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POLYNOMIAL DIFFEOMORPHISMS OF C°. II:
STABLE MANIFOLDS AND RECURRENCE

ERIC BEDFORD AND JOHN SMILLIE

1. INTRODUCTION

Friedland and Milnor [FM] have shown that from a dynamical point of view
the polynomial diffeomorphisms of C? fall naturally into two classes. The first
class consists of diffeomorphisms with simple dynamics. The diffecomorphisms
in this class have periodic points of at most finitely many periods and topological
entropy zero. The second class contains the well-known Hénon map

fx,y) =,y —ax+e).
The diffeomorphisms in this class have complicated dynamics: in particular,
they have periodic points of infinitely many periods and positive topological
entropy (see [FM, S]).

We can distinguish between these classes by considering the growth of the
degrees of iterates of the difftomorphism. Define deg(f) to be the maximum
of the degrees of the coordinate functions. This quantity is not a conjugacy
invariant of f, hence not a dynamical invariant. We can construct a conjugacy
invariant, which we call the dynamical degree, as follows:

d=d(f)= lim (deg/")"" = lim (degfo---0 /)"

The maps with simple dynamics are those with d = 1. The maps with com-
plicated dynamics are those with d > 1; in the remainder of the paper we will
restrict our attention to this second class.

In studying polynomial diffeomorphisms of C? it is often useful to make
analogies with the theory of polynomial maps of C. If g is a polynomial map
of C then

K={qeC:{g"(q):n=1,2,3,...} is bounded}
is the “filled Julia set,” and the boundary of K is the Julia set, which is de-

noted by J. Analogous terminology for polynomial difftfomorphisms has been
introduced in [HO], where the authors define

KE={qeC: {f™@):n=1,2,3,...} is bounded},
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658 ERIC BEDFORD AND JOHN SMILLIE

and furthermore J* = aKi, K=K'nK ,andJ =J"'nJ . A point p
is said to be periodic if g™ (p) = p for some m > 1. A periodic point p € C
is expanding if |Dg™(p)| > 1. A fundamental result of Fatou and Julia dating
from approximately 1920 is the dynamical characterization of the Julia set as
the closure of the set of expanding periodic points. In this paper we will prove
an analogous dynamical characterization of the sets J =

The stable and unstable sets of a point p are defined as

w'(p)={q: lim d(f"(p), f"(@)) =0},
whp)={q: lim d(f"(), f"(@)=0}.

Let p € C’ bea periodic point with eigenvalues 4, and 4, of Df "(p) labeled
so that [A,| < [A,|. We say p is a saddle if [A,| <1 < |4,|. If p is a saddle
then it follows from the Stable Manifold Theorem that the stable and unstable
sets of p are immersed complex manifolds biholomorphically equivalent to C.
Our dynamical characterization of J * s given by the following theorem.

Theorem 1. Let [ be a polynomial diffeomorphism of C’ satisfying d(f)> 1.
Let p be a saddle point of f. Then J* is the closure of the stable manifold
W*(p) and J~ is the closure of W"(p).

Theorem 1 was conjectured by J. Hubbard. For the special case of hyperbolic
diffeomorphisms this result was proved in [BS1].

A periodic point p is a sink if both eigenvalues of D f"(p) are less than one
in absolute value. If p is a sink, then the set W’(p) is an open set containing p,
which is called the basin of attraction of p. The basin of attraction of a sink is
biholomorphically equivalent to c’ (cf. [RR]), and if d(f) > 1, then it cannot
be all of C2. Proper subsets of C? that are biholomorphically equivalent to
C? are known as Fatou-Bieberbach domains. Some results on the geometry of
Fatou-Bieberbach domains constructed from polynomial diffeomorphisms are
contained in [BS2]. Here we prove

Theorem 2. The boundary of any basin of attraction is J~ .

It is possible to construct polynomial diffeomorphisms with arbitrarily many
basins of attraction. According to Theorem 2 these basins must share a common
boundary. Such examples are reminiscent of the “lakes of Wada” construction
of three regions in the sphere with the same boundary. In such examples the
geometry of the regions is forced to be quite intricate.

Corollary 1. If f has more than one basin component then J* is not an em-
bedded topological manifold at any point.

Proof. Let ¢ be a point of J'. If J* were an embedded manifold at ¢ we
could find a neighborhood U of g sothat U —J" has two components. Since
J* is the boundary of K, the set U—J' must meet the complement of K*.
By Theorem 2 the set U — J* also meets all basin components. Thus there can
be at most one basin component.
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POLYNOMIAL DIFFEOMORPHISMS OF C’ 659

In §5, we discuss recurrent domains, which we define to be connected com-
ponents of intK" with some form of recurrence; basins of attraction are a
special case. We show that all recurrent domains arise either as basins of at-
traction of sinks, Siegel disks, or Herman rings. In the case of a Siegel disk or
Herman ring, we show that f is actually conjugate to the restriction of a linear
map. We also show that the analog of Theorem 2 holds for these domains. In
fact, the setting of recurrent domains seems to be most natural for the technique
of the proof of Theorem 2.

Our approach will be to obtain information on J* by studying the current
u*, whose support is exactly J*. In §§2-4 we show that /ﬁ is the limit of
currents of the form (d~")[f~"M], where M is a certain complex manifold,
and [f~"M] denotes the current of integration over the set f "M . It had
been shown earlier in [BS1,2] that u could be obtained this way when M
was an algebraic subvariety of C?. Here we obtain the more useful result
(Theorem 3) that it suffices to take M to be an analytic disk satisfying rather
minimal hypotheses. Perhaps the main ingredient to the proof of Theorem 3 is
a uniqueness result (Proposition 1) that characterizes u* as the unique positive
closed current supported on J * which has the correct invariance under f, i.e.,
L f*u" = p"*. This is proved in §4.

We determine the nonwandering and the chain recurrent sets for polynomial
diffeomorphisms. These are sets of points in C? that have certain types of
recurrent behavior. The case of diffeomorphisms that do not preserve volume
appears in §6. The volume preserving case appears in the appendix. In the
appendix we also discuss Siegel disks and Herman rings in the volume preserving
case.

2. CONVERGENCE TO 1

Polynomial diffeomorphisms of C? necessarily have polynomial inverses
and are often called polynomial automorphisms. According to [FM] an au-
tomorphism f with d(f) > 1 is conjugate to an automorphism of the form
f=fio---of,  where each fj is a generalized Hénon mapping, which has the
form

[ix,y)=,p;(y)—a;x),
where p i (y) is a polynomial of degree at least 2 and a ! 1S a nonzero complex
number. Without loss of generality we will assume that our maps are not simply
conjugate to maps of the form f = f o---0 f but are actually equal to maps
of this form. For such maps d(f) = deg(f) = [[deg(f;). We note that the
Jacobian determinant J(f) is constantand é = [[a ;- In this paper we typically

assume |d| < 1. The case |d| > 1 can be treated by replacing f by f —LIf

*Added in proof: Related results have been obtained by J.-E. Fornaess and N. Sibony in their
preprint Complex Hénon mappings and Fatou-Bieberbach domains. In particular, they give a general
uniqueness theorem for positive, closed currents 7 satisfying d -1 f*T =T, subject to a condition
on the support of T .
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660 ERIC BEDFORD AND JOHN SMILLIE

|6] < 1 then it is easy to show (see [FM]) that K~ has no interiorso K~ = J .

There is a filtration for f as discussed in [BS1]. We recall some of its
properties here. We can write C° as a disjoint union C=vurvtur .
The set V'~ has the property that f(V~) C ¥V~ so once a point enters V'~
it remains in V'~ . Furthermore f"(p) diverges to infinity as n — oo if and
only if f"(p) € V~ for some positive n. The set V' has the property that
vty c vt and f"(p) diverges to infinity as n — —oo if and only if
f"(p) e V' for some negative n. The set V is compact. Since K is a closed
subset of V', the set K is compact.

We will at times find it convenient to pass to higher powers of the mapping
f. Tt follows from the observations above that the sets K~ are unchanged if
we replace f by f” for n>1.

The function

G*(x,y) = lim (d")log" |/~ (x, y)|
gives the rate of escape of the orbit of (x, y) to infinity in forward/backward
time. G is continuous on C2, G* is pluriharmonic on {Gi > 0}, and
K* = {Gir = 0} . This serves as the Green function for K= with logarithmic
singularity at infinity, and it satisfies the functional equation
1 _+
(1) 70U

We will make use of the operator dd° = 2i9d where

- o’ _
88: Z Wdz}/\dzk.

1<), k<2

+1 +

)=G

We define the current ui = dd“G™ , and the support of ui is exactly J *
We may view equation (1) in terms of the pull-back of G under f=. Thus it
is natural to consider the equation

é fil*ﬂi _ ui
for the pull-backs of ui, where we define f *ui =dd(f *Gi). These facts
are contained in [BS1].
Let M denote a locally closed complex submanifold of Cz, i.e., for every

g € M "there is an open ball % in C? about q such that M N.% is a closed
submanifold of % . The currents ,ui induce measures on M by

©F),, = (dd),, (G,

where (dd®),, denotes the operator dd‘ acting intrinsically on M and G*|,,
is the restriction of G to M.
We will consider locally closed submanifolds A C C? of the following types:
(i) McJ" or
(i) M C X, where X is algebraic .
Theorem 1 will be a consequence of a characterization of the currents ui .
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POLYNOMIAL DIFFEOMORPHISMS OF C? 661

Theorem 3. Let M be a locally closed complex submanifold satisfying (i) or (ii)
above, let y denote a test function on M , and set ¢ := [,, xu" |, . Then

Jlim (@) " (M) =

where f*"[M] denotes the current of integration over f~ "M and the convergence
holds in the sense of currents.

This result was obtained already in [BS1,2] in the analogous case where M
is an algebraic variety and y = 1.
We will use Theorem 3 to prove Theorem 1.

Proof of Theorem 1. As in Proposition 5.1 of [BS1], it follows that W*(p) c J*.
Let M, be an open subset of W?(p) that contains the saddle point p and is
locally closed in C’. Since |Df(p)v| = |A,v]| if v is a tangent vector to wW*(p)
at p, it follows that f _"IWs(p) is not a normal family in a neighborhood of
p in W’(p). Thus p lies in the closure of {gq € M, : G (q) > 0}. By the
maximum principle, G| M, cannot be harmonic in a neighborhood of ¢, and

thus ¢ is in the support of the Laplacian (dd°) MOG_I M, It follows that
(2) W]y (M) = (], )G ], >O.

By Theorem 3 then, we know that the currents of integration (d~")[f _”MO]
converge to a current whose support us all of J * . On the other hand, it is
evident that the support of the limit current is contained in the closure of
W(p) =U, /™ "M, , which completes the proof.

The hypothesis that f has a saddle point is satisfied for all polynomial dif-
feomorphisms with d(f) > 1. In fact,

o If d(f) > 1 then f has infinitely many saddle points.

This follows from the formula of Katok [K] relating saddle points and entropy
in two dimensions (see also the discussion in [FM, §4]). Theorem 1 together
with the observation above gives a new proof of the connectivity of J *  which
was proved in [BS1].

3. CLOSED CURRENTS

Let M denote a manifold satisfying the hypotheses of Theorem 3, and let x
denote a test function with spt y N M compact. Without loss of generality, we
may assume 0 < y < 1. Let [M] denote the current of integration over M , and
let #(x[M]) denote the set of all positive (1, 1)-currents that are obtained as
limits (in the sense of currents) of subsequences of the set {(d~")f" (x[M]) :
n=1,2,3,...}. The proof of Theorem 3 then, is equivalent to showing
that .#(x[M]) consists of a single element cu™ . It is immediate that the set
F(x[M]) satisfies

S P (IM]) = F (xIM]).
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662 ERIC BEDFORD AND JOHN SMILLIE

In case (i) M c J', and it is evident that the currents of .#(y[M]) are
supported on J*. In case (ii) M is contained in an algebraic variety X, so
x[M] < [X]. By [BS1,2] then, the elements of .(x[M]) are all dominated
by a constant times x*. So in this case, too, the elements of .#(x[M]) are
supported on J*.

This section will be devoted to showing that ~(x[M]) consists of closed
currents. Applying Corollary 6.2 of [BS1], we have
(3) lim d™"4, = E%Area(D)u |,y (M) >0,
where D C C and M, CC M are open sets, n (x, y) = x is the projection
to the x-axis, and 4, denotes the area (with multiplicity) of the projection of
n;l(D) N f~"(M,) to the x-axis. A similar estimate involving the projection
to the y-axis shows that the currents (¢~ ")[f~"M,] have uniformly bounded

mass on compact subsets of Cz, and so any subsequence of this sequence has
a further subsequence that converges to a nonzero element of . (y[M]). In
particular, &Z(x[M]) is nonempty.

We may also consider M, = {y >a} N M, and so we have

e [anly= | dau”l,, (M),

Applying this to (3) as in [BS1], we obtain
3) lim d”"(x, " ([M])(D) = 5 Area(D).

Let us recall that the mass norm of a (1, 1)-current 7 is given by
MI[T] = sup [T(9)|,
lpl<1

where ¢ is a test form, |[p(x)| denotes the euclidean length of ¢(x), and
lp| = sup, |p(x)|. If T denotes the current of integration over M then M[T]
will denote the two-dimensional measure of the manifold M . Since M is a
one-dimensional complex manifold, f™"| » 1s a conformal mapping of M to

f7"(M). Thus the (two-dimensional) jacobian determinant of f~"| A 18 given
by |Df " M[2 . We may estimate the mass norm of y[M] by

ML/ (x[MD] = Mz o /"1f " M)
_ o no_ —n 2
—/f_nMx 7= [ apr Tl

We will also be interested in the amount of mass that lies inside a fixed set
of the form n;l(D) for some bounded open set D C C. The amount of mass
in this set is

* -1 2
MU ) L O = [ dDf P

n

where we use the notation
. —n _ —1
M, =Mnsptynf "z D.
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POLYNOMIAL DIFFEOMORPHISMS OF C? 663

Lemma 1. lim,__ (d"")o[f™ (xIM])] = 0 holds in the sense of currents. Thus
the elements of . (x[M]) are closed.

Proof. Tt will suffice to show that the total mass of (d~")8 f.'(x[M]) on the set
n;lD tends to zero, i.e.,

. - -1
(4) lim (@™ )M[(0/™" (x[M])) L =, D} =
As above, we may compute the mass norm as

ML/ (rMDI L 7' D) = sup [ B}
lol<1J f~"Mnspt xNn, ' D

= sup / o NdxID(f™"|,,)l.

lol<1J M,

o Nd(f"x)
(5)

We estimate the mass in the current in (5) to obtain

ML/ (AMDIL 7 D<o ndyl [ DS

2 12 2
<c([ 1wrt) cd™,
Mn

where the second inequality follows from the Schwarz inequality, and the last
follows from (3) and (4). Thus we have (6), which completes the proof.

(6)

4. A UNIQUENESS THEOREM

For a closed (1, 1)-current v we use the notation
3P =y taxndy, 2"V =vL Ldxndx, et
Since v is closed, we have the relations
(7) o0 (x,¥) 3_ (x X) 8x”(y »¥) 6_~(y »X) . etc.

Let w(x, y) be a nonnegative real-valuqd function with support in the unit
ball such that [w =1 and w(x, y) = w(e'x, e”y) for all real 6, . Setting

w.(x,y) =€ My(x/e, y/e),

we see that {y_} is a usual family of smoothing kernels. For ¢ > 0 and
v e F(x[M]), we set v. = y_x*v. Thus for any bounded set D C C we see

that spt v, N n;l (D) is bounded. If v, is smooth then I/(’v ¥) is represented
by a smooth function times Lebesgue measure. Since the support is bounded in
the y-direction, we may define the function

(8) U, (x. ) / logly — |57 (x, £ (d¢),

where & 2(dé) denotes Lebesgue two-dimensional measure in the variable & .
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664 ERIC BEDFORD AND JOHN SMILLIE

Lemma 2. dd‘U, =
Proof. We can write the operator dd° as
dd* = 2i(0,0,dx NdX + 0,0;dx Ndy + 8,0:dy AdX +8,8;dy A dY).

It is clear that 9,9, U, 7YY since (2/n)log|y| is the fundamental solution
for 0,0; (Wthh 1s 1 / 4 times the usual Laplacian in the y-variable). Next we
compute the 00, and 00, derivatives. By (7) and (8) we have

0.U, =2 [ togly ~ clo, o V@
=2 [togy—¢lo, V) = & [ -0 o @),

where the last equality is an integration by parts, which is valid since the measure
~)(cx ") has compact support.

Applying 9; to this equation, we obtain
1 1,4 ~(x.,7
00U, =7 [w-0"ol @)
1 -1, ~(x,%
=2 [o-o7'000 P e,

(-%) is compactly supported, we may integrate by parts in the y-variable

Since U,
and use the fact that y_1 is the fundamental solution for 67 and thus find that
80U  =0v%,

XX "V,€
A similar argument takes care of the 8)—,8x derivative, which completes the

proof.

Now let us estimate the size of U, . We note that U, is pluriharmonic on
sets of the form {|y| > R, [x| < p}i and U, (x, ) grows like v(x)log|y| +
O(1) for fixed x as y — oo. Then it follows that the O(1) term is a bounded
pluriharmonic function on this set. Thus y(x)log|y| is plurlharmonlc and so
(x) = 7 is constant. It follows that the total mass of #”°”) on any vertical

slice {x = x,} is equal to 27y . Further, if the support of the slice is contained
in {|y| < R}, then for |y| > R we have

9) ylog(ly| = R) < U,(x, y) < ylog(]y| + R).
By the concavity of the logarithm function, this yields

(10) ylog|y| —

for |y| > R.

R
RS U (x,y)SJfloglJJIJrTy—I

VI-R |
Lemma 3. The functions U, are monotone increasing in €. If we set U, :=
lim_, U, , then U, is plurisubharmonic and dd°U, =v .

Proof. Let us consider a second smoothing v_ , := (v,) * ¥, . It is evident that
U =wy;xU =y, x UV(; . If U is a psh function then U * y_ is monotone

€,0
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POLYNOMIAL DIFFEOMORPHISMS OF C* 665

increasing in € and U * y, decreases to U as € decreases to 0. Thus after we
let 0 decrease to zero, we see that U, is increasing in €.

Now, if we let € decreaseto 0, we see that lim,__,, U, decreases to an upper
semicontinuous function, which is psh if it is not ideniically —oo. However,
the estimates (9) and (10) hold for v, independently of ¢, and thus the limit
is psh. Since the sequence is monotone, it follows that U, converges to U,

locally in L'. Thus v =lim__ v = dchV .

e—0 "€

Lemma 4. For v € (x[M]) the function U, is the unique psh function of
logarithmic growth such that dd°U, = v .

Proof. If V is any other function with logarithmic growth satisfying dd‘V =
v, then V — U is a pluriharmonic function with logarithmic growth. This
function is then constant along all vertical and horizontal slices and thus con-
stant.

Lemma 5. If . € #(x[M]), then v = (d™")f" A € P (x[M]) and U o [" =
d"Hu,.
Proof. We calculate

dd‘(U,o f')=dd‘(f""U,) = f7dd°U, = A= (d"),
and the lemma follows.
Lemma 6. For (x,y) ¢ K* and v € #(M,), G (x,y)=U,(x, ).
Proof. We will use the notation (x,,y,) = f"(x,y) and v, = (d ") f"v
Thus by Lemma 35,

U,(x,y)=U, (X, 9,)

Now we apply (10) and use the fact that it holds independently of the choice
of v, € (M) to obtain

_ YR _n YR
d "logly | - ——2— < U, (x,y)<yd "logly, |+ =
Y gy, TR = Ul y) <y gy, ;

al — R, al

Now there is a constant C such that [y, | > C+(xn|d'/C forn=1,2,3...
(cf. [BS1]). Furthermore, C may be chosen such that

d
JUc{(x, y) e lxl + C 2 y[*/CY
Thus for n large we may take R, < C(lxnll/d
if necessary, we have

m+1), and choosing C still larger

@dd,)”"
R, <C(ly,I™"

+1).
This gives
-1
U, (x,y) - ?(d—n)logiynn < Clyn|(d1dm) -1 ’

and so we have U, (x,y)=7G"(x,y).
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666 ERIC BEDFORD AND JOHN SMILLIE

Proposition 1. Let . denote a set of positive, closed currents with the properties
() spt vcJ' forall ve.%, and
(i) /¥ =8S.

Then for each v € % there is a real constant ¢ such that v = cu* .

Proof. Let us choose v € . We will show that U, =0 on dK*. By Lemma

6, we know that U, > 0 on OK* . Let us fix (X5, ¥y) € OK*. By Lemma 5,
we have

(1 1) U,,(x() s yo) = (d_n)Ulngn(xoa yO) )

where A, = (d"")g™v. Since (x,,,) belongs to K', the forward orbit
{8"(x,, ¥o) : n > 0} stays bounded. Now (10) is independent of v € (M),
so the right-hand side of (11) is (4~ ") times a bounded quantity, and so we
conclude that U, (x,, y,) =0.

Finally, since the support of v is contained in J*, U, is pluriharmonic on
cl-Jt. Applying the maximum principle to U, on a vertical slice and using
the fact that U =0 on J', we see that U =0 on K. Thus U, = yG",

and it follows that v = yu™ .

Proof of Theorem 3. Let M satisfy the hypotheses of Theorem 3, and without
loss of generality we may assume that y > 0. By Lemma 1, the set (M)
consists of positive, closed currents with support in J* . Then it follows from
Proposition 1 that lim d-")f"(x[M]) = yu" for some real constant 7.
Now we observe that

E =0 AMI=@ " AML = AT M

Letting n — oo, we see that this converges to yu~ A u* (see [BS1, Lemma
6.8]). However the total mass of xu |,, is ¢ and the total mass of AU is
47* , so we see that y = c/47t2 .

ool

5. RECURRENT DOMAINS

In this section we restrict ourselves to the case where the complex Jacobian
of f is 6 with |d| < 1, 1.e., f strictly contracts volume. Our idea is to look
at a component Q of intK" that exhibits some form of recurrence, and show
that in this case Q contains either a sink or a rotational domain and that Q is
precisely the set of points attracted to this sink or rotational domain.

Definition. Let Q be a connected component of int K*. We say that Q is
recurrent if there is some point p € Q and some compact set C C Q so that
f"(p) € C for infinitely many positive values of 7.

It is straightforward to show that

o If Q is recurrent, then Q is actually a periodic domain.

A recurrent domain is thus a periodic domain such that not all points tend
to U, foQ.
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POLYNOMIAL DIFFEOMORPHISMS OF C? 667

We recall the following standard definition. The w-limit set of a point p,
written w(p), is the set of g for which there is a sequence n; — oo such
that f"(p) — q. The set Q is recurrent if and only if Q has a nonempty
intersection with some set w(p).

We also have:

o If Q is a recurrent component of int K™ then QnJ~ #0.

This is easily seen. Let p be a point so that w(p) intersects Q. The set
w(p) 1s invariant and contained in the set V' (see discussion in §2). It follows
that w(p) consists of orbits bounded in backward time, thus w(p) C K~ =J .

By a Siegel disk we mean a set of the form & = ¢(A), where ¢ : A — &2
is an injective holomorphic mapping of the disk A ¢ C with the property that

(12) S(9(0) = p(af)

holds for a = '™ for some irrational a, and for all { € A. It follows from the
fact that the zeros of D¢ are isolated and from (12) that ¢ is nonsingular at
all points other than zero. In Proposition 4 we will prove that ¢ is nonsingular
at zero.

A Herman ring is a set of the form # = ¢(A4), where ¢: 4 — C? is an
injective holomorphic mapping of the annulus 4 = {{ € C: r; < [{| < 1}
such that (12) holds. The previous argument shows that /# is a nonsingular
complex submanifold of .

We will refer to Siegel disks and Herman rings collectively as rotation do-
mains. We use the symbol % for rotation domains. We note that %Z Cc K .

Lemma 7. If M is a bounded, connected, one-dimensional complex submanifold
of int K with f(M)= M, then M is recurrent if and only if it is a rotation
domain.

Proof. It is clear that a rotation domain is recurrent. Conversely, if M is
recurrent, there exists a point p € C? such that q = limj_,Oo f(p) e M.
Passing to a subsequence if necessary, we may assume that m,=n,, —n;
tends to infinity as j — oo. Since {f"} is a normal family in a neighborhood
of ¢, we have |Df"| < const in a neighborhood of g . Thus

|/ ) = @) = 1™ () — £ (q)
<IDS™1f"(p) — 4| < const|f™ (p) — q
if j is sufficiently large. Thus lim ___ f "i(q)=q.

Since M is bounded, {f"|,,} is a normal family in the sense that each
sequence {f™| u} 18 either compactly divergent of has a normally convergent
subsequence with alimit 2: M — M . Theset £ of all holomorphic mappings
h: M — M that arise as limits to subsequences of {f™|, } is a subset of
Aut(M) . This is seen because if £ € &, then h(q) € M, and thus h: M — M ;
so by a theorem of H. Cartan on the limits of automorphisms # € Aut(M).

By the same argument, & is a compact subgroup of Aut(M). To see this,
suppose that lim oo ikl » = h. Then pass to a subsequence so that m 1T
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2m

2m; — oo and h = lim oo 117%™ exists. Thus it is evident that hh = id,
so h=h"".

Now it was observed in [FM] that the fixed point set of f” is finite, so f*|,,
cannot be the identity on M for any p > 0. It follows that & (and thus
Aut(M)) is an infinite group, and so the Riemann surface M must be equiva-
lent either to the disk or to an annulus. In either case, since f|,, generates an
infinite group, it must be conjugate to an irrational rotation on the disk/annulus.

We will show in Proposition 6 that f may be linearized in a neighborhood
of a Herman ring; here we perform the first step in that direction. Since #
is nonsingular, ¢ := (¢, ¢,) satisfies ((a'I(C) , (0'2(5)) #(0,0) forall e 4=
{r, <I¢| < r,}. Thus there exist holomorphic functions v, , ¥, € &@(A4) such
that

(13) v (O(=05(0) + ¥, (D1 (O) =1 forall { € 4.
We consider the mapping
(14) s(&,m) = (9,(0) + ny(0), 9,(0) +nw, (L)),

which is defined for ({,7n) € A x C. By (13) it is clear that s is a local
diffeomorphism in a neighborhood of 4 x {0} and

/
9, v
Ds(¢,0) = ( ! 1).
(€, 0) o, v,
Thus the determinant of Ds is 1 on 4 x {0}, and so there is a neighborhood
A of Ax {0} such that the mapping F := st fs is defined and the following

hold:
F(£,0)=(al,0),
F .V — F(/) is a diffeomorphism,
det DF({, 0) =6.

Since F(4 x {0}) = 4 x {0}, there is a function F, ,({) € &(4) such that
_ (e F )
prc.0= (5 it
holds on 4. Thus

2
F(l, n)=(al+nF (), on/a)+0(n")

holds for { € 4. Without loss of generality we may assume that F | is

bounded on 4. Since || < 1, we may apply the Contraction Mapping Principle

on the space H”°(A4) to obtain a unique solution h, g to the functional equation

0 1

(15) hl,l(C)—?hlJ(aC):—_&’Fhl(C)-

Thus if we define 1
RO, n) = (& +nhy (0), ),
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we have
Foh'" =MoL + 0%,

where L({, n) = (af, dn/a).
Thus we may assume that

(16) F(, n) = (o, dn/a) + O(1°).

If 4, is an annulus with 4, C Zo C A, then there exist numbers € and M
such that if { € 4, and |n| <€ then ({', n') = F({, n) satisfies

' —all < Mn|> and 7| < |6n|+ My’

Let ({,,n,) = F"(CO, 1,) denote the forward orbit of ({,, 7,). It is evident
that for {, € 4, |n,| may be chosen sufficiently small that |»,| will tend to
zero sufficiently rapidly that {, € 4, forall n=1,2,3,....

Proposition 2. Every rotation domain is contained in int K™ .

Proof. If # is a Herman ring then the proposition follows from the argument
given above. If & is a Siegel disk then let us write & = ¢(A) and #Z =
@(A — {0}). Since # is a Herman ring, we have # C int K. Consider
2" = ¢{|¢| < 1/2}, and note that dist(p2’, pint K*) = > 0. Thus if we
make a euclidean translation 2’ +v of 2’ in a direction v with |v| <&, then
8(2' +v) cint K*. For each v there is a constant C such that || < C
for all points of 82’ +v and all n > 1. Now we may apply the maximum
principle to f"|2’ + v and conclude that {f" : n = 1,2, 3,...} remains
bounded at all points of 2’ +v for |v| < J. So we see that 2, and thus 2,
is contained in int K.

Proposition 3. Let Q be a connected component of int K that is recurrent and
has period m. Then one of the following occurs:

(i) There is an attracting fixed point p € Q for f", and Q is the basin of
attraction of p under ™.

(i) There is a retraction p: Q — Q onto a smooth subvariety & = p(Q)
that is invariant under f" . Further, 2 is either a Siegel disk or a
Herman ring.

Proof. By replacing f by f", we may assume that f(Q) = Q. Since Q
is recurrent, there exists p € Q and a sequence n; — 00 such that f™(p)
converges to some point in Q for some fixed p € Q. The iterates {/"|,}
form a normal family of automorphisms of Q. Let g : Q — Q denote the
limit of a subsequence of these iterates. It is immediate that fg = gf. Since
f decreases volume, the map g must be degenerate, i.e., it must have rank
either 0 or 1. The set QN f(Q) is recurrent and thus a rotation domain by
Lemma 7. By Proposition 2 then, we conclude that f(Q) C Q.

By [B] g has the following structure: there is a retraction p: Q — Q such
that M := p(Q) is a smooth subvariety, and there is an automorphism y €
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Aut(M) such that g = w o p. Then it follows that gQ = pQ = M and
fM=M.

In case g has rank 0, g is a constant mapping and M is a fixed point for
f. Since Df"(p) converges to zero, it follows that the eigenvalues of Df(p)
must be less than 1 in modulus, and thus p is a sink. Let U be the basin of
attraction of p. Let ¢ € Q. Since U is a neighborhood of p there is some
n so that f"(q) € U. But this implies that ¢ € U. So Q is the basin of
attraction of p.

In case g has rank 1, the proposition follows from Lemma 7, which com-
pletes the proof.

A Herman ring # = ¢(A4) with 4 = {0 =r, < |{| < r,} is bounded since
# C K, and thus extends to a Siegel disk & = ¢(|{| < r). The following
proposition shows that there is no “punctured Siegel disk,” or equivalently,
every maximal Herman ring has 0 < r, < r, < co. This answers a question
raised by Milnor in [Bi]. Siegel disks, however, may be singular in the volume
preserving case (see the Appendix).

Proposition 4. A4 Siegel disk & is a nonsingular submanifold of Cc’.

Proof. By Proposition 3, & C int K*, and there is a retraction p: Q — Q.
It follows that M := p(Q) D &, and the nonsingularity follows from that of
M.

In the sequel we will assume that rotation domains are maximal with respect
to inclusion. Thus we may write a Herman ring as Z = ¢(A4) with 4 = {r_1 <
|{| < r}. There is a dichotomy between the cases of rings and disks given by
polynomial convexity. (Recall that a compact set X is polynomially convex if
X=A{ze€ c*: lp(z)| < |p|y for all polynomials p}.) Let y be a real-analytic
closed curve with fy=1y.

o If v is polynomially convex, then y is contained in a Herman ring. Other-
wise, y is in a Siegel disk.

(Since y is real analytic, it has a maximal complexification, M , which sat-
isfies fM = M . Since f must act as a rotation on M , it follows from Propo-
sition 2 and Lemma 7 that A contains either a ring or a disk. If y liesin a
Siegel disk, it is clearly not polynomially convex. Conversely, if the polynomial
hull 9 is nontrivial, i.e., # —y # 0, then y —y is an f-invariant subvariety of
c’ - y. Since $ — y must coincide with A near p, it is clear that y — y is a
Siegel disk.)

Since a = e'™® with a irrational, a maximal ring satisfies

e¢ cannot be continued analytically beyond any point of 0A.

(For suppose that ¢ extends to a neighborhood of re'% . Then choose n
such that 0 < 2na + 6, -6, < € (mod 2). #Z = ¢(A4) is again a Herman
ring for f", with a replaced by o" = ¢"“. But the functional equation

(12) permits us to extend ¢ to a neighborhood of re'®" , which contradicts the
maximality of H .)

a
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If X is any set, we recall the standard notation

W (X)={q:d(f"(q), f"(X)) = O}.

Proposition 5. Let X denote either a sink or a rotation domain. Then the stable
set W*(X) is a recurrent connected component of int K *.

Proof. Let X = {p} be a sink. It is clear that W°(p) is a recurrent, con-
nected open set. Let Q denote the connected component of int K™ contain-
ing W*(p). If Q # W*(p), then choose g € QNaW’(p) andlet BC B C Q
be a neighborhood containing ¢ . The iterates {f"| g} form a normal famlly,
SO a subsequence { ) g} converges to a holomorphic mapping g : B — .
Since g(B N W*(p)) = {p}, it follows that g(B) = {p}. So B c K", and thus
Q=w'p).

If Z# is a rotation domain, then by Proposition 3, % C intK * . Let Q be
the connected component of int K™ containing .%Z . Then by Proposition 2,
there is a retraction p and a subvariety & = pQ, which is a rotation domain.
It is evident that & D %, and so & =% by the maximality of % . By the
previous paragraph, we have Q = W’(X), which completes the proof.

Now we will complete our linearization of f in a neighborhood of a Herman
ring. We will show that there exists a local diffeomorphism H({, n) that is
defined and holomorphic in a neighborhood of 4 x {0} and such that

(17) HoF=LoH.

By Proposition 5, there is a recurrent component £ of int K * and a retrac-
tion p of Q onto # . Transplanting via the map s, we may assume that p
1s defined in a neighborhood of A x {0}. We consider mappings of the form

(18) HE, n) =) n+0h(C, ),

where £ is analytic in a neighborhood of A4 x {0}. We note that the first
component of equation (17) i1s p(F) = ap({, n), which holds independently
of h since p and F commute, i.e., pF = Fp.

Since F has the form (16), we may write it as

In this notation, the second component of the equation (17) is

2 )
nhy+ (S +n'sy) h(F)= Nk,
which is equivalent to

2
(19) h—g(l+%nf2) h(F):i—fz.

Let /#° denote a neighborhood of 4 x {0} where F and p are defined, and let
A4, C Zo C A be arelatively compact subannulus. If we set D = ,0_1 (Ay)n{Inl <
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c}, then for ¢ > 0 sufficiently small, D C # and F(D) C D. Thus the
composition operator

Cp: H”(D)—» H*(D)
given by Cp(f) = ho F is defined, and ||Cp|| = 1. Now choose ¢ small
enough that

2
C
10| (1 + |—5—I]|f2]|Lm(D)) <1

Then by the Contraction Mapping Principle there exists a unique solution 4 €
H®(D) of (19).

The function H defined by (18) is a local diffeomorphism in a small enough
neighborhood of A4 x {0} and so satisfies (17). The mapping 4 := H os™' then
satisfies

hof=Loh
in a neighborhood of # . Iterating the functional equation % = L 'oho f, we
have A= L "oho f", which we may use to extend the domain of definition of
% to the basin of attraction Q = W*(#) of # . Similarly, we may extend B!
to the basin of attraction 4xC of Ax{0} for L, so we obtain a biholomorphic
mapping
h:Q— AxC.
We may summarize the preceding discussion as follows.

Proposition 6. If % is a Herman ring, then there is a biholomorphism h: W*(#)
— A x C with the properties:

(i) h(#)=A4x{0}, and
() f=h"'oLoh, where L({, n) = (a, (, Bn/a).

We remark that the linearization of a Herman ring applies equally to a Siegel
disk.

Corollary 2. Let % denote a rotational domain. Then the component of int K™*
containing X is given by Q= .5 W*(x).

Corollary 3. If Q is a recurrent component of int K", then Q is biholomorphi-
cally equivalent to C?, AxC, or AxC. In the last two cases, flg is conjugate
to the restriction of a linear map.

The case of C° corresponds to an attracting fixed point, and it is classical
(cf. [RR]) that f may be conjugated on Q to a mapping in “normal form.” If
there are no resonances between the eigenvalues of D f at the fixed point, then
the normal form is in fact linear.

We end this section with a discussion of boundaries of periodic domains.*

*Note added in proof: Mappings with fixed point of the form f(x,y) = (x + P4, by
+--+), for |b] < 1, have been studied by T. Ueda in a recent preprint Local structure of analytic
transformations of iwo complex variables. 11. For such f he considers the domain Q of points

which converge locally uniformly to (0, 0) as n — +oo. He shows that QN K~ # &, and so it
will follow that 8Q = J* by Proposition 7.
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Proposition 7. Assume that |6| < 1. Let U be a periodic component of int K*
that has a nonempty intersection with K~ . Then 80U = J*.

Proof. By replacing f by a power we may assume that f(U) = U. An easy
argument gives U c 8K' = J*. We will show the opposite inclusion U D
J".Let ge UNK™ . Since [d| < 1 the set K~ has empty interior. Thus we
can find a disk D that: (1) is contained in a complex line, (2) contains q, (3)
is contained in U, and (4) is not contained in K~ .

By the maximum principle, G™ |, cannot be harmonic in a neighborhood of
q, and thus ¢ is in the support of the Laplacian (dd°) pG |p. It follows as
before that

.u_|D(D) = (ddch)G_lD > 0.

Since D 1is contained in an algebraic variety, Theorem 3 tells us that the
currents of integration (d~")[f~"D] converge to a current whose support is all
of J*. On the other hand, it is evident that the support of the limit current is
contained in the closure of (J, f~"D. Thus J * is contained in the closure of
U , which completes the proof.

Theorem 4. If X is either a sink or a rotational domain then dW*(X) = J" .

Proof. W*(X) is a connected, periodic component of intK* with W*(X)n
K~ # . Thus the theorem follows from Proposition 7.

Proof of Theorem 2. 1t is clear that Theorem 2 is a special case of Theorem 4.

6. THE NONWANDERING SET AND THE CHAIN RECURRENT SET

In this section we determine the nonwandering and the chain recurrents sets
for the map f when f strictly contracts volume (that is to say |d| < 1). We
begin by proving some results that do not use the hypothesis that |d| < 1.

A point p € c’ belongs to the nonwandering set if and only if, for every
neighborhood U of the p, there is an n such that g"(U) intersects U. A
point p € C’ belongs to the chain recurrent set if for any € > 0 there exist
points x; = Xx, Xx,, ..., X, =x (n depends on ¢ ) such that d(f(x,), X 1) <€
for 1 <i<n-1. These sets are closed and invariant. The nonwandering set
is always contained in the chain recurrent set.

Lemma 8. If p, € J* and p, € J then for any neighborhoods U, of p,
there is an n such that ["(U))NU, # @. In particular, J is contained in the
nonwandering set.

Proof. We can construct a linear disk D in U, that contains point in J * and
points in the complement of K*. As in the proof of Theorem 1, the sequence
of currents defined by (d~")[f" D] converges to a nonzero multiple of x~ . The
support of the current x4~ is equalto J~ so U, f "(D) must meet U, .

Before we begin the calculation of the nonwandering and chain recurrent sets
we resolve a question from [BS1].
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Theorem 5. The following are equivalent:

(i) f has a hyperbolic splitting over the chain recurrent set,
(ii) f has a hyperbolic splitting over the nonwandering set,
(i) f has a hyperbolic splitting over J .

Proof. That assertion (ii1) implies (i) was proved in [BS1]. Since the chain
recurrent set contains the nonwandering set, (i) implies (ii). By Lemma 8 the
nonwandering set contains J so (ii) implies (iii).

Each item in Theorem 5 could serve as a definition of hyperbolicity for poly-
nomial diffeomorphisms. In [BS1] we adopted item (iii). According to the
theorem this is equivalent to items (i) and (ii), which seem to be more natural
definitions from a dynamical point of view.

For the remainder of this section we make the assumption that |J| < 1.
Since the nonwandering set and chain recurrent set for f are the same as those
for f - , the following theorems also apply when || > 1 with the appropriate
substitution of the word “source” for the word “sink.”

Theorem 6. When |6| < 1 the nonwandering set of f is the union of J, all
rotational domains and all sink orbits.

Proof. By Lemma 8, the nonwandering set contains J. On the other hand, the
nonwandering set is contained in K . It suffices to show that the intersection
of the nonwandering set with each component of intK" is as described in
the statement of the theorem. It is easy to see that the intersection of the
nonwandering set with a nonperiodic component of int K" is empty. Consider
next the case of a recurrent component. The intersection of the nonwandering
set with a domain that contains a rotational domain is the rotational domain (all
other points are attracted to the rotational domain). The remaining possibility is
that the component is periodic but not recurrent. Let Q be such a component.
Let p € Q. Let U be a neighborhood of p such that the closure of U is
compact in Q. If there is a sequence n; such that f "(U)NU # @, then using a
normal families argument, we can find a subsequence m; so that f " converges
uniformly on compact subsets to a mapping g : Q — Q. If g(Q)N(Q) # T,
then Q is recurrent, so we conclude that g(QQ) C Q. But this contradicts
the assertion that f™ (U) intersects U for every i, and we conclude that the
intersection of the nonwandering set with Q is empty.

If p is a sink we will use the term punctured basin to refer to the set W*(p)—

{r}.

Theorem 7. When |6| < 1 the chain recurrent set of f is equal to the set of
bounded orbits (in forward /backward time) not in punctured basins.

Before we give the proof we introduce some notation. We have defined w(p)
to be the set of g for which there is a sequence n, — oo such that f "(p) = q.
We define a(p) to be the set of ¢ for which there is a sequence #; — —oo such

that f"(p) — q.
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Proof. 1t is clear that the chain recurrent set is contained in K and that it
contains no points in the punctured basin. It follows from Lemma 8 that J
is contained in the chain recurrent set. It remains to consider points in the
interior of K* that are in K~ = J~ and not in basins of sinks. Choose such
apoint p. The o and w limit sets of p are compact and invariant. If either
is contained in int K* then the component of p contains a compact invariant
set and thus is a recurrent component.

Assume first that p is not contained in a recurrent component. So «a(p)
meets J*. Since a(p) is contained in J~ we conclude that a(p) meets J .
Since w(p) is not contained in int K™ it intersects J*. Since w(p) consists
of orbits bounded in backward time, w(p) is contained in K =J . So we
conclude that w(p) meets J. Given € > 0 we can construct a periodic €
pseudo-orbit containing p as follows. We can find an » < 0 and an m > 0 so
that f"(p) and f"(p) lie within € of points ¢, and g, of J. Using Lemma 8
we can construct an € chain connecting g, to g, . Concatenating these chains
gives an € chain from p to itself.

We now consider the case in which p is contained in a recurrent component.
Proposition 3 shows that «(p) is disjoint from the orbit of the component. It
follows that a(p) C J. The set w(p) is a point in a Siegel disk or Herman ring.
Given € > 0 we can construct an e-chain from w(p) to some point in J. The
rest of the e-chain can be constructed as before. This completes the proof.

e The chain recurrent set of a polynomial diffeomorphism with [d| < 1
is equal to the nonwandering set if and only if the interior of K* consists
exclusively of basins of sinks.

Chain recurrent sets have a natural decomposition into chain transitive com-
ponents. For Axiom A diffeomorphisms this decomposition coincides with the
Spectral Decomposition. The Spectral Decomposition for Axiom A polynomial
diffeomorphisms was computed in [BS1]. Here we compute the chain transitive
components for a general polynomial diffeomorphism.

An e-chain from p to g is a sequence x, =p, X,, ..., X, = q such that
d(f(x;), x;,,) <€ for 1 < i < n. An invariant set is chain transitive if
given any two points p and ¢ in the set and any ¢ > 0 we can construct
an e-chain from p to g. The decomposition of the chain recurrent set of a
polynomial diffeomorphism into invariant chain transitive components is given
by the following theorem. Let R(f ) denote the chain recurrent set of f. Let
O, for i=1,2,... denote the sink orbits of f. Let R'=R(f) -, O,.

Theorem 8. For a polynomial diffeomorphism f the chain transitive components
are the sink orbits, O,, and the set R'.

Proof.. It is obvious that sink orbits are chain transitive since a periodic orbit is
an e-chain for any € > 0. The e-chains required for proving that R’ is chain
transitive are constructed by concatenating e-chains constructed in the proof
of the previous theorem. Details are left to the reader.

This content downloaded from 156.56.192.124 on Thu, 4 Sep 2014 12:41:36 PM
All use subject to JSTOR Terms and Conditions




676 ERIC BEDFORD AND JOHN SMILLIE

APPENDIX. VOLUME PRESERVING MAPS

In this Appendix we will discuss the behavior of f on intK in the case |d]| =
1. As was observed in [BS1, Lemma 5.5], intK" = int K~ = intK . Since K
is bounded, int K has finite volume. Thus the (finitely many) components with
volume equal to ¢ > 0 are permuted among themselves by f. In particular,
every component is periodic. In fact, it follows from Poincaré’s recurrence
theorem that each component is recurrent.

Let us fix a component U of intK . Replacing f by f " if necessary, we
may assume that fU = U. Recalling that {f”|,} is a normal family, we let

ZWU) = {h = Jlillgo f"on U for some subsequence {nj}} .
Since f preserves volume, it follows that %, too, must preserve volume. Thus
h(U) c U, and so by H. Cartan’s theorem /4 € Aut(U). In fact, passing to
further subsequences, we see that

e Z(U) is a compact abelian subgroup of Aut(U).

Since Aut(U) is a Lie group, so is & . Since & contains the infinite subset
{r" v}, it must have dimension at least one. The connected component of the

identity & is then a torus T* for some k > 1. Since Z, acts effectively on
U, the orbit of a generic point p e U, & -p, will be a smooth submanifold
of U that is diffeomorphic to a k-dimensional torus. (See [BBD, Lemmas 1.2,
1.3].) Since the orbit must be totally real, we must have k < 2. It p is not
generic, the orbit can be a torus of dimension less than k. In either case, the
full orbit & -p is a finite union of tori, and by the construction of & , it is clear
that the forward and backward orbits of p under f are & -p.

Theorem 9. When |6| = 1 the nonwandering and the chain recurrent sets both
coincide with K .

Proof. The chain recurrent set lies inside K (cf. [BS1, Corollary 2.7]). Since
the chain recurrent set contains the nonwandering set, it suffices to show that
the nonwandering set contains K. Now

K=K"'nK =l uintkK)n(J  UintK) = J UintK.

We showed that J is contained in the nonwandering set, and it will suffice
to show that int K is contained in the nonwandering set. In fact, a stronger
statement is true: each p € int K is the limit of its forward iterates. Let U be
the component of int K that contains p . Since the automorphism group of U
is a compact group, there is a sequence n, such that f "(p) = p.

To discuss some further properties of a component U of int K, we recall
that we may write

K= (N {f1=¢}

n=—00

This content downloaded from 156.56.192.124 on Thu, 4 Sep 2014 12:41:36 PM
All use subject to JSTOR Terms and Conditions




POLYNOMIAL DIFFEOMORPHISMS OF C? 677

for some C < oo. Thus K is polynomially convex. Let us recall that a domain
U is a Runge domain if any analytic function on U may be approximated
uniformly on compact subsets of polynomials.

Proposition 8. U is a Runge domain, and H" (U, C) =0 for n > 2.

Proof. To see that H2(U ,C) =0, we let X be a compact subset of U and
show that X c U. By the Oka-Weil theorem, it suffices to show that if X is
a compact subset of U then the polynomial hull X is contained in U. If v
s any vector in C? such that the euclidean translation X +v ¢ U ¢ K then
it follows that X + v = X + v ¢ K = K. Since this holds for all v such that
lu| < dist(X, dU), we see that X is contained in the interior in K. By the
Oka-Weil theorem, the function thatis 0 on UNX and 1 on X — U may be
uniformly approximated on X by polynomials, so it follows that X cU and
U is Runge.

A well-known property (cf. [Ho]) of Runge domains in C’? is that H 2(U , C)
= 0. Any Runge domain is a domain of holomorphy, and so it follows that
HU,C)=0.

Since H 2(U , C) = 0 it follows that U cannot have the topology of a product
of annuli. This answers a question of Milnor posed in [Bi].

There are two cases, according to the dimension of ?O :

(i)% = T'. We do not know very much about this case. However, let us
suppose that f has a fixed point (x,, y,) = (0,0) € U. H. Cartan showed
that in this case the T'-action is conjugate to a (p, g)-action locally near the
fixed point. That is, there is a change of coordinates in a neighborhood of the
origin such that the action becomes

0 (e"'x, ey),
where p, q € Z are relatively prime. The sets
p q
V.={y =cx’}

are invariant under &, and by the remark above V. determines an invariant
complex variety of U. If pg > 0, then {V} is a one-complex parameter
family of Siegel disks. If, in addition, p = £1 or g = £1, then each V, is
nonsingular; otherwise, V, is a “punctured Siegel disk.” In the latter case, there
are only two nonsingular Siegel disks, which correspond to the x- and y-axes.
If p > 0> g then the x- and y-axes again correspond to Siegel disks.

(i) & = T?. Recall that a domain G C C* is Reinhardt if it is inveriant
under the action (6, 6,) — (em'x, eiozy) forall 6,,6,cR and all (x,y) €
G . It is shown in [BBD] that if U has a T action then U is equivariantly

equivalent to a Reinhardt domain G . That is, there is a biholomorphic mapping
®: U — G such that

(6, , 6,) - (x, ) = (e

L e d(x, y)
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holds for all (x,y) € U. In other words, the action of & is taken into the
standard Reinhardt action. The action of f on U corresponds to 7 (x, y) =
(a,x, a,y) for a pair of complex numbers |O‘j| =1, j=1,2, and the
numbers (a'f, a;‘), k=1,2,3,..., are dense in the torus T,

We note that a connected pseudoconvex Reinhardt domain in C? can have
one of three topological types: A x A, Ax A, or Ax A, (A =disk and
A =annulus). The third type cannot occur here, since H 2(U ,C) =0, as was

observed above. In the first case, G intersects each coordinate axis in a disk.
Thus the functions

9,(0):=® (L, 0): {|{|<r}—U,

-1

9,(O) =@ ({,0):{|[{|<r}—-U,
give a pair of Siegel disks. Since G does not contain any other one-dimensional
complex manifolds that are invariant under 7, U does not contain any other

complex manifolds that are invariant under f. The point <I)_1(0, 0) is evi-
dently the unique fixed point for f in U.

If G is topologically equivalent to A x 4, then G intersects only one axis,
the x-axis, say, in an annulus. This yields a Herman ring, which is the only
f-invariant complex manifold in U ; and f has no fixed point in U .

Case (ii) can actually occur, at least in the subcase where f has a fixed point
in U. To see this, we choose a mapping f(x, y) = (o;x, a,p) +---, where
the dots indicate terms of degree at least 2 and |o,| = |a,| = 1. It follows
from the preceding discussion that (0, 0) € intK if and only if f can be
linearized in a neighborhood of (0, 0). If we choose a, and o, to satisfy
also a diophantine condition, then f may be linearized at (0, 0) (cf. Zehnder
[Z]). Case (i) can also occur, at least for a (p, g)-action with pg > 0. For if «
satisfies a diophantine condition and if p, g are relatively prime, then so does
the pair a; =a’, a,=a". Again by [Z] f may be linearized at (0, 0), and
/ will generate a (p, g)-action.
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