No Smooth Julia Sets for Polynomial Diffeomorphisms of \mathbb{C}^{2} with Positive Entropy

Eric Bedford ${ }^{1}$ • Kyounghee Kim² ${ }^{\text {(1) }}$

Received: 11 March 2016
© Mathematica Josephina, Inc. 2017

Abstract

For any polynomial diffeomorphism f of \mathbb{C}^{2} with positive entropy, the Julia set of f is never C^{1} smooth as a manifold-with-boundary.

Keywords Polynomial diffeomorphisms of \mathbb{C}^{2}. Julia set • Generalized Hénon maps
Mathematics Subject Classification 37F10

1 Introduction

There are several reasons why the polynomial diffeomorphisms of \mathbb{C}^{2} form an interesting family of dynamical systems. One of these is the fact that there are connections with two other areas of dynamics: polynomial maps of \mathbb{C} and diffeomorphisms of \mathbb{R}^{2}, which have each received a great deal of attention. Among the endomorphisms of \mathbb{P}^{k}, certain ones have more special, and regular, geometric structure.

The question arises whether, among the polynomial diffeomorphisms of \mathbb{C}^{2}, are there analogous special maps with special geometry? The Julia set of such a special map would be expected to have some smoothness. Here we show that this does not happen.

More generally, we consider a holomorphic mapping $f: X \rightarrow X$ of a complex manifold X. The Fatou set of f is defined as the set of points $x \in X$ where the iterates $f^{n}:=f \circ \cdots \circ f$ are locally equicontinuous. If X is not compact, then in

[^0]the definition of equicontinuity, we consider the one point compactification of X; in this case, a sequence which diverges uniformly to infinity is equicontinuous. By the nature of equicontinuity, the dynamics of f is regular on the Fatou set. The Julia set is defined as the complement of the Fatou set, and this is where any chaotic dynamics of f will take place. The first nontrivial case is where $X=\mathbb{P}^{1}$ is the Riemann sphere, and in this case Fatou (see [17]) showed that if the Julia set J is a smooth curve, then either J is the unit circle or J is a real interval. If J is the circle, then f is equivalent to $z \mapsto z^{d}$, where d is an integer with $|d| \geq 2$; if J is the interval, then f is equivalent to a Chebyshev polynomial. These maps with smooth J play special roles, and this sparked our interest to look for smooth Julia sets in other cases. (The higher dimensional case is discussed, for instance, in Nakane [19] and Uchimura [23,24].)

Here we address the case where $X=\mathbb{C}^{2}$, and f is a polynomial automorphism, which means that f is biholomorphic, and the coordinates are polynomials. Since f is invertible, there are two Julia sets: J^{+}for iterates in forward time, and J^{-}for iterates in backward time. Polynomial automorphisms have been classified by Friedland and Milnor [12]; every such automorphism is conjugate to a map which is either affine or elementary, or it belongs to the family \mathcal{H}. The affine and elementary maps have simple dynamics, and $J^{ \pm}$are (possibly empty) algebraic sets (see [12]).

Thus we will restrict our attention to the maps in \mathcal{H}, which are finite compositions $f:=f_{k} \circ \cdots \circ f_{1}$, where each f_{j} is a generalized Hénon map, which by definition has the form $f_{j}(x, y)=\left(y, p_{j}(y)-\delta_{j} x\right)$, where $\delta_{j} \in \mathbb{C}$ is nonzero, and $p_{j}(y)$ is a monic polynomial of degree $d_{j} \geq 2$. The degree of f is $d:=d_{1} \cdots d_{k}$, and the complex Jacobian of f is $\delta:=\delta_{1} \cdots \delta_{k}$. In [12] and [22], it is shown that the topological entropy of f is $\log d>0$. The dynamics of such maps is complicated and has received much study, starting with the papers $[3,11,14,15]$.

For maps in \mathcal{H}, we can ask whether J^{+}can be a manifold. For any saddle point q, the stable manifold $W^{s}(q)$ is a Riemann surface contained in J^{+}. Thus J^{+}would have to have real dimension at least two. However, J^{+}is also the support of a positive, closed current μ^{+}with continuous potential, and such potentials cannot be supported on a Riemann surface (see [3,11]). On the other hand, since $J^{+}=\partial K^{+}$is a boundary, it cannot have interior. Thus dimension 3 is the only possibility for J^{+}to be a manifold. In fact, there are examples of f for which J^{+}has been shown to be a topological 3-manifold (see [8,11, 16,20]). Fornæss and Sibony [11] have shown that J^{+}cannot be smooth for a generic element of \mathcal{H}.

The purpose of this paper is to prove the following:
Theorem For any polynomial automorphism of \mathbb{C}^{2} of positive entropy, neither J^{+} nor J^{-}is smooth of class C^{1}, in the sense of manifold-with-boundary.
We may interchange the roles of J^{+}and J^{-}by replacing f by f^{-1}, so there is no loss of generality if we consider only J^{+}.

In an Appendix, we discuss the nonsmoothness of the related sets J, J^{*}, and K.

2 No Boundary

Let us start by showing that if J^{+}is a C^{1} manifold-with-boundary, then the boundary is empty. Recall that if J^{+}is C^{1}, then for each $q_{0} \in J^{+}$there is a neighborhood $U \ni q_{0}$
and $r, \rho \in C^{1}(U)$ with $d r \wedge d \rho \neq 0$ on U, such that $U \cap J^{+}=\{r=0, \rho \leq 0\}$. If J^{+} has boundary, it is given locally by $\{r=\rho=0\}$. For $q \in J^{+}$, the tangent space $T_{q} J^{+}$ consists of the vectors that annihilate $d r$. This contains the subspace $H_{q} \subset T_{q} J^{+}$ consisting of the vectors that annihilate $\partial r . H_{q}$ is the unique complex subspace inside $T_{q} J^{+}$, so if $M \subset J^{+}$is a complex submanifold, then $T_{q} M=H_{q}$.

We start by showing that if J^{+}is C^{1}, then it carries a Riemann surface lamination.
Lemma 2.1 If J^{+}is C^{1} smooth, then J^{+}carries a Riemann surface foliation \mathcal{R} with the property that if $W^{s}(q)$ is the stable manifold of a saddle point q, then $W^{s}(q)$ is a leaf of \mathcal{R}. If J^{+}is a C^{1} smooth manifold-with-boundary, then \mathcal{R} extends to a Riemann surface lamination of J^{+}. In particular, any boundary component is a leaf of \mathcal{R}.

Proof Given $q_{0} \in J^{+}$, let us choose holomorphic coordinates (z, w) such that $d r\left(q_{0}\right)=d w$. We work in a small neighborhood which is a bidisk $\Delta_{\eta} \times \Delta_{\eta}$. We may choose η small enough that $\left|r_{z} / r_{w}\right|<1$. In the (z, w)-coordinates, the tangent space H_{q} has slope less than 1 at every point $\{|z|,|w|<\eta\}$. Now let \hat{q} be a saddle point, and let $W^{s}(\hat{q})$ be the stable manifold, which is a complex submanifold of \mathbb{C}^{2}, contained in J^{+}. Let M denote a connected component of $W^{s}(\hat{q}) \cap\left(\Delta_{\eta} \times \Delta_{\eta / 2}\right)$. Since the slope is <1, it follows that there is an analytic function $\varphi: \Delta_{\eta} \rightarrow \Delta_{\eta}$ such that $M \subset \Gamma_{\varphi}:=\left\{(z, \varphi(z)): z \in \Delta_{\eta}\right\}$. Let Φ denote the set of all such functions φ. Since a stable manifold can have no self-intersections, it follows that if $\varphi_{1}, \varphi_{2} \in \Phi$, then either $\Gamma_{\varphi_{1}}=\Gamma_{\varphi_{2}}$ or $\Gamma_{\varphi_{1}} \cap \Gamma_{\varphi_{2}}=\emptyset$. Now let $\hat{\Phi}$ denote the set of all normal limits (uniform on compact subsets of Δ_{η}) of elements of Φ. We note that by Hurwitz's Theorem, the graphs $\Gamma_{\varphi}, \varphi \in \hat{\Phi}$ have the same pairwise disjointness property. Finally, by [4], $W^{s}\left(q_{0}\right)$ is dense in J^{+}, so the graphs $\Gamma_{\varphi}, \varphi \in \hat{\Phi}$ give the local Riemann surface lamination.

If q_{1} is another saddle point, we may follow the same procedure and obtain a Riemann surface lamination whose graphs are given locally by $\varphi \in \hat{\Phi}_{1}$. However, we have seen that the tangent space to the foliation at a point q is given by H_{q}. Since these two foliations have the same tangent spaces everywhere, they must coincide.

We have seen that all the graphs are contained in J^{+}, so if J^{+}has boundary, then the boundary must coincide locally with one of the graphs.

We will use the observation that $K^{+} \subset\left\{(x, y) \in \mathbb{C}^{2}:|y|>\max (|x|, R)\right\}$. Further, we will use the Green function G^{-}which has many properties, including
(i) G^{-}is pluriharmonic on $\left\{G^{-}>0\right\}$,
(ii) $\left\{G^{-}=0\right\}=K^{-}$, and
(iii) $G^{-} \circ f=d^{-1} G^{-}$.

Further, the restriction of G^{-}to $\{|y| \leq \max (|x|, R)\}$ is a proper exhaustion.
Lemma 2.2 Suppose that J^{+}is a C^{1} smooth manifold-with-boundary, and M is a component of the boundary of J^{+}. Then M is a closed Riemann surface, and $M \cap K \neq$ \emptyset.

Proof We consider the restriction $g:=\left.G^{-}\right|_{M}$. If $M \cap K=\emptyset$, then g is harmonic on M. On the other hand, g is a proper exhaustion of M, which means that $g(z) \rightarrow \infty$ as
$z \in M$ leaves every compact subset of M. This means that g must assume a minimum value at some point of M, which would violate the minimum principle for harmonic functions.

Lemma 2.3 Suppose that J^{+}is a C^{1} smooth manifold-with-boundary. Then the boundary is empty.

Proof Let M be a component of the boundary of J^{+}. By Lemma 2.2, M must intersect Δ_{R}^{2}. Since J^{+}is C^{1}, there can be only finitely many boundary components of $J^{+} \cap \Delta_{R}^{2}$. Thus there can be only finitely many components M, which must be permuted by f. If we take a sufficiently high iterate f^{N}, we may assume that M is invariant. Now let $h:=\left.f^{N}\right|_{M}$ denote the restriction to M. We see that h is an automorphism of the Riemann surface M, and the iterates of all points of M approach $K \cap M$ in forward time. It follows that M must have a fixed point $q \in M$, and $\left|h^{\prime}(q)\right|<1$. The other multiplier of $D f$ at q is $\delta / h^{\prime}(q)$.

We consider three cases. First, if $\left|\delta / h^{\prime}(q)\right|>1$, then q is a saddle point, and $M=W^{s}(q)$. On the other hand, by [4], the stable manifold of a saddle points is dense in J^{+}, which makes it impossible for M to be the boundary of J^{+}. This contradiction means that there can be no boundary component M.

The second case is $\left|\delta / h^{\prime}(q)\right|<1$. This case cannot occur because the multipliers are less than 1 , so q is a sink, which means that q is contained in the interior of K^{+} and not in J^{+}.

The last case is where $\left|\delta / h^{\prime}(q)\right|=1$. In this case, we know that f preserves J^{+}, so $D f$ must preserve $T_{q}\left(J^{+}\right)$. This means that the outward normal to M inside J^{+} is preserved, and thus the second multiplier must be +1 . It follows that q is a semi-parabolic/semi-attracting fixed point. It follows that J^{+}must have a cusp at q and cannot be C^{1} (see Ueda [25] and Hakim [13]).

3 Maps that Do Not Decrease Volume

We note the following topological result (see Samelson [21] for an elegant proof): If M is a smooth 3-manifold (without boundary) of class C^{1} in \mathbb{R}^{4}, then it is orientable. This gives:

Proposition 3.1 For any $q \in M$, there is a neighborhood U about q so that $U-M$ consists of two components \mathcal{O}_{1} and \mathcal{O}_{2}, which belong to different components of $\mathbb{R}^{4}-M$.

Proof Suppose that \mathcal{O}_{1} and \mathcal{O}_{2} belong to the same component of $\mathbb{R}^{4}-M$. Then we can construct a simple closed curve $\gamma \subset \mathbb{R}^{4}$ which crosses M transversally at q and has no other intersection with M. It follows that the (oriented) intersection is $\gamma \cdot M=1$ (modulo 2). But the oriented intersection modulo 2 is a homotopy invariant (see [18]), and γ is contractible in \mathbb{R}^{4}, so we must have $\gamma \cdot M=0$ (modulo 2).

Corollary 3.2 If J^{+}is C^{1} smooth, then f is an orientation preserving map of J^{+}.
Proof $U^{+}:=\mathbb{C}^{2}-K^{+}$is a connected (see [15]) and thus it is a component of $\mathbb{C}^{2}-J^{+}$. Since f preserves U^{+}, it also preserves the orientation of J^{+}, which is $\pm \partial U^{+}$.

We recall the following result of Friedland and Milnor:
Theorem ([12]) If $|\delta|>1$, then K^{+}has zero Lebesgue volume, and thus $J^{+}=K^{+}$. If $|\delta|=1$, then $\operatorname{int}\left(K^{+}\right)=\operatorname{int}\left(K^{-}\right)=\operatorname{int}(K)$. In particular, there exists R such that $J^{+}=K^{+}$outside Δ_{R}^{2}.

Proof of Theorem in the case $|\delta| \geq 1$. Let $q \in J^{+}$be a point outside Δ_{R}^{2}, as in the Theorem above. Then near q there must be a component \mathcal{O}, which is distinct from $U^{+}=\mathbb{C}^{2}-K^{+}$. Thus \mathcal{O} must belong to the interior of K^{+}. But by the Theorem above, the interior of K^{+}is not near q.

4 Volume Decreasing Maps

Throughout this section, we continue to suppose that J^{+}is C^{1} smooth, and in addition we suppose that $|\delta|<1$. For a point $q \in J^{+}$, we let $T_{q}:=T_{q}\left(J^{+}\right)$denote the real tangent space to J^{+}. We let $H_{q}:=T_{q} \cap i T_{q}$ denote the unique (one-dimensional) complex subspace inside T_{q}. Since J^{+}is invariant under f, so is H_{q}, and we let α_{q} denote the multiplier of $\left.D_{q} f\right|_{H_{q}}$.

Lemma 4.1 Let $q \in J^{+}$be a fixed point. There is a $D_{q} f$-invariant subspace $E_{q} \subset$ $T_{q}\left(\mathbb{C}^{2}\right)$ such that H_{q} and E_{q} generate T_{q}. We denote the multiplier of $\left.D_{q} f\right|_{E_{q}}$ by β_{q}. Thus $D_{q} f$ is linearly conjugate to the diagonal matrix with diagonal elements α_{q} and β_{q}. Further, $\beta_{q} \in \mathbb{R}$ and $\beta_{q}>0$.

Proof We have identified an eigenvalue α_{q} of $D_{q} f$. If $D_{q} f$ is not diagonalizable, then it must have a Jordan canonical form $\left(\begin{array}{cc}\alpha_{q} & 1 \\ 0 & \alpha_{q}\end{array}\right)$. The determinant is $\alpha_{q}^{2}=\delta$, which has modulus less than 1 . Thus $\left|\alpha_{q}\right|<1$, which means that q is an attracting fixed point and thus in the interior of K^{+}, not in J^{+}. Thus $D_{q} f$ must be diagonalizable, which means that H_{q} has a complementary invariant subspace E_{q}. Since E_{q} and T_{q} are invariant under $D_{q} f$, the real subspace $E_{q} \cap T_{q} \subset E_{q}$ is invariant, too. Thus $\beta_{q} \in \mathbb{R}$. By Corollary 3.2, $D_{q} f$ will preserve the orientation of T_{q}, and so $\beta_{q}>0$.

Let us recall the Riemann surface foliation of J^{+}which was obtained in Lemma 2.1. For $q \in J^{+}$, we let R_{q} denote the leaf of \mathcal{R} containing q. If q is a fixed point, then f defines an automorphism $g:=\left.f\right|_{R_{q}}$ of the Riemann surface R_{q}. Since $R_{q} \subset K^{+}$, we know that the iterates of g^{n} are bounded in a complex disk $q \in \Delta_{q} \subset R_{q}$. Thus the derivatives $(D g)^{n}=D\left(g^{n}\right)$ are bounded at q. We conclude that $\left|\alpha_{q}\right|=\left|D_{q}(g)\right| \leq 1$. If $\left|\alpha_{q}\right|=1$, then α_{q} is not a root of unity. Otherwise g is an automorphism of R_{q} fixing q, and $D g^{n}(q)=1$ for some n. It follows that g^{n} must be the identity on R_{q}. This means that $R q$ would be a curve of fixed points for f^{n}, but by [FM] all periodic points of f are isolated, so this cannot happen.

Lemma 4.2 If $q \in J^{+}$is a fixed point, then q is a saddle point, and $\alpha_{q}=\delta / d$, and $\beta_{q}=d$.

Proof First we claim that $\left|\alpha_{p}\right|<1$. Otherwise, we have $\left|\alpha_{q}\right|=1$, and by the discussion above, this means that α_{q} is not a root of unity. Thus the restriction $g=\left.f\right|_{R_{q}}$ is
an irrational rotation. Let $\Delta \subset R_{q}$ denote a g-invariant disk containing q. Since $|\delta|=\left|\alpha_{q} \beta_{q}\right|=\left|\beta_{q}\right|$ has modulus less than 1 , we conclude that f is normally attracting to Δ, and thus q must be in the interior of K^{+}, which contradicts the assumption that $q \in J^{+}$.

Now we have $\left|\alpha_{q}\right|<1$, so if $\left|\beta_{q}\right|=1$, we have $\beta_{q}=1$, since β_{q} is real and positive. This means that q is a semi-parabolic, semi-attracting fixed point for f. We conclude by Ueda [25] and Hakim [13] that J^{+}has a cusp at q and thus is not smooth. Thus we conclude that $\left|\beta_{q}\right|>1$, which means that q is a saddle point.

Now since E_{q} is transverse to H_{q}, it follows that $W^{u}(q)$ intersects J^{+}transversally, and thus $J^{+} \cap W^{u}(q)$ is C^{1} smooth. Let us consider the uniformization

$$
\phi: \mathbb{C} \rightarrow W^{u}(q) \subset \mathbb{C}^{2}, \quad \phi(0)=q, \quad f \circ \phi(\zeta)=\phi\left(\lambda^{u} \zeta\right)
$$

The pre-image $\tau:=\phi^{-1}\left(W^{u}(q) \cap J^{+}\right) \subset \mathbb{C}$ is a C^{1} curve passing through the origin and invariant under $\zeta \mapsto \lambda^{u} \zeta$. It follows that $\lambda^{u} \in \mathbb{R}$, and τ is a straight line containing the origin. Further, $g^{+}:=G^{+} \circ \phi$ is harmonic on $\mathbb{C}-\tau$, vanishing on τ, and satisfying $g^{+}\left(\lambda^{u} \zeta\right)=d \cdot g^{+}(\zeta)$. Since τ is a line, it follows that g^{+}is piecewise linear, so we must have $\lambda^{u}= \pm d$. Finally, since f preserves orientation, we have $\lambda^{u}=d$.

Lemma 4.3 There can be at most one fixed point in the interior of K^{+}. There are at least $d-1$ fixed points contained in J^{+}, and at each of these fixed points, the differential $D f$ has multiplier of d.

Proof Suppose that q is a fixed point in the interior of K^{+}. Then q is contained in a recurrent Fatou domain Ω, and by [4], $\partial \Omega=J^{+}$. If there is more than one fixed point in the interior of K^{+}, we would have J^{+}simultaneously being the boundary of more than one domain, in addition to being the boundary of $U^{+}=\mathbb{C}^{2}-K^{+}$. This is not possible if J^{+}is a topological submanifold of \mathbb{C}^{2}.

By [FM] there are exactly d fixed points, counted with multiplicity. By Lemma 4.3, the fixed points in J^{+}are of saddle type, so they have multiplicity 1 . Thus there are at least $d-1$ of them.

5 Fixed Points with Given Multipliers

If $q=(x, y)$ is a fixed point for $f=f_{n} \circ \cdots \circ f_{1}$, then we may represent it as a finite sequence $\left(x_{j}, y_{j}\right)$ with $j \in \mathbb{Z} / n \mathbb{Z}$, subject to the conditions $(x, y)=$ $\left(x_{1}, y_{1}\right)=\left(x_{n+1}, y_{n+1}\right)$ and $f_{j}\left(x_{j}, y_{j}\right)=\left(x_{j+1}, y_{j+1}\right)$. Given the form of f_{j}, we have $x_{j+1}=y_{j}$, so we may drop the x_{j} 's from our notation and write $q=\left(y_{n}, y_{1}\right)$. We identify this point with the sequence $\hat{q}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$, and we define the polynomials

$$
\begin{aligned}
\varphi_{1} & :=p_{1}\left(y_{1}\right)-\delta_{1} y_{n}-y_{2} \\
\varphi_{2} & :=p_{2}\left(y_{2}\right)-\delta_{2} y_{1}-y_{3} \\
& \ldots \ldots \ldots \\
\varphi_{n} & :=p_{n}\left(y_{n}\right)-\delta_{n} y_{n-1}-y_{1} .
\end{aligned}
$$

The condition to be a fixed point is that $\hat{q}=\left(y_{1}, \ldots, y_{n}\right)$ belongs to the zero locus $Z\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ of the φ_{i} 's. We define $q_{i}\left(y_{i}\right):=p_{i}\left(y_{i}\right)-y_{i}^{d_{i}}$ and $Q_{i}:=q_{i}\left(y_{i}\right)-y_{i+1}-$ $\delta_{i} y_{i-1}$, so

$$
\begin{equation*}
\varphi_{i}=y_{i}^{d_{i}}+q_{i}\left(y_{i}\right)-y_{i+1}-\delta_{i} y_{i-1}=y_{i}^{d_{1}}+Q_{i} \tag{*}
\end{equation*}
$$

Since p_{j} is monic, the degrees of q_{i} and Q_{i} are $\leq d_{i}-1$.
By the Chain Rule, the differential of f at $q=\left(y_{n}, y_{1}\right)$ is given by

$$
D f(q)=\left(\begin{array}{cc}
0 & 1 \\
-\delta_{n} & p_{n}^{\prime}\left(y_{n}\right)
\end{array}\right) \cdots\left(\begin{array}{cc}
0 & 1 \\
-\delta_{1} & p_{n}^{\prime}\left(y_{1}\right)
\end{array}\right)
$$

We will denote this by $M_{n}=M_{n}\left(y_{1}, \ldots, y_{n}\right):=\left(\begin{array}{cc}m_{11}^{(n)} & m_{12}^{(n)} \\ m_{21}^{(n)} & m_{22}^{(n)}\end{array}\right)$.
We consider special monomials in $p_{j}^{\prime}=p_{j}^{\prime}\left(y_{j}\right)$ which have the form $\left(p^{\prime}\right)^{L}:=$ $p_{\ell_{1}}^{\prime} \cdots p_{\ell_{s}}^{\prime}$, with $L=\left\{\ell_{1}, \ldots, \ell_{s}\right\} \subset\{1, \ldots, n\}$. Note that the factors $p_{\ell_{i}}^{\prime}$ in $\left(p^{\prime}\right)^{L}$ are distinct. Let us use the notation $|L|$ for the number of elements in L and $H_{\mathbf{m}}$ for the linear span of $\left\{\left(p^{\prime}\right)^{L}:|L|=m-2 k, 0 \leq k \leq n / 2\right\}$. With this notation, \mathbf{m} indicates the maximum number of factors of p_{j}^{\prime} in any monomial, and in every case the number of factors differs from \mathbf{m} by an even number.

Lemma 5.1 The entries of M_{n} :
(1) $m_{11}^{(n)}$ and $m_{22}^{(n)}-p_{1}^{\prime}\left(y_{1}\right) \cdots p_{n}^{\prime}\left(y_{n}\right)$ both belong to $H_{\mathbf{n}-\mathbf{2}}$.
(2) $m_{12}^{(n)}, m_{21}^{(n)} \in H_{\mathbf{n}-\mathbf{1}}$.

Proof We proceed by induction. The case $n=1$ is clear. If $n=2$,

$$
M_{2}=\left(\begin{array}{cc}
0 & 1 \\
-\delta_{2} & p_{2}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-\delta_{1} & p_{1}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
-\delta_{1} & p_{1}^{\prime} \\
-\delta_{1} p_{2}^{\prime} & p_{1}^{\prime} p_{2}^{\prime}-\delta_{2}
\end{array}\right)
$$

which satisfies (1) and (2). For $n>2$, we have

$$
M_{n}=\left(\begin{array}{cc}
0 & 1 \\
-\delta_{n} & p_{n}^{\prime}
\end{array}\right) M_{n-1}=\left(\begin{array}{cc}
m_{21}^{(n-1)} & m_{22}^{(n-1)} \\
-\delta_{n} m_{11}^{(n-1)^{(n-1)}}+m_{21}^{(n-1)} & p_{n}^{\prime}-\delta_{n} m_{12}^{(n-1)}+p_{n}^{\prime} m_{22}^{(n-1)}
\end{array}\right)
$$

which gives (1) and (2) for all n.
The condition for $D f$ to have a multiplier λ at q is $\Phi(\hat{q})=0$, where

$$
\Phi=\operatorname{det}\left(M_{n}-\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right)
$$

Lemma 5.2 $\Phi-p_{1}^{\prime}\left(y_{1}\right) \cdots p_{n}^{\prime}\left(y_{n}\right) \in H_{\mathbf{n}-\mathbf{2}}$.

Proof The formula for the determinant gives

$$
\Phi=\lambda^{2}-\lambda \operatorname{Tr}\left(M_{n}\right)+\operatorname{det}\left(M_{n}\right)=\lambda^{2}-\lambda\left(m_{11}^{(n)}+m_{22}^{(n)}\right)+\delta
$$

since δ is the Jacobian determinant of $D f$. The Lemma now follows from Lemma 5.1.

The degree of the monomial $y^{a}:=y_{1}^{a_{1}} \cdots y_{n}^{a_{n}}$ is $\operatorname{deg}\left(y^{a}\right)=a_{1}+\cdots+a_{n}$. We will use the graded lexicographical order on the monomials in $\left\{y_{1}, \ldots, y_{n}\right\}$. That is, $y^{a}>y^{b}$ if either $\operatorname{deg}\left(y^{a}\right)>\operatorname{deg}\left(y^{b}\right)$, or if $\operatorname{deg}\left(y^{a}\right)=\operatorname{deg}\left(y^{b}\right)$ and $a_{i}>b_{i}$, where $i=\min \left\{1 \leq j \leq n: a_{j} \neq b_{j}\right\}$. If $f \in \mathbb{C}\left[y_{1}, \ldots, y_{n}\right]$, we denote $\operatorname{LT}(f)$ for the leading term of $f, \mathrm{LC}(f)$ for the leading coefficient, and $\mathrm{LM}(f)$ for the leading monomial.
Lemma 5.3 With the graded lexicographical order, $G:=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is a Gröbner basis.

Proof We will use Buchberger's Algorithm (see [10, Chapter 2]). For each $i=$ $1, \ldots, n, \operatorname{LT}\left(\varphi_{i}\right)=\operatorname{LM}\left(\varphi_{i}\right)=y_{i}^{d_{i}}$, so for $i \neq j$, the least common multiple of the leading terms is L.C.M. $=y_{i}^{d_{i}} y_{j}^{d_{j}}$. The S-polynomial is

$$
S\left(\varphi_{i}, \varphi_{j}\right):=\frac{\mathrm{L.C.M} .}{\mathrm{LM}\left(\varphi_{j}\right)} \varphi_{i}-\frac{\mathrm{L.C.M.}}{\mathrm{LM}\left(\varphi_{i}\right)} \varphi_{j}=y_{j}^{d_{j}} Q_{i}-y_{i}^{d_{i}} Q_{j}=\varphi_{j} Q_{i}-Q_{j} \varphi_{i}
$$

where we use the Q_{j} from (4.1) and cancel terms. Now let $\mu_{i}:=\operatorname{deg}\left(Q_{i}\right)$. Since $\mu_{i}<$ d_{i} for all i, the monomials $\operatorname{LM}\left(\varphi_{j} Q_{i}\right)=y_{j}^{d_{j}} y_{i}^{\mu_{i}}$ and $\operatorname{LM}\left(\varphi_{i} Q_{j}\right)=y_{i}^{d_{i}} y_{j}^{\mu_{j}}$ are not equal in our monomial ordering. $\operatorname{Thus} \operatorname{LM}\left(S\left(\varphi_{i}, \varphi_{j}\right) \geq \max \left(\operatorname{LM}\left(\varphi_{j} Q_{i}\right), \operatorname{LM}\left(\varphi_{i} Q_{j}\right)\right)\right.$. It follows from Buchberger's Algorithm that $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is a Gröbner basis.

We will use the Multivariable Division Algorithm, by which any polynomial $g \in$ $\mathbb{C}\left[y_{1}, \ldots, y_{n}\right]$ may be written as $g=A_{1} \varphi_{1}+\cdots+A_{n} \varphi_{n}+R$ where $\operatorname{LM}(g) \geq$ $\mathrm{LM}\left(A_{j} \varphi_{j}\right)$ for all $1 \leq j \leq n$, and R contains no terms divisible by any $\operatorname{LM}\left(\varphi_{j}\right)$. An important property of a Gröbner basis is that g belongs to the ideal $\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle$ if and only if $R=0$ (see, for instance, [10] or [1]).

If all fixed points have the same value of λ as multiplier, then it follows that Φ must vanish on the whole zero set $Z\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. Since we have a Gröbner basis, we easily determine the following:
Corollary 5.4 $\Phi \notin\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle$.
Proof The leading monomial of Φ is $y_{1}^{d_{1}-1} \cdots y_{n}^{d_{n}-1}$, but this is not divisible by any of the leading monomials $\operatorname{LM}\left(\varphi_{j}\right)=y_{j}^{d_{j}}$. Since $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is a Gröbner basis, it follows that Φ does not belong to the ideal $\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle$.

6 Proof of the Theorem

In this section we prove the Theorem, which will follow from 4.3, in combination with:

Proposition 6.1 Suppose $F=f_{n} \circ \cdots \circ f_{1}, n \geq 3$, is a composition of generalized Hénon maps with $|\delta|<1$. Suppose that F has $d=d_{1} \cdots d_{n}$ distinct fixed points. It is not possible that $d-1$ of these points have the same multipliers.

Proof that Proposition 6.1 implies the Theorem To prove the Theorem, it remains to deal with the case $|\delta|<1$. If $f=f_{1}$ is a single generalized Hénon map, we consider $F=f_{1} \circ f_{1} \circ f_{1}$ with $n=3$ and the same Julia set. Lemma 3.4 asserts that if J^{+}is C^{1}, there are $d-1$ saddle points with unstable multiplier $\lambda=d$. So by Proposition 4.1, we conclude that J^{+}cannot be C^{1} smooth.

We give the proof of Proposition 6.1 at the end of this section. For $J \subset\{1, \ldots, n\}$, we write

$$
\Lambda_{J}:=\left\{\left(p^{\prime}\right)^{L}: L \subset J,|L|=|J|-2 k, \text { for some, } 1 \leq k \leq|J| / 2\right\}
$$

We let H_{J} denote the linear span of Λ_{J}. To compare with our earlier notation, we note that $H_{J} \subset H_{|\mathbf{J}|-2}$ and that $\left(p^{\prime}\right)^{J} \notin H_{J}$. The elements of H_{J} depend only on the variables y_{j} for $j \in J$. Now we formulate a result for dividing certain terms by φ_{j} :

Lemma 6.2 Suppose that $J \subset\{1, \ldots, n\}$ and $h \in H_{J}$. Then for each $j \in J$ and $\alpha \in \mathbb{C}$, we have

$$
\left(y_{j}-\alpha\right)\left(\left(p^{\prime}\right)^{J}+h\right)=A(y) \varphi_{j}+B(y)\left(\left(p^{\prime}\right)^{J-\{j\}}+\rho_{1}\right)+\left(y_{j}-\alpha\right) \cdot \rho_{2}
$$

where $\rho_{1}, \rho_{2} \in H_{J-\{j\}}$, and $B=\eta_{j}\left(y_{j}\right)+d_{j} y_{j+1}+d_{j} \delta_{j} y_{j-1}$ with

$$
\eta_{j}\left(y_{j}\right)=y_{j} q_{j}^{\prime}\left(y_{j}\right)-\alpha p_{j}^{\prime}\left(y_{j}\right)-d_{j} q_{j}\left(y_{j}\right) .
$$

The leading monomials satisfy

$$
L M\left(\left(y_{j}-\alpha\right)\left(\left(p^{\prime}\right)^{J}+h\right)\right)=L M\left(A(y) \varphi_{j}\right)
$$

Proof Let us start with the case $J=\{1, \ldots, m\}, m \leq n$, and $j=1$, so $J-\{j\}=$ $J_{\hat{1}}=\{2, \ldots, n\}$. We divide by p_{1}^{\prime} and remove any factor of p_{1}^{\prime} in h. This gives

$$
\left(p^{\prime}\right)^{J}+h=p_{1}^{\prime}\left(y_{1}\right) \mu_{1}+\rho_{2}
$$

where $\mu_{1}=\left(p^{\prime}\right)^{J_{\hat{1}}}+\rho_{1}, \rho_{1}, \rho_{2} \in H_{\{2, \ldots, m\}}$, and $\mu_{1}, \rho_{1}, \rho_{2}$ are independent of the variable y_{1}. Thus

$$
\begin{aligned}
\left(y_{1}-\alpha\right)\left(\left(p^{\prime}\right)^{J}+h\right) & =\left(y_{1}-\alpha\right)\left(d_{1} y_{1}^{d_{1}-1}+q_{1}^{\prime}\left(y_{1}\right)\right) \mu_{1}+\left(y_{1}-\alpha\right) \rho_{2} \\
& =d_{1} y_{1}^{d_{1}} \mu_{1}+\left(y_{1} q_{1}^{\prime}\left(y_{1}\right)-\alpha p_{1}^{\prime}\left(y_{1}\right)\right) \mu_{1}+\left(y_{1}-\alpha\right) \rho_{2} \\
& =\left(d_{1} \mu_{1}\right) \varphi_{1}+\left(\eta_{1}\left(y_{1}\right)+d_{1} y_{2}+d_{1} \delta_{1} y_{n}\right) \mu_{1}+\left(y_{1}-\alpha\right) \rho_{2}
\end{aligned}
$$

where in the last line we substitute η_{1} defined by (\ddagger). Using $(*)$, we see that this gives (\dagger).

It remains to look at the leading terms of $\left.T_{1}:=\left(y_{1}-\alpha\right)\left(\left(p^{\prime}\right)^{J}+h\right)\right)$ and $T_{2}:=$ $d_{1} \mu_{1} \varphi_{1}$. We see that T_{1} and T_{2} both contain nonzero multiples of $y_{j} \prod_{i=1}^{m} y_{i}^{d_{i}-1}$, and all other monomials in T_{1} and T_{2} have lower degree. Thus we have $L M\left(T_{1}\right)=L M\left(T_{2}\right)$ for the graded ordering, independent of any ordering on the variables y_{1}, \ldots, y_{n}. The choices of $J=\{1, \ldots, m\}$ and $j=1$ just correspond to a permutation of variables, and this does not affect the conclusion that $L M\left(T_{1}\right)=L M\left(T_{2}\right)$.

Lemma 6.3 For any $\alpha \in \mathbb{C},\left(y_{1}-\alpha\right) \Phi \notin\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle$.
Proof By [FM], we may assume that $p_{j}\left(y_{j}\right)=y_{j}^{d_{j}}+q_{j}\left(y_{j}\right)$ and $\operatorname{deg}\left(q_{j}\right) \leq d_{j}-2$. We consider two cases. The first case is that there is at least one j such that η_{j} is not the zero polynomial. If we conjugate by $f_{j-1} \circ \cdots \circ f_{1}$, we may "rotate" the maps in f so that the factor f_{j} becomes the first factor. If there exists a j for which $\eta_{j}\left(y_{j}\right)$ is nonconstant, we choose this for f_{1}. Otherwise, if all the η_{j} are constant, we choose f_{1} to be any factor such that $\eta_{1} \neq 0$.

We will apply the Multivariate Division Algorithm on $\left(y_{1}-\alpha\right) \Phi$ with respect to the set $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$. We will find that there is a nonzero remainder, and since $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is a Gröbner basis, it will follow that $\left(y_{1}-\alpha\right) \Phi$ does not belong to the ideal $\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle$.

We start with Lemma 5.2, according to which $\Phi=p_{1}^{\prime} \cdots p_{n}^{\prime}+h$, where $h \in$ $H_{\mathbf{n}-\mathbf{2}}=H_{\{1, \ldots, n\}}$. The leading monomial of $\left(y_{1}-\alpha\right) \Phi$ is $y_{1}^{d_{1}} \prod_{i=2}^{n} y_{i}^{d_{i}-1}$, and φ_{1} is the only element of the basis whose leading monomial divides this. Thus we apply Lemma 6.2, with $J=\{1, \ldots, n\}, j=1$, and $J_{\hat{1}}:=J-\{j\}=\{2, \ldots, n\}$. This gives

$$
\begin{aligned}
& \left(y_{1}-\alpha\right) \Phi=A_{1} \varphi_{1}+\left(\eta_{1}\left(y_{1}\right)+d_{1} y_{2}+d_{1} \delta_{1} y_{n}\right)\left(\prod_{i=2}^{n} p_{i}^{\prime}\left(y_{i}\right)+\rho_{1}\right)+\left(y_{1}-\alpha\right) \rho_{2} \\
& = \\
& \quad A_{1} \varphi_{1}+\left[d_{1} y_{2}\left(\left(p^{\prime}\right)^{J_{\hat{1}}}+\rho_{1}\right)\right] \\
& \quad+\left[d_{1} \delta_{1} y_{n}\left(\left(p^{\prime}\right)^{J_{\hat{1}}}+\rho_{1}\right)\right]+\left[\eta_{1}\left(\left(p^{\prime}\right)^{J_{\hat{1}}}+\rho_{1}\right)\right]+\text { l.o.t } \\
& = \\
& A_{1} \varphi_{1}+T_{2}+T_{n}+R_{1}+\text { l.o.t }
\end{aligned}
$$

where $\rho_{1}, \rho_{2} \in H_{\{2, \ldots, n\}}$. In particular, T_{2} and T_{n} depend on y_{2}, \ldots, y_{n} but not on y_{1}. We note that T_{2} (respectively, T_{n}) contains a term divisible by $\operatorname{LM}\left(\varphi_{2}\right)$ (respectively, $\left.\mathrm{LM}\left(\varphi_{n}\right)\right)$. We view R_{1} as a remainder term, and note that $\mathrm{LM}\left(R_{1}\right)$ is divisible by $y_{2}^{d_{2}-1} \cdots y_{n}^{d_{n}-1}$, as well as the largest power of y_{1} in $\eta_{1}\left(y_{1}\right)$. By " ℓ.o.t.," we mean that none of its monomials is divisible by $\operatorname{LM}\left(R_{1}\right)$ or by any of the $\operatorname{LM}\left(\varphi_{j}\right)$.

Now we apply Lemma 6.2 to T_{2}, this time with $J=\{2, \ldots, n\}$ and $j=2$, with $J-\{2\}=J_{\hat{1} \hat{2}}=\{3, \ldots, n\}$. We have

$$
\begin{aligned}
T_{2} & =A_{2} \varphi_{2}+d_{2} y_{3}\left(\left(p^{\prime}\right)^{J_{\hat{1} \hat{2}}}+\rho_{1}^{(2)}\right)+d_{2} \delta_{2} y_{1}\left(\left(p^{\prime}\right)^{J_{\hat{1} \hat{2}}}+\rho_{1}^{(2)}\right)+\eta_{2}\left(y_{2}\right)\left(p^{\prime}\right)^{J_{\hat{1} \hat{2}}}+\text { e.o.t. } \\
& =A_{2} \varphi_{2}+T_{2}^{(2)}+R_{1}^{(2)}+R_{2}^{(2)}+\text { l.o.t. }
\end{aligned}
$$

We see that $T_{2}^{(2)}$ contains terms that are divisible by $\operatorname{LM}\left(\varphi_{3}\right)$, but the monomials in $R_{1}^{(2)}$ and $R_{2}^{(2)}$ are not divisible by $\operatorname{LM}\left(\varphi_{i}\right)$ for any i. The remainder term here is $R_{1}^{(2)}+R_{2}^{(2)}$, and we observe that this cannot cancel the largest term in R_{1}. This is because $\operatorname{LM}\left(R_{1}^{(2)}\right)$ lacks a factor of y_{2}, and $\operatorname{LM}\left(R_{2}^{(2)}\right)$ is equal to $y_{3}^{d_{3}-1} \cdots y_{n}^{d_{n}-1}$ times the largest power of y_{2} in $\eta_{2}\left(y_{2}\right)$, and by (\ddagger), this power is no bigger than $d_{2}-1$. If η_{1} is not constant, then we see that $\operatorname{LM}\left(R_{1}\right)>\operatorname{LM}\left(R_{2}^{(2)}\right)$. If η_{1} is constant, then η_{2} must be constant, too, and again we have $\operatorname{LM}\left(R_{1}\right)>\operatorname{LM}\left(R_{2}^{(2)}\right)$. Thus, with our earlier notation, $R_{1}^{(2)}+R_{2}^{(2)}=$ l.o.t.

We do a similar procedure with $T_{n}, T_{2}^{(2)}$, etc., and again find that the remainder term does not contain a multiple of the leading monomial of R_{1}. We see that each time we do this process, the size of the exponent L decreases in the term $\left(p^{\prime}\right)^{L}$. When we have $L=\emptyset$, there are no terms that can be divided by any $\operatorname{LM}\left(\varphi_{j}\right)$. Thus we end up with

$$
\left(y_{1}-\alpha\right) \Phi=A_{1} \varphi_{1}+\cdots+A_{n} \varphi_{n}+R_{1}+\ell . \text {.o.t. }
$$

and $\operatorname{LT}\left(\left(y_{1}-\alpha\right) \Phi\right) \geq \operatorname{LT}\left(A_{j} \varphi_{j}\right)$ for all $1 \leq j \leq n$, and none of the remaining terms is divisible by any of the leading monomials of φ_{j}. Thus we have now finished the Multivariate Division Algorithm, and we have a nonzero remainder. Thus $\left(y_{1}-\alpha\right) \Phi$ does not belong to the ideal of the φ_{j} 's.

Now we turn to the second case, in which $\eta_{j}=0$ for all j. By [12], we may assume that $\operatorname{deg}\left(q_{j}\right) \leq d_{j}-2$. It follows that $\alpha=0$ and $q_{j}=0$. Thus $p_{j}=y_{j}^{d_{j}}$ for all $1 \leq j \leq n$, so $p_{j}^{\prime}=d_{j} y_{j}^{d_{j}-1}$, and H_{J} consists of linear combinations of products $\left(p^{\prime}\right)^{I}=y_{i_{1}}^{d_{i_{1}}-1} \ldots y_{i_{k}}^{d_{i_{k}}-1}$ for $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset J$, for even $k \leq|J|-2$. We will go through the Multivariate Division Algorithm again. The principle is the same as before, but the details are different; in the first case we needed $n \geq 2$, and now we will need $n \geq 3$.

Again, it is only φ_{1} which has a leading monomial which can divide some terms in $\left(y_{1}-\alpha\right) \Phi$. As before, we apply Lemma 6.2 with $J=\{1, \ldots, n\}, j=1$, and $J-\{1\}=J_{\hat{1}}=\{2, \ldots, n\}$. The polynomial in (\ddagger) becomes $B=d_{j} y_{j+1}+d_{j} \delta_{j} y_{j-1}$, and we have

$$
\begin{aligned}
y_{1} \Phi & =A_{1} \varphi_{1}+d_{1} y_{2}\left(\left(p^{\prime}\right)^{J_{\hat{1}}}+\rho_{1}\right)+d_{1} \delta_{1} y_{n}\left(\left(p^{\prime}\right)^{J_{\hat{1}}}+\rho_{1}\right)+y_{1} \rho_{2} \\
& =A_{1} \varphi_{1}+T_{2}+T_{n}+\text { l.o.t. }
\end{aligned}
$$

where $\rho_{1}, \rho_{2} \in H_{\{2, \ldots, n\}}$. Now we apply Lemma 6.2 to divide T_{2} (respectively, T_{n}) by φ_{2} (respectively, φ_{n}). This yields

$$
y_{1} \Phi=A_{1} \varphi_{1}+A_{2} \varphi_{2}+A_{n} \varphi_{n}+T_{3}+T_{n}+R+\text { l.o.t., }
$$

where

$$
T_{3}=d_{1} d_{2} y_{3}\left(\left(p^{\prime}\right)^{J_{\hat{1} \hat{2}}}+\tilde{\rho}_{3}\right), \quad T_{n}=d_{1} d_{n} \delta_{1} \delta_{n} y_{n-1}\left(\left(p^{\prime}\right)^{J_{\hat{1} \hat{n}}}+\tilde{\rho}_{n}\right)
$$

with $\tilde{\rho}_{3} \in H_{\{3, \ldots, n\}}$ and $\tilde{\rho}_{n} \in H_{\{2, \ldots, n-1\}}$, and

$$
R=\left(d_{1} d_{2} \delta_{2} y_{1} y_{n}^{d_{n}-1}+d_{1} d_{n} \delta_{1} y_{1} y_{2}^{d_{2}-1}\right) \prod_{i=3}^{n-1} y_{i}^{d_{i}-1}
$$

Since $n>2, R$ is not the zero polynomial. We will continue the Multivariate Division Algorithm by dividing T_{3} by φ_{3} and T_{n} by φ_{n}, but we see that any terms created cannot cancel R. Thus when we finish the Multivariable Division Algorithm, we will have a nonzero remainder. As in the previous case, we conclude that $y_{1} \Phi$ is not in the ideal $\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle$.
Proof of Proposition 6.1. The fixed points of f coincide with the elements of $Z\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, which is a variety of pure dimension zero. Saddle points have multiplicity 1 , and since there are $d-1$ of these, and since the total multiplicity is d, there must be one more fixed point, also of multiplicity 1 . It follows that the ideal $I:=\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle$ is equal to its radical (see [1]). Since the saddle points all have multiplier λ, Φ must vanish at all the saddle points. If (α, β) is the other fixed point, we conclude that $\left(y_{1}-\alpha\right) \Phi$ vanishes at all the fixed points. Thus $\left(y_{1}-\alpha\right) \Phi$ belongs to the radical of I, and thus I itself. This contradicts Lemma 6.3, which completes the proof of Proposition 6.1.

Acknowledgements We wish to thank Yutaka Ishii and Paolo Aluffi for helpful conversations on this material.

Appendix: Nonsmoothness of J, J^{*}, and K

Let us turn our attention to other dynamical sets for polynomial diffeomorphisms of positive entropy. These are $J:=J^{+} \cap J^{-}, K:=K^{+} \cap K^{-}$, and the set J^{*}, which coincides with the closure of the set of periodic points of saddle type. (See [3,5], and [2] for other characterizations of J^{*}.) We have $J^{*} \subset J \subset K$. We note that none of these sets can be a smooth 3-manifold: otherwise, for any saddle point p, it would be a bounded set containing $W^{s}(p)$ or $W^{u}(p)$, which is the holomorphic image of \mathbb{C}. The following was suggested by Remark 5.9 of Cantat in [9]; we sketch his proof:
Proposition 6.1 If $J=J^{*}$, then it is not a smooth 2-manifold.
Proof Let p be a saddle point, and let $W^{u}(p)$ be the unstable manifold. The slice $J \cap W^{u}(p)$ is smooth and invariant under multiplication by the multiplier of $D f$. This means that in fact, the multiplier must be real, and the restriction of G^{+}to the slice must be linear on each (half-space) component of $W^{u}(p)-J$.

The identity $G^{+} \circ f=d \cdot G^{+}$means that the canonical metric (defined in [6]) is multiplied by d. Thus f is quasi-expanding on J^{*}. Now, applying this argument to f^{-1} we get that f is quasi-hyperbolic. Further, $J^{*}=J$, so it is quasi-hyperbolic on J. If f fails to be hyperbolic, then by [7] there will be a one-sided saddle point, which cannot happen since J is smooth.

Now that f is hyperbolic on J, there is a splitting $E^{s} \oplus E^{u}$ of the tangent bundle, so we conclude that J is a 2 -torus. The dynamical degree must be the spectral radius of an
invertible 2-by-2 integer matrix, but this means it is not an integer, which contradicts the fact the dynamical degree of a Hénon map is its algebraic degree.

Proposition 6.2 Suppose that the complex Jacobian is not equal to ± 1. Then for each saddle (periodic) point p and each neighborhood U of p, neither $J \cap U$ nor $J^{*} \cap U$ nor $K \cap U$ is a C^{1} smooth 2-manifold.

Proof Let us write $M:=J \cap U$ and $g:=\left.f\right|_{M}$. (The following argument works, too, if we take $M=J^{*} \cap U$ or $M=K \cap U$.) The tangent space $T_{p} M$ is invariant under $D f$. The stable/unstable spaces $E^{s / u} \subset T_{p} \mathbb{C}^{2}$ are invariant under $D_{p} f$. The space E^{s} (or E^{u}) cannot coincide with $T_{p} M$, for otherwise the complex stable manifold $W^{s}(p)$ (or $W^{u}(p)$) would be locally contained in M, and thus globally contained in J. But the $W^{s / u}$ are uniformized by \mathbb{C}, whereas J is bounded. We conclude that p is a saddle point for g, and thus the local stable manifold $W_{\mathrm{loc}}^{s}(p ; g)$ is a C^{1}-curve inside the complex stable manifold $W^{s}(p)$. As in Lemma 4.3, we conclude that the multiplier for $\left.D_{p} f\right|_{E_{p}^{u}}$ is $\pm d$ and the multiplier for $\left.D_{p} f\right|_{E_{p}^{s}}$ is $\pm 1 / d$. Thus the complex Jacobian is $\delta= \pm 1$.

Solenoids The two results above concern smoothness, but no example is known where J, J^{*}, or K is even a topological 2-manifold. In the cases where J^{+}has been shown to be a topological 3-manifold (see $[8,11,16,20]$) it also happens that J is a (topological) real solenoid, and in these cases it is also the case that $J=J^{*}$. Further, for every saddle (periodic) point p, there is a real arc $\gamma_{p}=W_{\text {loc }}^{u}(p) \cap J$. If we apply the argument of Proposition 6.2 to this case, we conclude that γ_{p} is not C^{1} smooth.

References

1. Becker, T., Weispfenning, V.: Gröbner Bases, a Computational Approach to Commutative Algebra. Springer, Berlin (1993)
2. Bedford, E., Lyubich, M., Smillie, J.: Polynomial diffeomorphisms of \mathbf{C}^{2}. IV. The measure of maximal entropy and laminar currents. Invent. Math. 112(1), 77-125 (1993)
3. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \mathbf{C}^{2} : currents, equilibrium measure and hyperbolicity. Invent. Math. 103(1), 69-99 (1991)
4. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \mathbf{C}^{2}. II. Stable manifolds and recurrence. J. Am. Math. Soc. 4(4), 657-679 (1991)
5. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \mathbf{C}^{2}. III. Ergodicity, exponents and entropy of the equilibrium measure. Math. Ann. 294(3), 395-420 (1992)
6. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \mathbf{C}^{2}. VIII. Quasi-expansion. Am. J. Math. 124(2), 221-271 (2002)
7. Bedford, E., Smillie, J.: Real polynomial diffeomorphisms with maximal entropy: tangencies. Ann. of Math. 160(1), 1-26 (2004)
8. Bonnot, S.: Topological model for a class of complex Hénon mappings. Comment. Math. Helv. 81(4), 827-857 (2006)
9. Cantat, S.: Bers and Hénon, Painlevé and Schrödinger. Duke Math. J. 149(3), 411-460 (2009)
10. Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and Algorithms, p. xvi+551. Springer, New York (2007)
11. Fornæss, J.E., Sibony, N.: Complex Hénon mappings in \mathbf{C}^{2} and Fatou-Bieberbach domains. Duke Math. J. 65(2), 345-380 (1992)
12. Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theory Dyn. Syst. 9(1), 67-99 (1989)
13. Hakim, M.: Attracting domains for semi-attractive transformations of \mathbb{C}^{p}. Publ. Mat. 38(2), 479-499 (1994)
14. Hubbard, J.H.: The Hénon mapping in the complex domain. Chaotic dynamics and fractals (Atlanta, Ga., 1985). Notes Rep. Math. Sci. Engrg. 2, 101-111 (1986)
15. Hubbard, J.H., Oberste-Vorth, R.: Hénon mappings in the complex domain. I. The global topology of dynamical space. Inst. Hautes Études Sci. Publ. Math. 79, 5-46 (1994)
16. Hubbard, J.H., Oberste-Vorth, R.: Hénon mappings in the complex domain. II. Projective and inductive limits of polynomials. Real and complex dynamical systems (Hillerød, 1993). NATO Adv. Sci. Inst. C 464, 89-132 (1995)
17. Milnor, J.: Dynamics in One Complex Variable. Annals of Mathematics Studies, vol. 160, 3rd edn. Princeton University Press, Princeton (2006)
18. Milnor, J.: Topology from the Differentiable Viewpoint. Based on Notes by David W. Weaver, p. ix +65 . The University Press of Virginia, Charlottesville, VA (1965)
19. Nakane, S.: External rays for polynomial maps of two variables associated with Chebyshev maps. J. Math. Anal. Appl. 338(1), 552-562 (2008)
20. Radu, R., Tanase, R.: A structure theorem for semi-parabolic Hénon maps, arXiv:1411.3824
21. Samelson, H.: Orientability of hypersurfaces in \mathbb{R}^{n}. Proc. Am. Math. Soc. 22, 301-302 (1969)
22. Smillie, J.: The entropy of polynomial diffeomorphisms of \mathbb{C}^{2}. Ergod. Theory Dyn. Syst. 10(4), 823827 (1990)
23. Uchimura, K.: Generalized Chebyshev maps of \mathbb{C}^{2} and their perturbations. Osaka J. Math. 46(4), 995-1017 (2009)
24. Uchimura, K.: Holomorphic endomorphisms of $\mathbb{P}^{3}(\mathbb{C})$ related to a Lie algebra of type A_{3} and catastrophe theory. preprint
25. Ueda, T.: Local structure of analytic transformations of two complex variables I. J. Math. Kyoto Univ. 26(2), 233-261 (1986)

[^0]: \boxtimes Kyounghee Kim
 kim@math.fsu.edu
 Eric Bedford
 ebedford@math.sunysb.edu
 1 Stony Brook University, Stony Brook, NY 11794, USA
 2 Florida State University, Tallahassee, FL 32306, USA

