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0 Introduction

Let f be a polynomial diffeomorphism of C? which is not conjugate to an affine
map or a generalized shear. These are the polynomial diffeomorphisms of C? with
nontrivial dynamics. We write K* < C? for the set of points in C? bounded in
forward/backward time, and we let K = K* nK~. The sets K* and K are
invariant, and K is compact. The nontriviality of the dynamics of fis reflected in
the fact that the topological entropy of f| is equal to log d for some integer d = 2
(see [FM] and [S]). We call d the dynamic degree of f (see Sect. 1).

In [BS1] we studied the stable/unstable currents u*, which are defined by the
formula

1 cgY
where G is the Green function for K*. These currents have support equal to
J* =0K* and satisfy

f*#i — dillut .

The equilibrium measure g of K can be defined as u = ¢* A u~. This measure has
finite total mass and is invariant under f. In this paper we consider the dynamics of
S with respect to .

The results that we prove in this paper for u parallel known results on the
dynamical properties of the equilibrium measure for polynomial maps of C, which
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were first investigated by Brolin in [Br] (see also [Si; T; C]). Let f, denote
a polynomial map of C which is neither constant nor affine. Let K, denote the set of
points with bounded (forward) orbits. Let p be the equilibrium measure of K. We
prove (Theorem 2.1) that fis mixing with respect to u. The analogous result for y,
was proved in [Br].

The proof of this theorem is based on the following characterization of u™,
which is given in Sect. 1. If S is a current of the form described in (1.1) then there is
a constant ¢ such that

lim (d™") f™S = cu* . (0.1)

n— o

Results of this form for certain classes of currents S appear in [BS1, 2, 3] and [FS].
The result in this paper extends these previous results.

There is a useful formula for the Lyapunov exponent 4, of fy with respect to pq.
If d is the degree of f,, then 4y can be described in terms of the rate of escape of the
critical points. We have:

1
lo=logd+ Y lim 7 log* | f&(c)| . 0.2)

cfole)=0 n—w

(This is formula (1) in [Pr, p. 177] with u, replaced by Brolin’s formula for the
Green function.) The function 4, and related functions have proved useful in
understanding how the dynamics of f, vary with the polynomial.

Since u is ergodic for f, there are two Lyapunov exponents of f with respect to p,
which give the exponential growth rate of u almost every tangent vector under
iteration. Let A denote the larger of the two exponents. We can think of A as
a function on parameter space. We hope that A might prove useful in understand-
ing the space of polynomial diffeomorphisms. We do not have a formula for
A which is analogous to (0.2). In particular it is not clear what the analog of
a critical point is for a polynomial diffeomorphism. On the other hand a number of
properties of 4, as a function on parameter space follow from formula (0.2), and we
have been able to prove analogs of these for A.

For instance, it follows from (0.2) that 4, = logd. We prove that A = logd in
Theorem 3.2 using a Jensen type inequality. This result lets us invoke a powerful
result from smooth dynamical systems to derive information periodic points in
Theorem 3.4.

In Sect. 4 we prove that the measure theoretic entropy of u is equal to logd
(Theorem 4.4). The analogous result for u, was proved in [FLM] and [Ly]. This
involves a characterization of p which is motivated by the construction of

1
a measure with maximal entropy. For instance, let @ = e dd’log(1 + |x)? + |y*)

be the Kédhler form associated with the Fubini-Study metric, and let @, = f *"© be
the pullback under f*. For any positive (1,1) current S, there is a measure
v,:= S L ©,, which acts on a continuous function ¢ with compact support as
f(pdv,, = {8, B,>.In Sect. 4 we show that: If Sisasin (1.1)and {S, u~ ) = c, then
(d™™) fivpyocpasj—oo and n—j— 0.

There is a well-known relation between Hausdorff dimension, Lyapunov ex-
ponents and entropy. In our case, we apply a result of Lai-Sang Young to compute
the Hausdorff dimension of the equilibrium measure (Corollary 4.6).
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Another consequence of (0.2) is that 4, is a plurisubharmonic function on the
space of the parameters and is pluriharmonic in the parameter region where fis an
expanding map. In §5 we establish corresponding plurisubharmonicity and plu-
riharmonicity results for A (Theorems 5.5 and 5.7).

In Sect. 6 we extend the parameter space to include certain non-invertible maps.
These maps are essentially 1-dimensional and conjugate to polynomial maps of C.
We show that for diffeomorphisms f, converging to a 1-dimensional map f,, the
measure yu, converges to its 1-dimensional analogue, uo and limsup,.,, 4, = 4o,
ie. a— A, and a— p, are well behaved on the extended parameter space. Since the
1-dimensional maps are relatively well understood, we are able to get some
information about maps f, which are close to singular. We note that this approach
has been used by Fornaess and Sibony [FS] and Hubbard and Oberste-Vorth
[HO] to describe the geometry and topology of J and K for certain perturbations
of 1-dimensional maps.

It also follows from (0.2) that 1, = logd for precisely those maps f;, for which K,
is connected. We prove a partial analog of this result in Theorem 6.7 and Corollary
6.8.

We have found the analogy between one and two dimensional complex dy-
namics to be useful in guiding our investigations. The notation of [HO] suggests
J=J%*nJ" as the two-dimensional analogue of the Julia set J, = 6K,. The
results given below suggest that J* = support(y) may better carry through this
analogy. By [BT], J* is the Shilov boundary of K, which parallels the 1-dimen-
sional case, since J, coincides with both the topological and Shilov boundaries of
K,. Further, by Theorem 3.4, periodic saddle points are dense in J*. This is
consistent with the result of Fatou and Julia that expanding periodic points are
dense in J,. We know that J* < J, but we do not have an example where equality
does not hold. It is shown in [BS1] that J* = J in the hyperbolic case.

1 Characterization of the stable current

We recall some useful results from earlier papers. By [FM] a polynomial dif-
feomorphism is conjugate either to an affine map, to a generalized shear or to
a map of the form f= f,o ... o f;, where fi(x, y) = (y, p;(y) — a;x), a;€C, a; 0,
and p;(y) is a polynomial of degree at least 2. We will consider maps of the last type.
Without loss of generality we may assume that f is not simply conjugate to a map
of this Jast form but actually equal to a map of this form. We let d; denote the
degree of p;, and it follows that d = d, . . . d,, is equal to the (conjugacy invariant)
dynamical degree d(f) = lim, . ,, (deg f™'/". The functions

G*(q) = lim (deg f)™"log(1 + [/ *"(q)])

[ die ]

give the exponential rate of escape of the point ¢ in forward/backward time. We
define the stable/unstable currents as

1

c
2nddG .

ph=

(This agrees with the definition given in [BS3] but differs from [BS1, 2] by a factor
of 27.)



398 E. Bedford and J. Smillie

This section is devoted to proving equation (0.1) for a large class of currents. We
consider currents of the form

S =y T: T is a positive current on Q < C?, and
¥ is a test function on Q with spty nsptdT = & , (1.1)

and we will show (Theorem 1.6) that (0.1) holds for these currents.

Let us establish some notation and terminology on currents. Recall that a (1,1)
current on C? acts as a linear functional on the (1,1) test forms. If T is a positive
current, then it is representable by integration, ie. there is a matrix of signed
Borel measures (y; ;) such that if ¢ = Z @i, ;jdz; A dz; is a test form, then T(¢)
=3 { . du; ;. Since we can multiply Borel measures by continuous functions we
can make sense of 8 A T where 6 is a form with continuous coefficients. We recall
that the boundary operator is defined on (1,1) currents as [ (0T) A n = — [T A dn,
where d is the usual exterior differential operator on 1-forms.

Let us define the expression u~ A T, which generalizes the construction of
u=u* Au" in [BSt]. Let G, be a sequence of psh smoothings of G~ with

1

G, — G~ uniformly as ¢ - 0, and let u; = I dd‘G,” . Thus y; is a smooth form
i

converging to u~ in the sense of currents as ¢ — 0. We have

dd(G; A YTy =ddG, AYT+dG, Andy AT+dG, AdYy AT+ G ddy A T

The (1,1) parts of d°G,” A dy A Tand dG,” A dYy A Thave opposite signs, so these
terms cancel. Thus we are left with

pe AYT =dd (G, AyYT)— G, ddy A T.
Taking limits gives:

limu; AYT=lmdd(G,” A YyT)— G, ddY A T=dd(G~ AyT)—G ddy ~ T.
e-0 =0
The terms in the right-hand side of this equation are well defined because T can be
defined on continuous test forms and G ~ is continuous. This limit is independent of
the sequence G, , and we may use the right-hand side of this equation to define
U AyYT

If ¢ is a test form, then |@| = sup,|@(x)|, where |@(x)| denotes the euclidean
norm of the k-form ¢(x). The mass norm of a current 7 is then given by

MI[T] = sup T(p).
lol=1
If X is an open subset of an analytic manifold with finite area, and if T = [X ] is
the current of integration on X, then M[T] is the usual area of X. And if ¥ is
a function with compact support, then

MI[XTL y1=fyda

is the integral of y with respect to area measure.

For a current T and a test form ¢, we let T L ¢y denote the current defined by
(T ¥)(@)= T A @). If ¢ is continuous function we write y T for T 1 . If S is
a Borel set, and T is representable by integration, we will use the notation Tl to
denote T L ys, where ys is the characteristic function of S.
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The (1,1) form @ = 4dd‘log(l + |x|* + |y|*) dominates a multiple of the stan-
dard Kihler form at every point of C2. Thus for a bounded set U = C? there is
a positive constant C such that for any positive (1,1) current T

M[T|,]<SC[OAT.
Lemma 1.1. Let ¢ be a test function on C*. Then there is a constant C such that
MI(f™yT)L o] = Cd".

Proof. We may assume that y 2 0, for otherwise we may write = y; — ¥, as the
difference of nonnegative test functions and treat the two terms separately.

d7"MI(f™YT) L 9] < Cd™" [ of ™(YT) A ©
<Cloll[yTd™f6 .
But by [BS1] we know that the functions
d™f Flog(l + |x|* + [yI?) = d 7" Hlog(1 + [ /")

converge uniformly on compact subsets to G 7. Thus in the last integral above we
may integrate by parts and pass to the limit to obtain

lim Cllg|| f¢T(d ") 3ddlog(1 + | f"I?)

n—r oo

= lim Cllo|| [ ddy A T(d™") 5 log(l + | /")

=Clloll{ddy AT AG™,
which completes the proof.

Our next result gives a relation between the mass of a current and the mass of
its boundary. Let us note that there is an operator J on 1-forms such that for any
function ¢, Jde = d°@. J is an R-linear operator, which in coordinates is given
by J(dz;) = idZ;, or J(dx;) = dy;, J(dy;) = —dx;. This defines an inner product
& my=[&AJynATon test 1-forms. The corresponding Schwarz inequality is
Em? =& E .

Lemma 1.2. Let i and T be as in (1.1), and let \y{ = 0 be a test function on Q with
W1 =1 in a neighborhood of spt. Then for any test function y on C?,

M@ ™ WTHL ) S WAy IIPMIf™ W T) Ly IMIG TY L ™1

Proof. By the definition of ¢, the mass norm on the left-hand side may be eval-
uated as

My f™@yT)] = sup [y Af™0[YTI A ¢

lol=1
= sup [yo Af"*[dY A T]
lol=1

= sup [(fyrx@) A db Ay, T

lol=1
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1/2

1/2
< sup <ff*"x<p AJ(fE 1) A %T> (jdlﬁ AdY A ¢1T>

1/2

1/2
< sup (If*"xa) A SET (o) A %T> <Idlﬁ AdY A Yy T>

lel=1

S MO ™ W TP dy I MLy, TT2

The third line follows because f, is the adjoint of f*; the fourth line is the Schwarz
inequality for the positive current ¥, T; the fact that f is holomorphic gives us
J(fido) = f,(J do) in the fifth line; the sixth line follows because |Jo| = |¢| £ 1
and usual estimations of integrals. The Lemma follows.

Lemma 1.3. Let Y, T be as in (1.1), and let v denote any limit of a subsequence of
{(d™")f™WT)}. Then v is closed, i.e. dv = 0.

Proof. Let y be a test function on C?, and let , be a test function on Q such that
Y, =1 on spty. By Lemma 1.1, the sequence (d ") f"* (¢ T) has locally bounded
mass, so

MLf™ W, T)L x]=Cd".
On the other hand, by Lemma 1.2,

ML@f™(T)L x] S (CdYVPM[y, T]?
< Cdr?

Thus we see that the mass norm of (d ~")(df"™*(yT)) L y tends to zero as n — co.
Thus dv = 0.

Our next step will be to show that these currents d ~"f "*(y T) actually converge
to a multiple of u*. Let (Y T) denote the set of all currents that arise as limits of
subsequences of {d~ f (Y T)}. By Lemma 1.3, (Y T) consists of closed currents.
It is evident that (d ) f*L (Y T) = S T). Further YT has compact support in
a large polydisk V = {|x|, |y} < R}, and by Lemma 2.2 of [BS1] we may choose
R large enough that f "V < V' u {|x| < |y|}. By [BS], Lemma 2.4] the currents of
S (WT) are all supported in K*.

We note that if #(y T') consists of a single current, then by Theorem 1.6 of [FS]
it follows that this current is a multiple of u*. And in the present case, our use of
Lemma 1.5 was motivated by [FS].

Let us recall some results from Section 4 of [BS3]. We will let £? denote
2-dimensional Lebesgue measure. For any ve (Y T), we may disintegrate the

i . .
measure v L de A dx with respect to Lebesgue measure. That is, for #? ae.

. . i _
x there is a measure v, on C with the property that v L 3 dx A dx = v, L?*(x). Let

us define the function

Uy(x,y)i= flogly — &[vi() L2 (x) .

A priori, the function U, is defined only almost everywhere in x, but it may be made
upper semicontinuous and psh on C? in a unique way via a smoothing argument.
Further, U, is the unique function satisfying dd‘U, = v and

Us(x, y) = clog|yl + o(1) (1.2)
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for |x] < Rand jy|large (cf. [BS3, Lemma 4], or Lelong [L] and Skoda [Sk]). The
constant ¢ in this equation corresponds to the fact that the total mass of v, is i for
a.e. x.

Lemma 1.4. The constant in(1.2) is given by ¢ = { YT A u~, and is independent of v.

Proof. Let nj— o0 be a sequence such that lim;, . d "f™*(yT)=v, and let
= 1dd‘log(1 + |x|*). Then

lim [ d="f"*(YT) A 0 =fv A0

j= e

On the other hand, as in the proof of Lemma 1.1, we have

lim [d™"fm*YT) A0 =[d™yT A [0

jrw
= YT A (d ™log(l +|f ™)
={yTru,
and so c is given as claimed.

We may now apply the proof of Proposition 1 of [BS3] and conclude that
U,(x, y) = ¢G* (x, y) for all (x, y)e C? — K*. By the upper semicontinuity of U,, it
follows that U, = 0 on 0K *, and by the maximum principle it follows that U, £ 0
on K*. We will show that in fact U, = 0 on K*. Let us suppose, to the contrary,
that there is a current ve (¥ T) such that U, < —1 holds on a domain o with
@ cintK*. Since w = K*, it follows that f"(w) remains in a large polydisk
{Ixl,1y] < R}. For n > 0 there exists v,€ % (¢ T) such that v = (d ") f™*v,, and so

@yu,=U,(f™).
Thus
f@) < {Ixl Iyl < R} A {U, < —d"} . (13)
Let us recall the following fact about potentials.
Lemma 1.5. If R > 0, then there exists a constant Cg > 0 such that for any positive

c
Borel measure v, with total mass I then the potential U, _ satisfies
T

LHU, < =4 n{lyl<R}) = CRexp<-—§> .

Proof. For |y|large, ¢ 'U,, = log|y| + o(1). Thus the function ¢~'U,_+ 4/cis no
greater than the Green function of the set {U, < —A4}. It follows that the Robin
constant of this set is at least as large as A/c, and so the capacity is no greater than
exp(— A/c). The fact that the area of the set is dominated by the capacity (see [ Tsuji,
Theorem II1.10]) completes the proof.
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We may apply this inequality to the functions U ,(x, y) for x fixed, and integrate
it with respect to #?*(x) and obtain

-7
Volume({|x|,|y] < R} n{U, < —1}) < nR*Cgexp <—> .
¢
By (1.3), then, Volume( f"(w)) < nR?*Crexp(—d"/c). On the other hand, the Jacobian
of a polynomial automorphism is a constant, so it follows that the volume of /" (w)
is |#]?" times the volume of w. This is a contradiction, so we conclude that U, = 0
onintK*,

Recall that a current T'is representable by integration if there are Borel measures
T;ysuch that T =3 T,;dz' A dz’. This is equivalent to the existence of a constant
Ck for every compact K such that | T(¢)| < C sup|¢]| for all test forms ¢ supported
on K. We say that a sequence {T;} of such currents converges to T as currents
representable by integration if lim;.,,, T;(¢) = T(¢) for all compactly supported
forms ¢ with continuous coefficients.

Theorem 1.6. If YT is as in (1.1), then
(i) limy . (d ") f™WT) = cp” forc= [ YT A p".
(i) lim,~q, (d ") f"™(T A dp) =lim,_., (d™") f"™(T A d%) = 0.
(1) hm, ., (d™ ") f™(T A ddy) = 0.
(v} The limits in (1), (1), and (111} hold in the sense of currents representable by
integration.

Proof. (i) It follows from the discussion above that there is a constant ¢ such that
U, =c¢G"* forall ve ¥ (yT). However, ¢ is determined by the total mass of any slice

|
v,, which is independent of v and x. Applying o dd‘, we have only one element,
n

~2i dd°G™ in # (Y T), and so the first limit exists and is equal to a constant multiple
T

of u*.

(i) Let ¢ be a test function. Then as in the proof of Lemma 1.3, we may bound
the mass norm: M[(f™*(dy A T)) L @] < Cd"?. It follows that the masses of the
currents in (ii) tend to zero locally on compacts as n — oo. Thus they tend to zero as
currents representable by integration.

(i) We observe that

M(f"™(ddY A T)) L @] = sup [ (fe@)e A T A ddY

lal21
= o M[ddYy A T] .

is bounded independently of n. Thus the mass of the current in (ii1) tends to zero on
compact sets as n — o0.

(iv) It remains only to discuss (i). Without loss of generality , we may assume
that y = 0. Thus the ‘currents in (i) are positive, and it is well known that if
a sequence of positive currents converges, then it converges in the sense of currents
representable by integration.

Remark. We can extend the class of currents for which the Theorem holds.

e Theorem 1.6 continues to hold for finite linear combinations of currents of
the form (1.1). If « is a constant (1,0)-form, and if s is a positive test function on £,
then e A @ may be identified with a positive (1,1)-current of the form (1.1). Taking
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linear combinations we see that (0.1) holds for all currents that are represented by
smooth (1,1)-forms with compact support.

e All points in {|x| > R, |y| <|x|}, R large, tend to infinity under f ™!, so the
part of the current S that lies in this set plays no role. Thus it suffices to assume that
spt(¥) n {|y] < |x|} is compact rather than assume that spt(y/) itself is compact.

e If S is a current, and if there are currents S,* of the form (1.1) such that
S, <S<S) and (| St Ap” — S, A p7| >0 then the (0.1) holds for S with
c=1im{S," A pu~. In particular the Theorem 1.6 holds for forms of the form ¥ T
where i/ is continuous. Or more generally, it suffices that ¥ is bounded, measurable,
and T A p” ae. point is a point of continuity of .

Corollary 1.7. Let V be an open subset of C?, and let S satisfy (1.1). If
(SAu )aV)=0, then

lim (d7") /*"(S]y) = cu™ .

n— oo

Example. Let X be a 1-dimensional complex submanifold in C?, and let Z < X be
a relatively compact open subset. Then d ™"f *"[ %] converges to a multiple of p* if
the measure [2] A ¢~ puts no mass on 0Z.

2 Mixing and applications

We will show that fis (strong) mixing, and we will use these results to prove some
topological properties of K and J*. A measure is (strong) mixing if for Borel sets
A and B

lim u(A ~f "B) = p(A)u(B) .

n—= o0

This is equivalent to the condition that

lim [ (f"*$)pdp = [ ¢ du | v dp 2.1

n— o

for all ¢ and v in L?( u). The following result was proved in [BS1] in the special
case that f'is hyperbolic. We now prove it for general f.

Theorem 2.1. The mapping f is mixing on u.

Proof. It suffices to verify the condition (2.1) when ¢ and  are test functions
because the set of test functions is dense in L?(u).

We note that for a test function y,u L ¥ = (u* L ¢} A u~. Thus what we need
to prove is that for any test function y

lim 2 f20e L ) = xdu fdu .

n— o0

However, the left-hand side of this equation is
Fuf™ s L) A f™ = [y d™) ™ (1" L) A ddGT
= Jddyd™") ™ (@ L) A G
+Jdyd ™) ™ (u LdY A GT)
= Jdyd et L dg) A G
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The first equality follows from the functional equation f"*u~ = (d "")dd‘G ~, and
the next one is an integration by parts. Now we pass to the limit as n — oo and
use Theorem 1.6. The second and third terms converge to zero. The first term gives
the limit

fddy n(cu*) A G™ =cfyu® Ap™ =[Ydufydu,
which completes the proof.

Recall that a mapping f is ergodic if whenever E is a Borel set such that
f~YE) = E it follows that E is either of full measure or of measure zero. Mixing
implies ergodicity so we have the following corollary.

Corollary 2.2, fis ergodic.

The following proposition gives a connection between measure theory and
topology.

Proposition 2.3. The measure u puts positive mass on any nonempty open and closed
subset of K.

Proof. Let K, be an open and closed subset of K and let K, be the complement of
K, in K. Let P(K) denote the function algebra obtained by taking the uniform
closure of the holomorphic polynomials on K. Since K is holomorphically convex,
it follows from the Oka-Weil Theorem that P(K) coincides with the uniform
closure of the algebra of holomorphic functions in a neighborhood of K. Thus
P(K)= P(K,)® P(K,) and so it follows that 6,K = d,K; v ;K. In particular,
K, intersects d, K. On the other hand, it was shown in [BT] that the support of y is
the Shilov boundary of K, so we have u(K) > 0.

Corollary 2.4. If K is totally disconnected then J* = J(=K).

If x is a point in a topological space X, we define the component of x to be the
intersection of all sets U which are open and closed sets and contain x. Every
component is closed. We say a component is isolated if it is also open.

Theorem 2.5. Either K is connected or K has uncountably many components, none of
which is isolated.

Proof. If all components of K have measure zero then K must have uncountably
many components. If some component were isolated it would be an open and
closed set with zero measure but this is prohibited by Proposition 2.3. Assume now
that some component C has positive measure. Since C has positive measure, f"(C)
must meet C for some positive n. Components are either disjoint or equal so we
have f"(C) = C. Since | ) f"(C) is invariant and of positive measure the ergodicity
of fwith respect to u implies that its complement must have measure zero. We will
show that the complement is empty.

Assume that x is a point in the complement of { ) /"(C). There is some open and
closed set U which contains x but not { J f"(C). The set U is an open and closed
subset of a set of zero measure. The existence of such a U contradicts Proposition
2.3.

The fact that fis mixing with respect to ¢ implies that C must have period 1.
Thus C = | J f"(C) = K, and K is connected.
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Remark. The same argument proves that either J* is connected or has uncoun-
tably many components none of which is isolated. It is known (cf. [BT]) that u puts
no mass on a pluripolar set, and thus J* is a perfect set.

It follows from the Theorem 2.5 that K is either perfect or consists of single
point. In fact K must be perfect, since K is polynomially convex and regular, and
thus no isolated part of K can be polar.

3 Lyapunov exponents

Let peC? and let ve T,. The characteristic exponents, which determine the ex-
ponential growth rate of the vector v, are given by

(e, p) = lim ~ log | Df*(e, p)

when this limit exists. The theory of Oseledets describes the behavior of this
exponent for y a.e. point. The fact that u is ergodic makes the description of the
theory simpler than it would be in the general case. Either there is a single exponent
Asothat A(v, p) = Afor palmost every point p and for every nonzero ve T, or there
are two exponents A; > 4, and a measurable splitting of the tangent bundle of C?
of the form T, = E} @ E} at u almost every point p so that for ve E' we have
A(v,p) = 4;. In the single exponent case it is convenient to define 4, = 4, = 4.

In this section we will estimate A,. It is easier to work with the following
integral than to work with 4, directly:

1
A= lim ;jlog IDf" ()| g (x)
where || Df "(x) || denotes the operator norm of the linear transformation Df"(x). It is
easily seen that A = A;. Since f has constant determinant § we have the relation
A1+ 4y =log|dl, so 4, is determined by 4.
Here we will show that in fact A = logd for all choices of the parameter. We will
make use of the following identity which is related to Jensen’s formula.

Lemma 3.1. Let K = C be a compact subset, and let

Gily) = log|y| + px + O(IyI™")

1
be the Green function of K, and let piy = 7 dd°Gy be the equilibrium measure of K. If
n

p(y) =y~ + ... is a monic polynomial of degree N, then
leg|P|#K+NPK: Z Gglo) .
K {c: p(cy= 0}
Proof. We will apply Green’s formula several times. First, we note that we may

assume that ¢K is smooth, so that the effect of integrating the equilibrium measure
dd°Gy over K is the same as integrating the 1-form d°Gg over 0K. Thus we have

1
| log|plux = E [ (log|pl — NGg)ddG
K Tk

1 |
== ) (loglpl = NGx)d°Gg + 5~ [ (loglp| — NGx)d‘Gy
27 _ =K+ () 2n iy
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1 1
o | dQoglpl — NGg) A dGg — — | (Npx + O(|y|™"))d‘Gg
Telg 2n —i0)

5= { Gy  dlloglpl — NGx) — Npx
Tc-k

Since the function log |p| — NGy is smooth at oc, we may integrate by parts to
obtain

1
j loglplpx = e j (log|pl — NGg)dd Gg
K Tk

1
=— [ Ggddlog|p| — Npg
C-K

= Z Gkle) — Npg .

{e: pte) =0}

Remark. We conclude from this Lemma that if px =0, and if p(y) is a monic
polynomial, then

legIPWK 20.
Theorem 3.2, A = logd.

Proof. Let v, = 0,(p) be the vertical vector at the point p. We have that

.1 : .
lim —log || Df"(v,) || = Alv,) £ 4y .

This gives

.1 .
lim ;Ilog I Df" ()|l dpulp) = 41 -

Let X = {x = 0} denote the y-axis. Let us write Kg = X n K. Thus we also
have Kg = {y: f"(0,y)e K" }.

By [BS1] we know that (d "")[ f"X] A p* converges to ug as n - co. Thus we
see that

1
§ 081740l = lim £ (d~*)log | DF*0) | /X0 »
To estimate this integral from below, we note that if f=(f), fi2), then
I Df*w)|| = |0, /%I|. Further, &, f& = d*y* ' + ..., where the dots represent
terms of lower degree.

We note that the current [ f*X ] A u™ is the same as the current u* restricted to
the submanifold [ f*X 7. Since f*X is in fact tangent at infinity to the y-axis, we see
that G * |y is the Green function of K4 inside the variety X Thus [ f*X] A u*
is the same as the equilibrium measure g s of Kg in X pushed forward by f* to
f*X. We use this now to evaluate our 1ntegral

§log [ Df *(v,) | ik = [ logé, f5) ux
= lim [log|d, f5[d ™[ f"X1 A u*

[(3adte )
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Il

lim {log|dy f5 fIX] A fiu*

h— oo

lim [ f"*(log]d, 51X A p*

n=r o0

lim j 10g|(ayf(§))ofn|ﬂxg .

n—- o X

We observe further that

Oufb)f" = iy g
so that

log|(@,f5))2f" = klogd + log|p(y) ,
where p(y) denotes a monic polynomial. Thus we have

1 1
f%log IDf*(w,)] dux = % [ logl(d, f5) °f "k s
X

1
zlogd+§jloglpluxg
X

= logd
by the Lemma above. The Theorem follows upon letting k — oo.
Corollary 3.3. 1, > 0 > 4,.

Proof. We have A, = logd and 4, =logl|d| — 4; < —logd.
We say an ergodic measure yu is hyperbolic if no Lyapunov exponent is equal to
zero. Hyperbolic measures have some of the properties of hyperbolic sets.

Theorem 3.4. Periodic saddle orbits are dense in J*.

Proof. Katok proves [K, Theorem 4.27 that for a non-atomic ergodic hyperbolic
measure u the closure of the set of periodic saddle points contains the support of g.

Corollary 3.5. If K is totally disconnected then periodic points are dense in K.
Proof. This is Corollary 2.4 combined with Theorem 3.4.

4 The entropy of u

In this section we will show (Theorem 4.4) that the measure theoretic entropy of u is
h,(f) =logd and derive some consequences about the Hausdorff dimension of the
measure p.

We begin by defining topological and measure theoretic entropy and discus-
sing the variational principle which relates the two quantities. We will discuss
Misiurewicz’s proof of the variational principle and extract from this proof an idea
which we will use in the proof of Theorem 4.4. We then introduce measures o, and
u, which will be used in the proof. We prove two Lemmas which describe
convergence properties of these measures, and then we give the proof of the
Theorem.

First we define the topological entropy of a continuous map f of a compact set
X. For each n set

d,(x,y) = max d(f'(x),f(y)).

0Sign—1
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Aset E < X is (n, ¢)-separated if the distance between distinct points in E is at least
¢ in the d, metric. Let s,(¢) denote the cardinality of the largest (n, )-separated set.
Define s(¢) by the following formula:

1
s(g) = limsup - log s,(¢)

n— o

The topological entropy is given as follows:
htop(f) = lim S(S)

e—0
Recall from [FM] and [S] that the topological entropy of f|x is equal to logd.
We now define measure theoretic entropy. Let m be an invariant probability
measureon X. Let o/ = {4, ... 4 } be a partition of X, and let \ /- f ~“o/ be the
partition generated by .o/, f ~ 1&{ L fTM e I we set

k
— Y m(A;)logm(4,) ,

i=1

h(s#, ) = lim ~ H(\/ f- ’9/)
n—+wo n

then the measure theoretic entropy is given by h,(f) = supy h(Z, ).
The variational principle states that

htop(f) = Suphm(f)a

where the supremum is taken over all invariant probability measures. Theorem 4.4
thus states that p is a measure of maximal entropy.

Our proof of Theorem 4.4 will use some ideas from Misiurewicz’s proof of the
variational principle (see [W, p. 189]). We begin by reviewing his proof and
extracting the results we will use. The proof of the equality o, (f) = sup, f.(f)
follows from the proof of two inequalities. We will consider the proof that
Piop < SUPp .

For each n, choose an (n, ¢)-separated set E, of cardinality s,(¢). Let

o, = ! Z o, .

S"(S) xeE,

For any partition & into sets of diameter less than ¢ we have

H,, (n\_/ f"'lzz/) = logs,(e) .
i=0

This equality follows from the fact that each set in \/?-] f ~'s7 contains at most
one element of E,.
Now we write

-} 3, o

and let n; be a sequence of natural numbers so that lim; e logs ,(€) = s(e) and

Hn, converges to u*. The definition of u, insures that any such W* is an invariant
measure. Misiurewicz proves . = s(g).
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In the course of the proof Misiurewicz proves that for any sequence of probabil-
ity measures ¢, which satisfy

n—1
H,, (\/ f‘%> = logc,

i=0
the limit measure p* satisfies

1
h+(f) 2 limsup " logec, . 4.1

It is this fact that we wish to use in the proof of Theorem 4.4.

For our measure u we start with a current S as in (1.1). Let L denote a C?, psh
function on C? such that

L(x, y) = logly[ + O(1)
where the O(1) is uniformly bounded for |x| £ O(|y|**) and y — oo. Thus
O .= % dd°L is a positive (1,1) form on C2. For each n we set @, = f*"®, and we
define a measure
v, =8SL6O,,
where the integral of a compactly supported, continuous function ¢ is given by
fodv, =<8, 00,) .

Lemma 4.1. Let {j,} be a sequence such that 1 <j,<n, and j,— oc and
n—j,— o0 as n— 0. Then

lim d™"fjrv, = cu ,

n— 0

where
c'sz/\,u_. 4.2)
Proof. We compute
@™ five =@ ")SISLLEO,)
=@ HHESL@ ™) [0 0e
=) fis L_(d"‘")~l~dd"(Lof"'j) .
2n

Now by §3 of [BS1] the functions G," ;:= (d’~") L "~/ converge uniformly to G *
on compact subsets of C* as n —j— co. By Theorem 1.6 (d /)f/S converges
weakly in the sense of currents to cu~ asj — oo. Without loss of generality we may

1 o .
assume that S is positive, so the product oy G,~;(d7’f]S) converges weakly in the

¢ . .
sense of currents to 7 G*u~. Applying dd¢, we obtain the sum of four terms
n

1 o 1 e 1 o
i;dd“G,,*_,-(d 1iS) + ﬂdG,,t,-(d DAY A T) - %d G, ;d™) fidy A T)

+ LG d ) fiddY A T
2r
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The last three currents tend to 0 as n and j, — oc. To see this, we act upon them by
a test function and integrate by parts to remove the d or d° from G, ;. The resuit
then follows by (iv) of Theorem 1.6. Finaily, the first term is equal to d ~"f;/v,, which
converges to cu™ A p~ = cu. This completes the proof.

Now we set
ln ld n

N

with the constant ¢ in (4.2) bemg assumed to be nonzero.

f*SI_@)

Lemma 4.2. lim, ., , 4, = 4.
Proof. Choose a sequence k, — oo such that k,/n — 0. Then
n—ky n—1
<z+ TS );SL@,,.
i=knt1l ji=n—~k,+1
The total mass of the first and the third sums on a fixed compact set vanishes as

. 1
n — oo. We recall from the proof of Lemma 4.1 that f/S1_6©, = 7 dd(G,—; A ui ).

Thus the middle summation is given by dd® of

1 n—ky, 1 n—lkn 1 n—ky
<_ Z G,- ]“‘J>=<G+£ Z :“J'—>+- Z (Gn+“j_G+)/"j¢'

N =k, +1 =kn+1 =knt1

Since on a compact subset of C? the functions (G, ; — G *) converge uniformly to
zero, and 4 has uniformly bounded mass, the last term on the right converges to
n—ky
zeroas n — k, + 1 £n—j— oo. The Lemma then follows since — Y u; —u .
knt1
Now we construct the sequence of measures that will be used in the proof of
Theorem 4.4. Let us use the notation V'~ = {(x,y): |y| > R and |y|> |x|},
V' ={(x,y): |x| > Rand |y| <|x|},and ¥V = {(x, y): |x| £ R and {y| £ R}. For
R large, we have the filtration properties
fV)ycv-, fV uV)ycV uV 4.3)
Y wvHevt, fTUWrtubV)yeVitor (4.4)
(cf. [BS1, Section 2]).
Let 2 = {x =0, |y| < R} denote the disk of radius R in the y-axis, and let
1: 9 - V denote the inclusion map. Let L be a smooth, subharmonic function of | y|

1
such that L(y) = log|y| for |y| > R, and set © = 2~dch. If we let m,(x, y) = y be
i
the projection to the y-axis, then 71,02 1: 2 — C, and we may define the measure
Uy = (nyof‘"ol)*@’@ - [9} I——@n >

where we first pull the form @ back to C* and then restrict to Z. By the choice of R,

m, f"1Z covers & with multiplicity d”, so f o, = d" [ ;. Also by the choice of R,
we have ju A (2] =1, and thus the measure o,=4d ", is a probability
measure. If we define

L
Wy = — Zfsfana
n =

then
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Corollary 4.3. lim,_ , u, = u.

The following result was proved for f"a hyperbolic diffeomorphism in [BS1].
We now prove it for general f.

Theorem 44. h,(f) = logd.

Proof. By the variational principle we have h,(f) < logd. Thus it suffices to prove
h.(f) = logd. Let 5, and p, be defined as above, and let .7 be a partition of V' so
that the u measure of the boundary of each element of .o/ is zero and each element
of .o/ has diameter less than e.

We will use a result of Yomdin [Yd] to estimate H,, (\/" T Je/). Yomdin’s
result implies that the rate of area growth of pieces of the dlSk which remain in
¢ balls goes to zero as ¢ goes to zero.

Any element of \/" ' T 7o/ is contained in an ¢-ball B in the d,-metric. The
measure o, is given by

ouB)=d™" [ f*@=d" | ©.

Bng BN

It is evident that @ is bounded above on C?, and thus the right hand integral is
dominated by C Area(f"(Bn 2)). We let v°( f, 1, n, ¢) denote the supremum of the
area of f*(Bn Z) over all ¢-balls B. Thus the ¢, measure is bounded above by
Cd~™°(f, 1, n, €). This gives

n—1
H,,n< \/ T"LQ{/) = — logC + nlogd — logv°(f, 1, n, ¢) .
j=0

By Corollary 4.3 u, — p, so the Misiurewicz result (4.1) gives:

h, = logd — limsup v°(f, 1, n, ) .

n— 0

Now let v°( £, &) = lim sup, -, v°(f, 1, n, ). Yomdin [Yd, Theorem 1.8] shows that
v°(f; €) goes to zero as ¢ — 0 so that h, = logd. This completes the proof.

In [S] it was shown that the topological entropy of f restricted to K is logd.
Using Theorem 4.4 we can sharpen that result.

Corollary 4.5. The topological entropy of f restricted to J or J* is logd.
Proof. logd = htop(f'K) :>: hlop(.f|]) g hmp(f‘ll*) é hu(f) = IOg d

The Hausdorff dimension of a measure m, written HD(m), is defined to be the
infimum of the Hausdorff dimensions of sets of full m measure.

Corollary 4.6. If |0| £ 1, the Hausdorff dimension of the measure p is given by:

1 1 1 1
(- —)logd={~+-——— | logd. 45
HD() (Al A2> o8 <A+A—log|5|> o8 4

Proof. This follows from [Yg, Corollary 4.1].
Remark. The Hausdorff dimension of the set J * is at least as large as (4.5).

Corollary 4.7. HD(u) £ 2; in fuct HD(u) < 2 unless |0] = 1 and A = logd.
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Proof. Without loss of generality, we may assume that |6| £ 1. Thus 4, =4
2 logd and — 1, = A + log(1/]8]) = logd. Thus the only way that HD(y) = 2
can hold in (4.5) s if A = logd and log(1/{6]) = 0.

5 Dependence of A on parameters

Here we let A denote an open subset of C7, and we let f = f, depend holomorphi-
cally on ae A. In this case we will write 4 = A(a). We note that we have also used
a to denote one specific parameter, the complex Jacobian determinant of f, but
there should be no confusion when we use a to denote a general parameter.

Let us write

A= Jlog 1D/ 1469

We recall from the chain rule that

Df*(x)= [] Df(xi-1)
i=1

where x; = f(x). It follows from the chain rule and the submultiplicativity of the
operator norm || || that

IDf™ ()| < 1 DF™ N D™ (X - ) | -
Taking logarithms and using the invariance of the measure u, we have
m+mAue, <md, +na,. (5.1)
Lemma 5.1. The limit defining A exists, and ar— A, is upper semicontinuous (usc).

Proof. 1t is well known (see [W, p. 87]) that the condition (5.1) implies that
lim,_, ., A, exists. Itis also easily seen that k — A« is monotone decreasing. Now for
fixed n, the map

a1 D
n

is continuous. Taking the limit as n —» oo through the values n = 2%, we see that 4,
is a decreasing limit of continuous functions and is thus usc.

Now we define the direct image of a function under a proper holomorphic
mapping. We let X and Y be manifolds, and we let g: X —» Y denote a smooth,
proper mapping. If ¢ is a function on X, we define

gxd0= Y o).
xeg™ ()
If ¢ is continuous or has compact support then the same holds for g, ¢. Since ¢ is
proper, g(X) = Y, and there is a positive integer p such that a generic point ye Y
has p preimages. If we let U < X denote the points where g is a local diffeomor-
phism, then there are disjoint open subsets U; = U, 1 £ j < p, with the properties
that U — | U; and Y — g(U;) have measure zero, and g:U; - g(U)) is a dif-
feomorphism. Thus for any volume form 6 on Y, we may apply the change of
variables formula to each U; to obtain

pfdg*0 ={g.90.
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Lemma 5.2. Let g,(x) and h,(x) depend holomorphically on ae C! and x e C", and for
fixed a let g, map C" properly to itself. If Y (x) is continuous and psh on C", and if

I(a) = [ (h(x))(dd log™ [g.(x)|)",
then 1(a) is continuous and psh on C’.

Proof. Let us consider a sequence of psh smoothings log, of log. Then the currents
/\"dd‘log;r |g.(x)| which we write as (dd“log, |g.(x)])" are pullbacks under g, of the
volume forms (ddlog," |{])". It follows from the change of variables formula given
above that

L(a) = | hy (= ho)(O)(dd*Tog | C])" .

It is evident that the direct image (g, ), (¥ © h,) is psh as a function of x and « jointly,
and thus it is psh in a. Thus we see that I,(a) is an average of psh functions and is
thus psh itself. The result follows upon letting & tend to zero.

We will need to use the following Lemmas 5.3 and 5.4, which are ecasy
consequences of §3 of [BS1].

Lemma 5.3. The sequence G,:= (d""og* | f" — f ~"| converges uniformly on com-
pact subsets of C? to the function G = max(G*, G ™).

Lemma 5.4. The mapping g, ,:=f" — f " is a proper, holomorphic mapping of C? to
itself.

Theorem 5.5. a+— A(a) is psh.

Proof. Let us consider

Apala)= [ log | D) (@G,)°

We let § be defined on C* = C?*2 by /() = log || (||, where we identify { with
a 2 by 2 matrix, and || { | denotes the matrix (operator) norm. We let h,(x) = Df.,"(x)
be the jacobian matrix of ;. Since g, , is a proper mapping and G, has the correct
form, we see from Lemma 5.2 that A4,, , (a) is psh in a for all m and n.

If we take the limit as n — oo, we have by Lemma 5.4 that (dd°G,)? converges to
Uq, and so A, ,(a) converges to the function A,,(a) defined above. Now if a— 4,,(a)
is psh in a then if we take the limit m — oo the functions A,,(a) decrease to A(a), and
so at— A{a) is psh, which completes the proof of the Theorem.

Corollary 5.6. If  is psh on C?, then ar { Y, is psh.

Proof. Apply Lemma 5.2 with h,(x) = x and g, , = f" — f " Then take the limit as
n— 0.

We can derive a stronger conclusion if a is a value of the parameter for which f,
is hyperbolic. Recall that X < C? is a hyperbolic set for the map f if there is
a continuous splitting of the tangent bundle over X into subspaces E* and E* and
constants ¢ and 0 < 4 < 1 such that

I Df"lgs |l < cA™, |Df gl <cA* n>0.

In the terminology of [BS1] fis said to be hyperbolic if J is a hyperbolic set for f. In
[BS3] it is shown that this assumption is equivalent to the assumption that the
chain recurrent set R(f) is a hyperbolic set for f. Let # < A be the set of
parameters for which f, is hyperbolic. In [BS1] it is shown that # is open.
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Theorem 5.7. A(a) is pluriharmonic for ae .

Proof. For a hyperbolic mapping we can choose an adapted metric on the tangent
bundle over J so that

IDflgsll < 2, IDf Ml <&

for some A’ < 1. We may also assume that E* and E* are perpendicular subspaces.
With these hypotheses we have | Df (p)| = |[Df|E; II.
For aes# and a positive integer N, we set

S(N) = {(a, p)e # x C* f¥(p) = p} ,

and we let S(N, ag) = S(N)n {a = a,}. Tt is shown in [BS1] that, for ae #, y, is
the limit of the average of the point masses over the periodic saddle points. Thus
if we set

,ut]:]o:: #S(N’a())_l Z 6[7»

pe S(N,ao)
we have
— 1 N
Hao = lim Hag -
N-ow

For peS(N, ay), we have

k
log I DfE(p) Il = 3. 10g] Dfal iy 1n ] -
i=1

The p;(a) depend algebraically on a. Away from those values where periodic points
coalesce the p;(a) depend holomorphically on a. To any periodic point p of period
N we can assign a multiplicity which is just the multiplicity of p as a root of the
fixed-point equation f"(x) — x = 0. The sum of the multiplicities of points in
S(N, a) is constant. When distinct points coalesce they yield a point of multiplicity
greater than one. For ae # the p;(a) are in saddle orbits thus one eigenvalue of
Df(p) is greater than one in absolute value and one eigenvalue is smaller. This
shows that Df "(p) — I is nonsingular. Df"(p) — I is the differential of the function
f"(x) — x. Since it is nonsingular p is a regular point for the function f"(x) — x. This
implies that p;(a) has multiplicity one. We conclude that for ae # the p;(a) depend
holomorphically on a.

Since for pe S(N, a), the expanding subspaces are determined by the condition
DfY(E}) = E¥, we see that Ej,, varies holomorphically in a. By the formula above,
then, a log || Df¥(p(a))i is pluriharmonic on A. Thus we conclude that

1 k
X 5 log | D", luy o =k ' #S(N,a)! j Y Y. 10g| Dful puiri- 1 praml

i=1 peS(N,a)

is pluriharmonic. The Theorem then follows by letting k — oo and then letting
n—> 0.

6 Degeneration to 1-dimensional mappings

Fix integers d,, ..., d, where d; = 2. We consider the family of mappings
f=tme ...of1 such that f,(x, y) = (y, p;(¥) — a;x) where p; is a monic polynomial
of degree d;. When we wish to stress the dependence on parameters we write
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Ja=fmao. .. °fi.owherea=(ay, ..., an p1,...,Pm) We will consider a to be
apointinC’. Asé(a) = a; . . . a,, — 0, f, approaches a mapping of rank 1, which is
essentially 1-dimensional. In this section we show that u* and u converge to the
corresponding one dimensional objects. We also show that the Lyapunov exponent
is well behaved as a function on extended parameter space.

If 6(a) % 0, f, is invertible, and the inverse is given by f ~' = f;" o . .. of, "1,
where

S y) = (aj Tpix) — a; 'y, x) . (6.1)

By repeating the proofs of Lemmas 2.1 and 2.2 of [BS1], we see that for any
compact subset 4,  C’ there exists R such that (4.3) and (4.4) hold for f = f, such
that ae Ay and §(a) + 0. We may also repeat the proof of Proposition 3.4 of [BS1]
to see that (a, x, y)— G, (x, y) is continuous for ae C’ and (x, y)e C*.

We will be interested in the behavior of f, as a — a° = (a9, . . o, ...), where

<5 Uy
a9 = 0 for some j with 1 £ j < m. We note that the mapping a+ f, is injective on
the set where d(a) + 0 by [FM] but it is not injective in general. Now f, is conjugate
to the mapping f;o . .. ofyofmo ... ofjer via @ =f1o. .. ofj— ;. Thus, without loss
of generality, we may assume that af, = 0. We define

I'={({ pul0) {eC} = {y=pu(0)} .

Thus f,o(C?) =T, and in fact f,|, is conjugate to the polynomial mapping
q:C — C, where ¢({) is defined by

Jaol&, pm(©)} = (q(0), pwl0))) .
We let J, denote the Julia set of ¢, and we let J,o = {({, pu(0)): {€J,} denote its
graph in I'. If G, ({) is the Green function of J, in C, and if G, is the lift to I', then
Geo = Gy, ofoo . (6.2)

Lemma 6.1. Let Aq< C’ be compact. Then for a compact subset S = V — T, there
exists 6 > 0 such that K; n'S = J for ae Ag such that |a,} < 9.

Proof. Let ¢:= ming|p,,(x) — y| > 0 and set 3 = R/e. Then by (6.1), /i *(x, y)e V *.
Applying equations (4.3) and (4.4)to f;” ' for2 < j < m,we have f ~'(x,y)e V' '. By
[BS1, Lemma 2.4] f " x, y)¢ K™, s0 (x, y)¢ K.

From (6.1) it is easily seen that
ST p) = @xT + 0(x*71), 0(x")) (6.3)

where

m
g=agt []ajtb.
j=2

We would like to use the results of [BS1, Section 2] directly on f ~'. The only
difference is that the polynomials in f;~ ' are not monic, so there is an extra constant
to keep track of. Applying Corollary 2.6 of [BS1] in this case, we have: For any
0 > 0 there exists R sufficiently large such that

(1 = d)al|x[* <lmef =10 p)| < |(1 + d)&{|x|*
holds for all (x, y)e V*. Tterating this inequality we get

|(1 _ 5)5‘§d"”’+..,+d2+d+llx|d" <|7Txf_n(x,_)))‘ < |(1 +5)&|d”"+...+d1’-+d+llxld“
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Taking logarithms and dividing by d" gives:

1 1 1
<2 + .+ ﬁ) log |(1 — é)a| + log x| <Elog|nxf"‘(x,y)1

<<}g+ . +%>logl(1 + d)a| + log|x|

Thus

|
G’(x,y)=log|x|+d_110g|5¢|+0(1) (6.4)
where the o(1) tends to 0 uniformly on V' * as |x| ~ oo.

Lemma 6.2. Taking limits through values ae C’ such that 6{a) + 0, we have

m

: - 1 N 1
lim (Ga (x,y)—d_110gla1>=jlog|pm(x)~yl,

a—a®
where the convergence is uniform on compact subsets of C2 — I', and

lim g, =[I']

in the sense of currents on C2,
Proof. By (6.1) we see that for x, fixed
f 7 g, yy = (=) gy @i+ O (pHn 1), O(p @ty

and the O terms are uniform for |xy| £ R. Thus by (6.4) we have

1 D U 1 .
Ga (x0, ) = 7= log|&l = 5 G (f "' (xo, ¥)) = 7— log |
_J 5y d/dm ! 5 1 5
= - (og|ay™| + —— log|al) — —— log|al + o(l)

1/d d 1
_1(d a1zl ) _ N
d<dmlog|yl+d_1 0g|a|> 71 loelal +o(l)

1
=3—log|y! +o(1).
It follows that G, (xo,y) is d,' times the Green function of K m{x = x¢}.
By Lemma 6.2 K; n{x = X0} < {|y — pu(x0)| < r(x0,a)}, and r(xq, a) >0 as
a —a°. Thus G, (x,, y) converges uniformly on compact subsets of C* — I to
1
i log|pm(x) — y| as a — a°.
In fact, as a - a® G, (xo,y) is a family of (normalized) potentials of mea-
sures whose supports decrease to the point (xg, pn{xg)). Thus G, converges to
1

7 log|y — pm(x)ilocally in L. The second statement then follows by applying dd*
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to 7 G, , taking the limit in the sense of currents, and using the Poincaré-Lelong
n

1
formula o dd°log|pu(x) — y| = ['].

Now let v, denote the equilibrium measure of J,, and let y,, be the lift of v, to I'.
We let A, denote the Lyapunov exponent of ¢ with respect to v,. Since the
Lyapunov exponent is a conjugacy invariant, this is the same as the Lyapunov
exponent of f,o| with respect to ugo.

Proposition 6.3. lim,_ .0 tt, = fi,0, and limsup,. 0 A(a) = 4,.

Proof. By (6.2) we have b = f5u.0, where we identify the measure p, with
a (1,1)-current supported on I'. Since G, converges uniformly on compacts to G5,
we may apply [BS1, Lemma 5.8] and Lemma 6.3 to obtain

lim y, = lim p A ug

a—a® a—al

= fubttgo A [T] = ptao .
Now we observe that

1
A, = lim . {log | Dg" | dv,

o1
= lim ; .f log H Dfa'(') H d,uao .
Thus we may apply Lemma 5.1 to conclude that lim sup,- .0 A(a) = 4,.
Corollary 6.4. If we set A(a®) = A,, then ars A(a) is psh on C™ x A.

Now let us consider the case where the map q is hyperbolic, i.e. ¢ is uniformly
expanding on J,. It follows that a sufficiently small perturbation is hyperbolic, i.e.
J, is a hyperbolic set for f,. This was shown by Hubbard [H] and Fornaess and
Sibony [FS] in the case where m = 1, i.e. f=f;. We include here a proof in our
somewhat more general context for the sake of the completeness of our exposition.

Proposition 6.5. Iff,o is hyperbolic, then there exists 6 > O such that f, is hyperbolic
as a 2-dimensional mapping if |a — a®| < 4.

Proof. A convenient way to prove hyperbolicity is to show the existence of
invariant cone fields 4° and %¥* such that f is uniformly expanding on ¥ and
uniformly contracting on é* (cf. [N, Theorem 2.2]). That is, for a point p e J, there
are proper, open cones %% and % in the tangent space T,C?, varying continuously
with p, such that

Df(€%) = €Yy, and Df 1B = 65 1y
and such that there is a constant 4 < 1 such that
|Df ~"(v)| £ Alv| for ve Df€}-1,, and (6.5)
IDf ()] < Alv| for ve Df ~ ', , (6.6)

where the length is taken with respect to some Riemannian metric in a neighbor-
hood of J.
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Let us show first that for any neighborhood U of J~q we will have J, < U
if |a — a®| is small enough. For § >0 we may assume by Lemma 6.2 that
K, n{|x] < R} is contained in {|p,(x) — y| < é}. Since ¢ is hyperbolic, there are

finitely many periodic sinks {s;,...,s,}, and intK, is the basin of attraction
of {sy,...,s;}. In fact, for any ¢ > 0 and any open set o = J, there is a num-
ber n such that if k=n, then dist(f*(), {s1,...,s,})<¢ for {eK,— @
1
and | f*()| = >~ for {eC? — (K, v w). Thus f,o has attracting periodic orbits
{81,...,5} F and for |a— a® small, f, has periodic sink orbits
{51(a), . ..., 8(a}}, Whose basins contain g-balls about §;(a). Furthermore, for
kzn, we have dist(/, {s1 8@y <e for {(x, ) xeK, —w,

|pm(x) — y] < 8}, and | f(x, y)l > E for { x, ) xeC — (K, u ), |pulx) — y| <9}

The points satisfying the first inequality are clearly in the interior of K*, and the
ones satisfying the second inequality are in the complement of K*, s0 J, = {(x, y):
X€E @, | pu(x) — y| < 8}. Clearly we may take w and J small enough that thlS open
set lies inside U.

To construct the cone fields, we note that mapping f,. is degenerate, and so for
pel, Dfo(T,C*) = Ty nI. For pel’, we may let €% be a small neighborhood of
T,I',and we extend %", continuously to a ne1ghborhood U of J Thus we will have
Dfﬁ” < €up for p, f(p)e U il |a —a° is small. If we let ((" be any conical

neighborhood of the vector D(f,, 'o...of5 1) , then Df,” 165 < €%, holds

0
ox
whenever p, f(p)e U if |a — a°|, and thus |a,|, is small.

Since ¢ is hyperbolic, we may choose an adapted metric on I' such that
|Dg(v)| > A~ '|v}] for all pel and tangent vectors ve T,I'. We may extend this
metric to the tangent space 7C?|j, by defining it in an arbitrary way on the normal
bundle to I', and then we may extend this Riemannian metric continuously to
a neighborhood U of J, in C?. Since we extended an adapted metric, (6.5) will hold
on U nJ,if|a — a° is small. Property (6.6) holds without hyperbolicity. From the
existence of the cone fields on a neighborhood of J, we conclude that f, is
hyperbolic.

We let 5, denote the set of parameters a®e C’ for which f, is singular and
corresponds to 1-dimensional hyperbolic mapping, and we will let #* = # v A,
denote the parameter values ae C’ such that f, is a hyperbolic diffeomorphism or
a singular hyperbolic mapping. By Proposition 6.5, 3#°* is an open subset of the
parameter space C’, and as in Corollary 6.4, we have

Corollary 6.6. a+— A(a) is pluriharmonic on H*.

Proposition 6.7. Let 5#” be a connected component of extended hyperbolic parameter
space #* such that there is a point a®e # ~ A . Then the Julia set of fpo is
connected if and only if A(a) = logd for all ae #'. Otherwise, A(a) > logd for all
ae A,

Proof. We have seen that a+— A(a) is pluriharmonic on #”. By Theorem 3.2
A(a) = logd so by the minimum principle for harmonic functions, either A is
identically equal to logd on #”, or it is everywhere greater than logd on .
Manning [M] showed that J, is connected if and only if A, = logd = A(a®), which
completes the proof.
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We may view Proposition 6.7 as a characterization of when certain components
A" of hyperbolic parameter space have the property that A = logd on #". In the
case of m = 1, [H] and [FS] showed that if a® ¢ #' n # |, then the topology of J *
is related to the topology of J, for g corresponding to f,. In fact, the intersection of
J* with a transversal is locally connected if and only if J, is connected. Since f, is
hyperbolic, it follows from the local product structure that J * is itself locally
connected in this case. Combined with Proposition 6.7, this gives the result:

Corollary 6.8. Ifm =1, and if #' " # | = F,then Aisequal tologd at some point
in #'if and only if J* is locally connected.

References

[BS1] Bedford, E., Smillie, J.: Polynomial diffeomorphisms of C2: Currents, equilibrium
measure and hyperbolicity. Invent. Math. 87 (1990)

[BS2] Bedford, E., Smillie, J.: Fatou-Bieberbach domains arising from polynomial
automorphisms. Indiana Univ. Math. J. 40, 789-792 (1991)

[BS3] Bedford, E., Smillie, J.: Polynomial diffeomorphisms of C2. 1. Stable manifolds
and recurrence. J. Am. Math. Soc. 4, 657-679 (1991)

[BT] Bedford, E., Taylor, B.A.: Fine topology, Silov boundary and (dd‘)", J. Funct.
Anal. 72, 225-251 (1987)

[Br] Brolin, H.: Invariant sets under iteration of rational functions. Ark. Mat. 6,
103-144 (1965)

[c] Carleson, L.: Complex dynamics. U.C.L.A. course notes 1990

[FHY] Fathi, A., Herman, M., Yoccoz, J.-C.: A proof of Pesin’s stable manifold theorem.

In: Geometric dynamics. J. Palis (ed.). (Lect. Notes Math. vol. 1007, pp. 177-215)
Berlin Heidelberg New York: Springer 1983

[FS] Fornaess, J.-E., Sibony, N.: Complex Hénon mappings in C* and Fatou Bieber-
bach domains. Duke Math. J. 65, 345- 380 (1992)

[FLM] Freire, A., Lopes, A., Mafié, R.: An invariant measure for rational maps. Bol. Soc.
Bras. Mat. 6, 45-62 (1983)

[FM] Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automor-
phisms. Ergodic Theory Dyn. Syst. 9, 67-99 (1989)

[H] Hubbard, J.: personal communication

[HO] Hubbard, J.H., Oberste-Vorth, R.: Hénon mappings in the complex domain.
preprint

[K] Katok, A.: Lyapunov exponents, entropy and periodic orbits for diffeomor-
phisms. Publ. Math. Inst. Hautes Etud. Sci. 51, 137-174 (1980)

[LS] Ledrappier, F., Strelcyn, J.-M.: A proof of the estimation from below in Pesin’s
entropy formula. Ergodic Theory Dyn. Syst. 2, 203-219 (1982)

[L] Lelong, P.: Fonctions plurisousharmoniques d’ordre fini dans C". J. Anal. Math.
12, 365-407 (1964)

L] Ljubich, M.Ju.: Entropy properties of rational endomorphisms of the Riemann
sphere. Ergodic Theory Dyn. Syst. 3, 351-385 (1983)

[M] Manning, A.: The dimension of the maximal measure for a polynomial map.
Ann. Math. 119, 425--430 (1984)

[N] Newhouse, S.: Lectures on dynamical systems, in Dynamical Systems, C.LM.E.

Lectures Bressanone, Italy, 1978. Progress in Mathematics 8. Basel Boston
Stuttgart: Birkhduser 1980

[Pr] Przytycki, F.: Riemann map and holomorphic dynamics. Invent. Math. 85,
439-455 (1986)

[R] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publ. Math. Inst.
Hautes Etud. Sci. 50, 275--306 (1979)

[Sk] Skoda, H.: Sous ensembles analytiques d’ordre fini ou infini dans C" Bull. Soc.

Math. Fr. 100, 353-408 (1972)



420
[Si]
(S]
(1]
[Ts]
(W]

[Yd]
[Yg]

E. Bedford and J. Smillie

Sibony, N.: Iteration of polynomials U.C.L.A. lecture notes

Smillie, J.: The entropy of polynomial diffeomorphisms of C?, Ergodic Theory
Dyn. Syst. 10, 823-827 (1990)

Tortrat, P.: Aspects potentialistes de I'itération des polynomes. Séminaire de
Théorie du Potential, Paris, No. 8 (Lect. Notes Math., vol. 1235) Berlin Heidel-
berg New York: Springer 1987

Tsuji, M.: Potential theory, New York: Chelsea 1975.

Walters, P.: An introduction to ergodic theory. Berlin Heidelberg New York:
Springer 1982

Yomdin, Y.: Volume growth and entropy. Isr. J. Math. 57, 285-300 (1987)
Young, L.-S.: Dimension, entropy and Lyapunov exponents, Ergodic Theory
Dyn. Syst. 2, 109-124 (1982)



