \J^o fU - K^, which is a neighborhood of J ^ _ .

PROPOSITION 3.2. - If f is hyperbolic and unstably connected, then ̂  extends uniformly.

Proof. - Let us choose e > 0 small enough to have good coordinate boxes B^(p) as in
§2, and let c > 0 be small enough for {G^ = c} D J ~ to be contained in an e-neighborhood
of J . Since / is unstably connected, ̂  has an analytic continuation to a neighborhood of
J ^ . And since (^+ is locally constant on the leaves of ^+, there is a 8 > 0 such that for
all p e J ~ H [G^ = c}, (^+ is constant on Q~^(p}, i.e. on the component of Bs(p} H Q^
containing p. Now choose T] < 6 according to Lemma 2.12, and let

•V:= IJ J B,(q)nQf(q).
peJ-n{G+=c} qeRo{p)

We claim that we may extend (^+ to J\f by making it constant on the sets B^{q) D Qf{q).
For this definition to be consistent, we need to show that if p i , p ' z e J ~ H [G^ = c},

and if G^(qi) H Q^{q^ + 0 for some ^ <E ^o(pj), J = 1,2, then y?+(gi) = ̂ +(^). The
function defined this way will be holomorphic, since it is an extension of y?+, and it is
clear that it contains an ^-neighborhood of J~ D {G^ < c} inside C2 - K^.

Let us fix pi,p2 e J ~ H {G+ = c}, and points qj G Ro(pj), j = 1,2, with
G^(qi) H G^(q2} 7^ 0- Now each ray Ro(pj), j = 1,2, is contained in a local unstable
manifold W^(r^). All of the local unstable manifolds near W^(ri) are locally graphs over
it. Since the intersection above is nonempty, W^{r^} and W^(r^ come within rj of each
other over some point of W^(r-i) D {G^ < c}. We apply the Lambda Lemma [MSS] to
conclude that if 77 is sufficiently small, then the portion of the unstable manifold W^(r'z)
lying over W^(ri) D [G^ < c} is in fact contained within a ^-neighborhood. It follows
that Ro(p2) is contained in Uge^o(pi) B^ n ^e^)' By the choice of 6, it follows that
^(Pi) = (^+(p2)• Finally, since (^+ is a covering, and since the rays are defined by
lifting radial lines, it follows that (^(f^) = (^(^e^^"6^03^. Since the function C?+
is constant on overlapping disks, the values of (^+ agree on the overlapping disks, and the
extension of (^+ is well defined. D

The condition that (^+ extends uniformly seems to be an interesting condition in its own
right. For the rest of this section we will explore some of its consequences. In particular
we will not assume that / is hyperbolic.

THEOREM 3.3. - The following are equivalent:
(1) (^+ extends uniformly.
(2) There exists a neighborhood U of K such that (^+)^ extends analytically to U - K^

for some n.

Proof. - It is obvious that (1) => (2). For the converse, we not that if U is a neighborhood
of K, then so is ^U. If ^ is an analytic continuation of ((y^)^ along a path 7 from V^
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to U, then ^ o /-n has an analytic continuation along ^7 from ^V^ to j^V. It follows
from the functional equation that ^ o /-n = ey?4' on f^V^, where 6 is a G^th root of unity.
Thus e~1^ o / n is an analytic continuation of (^+ along the path /^ so (2) =^ (1). D

For a complex disk D in C2 with smooth boundary and 9D D ̂ + = 0, we may define
the degree of the boundary curve about K^~ as

deg^J^)- / d°G^.
27T JQD

If D = [x = XQ, \y\ == R} for J? large, then deg(<9P, K^) = 1, and in general, the degree
measures the extent to which the curve OD goes around ^+, as measured by /^+. We can
also interpret this quantity as the total mass of the restriction of /^+ to D.

THEOREM 3.4. - Let f be given. Then the following are equivalent:
(1) (^+ extends uniformly.
(2) For any bounded open set B, the image of the inclusion map

%, : Hi(B - A:+; Z) -^ Hi(C2 - J?+; Z)

is finitely generated.
(3) For any bounded set B C C2 there is a constant C such that for any complex disk

D C B with 9D H K^ = 0,

dimHi(D - JT^R) ^ Cdeg{OD,K^).

Note that dim Hi (D — K^\ R) is just the number of components of K^ D D which
do not meet the boundary of D.

(4) For any holomorphic mapping h : A2 —^ C2 of the unit poly disk A2 and any e > 0,
there exists S > 0 5'MC/i that if \x\ < 1 — e anrf C t ; c { | ^ | < l } ^ a relatively compact
domain with h({y} x a;) D A^ / 0 and h({y} x 9^) D K^ = 0, r/z^n

-1- I d^G^ > 6.
27rA(LfK Jh{{x}xQuj)

(5) For Ri,R2 > 0 such that K C {\x\ < R^ \y\ < R^} and K^ n [\x\ < R^ \y\ =
R^ = 0, there is a 8 > 0 such that for each disk uj C {x = XQ^ \y\ < R^} with
QUJ n K^ = 0

degO^,^) >6.

Proof. - Let us suppose that (^+ extends analytically to {G~ < c} — K^. Let n be such
that ccT1 > rnaxa G~. Thus (^+ o /n is analytic on {G~ < cd"} - K^ D B - AT+. It
follows that, in the notation of (3.1),

^(log(^+ o /n) = dn8^og^ € 27rZ

for any path 7 C B — jFC"^. Using the isomorphism (3.2), we see that r]i^l^{B — ̂ +; Z) C
(^""Z, and so the image of the homology group is generated by d"71. Thus (1) =^ (2).

46 SERIE - TOME 32 - 1999 - N° 4



POLYNOMIAL DIFFEOMORPHISMS OF C2: VII. HYPERBOLICITY AND EXTERNAL RAYS 469

Now let us suppose that (2) holds so that the image homology group in (2) is given by
d^Z under the isomorphism (3.2). Let D be a complex disk in C2 with 9D D K^ = 0.
For e := minQD G^ > 0, the components 5i,. . . , Sr of D D {G?4' < e} are relatively
compact, and we denote 7^ == 9Sj. Thus there is an integer k > 1 such that

^(7,) = kd- = l [ dd^.27r J s ,

It follows that
fin r fin r jn r

r <, — \ dcG+ = — \ AfG+ < — / d^G^ < dndeg{^D,K^)
27r J7i+...+7, ^ Js^U...USr 27r JD

Since r = dimHi(P - AT+;R), we have (2) =^ (3).
For (3) =^ (4), we may assume without loss of generality that B = /i(A2) is bounded, and

let C denote the constant in condition (3). Let g^^y) :== G^(h(xQ^y)) be the function G^
pulled back to the disk {xo} x A. Since g > 0 and {^+ = 0} = An/i"1^"^, the homology
group Hi(fa({a;o} x A) — K^\ Z) is generated by the boundaries of the relatively compact
components of {^+ < e}. By the maximum principle, these components are disks. Let u
denote such a disk. By (3) Hi(cc; — K^'^) is finite dimensional, so taking e sufficiently
small, we have dimHi(c<; — ^+; R) = 1, and so by condition (3), we may take 8 = C~1.

The implication (4) =^ (5) is clear; it remains therefore to prove (5) =^ (1). Let
us choose m such that ^{l^l < Ri,\y\ = R^} C V^~, and choose n such that
d"71 < 8. Let H denote the subgroup of Hi(C2 — A^Z) generated by integral 1-
cycles in {x = XQ, \y\ < R^} - K^ for |a;o| < PI- By condition (4) and the isomorphism
(3.2), we have U C d^Z. For 7 e Hi^^a; = xo,\y\ < R^} - A"+;Z), we have
f^-T ^ ^ so 77(7) € d^-^Z. It follows from the topological condition (3.3) for
extension that (y^)^ m = (^+ o y^771 can be analytically from V^~ along the Riemann
surface /^{x = xo,\y\ < R^} for each |a;o| < PI- It follows, then, that (y^)^"
has an analytic continuation to ./^{j^l < R\,\y\ < R^}' By Theorem 3.2, (^+ extends
uniformly. D

Remark. - I f / i s hyperbolic, then if follows from Theorem 3.1 that the equivalent
conditions of Theorem 3.4 are equivalent to / being unstably connected. In connection
with condition (2), we recall that Hubbard and Oberste-Vorth [HOI] have shown that
the topological type of C2 — K^ is the same for all mappings / of the same degree.
By Theorem 3.4, the bounded part of the topology of C2 - K^ determines whether (^+

extends uniformly. The extendability of (^+ can change as parameter values change.

THEOREM 3.5. - Let f be hyperbolic, let T be a transversal, and let To C T be relatively
compact. Then the number of components of T D K^ that are contained in To is finite
or uncountable, f is unstably connected in the first case and unstably disconnected in the
second case.

Proof. - I f / i s unstably disconnected then by Theorem 3.1, -RT+ H intT contains
uncountably many point components. If / is unstably connected then by Proposition 3.2
the function (^+ extends uniformly so by Theorem 3.4 (3) there are only finitely many
components of K^ that do not meet the boundary of T. D
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4. Conjugacy with the Solenoid

In this section we relate the dynamics of / on J^ to the complex solenoid when /
is unstably connected.

THEOREM 4.1. - Let f be hyperbolic and unstably connected. There is a homeomorphism
^ : E+ —> J^ which is holomorphic on leaves and yields a conjugacy between the action
of f on J^ and the action of the shift map on E-p

COROLLARY 4.2. - If f is hyperbolic and unstably connected, the space of external rays
£ is topologically conjugate to the solenoid Eo.

For general hyperbolic unstably connected diffeomorphisms we do not know whether
the semiconjugacy $ denned in §3 of [BS6] is in fact a homeomorphism. When <I> is a
homeomorphism, then ^ of Theorem 4.1 coincides with <I>~1.

We will use the map ©^ : E —» E, [Q^^]^ = (sn)k which raises each coordinate to the
fc-th power. If k and d are relatively prime then Q/e is an finite covering that commutes
with the shift. The following result contains Theorem 4.1.

THEOREM 4.3. - If f is hyperbolic and unstably connected, then
(1) $ : J_^ —> E-i- is a covering map of degree k, with (fc, d) = 1.
(2) There exists a homeomorphism ̂  : E+ —> J^ which is holomorphic on leaves and

which has the following properties
(a) ^ o ^f = rris o Qk for some s C Eo;
(b) ^ o a = f o ^.

The first part of this section will be devoted to proving that the $ is a covering map. The
rest of the section is devoted to showing the existence of the function ^ of Theorem 4.3.

PROPOSITION 4.4. - The mapping $ is locally injective.

Proof. - For p and q in J^ we say p ~ q if ^(p) =• ^>{q)' We wish to prove that
if p and q are sufficiently close, and if p ~ q, then p = q. To show this, we define a
second equivalence relation. If p and q are points in J^, we say p w q if p ~ q and
e(p) and e{q) are in the same stable manifold. Suppose that p and q are close and p ~ q.
Since $(p) = $(9) we have ^(p) ^ ^(q) so p and q are on the same local G^~ leaf.
Now by Proposition 2.9 e(p) and e(q) lie on the same stable manifold so p w q. Thus
to prove Proposition 4.4, it suffices to show that if p and q are sufficiently close, and
if p w q, then p = q.

The set of points q such that q ~ p is closed because it is the inverse image of a point
under the continuous map <I>. It is also bounded because (^+ is constant on the equivalence
class. Thus it is compact. We can partition this set into ^ equivalence classes. Let Cp
denote the set of q such that q w p. By Proposition 2.9 each of these sets Cp is open
in the corresponding ~ equivalence class. In particular there are only finitely many such
classes. It follows that each class is also closed and hence compact. Since / contracts stable
manifolds we can find an n > 0 such that /^(Cp)) is contained in a single box Bg. In
fact for p ' sufficiently close to p, /^(Cp/)) will be contained in Bg. It follows from the
compactness of £ that the diameters of the images of equivalence classes (measured with
respect to the standard metric on C2) is bounded above. Let M denote the supremum of
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these diameters. Now /n decreases Euclidean distances between points in stable manifolds
by a factor of at least c/A71 where A > 1. Thus

diam(r(e(^))) < ^diam(e(^)).

On the other hand the equivalence relation ^ is invariant under / so that /^(Cp)) =
e(Cfrzp) so that:

M = supdiam(e(Cp))
P

= supdiam(e(Cynp))
P

=supdiam(r(e(C7p)))
P

< sup —diam(e(Cp)) = —M
p A A

Choosing n large enough so that c/^ < 1 we see that the only possibility is that
M = 0, so the image of each equivalence class under e consists of a single point. Now
e is locally injective on equivalence classes, by Proposition 2.10, so the ^ equivalence
classes are discrete. D

For any C G C with |C| > 1, the slice Tr"^^} C S+ is a Cantor set, and all slices are
homeomorphic via the holonomy map. Fix Co with |Co| > 1. Let So = 7^~l{Co} C S+
consisting of points with 0-th coordinate equal Co- Let To := ^~l(So) C J+ so that To
is'also equal to ((^^(Co). Let

^o : To -. So

be the restriction of <I> to To.
The map exp(27r%) is a homeomorphism of S which preserves So. Let \ : So —^ So be

the restriction map. The corresponding homeomorphism of J^, also denoted by exp(27r%),
stablizes To and we denote the restriction to To as ^. The space So together with the
action of \ is a well known dynamical system called the d-adic adding machine. The
action of ^ on So is minimal, which means that the only closed invariant sets are the
empty set and all of So.

PROPOSITION 4.5. - The map $o is a covering map and the covering degree is a finite
constant m.

Proof. - Recall that <I>o is a local homeomorphism at p if there is a neighborhood U
of p in To so that the restriction of <I>o to U is a homeomorphism onto an open set in
So. Since $o is locally injective, to show that $o is a local homeomorphism at a point
p it suffices to check the local homeomorphism property on a neighborhood V of p on
which ^o is injective.

The set of points p where <&o is a local homeomorphism is open. It is also invariant
under ^, where \ is the mapping induced on J_p. To see this note that if $o = X ° ̂ o ° X~1

is a local homeomorphism at p, then since ^ and \ are homeomorphisms, <&o is a local
homeomorphism at ^(p).
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Let T ' be the subset of To on which <S>o is not a local homeomorphism. The set T ' is
closed and invariant. Let S ' be the set ^(T'). The set 5" is closed and invariant.

We will show that 5" is a proper subset of SQ. Cover To by compact sets A T i , . . . , Kn
on which $o is injective. Then S" = |j^=i ̂ {T' H Kj\ Each set $o(T' H A^) is closed.
Since $o is not a local homeomorphism on T ' the set ^(T' H Kj) does not contain a
neighborhood of any of its points; thus <I>o(T' D Kj) is nowhere dense. Since S" is a finite
union of closed nowhere dense sets it is meager in the sense of Baire category. Now 5o is
a compact metric space, so by the Baire category theorem, 5" is not all of So.

Since 5" is a proper closed ^-invariant subset of 5o, and \ is minimal, we conclude that
5" == 0. Thus T ' is empty and $o is a local homeomorphism at every point. The map ^o
is proper and a local homeomorphism, so it is a covering map.

Since To is compact, the covering degree at each point is finite. Viewed as a function of
p the covering degree is continuous. Since this covering degree is invariant under ^ it is
constant. D

Proof of Theorem 4.3, part (1). - The fact that $ is a covering map follows from
the previous proposition and the fact that it is a bijection when restricted to leaves. Let
U C C - A be simply connected and contain Co. Then ((y^)"1^) has the structure of
a product 60 x U. If V C So is evenly covered under <l>o, then the set V x U is evenly
covered by $. The space S+ is covered by open sets of this form. D

If the space S+ were topologically well behaved it would be possible to appeal to the
Galois correspondence between covering spaces and subgroups of the fundamental group to
analyze topological type of J^. In fact S+ is neither locally connected nor path connected.
Nevertheless we will analyze the possible finite degree covering spaces of E-p We will
see in fact that S+ has the property that every connected finite degree covering space is
homeomorphic to S+. In this respect S+ is like the circle.

For n > 0 we let ̂  be the partition of So into classes so that s and t are in
the same class if s-n = t-n- We note that P71 consists of the d71 sets of the form
{s : s,^ = ̂ ^ij/d^ f^ 1 <j < d-.

LEMMA 4.6. - If P denotes a class in the partition V^ of So then the following are
equivalent:

(1) exp(27r%r)(P) n P / 0.
(2) exp(27r%r)(P) = P.
(3) r G ^Z.

Proof. - If (1) holds there is some point s G P so that exp(27rir)s G P. The P
equivalence class of a point is determined by the (-n)-th coordinate of the point, so s e P
and exp(27rir)s G P have the same (-n)-th component. Now exp(27r%r) acts on the
(-n)-th coordinate of points in the solenoid by multiplication by e27^/^. We conclude
that e2^7^ = 1. So r € ^Z. Conversely if r <E c^Z then (2) and (3) follow. D

Let P" be the pullback of the partition Vn to To. That is to say two elements of To are
in the same P71 class if their images under $o are in the same P" class.

To say that $o is a covering map of degree m says that for any p e So there is a
neighborhood Up such that ^o1^11?) consists of m sets V i , . . . , Vm, each of which maps
homeomorphically to Up. If the base space were locally connected the set Up could be
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chosen to be connected and the sets V i , . . . , Vm would be just the connected components
of ^o1^?). In this case the decomposition of ^^((Tp) into sets V i , . . . , Vm is unique.
Since So is not locally connected there is some choice of the partition of ^o1^?) into sets
which map homeomorphically to Up. The next Lemma gives a specific choice about how
to divide ^(^(P) into subsets mapping homeomorphically to P when P is an equivalence
class in some partition P71.

LEMMA 4.7. - For some value ofn there is a partition Q^ of To such that:
(1) Each class P ofV^ is the union ofm classes Q i , . . . , Qm of Q^'
(2) Each Q^ equivalence class maps bijectively to a V71 equivalence class under <t>o.
(3) \ takes Q^ equivalence classes to Q^ equivalence classes.

Proof. - Let D be the minimum distance between points p and p ' such that
$o(j9) = $o(^). Choose 8 < D / 3 so that if d(^j/) < 6 then d(x(pU(P')) < D/3.
Choose n sufficiently large so that (a) each P71 equivalence class P in So is evenly covered
by m homeomorphic sets Q i , . . . , Qm and (b) each Qj has diameter less than 6. Let Q^
be the partition of To into the md71 sets Qj.

Assertions (1) and (2) are true by construction. We will show (3). Consider a Q^
equivalence class Q. $o(Q) 1s a ^n equivalence class which we call P. If p and q are
points in Q and \(p) and \{q) lie in distinct Q^ equivalence classes then there is a point
p\ in the same Q^ equivalence class as ^(9), having the property that ^o(x(p)) = ̂ ofY).
Now d(x(pU(<?)) > d^(p},p'} - d^.xW) > D - S > (2/3)D. On the other hand
since d{p, q) < 8 we have d{\{p), x(o)) < D/3. We conclude from this contradiction that
\(p) and \{q) are in the same Q^ equivalence class. D

We fix this value of n for the rest of the section, and we write Pn, V^ and Q^ simply as
P, P, and Q. Now \ cyclically permutes the P equivalence classes, and •^dn stabilizes each
P equivalence class. So ^dn stabilizes each P equivalence classes. Each P equivalence
class P consists of m Q equivalence classes Q i , . . . , Qm, which are permuted by ^dn.

LEMMA 4.8. - The action of^ on P = Qi U . . . U Qm is minimal.

Proof. - It follows from [BS6, Theorem 2.1 (5)] that each leaf of the unstable lamination
of J^ is dense in J^ (That is to say the unstable lamination is minimal). Say p G J+
then the intersection of the leaf through p with To is the \ orbit of p. Since each leaf is
dense for any point q € P there is a sequence of points pj —» q with pj in the leaf of p.
The local triviality of the lamination implies that there is a sequence p^ —> q with pj ^ P.
Thus every ^dn orbit is dense. D

COROLLARY 4.9. - ̂ cr cyclically permutes the Q equivalence classes Q i , . . . , Qm which
compose P. The map ^^IQi is minimal.

Proof. - The equivalence classes Q i , . . . , Qm are disjoint closed and open sets which
are permuted by '^dn. In order for ̂  to act minimally it must permute the equivalence
classes transitively. This proves the first assertion of the corollary. It follows that ^rndn

stabilizes each of these classes. If p G Qi then the intersection of the '^dn orbit of p with
Qi is just the x^'IOi orbit of p. It follows that the x^'IOi orbk of P is dense in Qi
for every p G Qi. So x^^lOi is minimal. D
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COROLLARY 4.10. - The covering degree m of the map <E>o is relatively prime to d.

Proof. - The map $o gives a conjugacy between the action of ^rndn |Qi and the action of
^mcr ̂  p ̂ ^ ^mcr ^g ̂  ̂  -(n+ l)-st coordinate of a point in P by multiplication
by C^ where C = e27"^ is a primitive d-th root of unity. As in the previous Corollary
the minimality of ^IQi forces this action to be transitive. In order for multiplication by
(rn to transitively permute the d-th roots of unity the element ̂  must have order d. If
s = (m, d) > 1 then (^W8) == l, so the order of (^ divides d / s and hence is strictly less
than d. Q

LEMMA 4.11. - IfQ denotes a class in the partition Q of To, the following are equivalent:
(1) exp(27r%r)(0) n Q / 0, (2) exp(27r%r)(Q) = Q, (3) r G md'Z.

Pwo/. - If exp(27r%r)(0) n Q / 0 then exp(27r%r)(P) H P ^ 0, so by Lemma
4.7, r G d^Z. Write r as ad71 for a G Z. Now the map exp( 27^)1? = ^, so
exp(27r%r) = exp^mad71) = ^a(r. By Corollary 4.9, ̂  transitively permutes the Q
classes Q i , . . . , Oyy,. If some power of ^dn fixes an equivalence class, then that power
must be a multiple of m. We conclude that a is a multiple of m. So r e mdnZ. Conversely
if r G mofZ then (1) and (2) hold. D

LEMMA 4.12. - Let i be relatively prime to d. Let t be an element of S+. Fix an index
k. Let Sk be a complex number satisfying s[ = 4. Then there is a unique element s G S+
with k-th coordinate equal to sje such that Q^(s) = t.

Proof. - For j > k define Sj = s^~\ Since tj = ̂ J-fc it follows that ^ = tj. Now
assume that sj is defined. In order to define ,^_i we need to find a simultaneous solution
to ^_i = Sj and s^_^ = ̂ _i, given that ^ = tj = ^_p

Choose a root w of the equation Z^ = tj. If C is a d£-\h root of unity then (w is another
solution of Z^ = tj. In this way we can identify the set of solutions of the equation
Z^ = tj with the group of dC-th roots of unity. Now (d is a solution of the equation
Z^ = tj. Using this particular solution we can identify the set of solutions to Zi = tj
with the group of i-\h roots of unity.

Similarly ^ is a solution of ^d = tj. Using this particular solution we can identify the
set of solutions of Z^ = tj with the group of d-th roots of unity.

To solve our original equations we need to find a d£-th root of unity with appropriate
images under the d-th power map and the i-\h power map. If we write our groups additively
then the fact that our original equation can be solved uniquely is now equivalent to the fact
that the map from Z^ —^ Z^ Q Z^ whose first coordinate is multiplication by i and whose
second coordinate is multiplication by d is a bijection when d and i are relatively prime.
This assertion is the Chinese Remainder Theorem from elementary number theory. D

Let S^ be a copy of the solenoid S+, and define exp' : S'̂  —^ E' for s e S' by
exp'(^) = exp(it/m) so that [exp\2mr)(s)}n = e^^l^s^ It follows that

Qm oexp' = exp o©^.

Let To C S^ be the set (Q^)-\So) = {s : (s^ = Co}. Let 6^ : To -> So be the
restriction of 6^ to TQ. Let V be the partition of Tg which is the pullback of the partition
P of 5o. Thus two points are in the same equivalence class of the partition V if their n-th
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coordinates have equal m-th powers. Let Q! be the partition of Tg such that two points
are in the same equivalence class if their n-th coordinates are equal.

LEMMA 4.13. - Each equivalence class P ' ofV may be partitioned into m subclasses
Q [ ^ . . . , Q^ under Q! such that ©^ is bijective on each Q'j.

Proof. - This is similar to Lemma 4.7. D

LEMMA 4.14. - If Q' denotes a class in the partition Q' of TQ then the following are
equivalent:

(1) exp\27^ir)(Qf) H Q' / 0
(2) exp^TTzr^Q') = Q'
(3) r e WZ.

Proof. - This is similar to Lemma 4.6. D

Proof of Theorem 4.3, part (2a). - We define a function ^ : S'̂  —^ J^ satisfying (a) of
part (2) of Theorem 4.3. Choose a class P of the partition P of So. Choose a class Q of
the partition Q of To which maps bijectively to P under <l>o. And choose a class Q' of
the partition Q! of TQ which maps to P under @rn- The maps ($o|0)~1 and @m\Q' are
bijections. Define ^ on Q' by setting ^o = (^o)~1 ° (©mlQQ- We will extend this map
to all of So in two stages. First we define it by setting ^(exp^Trzt)^) = exp(2mt)^(s)
for all t G R. To show that this definition is consistent, we must show that if p, q G Q'
are such that exp(27rm)j) = exp(27r%&)g, then exp(27rm)^(^) = exp(27rz&)^(^). This
follows because <I> commutes with exp, Qm ° exp' = exp oQy^, and by the application
of Lemmas 4.11-13.

Thus we have defined the map ^ on one point on each ray. Each ray is mapped
bijectively to a ray under <I> and Orn' Thus there is a unique extension of ^ to entire rays
so that (2a) holds. D

The map ^ defined so far does not necessarily conjugate the shift a to the action of /
on J_jT. We will show ^ can be modified so that it does preserve the dynamics.

Define the norm of an element s G S to be \SQ\. The following Lemma characterizes
the action of the subgroup So by multiplication on S+.

LEMMA 4.15. - A homeomorphism of the solenoid S+ "which commutes with the action
of exp, which preserves rays and norms of elements, is multiplication by a group element
s G So.

Proof. — Let g be such a homeomorphism. Choose a t G S+. Let s = g ( t ) / t . Since g
preserves norms, s has norm 1. For s 6 So, if ms : S+ —> S+ is the multiplication by
s, then m'glg fixes t and commutes with the action of exp. In particular it fixes the path
component of t. The path component of the identity is dense in the set of elements with
fixed norm so m^1 o g is the identity. Thus m'glg = 1 and g = rris. D

Proof of Theorem 4.3, part (2b). - We want the map ^ to conjugate the function a to
the function /. That is, we would like to have // := ^-1 o / o v& to be equal to a. The
maps a and // both expand the exponential parametrization by a factor of d, which is to
say that (r(ex.p(27rit)s) = exp(27rzdt)a(,s) and //(exp(27^zt).s) == exp (27r%cK)/'(,§). Thus
the composition f oa~1 preserves the exponential parametrization. The map / f oa~1 also
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preserves norms of elements and rays. By the Lemma 4.15, f ' ( T ~ 1 has the form nis for
some s in the solenoid So so // == m^cr.

We show next that there is a t G So so that // = m^1 o a o m^ In order to do this
we need to solve the following equation for t:

rris(T = m^lamt (4.1)

It is easy to check that amf = m^a. So that equation (4.1) is equivalent to the equation

msO = TUt^m^^' (4.2)

Thus it suffices to find a t such that

s=t~la(t). (4.3)

Now t~1 is exactly Q-i(t) and cr(t} is Qd(t)' So that (4.3) is equivalent to the equation

s=Q^{t)'Qd{t)=Qd-i(t). (4.4)

Since d and d-1 are relatively prime, there is a solution to to equation (4.4) by Lemma 4.12.
Thus we have /' = ^-V^ = m^am^. So f = (^m^-1)^^"1). Now if we

replace ^ by the product ^ • ^to~1' ̂ en ̂ ls new "^ap conjugates the dynamics of / on
J_jT to the dynamics of the shift map a on S+. D

5. Affine Structure and Landing Map: Dynamics on J

We want to study more closely the intersection J D W^'^x)', for this we need more
information on the structure of the unstable lamination W. If / is hyperbolic, then for each
p e J, there is a uniformization ^p : C —^ C2 such that ^p(O) = p and ^p(C) = l^Q?).
This uniformization is not unique: the derivative at the origin is not determined. Indeed if
we choose a point y so that W(rc) = W(^/), we produce uniformizations which differ
by an affine transformation. It is useful to introduce the notion of an affine structure as
a way of dealing with this ambiguity.

A complex affine structure on a holomorphic curve L is given by an atlas consisting of
holomorphic diffeomorphisms \j from open sets Uj of L to open sets of C such that the Uj
cover L and the ̂  °x71 are restrictions of affine diffeomorphisms z i—^ az + b of C. Two
atlases give the same affine structure if their union satisfies the compatibility condition. The
identity map gives C an affine structure which we call the canonical affine structure on C.

For three distinct points x, y , and z in C the ratio j^ is invariant under the group
of affine motions of C. If x, y , and z are distinct nearby points of Uj C C, the ratio
^^^ ^PG^ o^y on the points XjW. Xj(y) and XjW and not on the particular
coordinate chart Xj' Note that this function on nearby triples in L actually determines the
affine structure in L. One says that an affine structure is complete if it is isomorphic to
C with its canonical affine structure. Note that the canonical affine structure on C is the
unique complete affine structure on C.

The affine structure is defined on the whole unstable lamination Wu and is /-invariant.
Let us fix XQ G J~ and disjoint transversals T^,T^,T^ to the local unstable manifold
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W^(xo). For x G J~ near XQ, there are three points pj := Tj H W^(x), j = 1,2,3. The
ratio C^IC(J?2) is well-defined, independently of any particular choice of complex affine
coordinate ^ on W^^x). To say that the affine structure is continuous is to say that this
ratio varies continuously with x.

The following, an adaptation of Proposition 3.1 of Ghys [G], states that this affine
structure varies continuously from leaf to leaf.

THEOREM 5.1. - Iff is hyperbolic then there is a unique -way to equip each leaf of Wu

-with an affine structure so that:
(i) / acts affinely on the leaves of V^u and

(ii) The ratio function on nearby triples of points is continuous.
Moreover, for this structure, each leaf of W" is complete.

Proof. - The proof follows the line of argument of Proposition 3.1 of [G] with the
following modifications. We choose a compact neighborhood N of J inside J~ so that
f(N) D N. As in [Gh, Lemma 3.2] we can identify affine structures on N H Wu with
certain sections of bundles of jets. It is necessary to modify slightly the definition of the
action of / on the space of sections to deal with the fact that N is not invariant. If a is
a section we can define a new section f(a) by f(a)(x) = Df''(a(f~l(x))). This map on
sections is a contraction of a metric space. Thus it has a unique fixed point. This fixed
section produces an affine structure on N which is continuous and backward invariant.
The pushforward of this affine structure on f(N) agrees with the affine structure on N ,
and so we have a natural way to extend the affine structure to \J^ f^^N) = W^. Now the
argument in [G] shows that each leaf of this affine structure is complete. D

The uniqueness of the complete affine structure on the complex line shows that the
affine structure constructed in Theorem 5.1 agrees with the affine structure obtained
by parametrizing unstable manifolds. Thus we can read the proposition as saying that
the affine structure obtained by parametrizing unstable manifolds by copies of C is
transversely continuous.

For any point p in J we write Up- for Wu(p) - K^ = Wu(p) H [/+. If 0^ C Up- is
a connected component, then by [BS6, Proposition 2.2] there is a conformal equivalence
a? : 0^ —^ H, where H is the right half plane in C, and which satisfies SKop = G^.
For fixed a G R, the curves Rp(a) := a^^ia^ia + oo) are gradient lines of G~^\0^ and
hence external rays. Thus 0^ == UaeR ̂ (a) ls ^le unlon °^ external rays. We identify R
and the external rays contained in C^~, and this identification is unique modulo translation,
since a? is uniquely defined modulo an additive constant ib. Thus it is natural to define
the distance between two external rays R(a) and R(a') to be |a - a'|. As was noted in the
remark after [BS6, Proposition 2.7], the maps a? serve to define another affine structure,
A\ on the Riemann surface lamination H^IL^. This affine structure is not to be confused
with the affine structure of H^.

Let a and b be points in C. Let E be a path connecting them. Let c > 0, and define

car (£\ c) = {z G C : \z — x\ < c\x — a\ for some x G E}

cig(E^c) = {z G C : \z — x\ < cmm(\x — a|, \x — b\) for some x G E}.

The carrot car (£", c) has its small end at a. In the cigar cig (E1, c) the ends are treated
symmetrically. Let D be a connected open set in C. We say that the domain D satisfies
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c-cig if each pair of points in D can be joined by a path E so that cig (E, c) C D. Note
that this property is scale invariant. If D satisfies c-cig then any translate of D satisfies
c-cig, and \D satisfies c-cig for any A ^ 0 in C. In other words, this property depends
only on the complex affine structure of C.

THEOREM 5.2. - Let f be hyperbolic and unstably connected, and give V^u the natural
affine structure. Then there is a constant c > 0 so that for every p G J each component 0^
ofUp~ satisfies the condition c-cig. In addition, ifR is any external ray then car (J?, c) C U^.

Proof. - First we deal with carrots centered about external rays. Choose e small enough
so that for every p G J the set B(p,e) n J is contained in a subset of J with local
product structure. Let N be the set of points in J ~ within distance e of J . The set of
pairs of points M = {(x,y) e N x N : d{x,y) < e / 2 and x G W^{y)} is compact. For
( x ^ y ) G M, y ^ J, consider the function

\{x,y) =
x -y

<°0/) - y
where the ratio is computed with respect to the affine structure on W^^x) = W^^y}.
The continuity of the affine structure implies that this function is continuous. Choose n
sufficiently large so that if x G J~ and G^~(x) < l/d", then we have d{x,e(x)) < e/2.
We restrict our attention to the compact set of pairs (x, y) G M such that x e K and
l/d^1 < G~^{y) < l/d". The function A is defined and continuous on this compact set,
so it assumes a minimum value c > 0 there.

Since the affine structure is invariant under /, and the map e is equivariant with respect
to /, the function A is also invariant under /. Since any point in yVU — K is equivalent
under / k , for some k C Z, to a point in the set {q : l/d7^1 < C?+(g) < 1/d71}, it follows
that c is a lower bound for A on the set ( x ^ y ) e K x (W" — K).

Let R denote an external ray in some unstable manifold W^^p} with PQ as its endpoint.
It follows from the definition of c that for any z e R the open disk around z of radius
c\z - po| is contained in W^'^p) - K. In other words car {R, c) C Wu(p) - K c U^.

The next step is to construct cigars. Let us choose a component 0^ of [7+ and recall
the conformal mapping to the right half plane, a? : 0+ —^ H, defined above. For q G 0^
and t G R, we define ^ := a^^ap^q) + it) and

V - ^1\\q) = min min
t€[-i,i] z^K+^\wu{q} \e(q) - q\'

Since [-1,1] 3 11-» qi lies in a compact subset of 0^, this minimum is attained. By the
continuity of the affine structure A\ A'(g) is continuous for q G J+. Thus

c' := min ^(q) > 0
ge{G+=i}nj-

since A7 > 0 on J ^ .
To finish the proof, we must show that, given any two points q^q' G 0^~, there is a

cigar connecting them. Since fc-cigars are mapped to fc-cigars under /, we may replace q
and q1 by fq and /Y. Thus we may assume that C?+((7), €?+(</) < 1. Let us choose
a, a' e R such that the corresponding external rays satisfy q C R(a) and </ e R{a'). Let
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7 (resp. 77) denote the path inside R(a) (resp. Ji(a')) mnning from q (resp. q1) up to the
level set {G^ = 1}. Define the path a = (X^dl + m, 1 + %a']), which mns inside the set
{G^ =1} and connects 7 to 7'. Let us consider the case |a — a'| < 1. By the definition of
c' it follows that if w G a, then, in the affine structure of W^p), the disk centered about
w with radius d min(|e(^) — w|, \e{q') — w\) is contained in 0^. Thus the curve 7 U a U 7'
is the center of a min(c, c^-cigar contained in 0^ and connecting q to q ' .

Finally, when |a — a'\ > 1, we observe that /-n acts on the affine structure A' as
^ i—^ d^C + c- Thus Rp(a) and Rp{a'} are taken to Rf-rzp(b) and Rf-rzp(b'\ where
|& — (/| = d'^la — a'l. Thus for n large, the procedure above constructs a mm(c, c^-carrot
connecting /-ng and /-ng/. D

In [NV] a topological disk in R2 which satisfies the c-cig condition is called a c-
John disk. According to the previous theorem each component 0^ is a c-John disk. The
following proposition summarizes some topological properties of John disks.

PROPOSITION 5.3. - Let 0^ be a connected component of U^. The boundary of 0^ is
locally connected, and 0^ is locally connected at oo.

Proof. - The local connectivity of a subset of R2 is equivalent to the local connectivity
of its boundary. A strong form of local connectivity for the complement of a John disk is
proved in Theorem 4.5 (6) of [NV]. The assertion that 0^ is locally connected at oo is
proved in Theorem 2.23 of [NV]. D

PROPOSITION 5.4. - For each component 0^ the landing map gives a proper continuous
map from the space of rays in 0^ to the topological boundary of 0^.

Proof. - Following Theorem 5.1 we described a Riemann map a? : 0^ —> H. Let /3 be
the inverse Riemann map: f3p '. H —> 0^ C W^ U {oo}. We give W^ the leaf topology so
that W^ U {00} is just the Riemann sphere. Since the boundary of 0^ is locally connected,
Caratheodory's Theorem states that f3 extends to a continuous map /3* from f f U % R U {00}
to the closure of 0^ in W^ U {oo}. The fact that 0^ is locally connected at oo implies
that (/3*)-l(oo) = {oo}. So the restriction of /3* to the finite points gives a proper map
from H U %R to the closure of 0^ in W^. The landing point of the ray R(a) is the point
(3p(a) so we see that the landing map is continuous and proper. D

PROPOSITION 5.5. - There is a number N , depending only on the John constant c, so
that each point Q(W^ D K~^~) is the image of at least one and at most N external rays.
Furthermore each set Uy~ has at most N components.

Proof. - Each point in Q(W^ D K^) is in the boundary of some component 0^, and
hence is the landing point of some ray in 0^ by the previous result. Let TV = TV (c) be the
maximum number of disjoint open disks of radius 1 which can have their centers on the
circle of radius c. The proof that N is an upper bound for the number of rays that land at
a point follows from the proof of [NV, Thm. 2.18 part (1)]. The proof that TV is an upper
bound for the number of components of Up~ follows from the proof of [NV, Thm. 2.18
part (2)] and the observation that each component of Up~ is unbounded. D

PROPOSITION 5.6. - The sets 9(Wp' D K^) and W^ D K^ are locally connected.

Proof. - By Propositions 5.4 and 5.5, 9(K^~ H W) is the proper image of k < N copies
of R. Let Xk be the one point compactification of the union of k disjoint copies of R.
The set Xk is the wedge of k circles. Since the parametrization of Q{K^ D W^ is proper

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



480 E. BEDFORD AND J. SMILLIE

it gives a continuous map from Xk to the one point compactification of W^. The image
of a compact locally connected set is locally connected. Thus Q{K^ D Wu) U oo is locally
compact hence Q{K^ D W^ is locally connected.

The local connectivity of W^r\K^ follows from the local connectivity of its boundary. D

Both So and J have local product structure. That is, there exist 5, e > 0 such that if p
and q are points with dist (p, q) < 6, then there is a point [p, q] such that

W^p)nW^q)={\p^q]}. (5.1)

The bracket is a continuous function of both variables. By Proposition 2.7, the bracket on
J has a continuous extension to (J^T H U) x J for some neighborhood U of J, by setting

^q}=£SM^W^q)

for p G J^ n (7 and q E J with dist (p, q) < 8.
A set is called a rectangle if it is closed under application of the bracket. If jR

is a rectangle, and r G R, we set Z^/^r) = W^^r) D J%. It follows that the map
[•, •] : D8^) x ̂ (r) —^ J^ is a homeomorphism. For any two points r', r" e R, the bracket
gives a natural homeomorphism between D8^^) and ^/"(r"); when no confusion may
result we suppress r and write R = D8 x D1^.

We may cover J by finitely many such rectangles Rj. We now enlarge Rj to a set 7^
with local product structure and such that U^j ls a neighborhood of J inside J~. Let
R = £^(r) x Du(r) be a rectangle as above, and set A = W^(r). We may consider

An(J-n£/+)3^/^(g)

as a holomorphic motion. By [MSS] this may be extended to a neighborhood A' of r in
A. That is, there is a continuous map A' 3 q' \—> Fg/, where Fg/ is a complex manifold,
and Yq' D Fg/ = 0 if g^ 7^ ^2- Thus, shrinking e if necessary, we have a bracket

[.,.] ^ ( r^xA'^TZcJ-

given by [p,q] = W^{p) H I\, and where we set U = [^(r^A']. In the illustration,
the local pieces of W8 appear as darker vertical curves, and the manifolds Tq are thinner
vertical curves.

W8 W8 W5

Extension of Local Product Structure
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We note that this enlargement of the local product structure is not /-invariant. But from
it we get useful topological information such as the following:

PROPOSITION 5.7. -If f is hyperbolic, then Q{K^ H W^) = J n Wu, where the boundary
operation is with respect to the leaf topology on W^.

Proof. - For p e J, the set \Jq^DU(p)^q contains a neighborhood of p inside C2. It
follows by the enlarged local product structure that |j ^^/ }nK+ ^9 coincides with K^
in a neighborhood of p. Thus for a product neighborhood A / = [D8 {p), Du (p)] of p, we
have (QK^ nAf = U^(p)na^ F, n^= a^(p) ̂ 'M n K^ "

This allows us to restate Proposition 5.6:

COROLLARY 5.8. - Iff is hyperbolic and unstably connected, then for each leafWU the
set J D Wu is locally connected.

The following is a corollary of Theorem 4.1.

COROLLARY 5.9. - If f is hyperbolic and unstably connected, then J D W8^) is totally
disconnected. In particular, f is not stably connected.

Proof. - In the extended local product structure, the intersection W^{p) D J is locally
homeomorphic to Fq H J ~ . If we choose q G W^{p) — K, then Tq C U^~. By Theorem
4.1 J~ n E/4" is homeomorphic to the complex solenoid. Since Tq is transversal to J~, it
follows that Tq n J~ is totally disconnected. D

Recall from Section 2.1 that there is a continuous and equivariant landing map e from
the space £ of all external rays, to J .

• THEOREM 5.10. - Iff is hyperbolic and unstably connected then the map e : £ —> J is
surjective, and each point has at most N preimages.

Proof. - Each point p G J lies in some unstable manifold W^. With respect to the leaf
topology on W^, the point p is in <9(AT+ H W) by Propostion 5.7. By Proposition 5.5 the
point p is the landing point of at least one and at most N external rays in W^. D

We will make additional use of the enlargement of the local product structure.
The manifolds C8, provide a family of transversals with respect to which the affine
structure of H^ varies continuously. If p G J, and q € W^(p) H J, then the map
W^(p) 3 r i-̂  /^(r) D W^{q) is a local homeomorphism. By the continuity of the affine
structure, this homeomorphism takes cigars to cigars and carrots to carrots, where we define
carrots and cigars with respect to the affine structure of W", and the carrots and cigars
must be small enough to lie inside the domain of definition of the local homeomorphism.
This gives us a device for transporting carrots and cigars from one unstable manifold to
another within a neighborhood of J (inside J~). By [MSS] the local homeomorphism is
quasiconformal. Thus, locally, it preserves carrots and cigars with respect to the induced
euclidean metric.

In the following Proposition, dist will denote the distance function on an unstable
manifold W11 induced by the Euclidean metric on C2.

PROPOSITION 5.11. - There exists M < oo with the property that ifp, q € W - K satisfy
dist(p, q) < 1, dist(p, J) < 1, then one of the following holds:

(i) There exists a cigar 7 C Wu - K connecting p and q, and diam(7) < M.
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(ii) There exists r € J H Wu and cigars 71,72 C (W^ - AT) U {r} such that 71 connects
P to r, 72 connects r to q, and diam(7^) < M for j = 1,2.

Proof. - We may cover J by a finite number of triples of local product neighborhoods
7Z;. ^ D, x A;., 7ZJ ^ ̂  x A^, and 7Z^ ^ D, x A^ with the properties that A^. is a
relatively compact subset of A^, and A^ is relatively compact in A^". Let us fix j and
drop the subscript j from our notation.

If p is a point of {r} x A7 - AT then by Theorem 5.2 there is a carrot F with vertex at p
connecting p to a point j/' e {r} x 9A". If 8r denotes the distance between A' and cW,
then the carrot contains a disk of radius c6r, centered at j/'. Thus, possibly after shrinking
c and A', it follows that if p , q lie in the same connected component of {r} x A', there
is a c-cigar contained in {r} x A" - K which connects p to q. It is evident that by the
uniformity of the c-carrot condition in Theorem 5.2, this holds for all r G Dj.

Next we observe that there exists So > 0 such that if Ok and Om are components of A"7

which intersect BA", and if Ok H Om H A" = 0, then dist (C^ D A", Om H A'7) > So. By
the local product structure on %, we may shrink So if necessary so that this holds for all
unstable disks {r} x A'". Further, we may assume that dist(<9A^ <9A^) > So. Since there
are only finitely many 7^, we may assume that So has this property for all Tij.

Let A/' = {z e C2 : dist(^J) <_ 1}. Without loss of generality (applying /-A: if
necessary), we may assume that J~ D J\f C U7^' Now for n sufficiently large we
have dist(/-7^, f^q) < So. Choose j such that /-n? <E {r} x A^. C 7^, and thus
f^q G {r} x AJ. By the definition of So, either there is a connected open set 0 C {r} x A'"
containing both p and g, or there are connected open sets 01,02 C {r} x A"' with
90i n (902 H A / 0. In the first case, we may connect p and q by a cigar contained in
0, and in the second case, there is a point r G <90i H 302 H A", and a pair of cigars
7j^ C Ofc, k = 1, 2, such that 71 connects p to r, and 72 connects r to q.

Thus /-n^ and f^q are connected according to either (i) or (ii). If C and A are as in
(2.1), then it is sufficient to take n = no to satisfy CX^ < So. The closures of Ti'" are
compact, so it follows that the closures of f^Ti'^ are compact. Thus there exists M < oo
such that the diameters of /^({r} x A'") are bounded by M for all r and j. Thus the
diameters of f^^k are bounded by M for k = 1,2. D

THEOREM 5.12. - If f is hyperbolic, then there exists M such that the following holds: If
W is an unstable manifold, ifd is a distance function compatible with the affine structure
ofWU, and ifp.q are two points ofWU, then one of the following holds:

(i) There exists a cigar 7 C Wu - K connecting p and q, and diam(7) < Md(p, q).
(ii) There exists r G J n Wu and cigars 71,72 C (WU - K} U {r} such that 71 connects

p to r, 72 connects r to q, and diam(7^) < Md(p, q) for j = 1,2.
In either case, if Oi and 0-z denote the components of Wu - K containing p and q, then
90i n 902 ^ 0.

Proof. - Let T^,??^,?^' denote triples of local product neighborhoods as used in the
proof of Proposition 5.11. For So > 0, let Af = {p G J~ : dist(j), J ) < 1. We may choose
So sufficiently small for {7Z^} to cover M and (2.1) to hold on JV. Choose Mo such that
|D/| < Mo on J- n A/", and set A/o = {p G J~ : dist(p, J) < So/Mo}.

For p,q G A/" in the same unstable manifold W^, we have dist ((//c^,/^g) -^ 0 as
k -^ -oo. Further, since p, q e J~, we have dist ((/fc^, J) -^ 0 and dist ((J^g, J) -^ 0
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as k —^ -oo. Thus we have dist^j), fkq) < 60 and fkp,fkq G A/o for k < 0. As
long as fkp and /^ remain in A/", it follows from (2.1) that dist ((/^,/fc^) will grow
as k increases. Now there are two possibilities. The first is that there exists k such that
dist {{fkpJkq) < SO/MQ, fkp,fkq G A/o, and f^p i A/o. In this case, fkp and fkq
lie in a disk of radius SQ/MQ (inside W^ which is disjoint from J. Thus j ^ ' p may be
connected to fkqby o. cigar of diameter bounded by 60 /MQ. Thus we have (i) in this case
with the constant M = 1, except that the distance involved is dist instead of d.

The other case is that there exists k such that /fc^, fkq G A/o and that SQ/MQ <
dist ((.f^1?,/^1^ < So. As in the proof of Proposition 5.11, we have p connected
to q, either by one or two cigars (corresponding to cases (i) or (ii)), with the constant
M = DMo/So, where D is an upper bound on the diameters of the disks {r} x AJ',
except that the distance involved is dist instead of d.

Since each disk {r} x A"' C ^// is contained in a leaf of W"', we may give it the
induced affine structure. Thus each (unstable) lamina of each local product neighborhood
TV.' has a complex affine structure. By Theorem 5.1, the affine structure of {r} x AJ'
varies continuously with r. We assign a metric 8 on these disks as follows: we choose two
points dj^bj G A^, and we set 6(aj,bj) = 1. This determines a unique distance function
on A7' which is compatible with the induced affine structure. Although we have no a priori
bound on the ratio between the distance function on {r} x A"' and the Euclidean distance,
i.e., dist/^, this ratio varies continuously throughout T^". Thus there is a constant /^ with
the property that ^-1 < dist/8 < ^ holds on the unstable leaves of (J^-^-

Now let p, q G W^ — K be given. It follows that for some k G Z, fkp and fkq are
contained in {r} x A^ and are connected by one or two c-cigars 71, 72, inside {r} x A^'.
Now if we switch from the distance dist to 8, we change scales by at most /^. Thus,
with respect to 8, we have f1^? and fkq connected by c'-cigars of diameter < DK, and
6(fkP^fk(l) > 8o/(MQi^). Thus the alternatives (i) and (ii) continue to hold for c'-cigars,
and a new constant M'. Recall that the affine structure of {r} x A"' was induced from the
affine structure of Wu. Thus the restrictions of d and 8 to {r} x A^ are constant multiples
of each other. Thus (i) and (ii) hold for d, with the same constants M' and c'. Finally,
the conditions (i) and (ii) are complex affine invariant, so they hold for p, q, with cigars/-^j-1,2. a

A short bow tie

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



484 E. BEDFORD AND J. SMILLIE

Remark. - In general the diameter (and thus length) of the shortest path inside W'11 - K
connecting two points will be much larger than the Euclidean distance between the two
points. Thus we cannot hope to connect two points by "short cigars," whose diameter (or
length) is comparable to euclidean distance. Theorem 5.12, however, shows that points
may always be connected by short bow ties.

COROLLARY 5.13. - Iff is hyperbolic and unstably connected, then J D W^ and K H Wu

are path connected.

Proof. - By Propositions 5.4 and 5.5, QK D W^ is the union of the continuous images of
a finite number of copies of %. By Theorem 5.12 these images are connected, so QK D W^
is path connected. Thus K H W^ is also path connected. D

COROLLARY 5.14. - If f is hyperbolic and unstably connected, the path components of
J are precisely the sets J D W^.

Proof. - By Corollary 5.13 the sets J H W^ are path connected. The result now follows
from the local product structure, since (Corollary 5.9) J D W^ is totally disconnected. D

THEOREM 5.15. - Iff is hyperbolic, then there exists M such that the following holds: If
Wu is an unstable manifold, ifd is a distance function compatible with the affine structure of
W^, and ifp\,..., pn € W'11 — K, then there exists a point r € JFI Wu and cigars o - i , . . . , On
in (W - K) U {r} such that aj connects pj to r, and diam(a^) < Mdiam({pi,.. . ,pn})'
In particular, if Oi,. ...On are connected components of Wu - K, and if n > 3, then
90-i n .. . n 90n = {r} is a single point.

Proof. - Theorem 5.12 is the statement of this Theorem in the case n = 2. The case
n > 3 is proved along similar lines, with the following modification. We must show
that if Om. m = l , 2 ,3 , . . . , n are components of Wu - K, then ^\90m / 0. For
this we introduce triples of local product neighboroods as before, and we define the
number 60 > 0 by the property: If W^, m = 1,2,3, . . . ,n, are connected components
of {r} x A^' - K such that n^=i V^m n ({r} x AJ) = 0, then every n-tuple of points
Pm ^ Wm H ({r} x A^.), m = 1 ,2,3, . . . , n, satisfies diam(^i,... ,pn) > So. The fact that
SQ > 0 follows from the local product structure. Repeating the arguments of Proposition
5.11, we have {~}0m 3 {r} / 0. By applying / k for some k G Z, we may assume
that p i , . . . ,pn € {rj} x A^., and that the diameter of {p i , . . . ,pn} is proportional to the
diameter of {rj} x A^. Further, by the John property we may assume that r lies in the
boundary of the component of {rj} x A'" - K containing pi for each 1 < i < n. Thus
we may connect r to pi by a cigar ai inside ({rj} x A'" - K) U {r}. The uniformity
of the constant M follows from the use of the continuity of the affine structure of W,
as in Theorem 5.12.

It follows from the first part of this Theorem that if O i , . . . , On are components of
W - K, then r G Oi n ... n On. Now let us show that r is the unique point of
intersection. By Proposition 5.8, we know that 90m, 1 < m < n, contains the point of
infinity in its closure. Thus each Om connects r to oo inside the 2-sphere. It follows that
if s is a point of the 2-sphere which lies in the boundaries of > 3 components Om, then
s = r. Q
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6. Quotients of the Solenoid

The set £ of external rays is topologically conjugate to So via a map ^ (Corollary 4.2).
We let '0 : So —» J denote the composition of this map with the endpoint mapping. By
Theorem 5.10, ̂  is bounded-to-one. Here we take the point of view that ̂  represents J as a
finite quotient So/ ~, where the equivalence relation ~ is given by p ~ q iff ^(p) = ̂ {q).
The topology of J is determined by this equivalence relation, and we give in this section
some general properties that such equivalence relations must satisfy. The first (Proposition
6.1) is that no identifications can occur within stable manifolds. A general consequence of
this is Proposition 6.2, which states that ~ respects a local product structure in which the
quotient is taken in the unstable factor. Then we give some "planarity" conditions, which
arise from the fact that the unstable identifications occur as the endpoints of disjoint rays
lying in the same plane. We call these "non-linking," "orientation," and "isolation."

PROPOSITION 6.1 (Injectivity on Stable Manifolds). - For any t G So, the restriction of
'0 to W8^) is injective.

Proof. - Suppose that t ' , t " e W^t, So) satisfy ^ ( t ' ) = ̂ {t"). We let ̂ t^t'^t" C J+
denote the external rays corresponding to t, t1 and t " , respectively. We set p = ^(t) and
use the notation Gf(q,p) introduced before Proposition 2.2. By taking forward iterates,
we may suppose that ^{t') = ̂ (t") is within e of p. If q G 7^ is close to p, then by the
local triviality of the lamination 0s = W8 U ^+, there are points q1 = ̂ ' H Qf{q,p) and
q" = ̂ // n Gf{q,p}. Since t' and t11 are distinct points on the stable manifold, it follows
that 7i/ and ^t" are disjoint, so q1 / q". By definition, ^(f) = e(qf) and ^{t") == e{q"}
are the endpoints the external rays ̂  and 7i//, respectively. Since q' and q" are on the
same local leaf of ^+, we conclude by Proposition 2.10 that the endpoints must be distinct.
This contradiction proves the Proposition. D

PROPOSITION 6.2 (Local Product Structure). - Each point ofJ is contained in the interior of
a rectangle R such that ̂ -1 (R) = R^ U • • • U RN, where each Rj = R8^ x R^ is a rectangle
in So such that ^ '. Rj —> R preserves the product structure, that is to say that with respect
to the natural product structures on Rj and R we can write ^{x^y) = [^s (x) ̂ u (y)}.
Further, this may be arranged such that ^8 is bijective, R8^ is totally disconnected, and
Rf is an interval.

Proof. - This Proposition follows from rather general properties of ^. Since ^ is a
semi-conjugacy, it preserves the local product structure. Since the number of preimages of
a point is bounded, it follows from continuity that for a sufficiently small rectangle R, the
preimage ̂ ~lRls contained in a finite number of 5-balls Bj, and each set Bj^^R must
be a rectangle. The statement that the stable factor of the map ^ is an isomorphism follows
from Proposition 6.1. R^ is totally disconnected by Corollary 5.9. Finally, by Proposition
5.6 each p e 9W^ H K^ has a neighborhood which is the image, under the landing map,
of finitely many intervals of external rays. Since ̂ u is essentially the endpoint map of the
external rays, each R^ may be taken to be an interval. D

Every path component Ho of So is homeomorphic to R, and we will give HQ the
orientation for which the projection TT : Ho —^ 9(C -A) preserves orientation. We use this
particular orientation here because in our planarity conditions we exploit the fact that So
is the boundary of S+. In Appendix B, we use the opposite orientation, which is induced
by the imbedding t i-̂  exp(it).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPfiRIEURE



486 E. BEDFORD AND J. SMILLIE

For each point p G J and each t E So with '0(^) = p, we let ̂  = Wu(t, S+) denote
the component of S+ containing the ray Rt. Then ^(^1) is a connected component of
Wu(p) - K^. If ̂  is an interval from Proposition 6.2, and if R^ c S+ corresponds to
the set of rays with endpoints in R^ then there is an injection ^u : R^ -> C, which has a
continuous extension to R^ U 7?J, and -^Ij^ = ^M. The planarity conditions below arise
in various ways from the injection of these rays into C.

PROPOSITION 6.3 (Non-Linking). - Suppose that a, b, c, d G HQ are points with a <b and
^(a) = ̂ (b) ̂  ^(c) = ̂ (d). Ifc E (a, &), then d G (a, 6); and ifc^ [a, 6], ^^ d ^ [a, &].

Pwo/. - Assume that ^(a) = ^(6). Let p : [0,1] -^ H parametrize the half circle in H
centered on the real axis with endpoints at a and b. The composition '0 o p : [0,1] —^ W
has the property that ^ o ^(0) = V; o p(l) so ^ o p([0,1]) is a simple closed curve in the
plane W'11 which we call 7. By the Jordan Curve Theorem, 7 divides the plane into two
components, one bounded and one unbounded. Let c e (a, 6). We claim that ^(c) is in
the bounded component. Now let pc(t) = c + ti for t > 0 parametrize the vertical line
ending at c. In the upper halfplane this line has a unique intersection with the half-circle
with endpoints at a and 6. This intersection is transverse. The images of the line and the
half-circle have a unique intersection point in Wu because ^ is injective on H - Ho and
the images of the endpoints are distinct by hypothesis. Thus for T sufficiently large and
e sufficiently small the points ^(pc(T)) and ^(pc(e)) are in different components of the
complement of 7. Now G+(-0(pc(^))) = 3(c+t%) = kt so as t -^ oo, C?+(^(^))) -^ oo.
Since G^ is a continuous function on Wu we see that ^(pc(t)) eventually leaves any
bounded set in W. So for t > to, ^{pc(t}} is in the unbounded component of the
complement of 7. Since ^ Q pc crosses 7 at to we see that for t < to, ^(pc(t)) is in the
bounded component of the complement of 7.

Examples of Curves 7 in Propositions 6.3 and 6.4

Now consider a point d e Ho but not in [a, 6]. We see that the vertical line based at d
does not cross 7. As before the image of this vertical line in Wu contains points going to
infinity so we conclude that ^(d) is in the unbounded component of the complement of
7. If d lies in some other path component but ^(d) G Wu the same construction shows
that ^(d) is in the unbounded component of the complement of 7. Thus the only way that
'0(c) = ̂ (d) is possible is that d G (a, 6). Q

PROPOSITION 6.4 (Orientation). - Let HQ and HQ be distinct path components of So.
Suppose that there are points a ' , V G HQ and a", 6" G HQ with ^(a') = ̂ (a") ^ ^(V) =
^(6"). // a' < V, then a" > b".

Proof. - Let H ' (respectively, H " ) denote the component of S+ corresponding to HQ
(respectively H^). It follows that ^ ( H ' ) U ̂ {H") c Wu(^{af)). Thus the orientations of
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Orientation

H1 and ff" agree with the orientation of Wu(^{a/)). Let g ' : [0,1] -> ̂  parametrize the
half-circle with ^'(0) = a' and g\l) = V. Let ^// : [0,1] -^ ^r// parametrize the half-circle
with (/'(O) = V and ^"(l) = a". The union of the images ^ o g ' and ^o^" is an embedded
circle which we call 7. The maps g ' and g " induce a consistent orientation on the circle 7.
Choose c' G (a', 6') and c" G (a^V). Let ^/ : [0,oo] -^ ffo and ^- : [0,oo] -> H'Q be
parametrizations of the vertical lines ending at cf and c". As before we see that ^(c') and
^(c") are in the bounded component of the complement of 7 and for T large ^(pc'(T))
and ^{pc"(T)) are in the unbounded component. It follows that the algebraic intersection
numbers of i^opc' [0, oo] and i^opc" [0, oo] with 7 are the same. Since ̂ , being holomorphic,
is orientation preserving, it suffices to calculate the intersection numbers of pc'[^^ co] and
pc" [0,oo] with (/[0,1] and ^[O,!]. These intersection numbers are sgn(a' — &') and
sgn (b" - a"). So sgn (a" - 6") = -sgn (b" - a") == -sgn {a1 - V) = -1 and 6" < a". D

The next condition says that in the presence of certain identifications, the points that can
be identified with c must lie in the hatched portions of the intervals indicated. In particular,
these, identifications are isolated from other path components of the solenoid.

PROPOSITION 6.5 (Isolation)
(i) Suppose that a,6,c G Ho, and a < c < b with '0(a) = ^(b) / '^(c). Ifd G So

satisfies ^(d) = ^(c), then d C HQ.
(ii) Let HQ and H'Q be distinct path components ofT^o with o!\V G H^ a", b" G H'Q and

^(a') = ^(a"), ^(V) = ^(V). //a' < c' < V and c" C So satisfy ^{c1) = ^(c"),
^(c') ^ ^(a'), ^(c') / ^(b'\ then c11 e H^U H^.

Remark. - It follows from Proposition 6.5 (Non-Linking) that in case (i) we have
d G (a, &); and in case (ii), if c" G H^ then c" G (a', 6'). If c" € ff^ then it follows from
Proposition 6.4 (Orientation) that c" G (a", 6").

^ i l l n n l ' f •̂ -r i f f f f f f fc b\^\

a^''•f^'nif'fffti'flf)^ ^ ' b"\
•/ j^^^/./ /</// / / /^a c b

Isolation ( i )
Isolation ( i i )
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Proof. - To prove (i), let H denote the path component of S+ corresponding to Ho,
and let 7 C TV^^a)) be the Jordan curve constructed in the proof of Proposition 6.3
Let 0 denote the bounded component of the complement of 7. Let Hd denote the path
component of E+ containing the ray Rd. We claim that Hd = H. Otherwise, H and He
are disjoint, so ^{Hd) is disjoint from 7. Further, since ^(H) contains a neighborhood
of 7 - {'^(a),'0(&)}, and since ^(d) / -0(a) = -0(6), it follows that ^{d) G 0. Thus we
must have ^(Hd) C 0, forcing ^(Hd) to be bounded, contradicting Corollary 5.8.

For the proof of (ii), we let 7 be the curve constructed in the proof of Proposition 6.4. It
follows that d lies in the bounded component 0 of the complement of 7. If He" denotes
the path component of £4. corresponding to c", then ^{Hc") is a domain in Wu{^{a')>).
Let H ' and H " denote the path components of E+ corresponding to HQ and HQ. If
c" i HQ U ff^ then ̂  is disjoint from H ' U ̂ //, and ^(He") is disjoint from 7. Since
^(c') G 0 is in the closure of ^f(Hc"\ it follows that He" C 0. But 0 is bounded, so this
contradicts Corollary 5.8, and so He" must be equal either to H ' or H " . This contradiction
shows that c" e HoU HQ. D

We have been considering how points inside various path components are identified. We
could also consider an equivalence relation on path components: two path components HQ
and Hi satisfy HQ w Hi if ^{Ho) and '0(Hi) are contained in the same unstable manifold
Wu(p). By Theorem 5.12, HQ w Hi implies that ao ~ ai for some ao C HQ and ai e Hi.
Suppose that H'i w . . . ^ H^ are path components of Eo, so there exist pj G fl7 and
qj G 5^i such that pj ~ ^-. By Theorem 5.15 there exist points aj e H', 1 < j < fc
such that ai ~ ... ~ Ofc. If fc > 3, there is a unique class [a] such that H'j D [a] -^ 0 for
1 ^ '̂ < k. We note that, by Proposition 5.6, k <^ N.

7. Pinch points and Primary Pinch Points

In this section we deal with the local topology of the sets K D W^^p). Let us say that
the slices at points p and p ' in J are locally homeomorphic if there is a homeomorphism
of a neighborhood TV of p in Wu(p) to a neighborhood of TV' of p ' in W^fj/) which
takes K H TV to K H TV'.

There is one local homeomorphism invariant which is closely related to the equivalence
relation E. By construction the equivalence classes of the equivalence relation E are in one-
to-one correspondence with the elements of J. If p G J corresponds to an equivalence class
ai ~ 02 ~ • • • ~ a'k with k elements then we say that the valence of pis k and we denote it
by v(p). By the remark preceding Corollary 5.4 the valence ofp is equal to the number of
local components of W^'^p) — K at p. In particular, it is a local homeomorphism invariant
of p. Since K D W^' is connected and simply connected, the number of local components
of Wu D K - {p} at p is the same as the number of components of Wu D K - {p}.

A point p is a cut point for K D Wu{p] if its removal disconnects W^ (p) H K. This
occurs exactly when v{p) > 2. Thus the study of cut points of K D Wu is equivalent to
the study of equivalence classes of E with cardinality greater than or equal to two.

We define a second local homeomorphism invariant. Let a(p) be the number of local
components of W^- - J which contain p in their boundaries. We have seen that the local
components of Wu - K at p have this property, so v(p) < a(p). As will be shown in
Lemma 7.5, any two local components E/i and U^ of Wu - J at p with p ^U^nU^ are
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separated by a component of Wu - K. Thus a(p) < 2v(p). We define p to be a pinch
point if a(p) > 3. It follows that v(p) ^ 2, so every pinch point is a cut point.

We obtain a different notion of valence if we count only the unbounded components of
Wu{p) n K - {p}. This quantity is not a local homeomorphism invariant. The number of
unbounded components of W" n K - {p} is the same as the number of path components
of the solenoid which are identified at p. This corresponds to the equivalence relation ^
discussed at the end of §6. It is also the number of components of Wu{p) - K which
have p in their closures. Let us define V(p) to be this number. We define A{p) to be the
number of unbounded components of Wu{p} - J which have p in their closures. A point
p is a primary pinch point if A{p) > 3.

In this section we prove the following.

THEOREM 7.1. - The set of primary pinch points is finite. Ifp G J is any pinch point, then
there exists a primary pinch point q G J such that p C W8 (q).

If points p and p ' are on the same stable manifold it follows from the local product
structure that p and p ' are locally homeomorphic. In particular the points p and q in
Theorem 7.1 are locally homeomorphic (as are all points on W8 (g) D J).

If the set of pinch points is nonempty, it is dense in J. Theorem 7.1 tells us that
under the equivalence relation of local homeomorphism these pinch points fall into a finite
number of classes. Since the set of primary pinch points is finite, these points are periodic.
We note two consequences of this fact.

COROLLARY 7.2. - Ifp is a primary pinch point, then each component of(WU(p)nK) - {p}
is noncompact.

Proposition 6.4 described certain restrictions on how a pair of path components of the
solenoid can be identified. Additional information from Theorem 7.1 provides additional
restrictions in this case.

COROLLARY 7.3. - Suppose that HQ and H'Q are distinct path components of So, and
suppose that a ' , V G HQ, a' < V and a " , V C H'o with a' ~ a" and V ~ h". If there are no
identifications between points of(b', oo) and (-00, b"), then ̂ (V) is periodic, and there are
infinitely many identifications between (a', V) and (b", a^), as well as an infinite number of
identifications between (-00, a') and (a'^oo) (A corresponding conclusion holds if there
are no identifications between (—00, a') and (a^.oo)/

Let us fix an unstable manifold W, which we identify with C. Let D^ c D^ be open
disks in C with the same center and radii ri < r-z. For a connected subset C of C - J,
we let C denote the connected component of C - J which contains C. We define C{D^)
as the set of connected components C of D^ - J such that C D 9C / 0 (It follows that
C n 9C C QD^). Similarly, C{D^D^} is defined to be the set of connected components
C of D^ - DI such that C D 9C intersects both 9D^ and QD^. For p e D^ we set

Cp = Cp(D^) = {c c W) : P G QC}.

We say that p C D^ is primary with respect to D^ if #Cp(D^) > 3. Let P == P(PI, D^)
denote the set of points of 2?i which are primary with respect to D^. We write

Cr = |j C^).
per
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Since each component C e Cp intersects D^ - Di in at least one element of C (D^,D^),
it is immediate that

#Cr<#C(D^D^).
The circular ordering on QD^ induces a circular ordering on the set C(D^,D^). To see

this, we note that we may assign to each C e C{D^,D^ an open arc ac whose boundary
points lie in C H (9Di U 9D^). Since for distinct components, the corresponding arcs
will have disjoint closures, the intersections of the arcs with 9D^ yield a well-defined
ordering on_C(D^,D^). Given C ' , C " G C(D^,D^), there is a well-defined component
of (7^2 - -Di) - {crc' U (TC") corresponding to the interval {oc'^c"\ in the sense of
increasing angle. Thus we may define the portion of the complement (D^ -~D\} - {C'^C")
between C' and C" in the sense of increasing angle, as the portion of the complement
which lies between o-c' and a c " '

For each C C C(D^) there are two cases: the first is when C H K = 0, and the second
is when C C int (K). We refer to these two cases as components of the first and second
kind. In §5 we showed that a component of the first kind satisfies a John condition and
thus has a well-behaved boundary.

The remainder of this section will be devoted to proving Theorem 7.1. The main step
(Lemma 7.7) will be to show that P is finite.

LEMMA 7.4. - #C{D^D^) < oo.

Proof. - Let { C i , . . . , C^} C C{D^ D^} be a finite set of components of the first kind,
i.e. Cj; D K = 0 for 1 ̂  j < N. Since Cj is connected and meets both the inner and outer
boundaries of the annulus, there is a point Zj e Cj with distance (ri + r ^ ) / 2 from the
center. There is a c-carrot jj connecting zj to infinity inside Wu - K. This carrot must
exit Uj through an interval inside QCj D (<9jDi U9D^). Since this interval must have length
at least c(r^ — ^i)/2, and since these intervals have disjoint interiors, it follows that there
can be no more than 471-(r-i + r^/{c{r^ - ri)) intervals of the first kind.

Now let us suppose that { C 7 i , . . . , C^} C C{D^,D^) is a finite set of components of
the second kind, i.e. Uj C mi(K). Since each Cj is a component of int(K D VF^),
9Cj; n<9C7y+i is nowhere dense in QCj (and in 9C^+i). For e > 0, let A C D^-~D^ denote
the annulus with inner radius j(r-i + y^) - e and outer radius j(ri + r^) + e. There exist
points Zj G A D (W^ - K) such that zj is between Cj and C^+i in the sense of increasing
angle with respect to the circular ordering. As before, there is a c-carrot 7^ connecting
Zj to infinity inside Wu - K. This c-carrot must exit the annulus in an open interval of
((9Pi U QD^} - K between Cj and C^+i. Thus the intervals are pairwise disjoint. Since
6 > 0 may be taken arbitrarily small, we have the same lower bound on the length of
the intervals, and thus the same upper bound on the number of components of the second
kind. Q

LEMMA 7.5. - Let p G P be given, and let 0 ' , 0" e Cp be two components of the second
kind. Then there are components C^C^ G Cp which are of the first kind and such that Ci
lies between 0' and 0" in the sense of increasing angle, and C^ lies between 0" and 0 ' .

Proof. - By Lemma 5.6, C - K has finitely may components at p. Thus there exist
€ > 0 and a finite number of components C i , . . . , CN of the first kind such that

N
D{e) - K = D{e) H \J C,

j=i
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where D{e) := [z G C : \z — p\ < e}. Now suppose that no component (7y, 1 < j < N,
lies between 0' and 0". Then, relabeling the components if necessary, we have

0' < 0" < C7i < • . • < CN < 0'

in the sense of the circular ordering. There is an arc 7 C (9(7i U 9(7^v) H -D(6) such
that [^Cj D D{e) lies on one side of 7. Given the circular ordering above, however,
0' and 0" must lie on the other side of 7. In other words, 7 divides D(e) into two
components D{e) - 7 = D\e) U D'^e), where \JCj H ^(c) = D{e) - K C D\e), and
D(e) D (O' U O") C D'^e). But this is not possible, since the first containment means
that D'\e) C K, so

J n D'\e) = D" H 9(AT H D(e)) = 0.

This contradicts the fact that there must be a nonempty boundary between 0' and 0" in
^"(e), which implies that 0 7^ 9CT H ̂ '(c) C J H ^"(e). D

COROLLARY 7.6. -Ifp G P, ̂ M ̂ r^ ar^ ̂  ka^ two components of the first kind in Cp.

LEMMA 7.7. - #P < oo.

Proof. - For each p G P, we have #Cp > 3, so there are at least three components
C^C^C^ e Cp with p e 9(7i n 9(72 n QCs. By Corollary 7.6, we may assume that (7i
and (72 are of the first kind, that is (C7i U C^) D 7^ == 0. Here we will show that, conversely,
given components Ci, C^Cs C Cp with Ci and C^ of the first kind, the intersection
QC\ Ft <9C2 H 9(73 can contain at most one point. Thus it will follow that the cardinality
#P is bounded by the number of triples of elements of Cp. Since by Lemma 7.4 we know
that #Cp < oo, it will follow that #P < oo.

Let p and q be distinct points of QC\ D QC^. Since Ci and C^ are of the first kind,
we have arcs 7i,p,7i,g C C\ and 72,p?72,g C (72 such that 7^p connects a point of
Cj n Cy C 91^2 to p, for j = 1,2, and 7^ connects a point of Cj D (7^ C 9D^ to g, for
j = 1, 2. Thus 7p := 7i,p U72,p and 7^ := 71,9 U72,g are disjoint arcs in D^, each of which
disconnects D^ into two components. Let e^p, e^^ G 9£^2 denote the enpoints of 7^p and
7^g. Without loss of generality, we may assume that ei^g < e\^ < 62,? < ^2,9 in the sense
of the circular ordering. Now suppose that Ca G Cp contains p in its closure. Note that (7s
is disjoint from 7^ and 7^, and we must have (7i < C^ < C^ in the sense of the circular
ordering. It follows that C^ is contained in the connected component of D^ — 7p that does
not contain 7^. Thus q ^ 9C^, so 9(7i H 9(72 H 9(73 consists of only one point. D

We will use the following variant of the Contraction Mapping Principle.

LEMMA 7.8. - Suppose that Xi,... ,X?v are compact metric spaces, that f : \JXj —^
{^Xj is a homeomorphism, and that f\x is a contraction/or each 1 < j < N. Then
|j X j is finite.

Proof of Theorem 7.1. - Let us cover J by a finite number of pairs T^^TS" of local
product neighborhoods as in §5. For each j and for ^1,^2 ^ D^ ({^1} x A') D J is
homeomorphic via the local product structure to ({^2} x A') D J . For each z, we set
D^ = {z} x A^ and D^ = {z} x A^. For each j and z we let Pj{z) ==. V(D^D^ denote
the points in D^ which are primary with respect to D^. By Lemma 7.7 the sets Pj{z) are
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finite. The homeomorphism between ({^1} x A') D J and ({^2} x A') D J carries P{zi)
to P^). Thus IJ^eD5 ^(^) ls a ^mte union of local stable disks. Let S be the union
of these sets as j varies. It is clear from the construction that / is a local contraction on
S. We may assume that S is a closed set.

Now q is a primary pinch point if and only if q is a primary point with respect to D
for all disks D C W^) containing q, and it follows that if q is a primary pinch point
then ^(q) e S for all n. Let S°° be the set of points with this property. The set S°° is
invariant under / hence the restriction of / to S°° is a locally contracting homeomorphism.
Lemma 7.8 then shows that S°°, the set of primary pinch points, is finite.

For the second assertion in Theorem 7.1, let p be a pinch point. We may choose a
small disk D around p such that p is primary with respect to D. There is an no with
the property that if n > no and ^(p) € 7^-, then ^{D) overflows the disk {z} x AJ
containing fn{p). It follows that ^{p} € S for n > no. Write a^(p) for the o;-limit set of
p. Since S is closed, uj(p) C S. Since cc;-limit sets are invariant under f~1, uj{p) C S°°.
It follows that for n large /"(j?) is in the same stable disk as an element q of S°° thus
peVPCr71^)). D

Appendix A: Critical Points
In [BS5] we defined certain critical points for a polynomial diffeomorphism /. On
the set U^~ D U~, the critical points are defined as the heteroclinic tangencies, i.e.
the tangencies between Q^ and Q~. Thus on [/+ D U~, the critical locus is given by
C = {C C U^ n [7- : <9C;+(C) A <9G-(C) = 0}. The critical points of U+ H J- (resp.
?7~ n J^~) are the heteroclinic tangencies of Q^ and W^ (resp. Q~ and W8) and are
denoted by C^ (resp. C5). If we let r~ denote a holomorphic vector field defining the
kernel of 9G~, then r~ is tangent to Q~, and so C is the set where r~ is tangent to ^+,
and C5 is the set where r~ is tangent to W8.

It is natural to define unstable critical measures ^ on C8^. Let U be an open set
where the lamination W8 is trivial so that W H U consists of {Fg : e G £"} for some
compact E. We let ̂  denote any transversal measure on UnW8. For a stratum I\ we let
[Crit^C?", Fe)] denote the current of integration over the critical points of the restriction
of G~ to Fg, which is the sum of point masses at the critical points (with multiplicity) of
G~\Te' The restriction of the critical measure to U is given by

^L.U= f ^(6)[Crit(G-,r,)].
Je^EJeCE

For e > 0, we have currents

^± := ^dcri^i^G^e),
Z7T

which approximate ^± in the sense that Imig^o ̂ ± = ^± as currents on C2. These
currents give critical slice measures on U^~ D U~:

^:=[C}^^.

As a consequence of the local triviality of the lamination 0s = Q^ U W5, we have the
following:
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PROPOSITION Al. - Iff is_hyperbolic, and 0s = C?+ U W8 is a (locally trivial) lamination,
then C8 = ( J+n[ / - )n C, and

/4 =llI%^e•
Remark. - By Proposition 2.7, this holds whenever / is hyperbolic and unstably

connected.

Proof. - Let us fix a point po G J^ H I/" and let T be a complex 1-dimensional
manifold which intersects W transversally at po. Shrinking T, if necessary, we have a
neighborhood U of po on which C8 is trivial: C8 H [/ is homeomorphic to a product
lamination {Fg : e G J5}, with E = T H (J4- U (7+). If we choose a holomorphic vector
field T~ on U, then r~(G~) is a holomorphic function on [/. Thus

Crit(C?-,r,)={T-(C;-)|r,=0}
varies continuously in e C £'.

If po ^ C^ and thus if T-(G-)(po) = 0, then it follows that the set {r-(G-) =
0} D Fe / 0 contains points close to po if e is close to eo. Conversely, if po ^ C8,
then {r^C?") = 0} D Fg contains no points near po if e is close to eo. This shows that
c8 = c n (J+ n u~).

Now we note that

[CJA/^-d^max^lc^
Z7T

since dd6 is intrinsic to the complex structure of C. We may also write [C] A ̂  = p^\c
as the (transversal) measure induced by ^ on C.

Let ^ denote the holonomy map taking U D C to T by sliding inside the strata Ye of
the product lamination. It follows that ^ preserves dd^G^ on the sets {G^ = c}. That
is, ^ preserves the transversal measures in the sense that if C has multiplicity m in a
neighborhood V of qo G ^7 n C D {G+ = e}, then

X^t\cnv) = m^\Tnx(VY
It follows that the restriction of /^ to the open set U is given by

[C}/\^^U= f ^\T(e)[Cnt(G-^)].
JeEE

Finally, we observe that as e —^ 0, the transversal measure ^^|r converges to the
transversal measure /^Ir; and by Proposition 2.7, [Crit(G-,re)] varies continuously as
e e E approaches J~^~. Thus the integral expression for the restriction to U of [C] A ̂
converges to /^, restricted to U. Q

In general Cn (J^n^) 7^ 0 (see [BS5, Prop. 1.7]), but we do not know the relationship
between C and 0s I u , nor do we know the relationship between [C] and /^±. For instance,
if / is unstably connected, then C D ( J ^ ) / 0, but ̂  = 0, and C" = 0.

COROLLARY A2. - If f is hyperbolic and unstably connected, then the partition
^u = Q~_ U W^ is not a (locally trivial) lamination in a neighborhood of any point of
(J+) n c.

Proof. - Let us suppose that C" is a lamination in a neighborhood of a point po ^ (J+)nC.
Then by the proof of the Proposition above, it follows that ̂  = ( J ^ ) DC in a neighborhood
ofpo, and thus the set is nonempty. This contradicts the fact that C^ = 0 when / is unstably
connected. Q

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



494 E. BEDFORD AND J. SMILLIE

COROLLARY A3. - If f is hyperbolic and J is connected, then f is not volume preserving.

Proof. - Let / be hyperbolic and volume preserving with J connected. It follows from
[BS6] that / is both stably and unstably connected. If / were stably connected then
applying Proposition 2.7 to f~1 would show that C^ is a locally trivial lamination. This
contradicts Corollary A.2. D

Appendix B: An Illustration

One goal of this paper has been to represent J as a quotient of the solenoid. In §6 and
§7 we discussed this quotient in terms of topological properties of the slices Wu D J .
Another approach is to use symbol sequences. We write the equivalence relation as
E = {(^1,^2) G So x So : '^(^1) = '0(^2)}. We represent the solenoid as a quotient of the
bilateral shift on d symbols Sd = {0,1^ .. ,d - I}71, with the quotient map being written
as 0 : Sd —> So. This equivalence relation may then be lifted to the space of sequences:
Q-^E = {(^1^2) ^ Sd x Sd : ̂  o 0(ti) = ̂  o 0(t^)}. By Fried [F], Q-^E is a subshift
of finite type. The object is to know what symbolic relations 0~1E can occur, as well as
their relationship to the topological conditions discussed in §6 and §7.

A: ^OlOl.OOnOl)0'B: ^oioo.nooor
C: ^OlOO.lOKOir
D: ^OIOO.IOOCIO)0'
E: °° 0100.01 HOir

F: ^OOll.lOOaO)0'
G: ^OOll.OlKOl)0'
H: °° 0011.010(10)0<

I: ^OOll.OOUOl)0'
J: °° 0010.110(10)°
K: ^OOlO.lOKOl)0

Image by Ricardo Oliva, Cornell University.

External rays in the unstable manifold of the fixed point with positive eigenvalues,
for the Henon map, f(x,y) = (x2 + c - ay, x), with a = 0.124, c = -1.250.
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Ricardo Oliva [0] has carried out work in this direction, calculating combinatorial models
for equivalence relations for certain mappings and their bifurcations. We are grateful to
Oliva for allowing us to include a computer graphic from [0]. Let / be mapping defined
by f(x^ y) = (x2 + c — ay^ x) with a = 0.124 and c = —1.25. For these values, / has an
attracting 2-cycle and two saddle fixed points. We may write the saddle points as ^±, with
the choice of d= determined by the condition that the eigenvalues of Df(p^~) are positive,
while the eigenvalues of D/(j>~) are negative. We choose the saddle point p^ and let
^ : C —> W^'^p^) be an analytic uniformization which takes real values on R and such
that -0(0) = p^. The Figure illustrates the n-th level of the Green function restricted to
the unstable manifold Wu(p+), i.e. these are the sets {2-n-l < C?+ o ̂  < 2-n} inside
C. Within the n-th level of the Green function, the colors alternate to reveal the sets
^r < Arg((p^ o ^) < ^-. In other words, within the n-th level, the region is colored
white if the n-th binary digit of Arg^"^ o ^) is 0 and gray if it is 1.

Certain external rays 7 (orthogonal to the level sets of G^~ o ^) are indicated in the
picture as dark curves. The set £ of external rays is parametrized by the solenoid So (via
the map ^). We use a point of the solenoid to refer both to an external ray 7 and to its
endpoint 6(7) G J . By the quotient map 0 : S^ —> So. a point of the solenoid may be
represented by a sequence of 0's and 1's; this is determined in the Figure according to
the white or gray patches that 7 traverses. A ray 7 corresponds to the sequence (sn)nez
(sometimes written . . . s-^so.s^s^ ...) where Sn corresponds to the color at level n.

The condition that the parameters a and c are real means that / is the complexification
of a real mapping, so / is invariant under complex conjugation ( x ^ y ) \—> ( x ^ y ) . Thus
the family of all codings and identifications are invariant under the substitution 0<-^1. If
A G <?2» we let A denote the sequence obtained from A under this substitution, so that the
rays corresponding to A and A are complex conjugate to each other.

The fixed point p+ corresponds to^O.O00^00!.!00. The notations °°a and a°° apply to
a string a, which is repeated infinitely often, to the left or to the right. With this notation, p~
corresponds to ^(Ol^Ol)00 ~ ^(lO^lO)00. The Figure represents a subset of Wu(p+),
so the codings of the external rays have the form °°0 • • • or °°1 • • •, where a ray starts with
00 0 if it lies in the upper half plane and °° 1 otherwise. The real axis is the axis of symmetry
of the picture, and the origin (corresponding to p^) is to the right, out of the picture.

Perhaps the most apparent external rays are those which make their final approach J
entirely through the boundaries between gray and white regions. (None of these is marked
explicitly as a curve in the Figure.) Since they lie in the unstable manifold of ^+, the
ones that lie in the upper half plane have the form ^OwOl00 ~ ^OwlO00 for some
finite word w. The ambiguity of their coding illustrates the identification arising from
the equivalence of binary expansions, i.e., these are mapped to the same point under the
mapping 0 : S^ —> So. The fact that the codings end on the right in O00 or I00 indicates
that the landing points of these rays belong to W8^}.

The choice of which level set {2-n-l < G^~ < 2~n} corresponds to the 0-th generation
is somewhat arbitrary. Any level n = no may be used, as long as it is used consistently to
determine the other generations. In the figure, the placement of the point "." is chosen to
be approximately where the rays enter the picture. We note that the solenoidal addresses
of the rays show the solenoidal ordering A > B > C > - - > K . The identifications
A ^ B . D ^ G E ^ F illustrate the non-linking property. The addresses of the conjugate
rays satisfy the reverse inequality A < B < ' ' ' < K. The identifications C ~ (7, H ~ H,
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K ~ K, together with the inequalities C > H > K and C < H < K correspond to a
local version of the orientation principle.

The fact that the codings of these rays all end on the right in (01)°° indicates that the
landing points belong to W8 (p~). Thus the shape of IV^j^) H K in a neighborhood
of these landing points gives a picture of W^p") D K in a neighborhood of p~. By
Theorem 7.1, p~ is a primary pinch point.

Each component U of the interior of K H Wu[p) inside W^^p) corresponds to the
intersection of W^^p) with one of the two basins of attraction. These components
"alternate" in the sense that if V\ and U^ are components of the interior of K D W^^p},
and if 9U^ H 9U'z / 0, then E/i and U^ belong to different basins. Further, / acts on the
components of the interior W^^p^) D K which intersect the real axis by moving each of
them three components to the left. This is consistent with the observation that the shift
O-K of K satisfies aK > A.

A detailed discussion of diffeomorphisms of C2 which are perturbations of one-
dimensional mappings is given in [H02]; the mapping illustrated here is not equivalent
to a mapping of that form (see Oliva [0]).
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