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We propose a rigorous computational method to prove the uni-
form hyperbolicity of discrete dynamical systems. Applying the
method to the real Hénon family, we prove the existence of
many regions of hyperbolic parameters in the parameter plane
of the family.

1. INTRODUCTION

Consider the problem of determining the set of parameter
values for which the real Hénon map

Ha,b : R
2 → R

2 : (x, y) �→ (a − x2 + by, x) (a, b ∈ R)

is uniformly hyperbolic. If a dynamical system is uni-
formly hyperbolic, then generally speaking, we can apply
the so-called hyperbolic theory of dynamical systems and
obtain many results on the behavior of the system. De-
spite its importance, however, proving hyperbolicity is a
difficult problem even for such simple polynomial maps
as the Hénon maps.

The first mathematical result about the hyperbolicity
of the Hénon map was obtained in [Devaney and Nitecki
79]. The authors showed that for any fixed b, if a is
sufficiently large then the nonwandering set of Ha,b is
uniformly hyperbolic and conjugate to the full horseshoe
map, that is, the shift map of the space of bi-infinite
sequences of two symbols.

Later, Davis, MacKay, and Sannami [Davis et al. 91]
conjectured that besides the uniformly hyperbolic full
horseshoe region, there exist some parameter regions in
which the nonwandering set of the Hénon map is uni-
formly hyperbolic and conjugate to a subshift of finite
type. For some parameter intervals of the area-preserving
Hénon family Ha,−1, they identified the Markov parti-
tion by describing the configuration of stable and unsta-
ble manifolds (see also [Sterling et al. 99, Hagiwara and
Shudo 04]). Although the mechanism of hyperbolicity
at these parameter values is clear by their observations,
no mathematical proof of uniform hyperbolicity has been
obtained so far.
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FIGURE 1. Uniformly hyperbolic plateaus.

The purpose of this paper is to propose a general
method for proving uniform hyperbolicity of discrete dy-
namical systems. Applying the method to the Hénon
map, we obtain a computer-assisted proof of the hyper-
bolicity of the Hénon map on many parameter regions
including the intervals conjectured by Davis et al.

Our results on the real Hénon map are summarized
in the following theorems. We denote by R(Ha,b) the
chain-recurrent set of Ha,b.

Theorem 1.1. There exists a set P ⊂ R
2, which is the

union of 8943 closed rectangles, such that if (a, b) ∈ P ,
then R(Ha,b) is uniformly hyperbolic. The set P is illus-
trated in Figure 1 (shaded regions), and the complete list
of the rectangles in P is given as supplemental material
to the paper.

The hyperbolicity of the chain-recurrent set implies
the R-stability. Therefore, on each connected compo-
nent of P , no bifurcation occurs in R(Ha,b), and hence
numerical invariants such as the topological entropy and
the number of periodic points are constant on it. For this
reason, we call it a “plateau.”

Note that Theorem 1.1 does not claim that a param-
eter value not in P is a nonhyperbolic parameter. It
guarantees only that P is a subset of the uniformly hy-
perbolic parameter values. We can refine Theorem 1.1
by performing more computations, which yields a set P ′

of uniformly hyperbolic parameters such that P ⊂ P ′.
Since the area-preserving Hénon family is of particu-

lar importance, we performed another computation re-
stricted to this one-parameter family and obtained the
following.

Theorem 1.2. If a is in one of the following closed inter-
vals,

[4.5383300781250, 4.5385742187500], [4.5388183593750, 4.5429687500000],

[4.5623779296875, 4.5931396484375], [4.6188964843750, 4.6457519531250],

[4.6694335937500, 4.6881103515625], [4.7681884765625, 4.7993164062500],

[4.8530273437500, 4.8603515625000], [4.9665527343750, 4.9692382812500],

[5.1469726562500, 5.1496582031250], [5.1904296875000, 5.5366210937500],

[5.5659179687500, 5.6077880859375], [5.6342773437500, 5.6768798828125],

[5.6821289062500, 5.6857910156250], [5.6859130859375, 5.6860351562500],

[5.6916503906250, 5.6951904296875], [5.6999511718750, ∞),

then R(Ha,−1) is uniformly hyperbolic.

We remark that the three intervals considered to be
hyperbolic parameter values by Davis et al. appear in
Theorem 1.2. Thus we can say that Theorem 1.2 justifies
their observations.

It is interesting to compare Figure 1 with the bifurca-
tion diagrams of the Hénon map numerically obtained in
[Hamouly and Mira 81], and [Sannami 89, Sannami 94].
The boundary of P shown in Figure 1 is very close to the
bifurcation curves given in these papers.

Recently, Cao, Luzzatto, and Rios [Cao et al. 05]
showed that the Hénon map has a tangency and hence
is nonhyperbolic if the parameter is on the boundary of
the full horseshoe plateau (see also [Bedford and Smil-
lie 04a, Bedford and Smillie 04b]). This fact and Theo-
rem 1.2 suggests that Ha,−1 should have a tangency when
a is close to 5.699951171875. In fact, we can prove the
following result using the rigorous computational method
developed in [Arai and Mischaikow 06].

Proposition 1.3. There exists a ∈ [5.6993102, 5.6993113]
such that Ha,−1 has a homoclinic tangency with respect
to the saddle fixed point in the third quadrant.

Consequently, Theorem 1.2 and Proposition 1.3 yield
the following.

Corollary 1.4. When we decrease a ∈ R of the area-
preserving Hénon family Ha,−1, the first tangency occurs
in the interval [5.6993102, 5.699951171875).
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We remark that Hruska [Hruska 06a, Hruska 06b] also
constructed a rigorous numerical method for proving hy-
perbolicity of complex Hénon maps. The main difference
between our method and Hruska’s is that our method
does not prove hyperbolicity directly. Instead, we prove
quasihyperbolicity, which is equivalent to uniform hyper-
bolicity under the assumption of chain-recurrence. This
rephrasing enables us to avoid the computationally ex-
pensive procedure of constructing a metric adapted to
the hyperbolic splitting. Another peculiar feature of our
algorithm is that it is based on the subdivision algorithm
(see [Dellnitz and Junge 02]) and hence is effective for
inductive search of hyperbolic parameters.

Finally, we remark that the method developed in this
paper can also be applied to higher-dimensional dynam-
ical systems. In fact, by applying the method to the
complex Hénon map, we obtain a proof of Conjecture 1.1
in [Bedford and Smillie 06] (see [Arai 07]).

The structure of the rest of the paper is as follows.
The notion of quasihyperbolicity will be introduced in
Section 2, and then an algorithm for proving quasihyper-
bolicity will be proposed in Section 3. In the last section,
Section 4, we apply the method to the Hénon family and
obtain Theorems 1.1 and 1.2.

2. HYPERBOLICITY AND QUASIHYPERBOLICITY

First we recall the definition of hyperbolicity. Let f be
a diffeomorphism on a manifold M and Λ a compact
invariant set of f . We denote by TΛ the restriction of
the tangent bundle TM to Λ.

Definition 2.1. We say that f is uniformly hyperbolic on
Λ, or Λ is a uniformly hyperbolic invariant set of f , if
TΛ splits into a direct sum TΛ = Es ⊕ Eu of two Tf -
invariant subbundles and there are constants c > 0 and
0 < λ < 1 such that

‖Tfn|Es‖ < cλn and ‖Tf−n|Eu‖ < cλn

hold for all n ≥ 0. Here ‖ · ‖ denotes a metric on M .

We note that this definition involves many ingredients:
constants c and λ, a splitting of TΛ, and a metric on M .
If we try to prove hyperbolicity according to this defini-
tion, we must control these objects at the same time, and
the algorithm would be rather complicated. Although
we can omit the constant c by choosing a suitable metric
on M , constructing such a metric is also a difficult prob-
lem in general. The situation is the same even if we use
the standard “cone fields” argument.

intersection

pq

FIGURE 2. Λ := {p}∪{q}∪ (W u(p)∩W s(q)) is quasi-
hyperbolic but is not uniformly hyperbolic.

To avoid this computational difficulty, we introduce
the notion of quasihyperbolicity. Recall that the differ-
ential of f induces a dynamical system Tf : TM → TM .
By restricting it to the invariant set TΛ, we obtain
Tf : TΛ → TΛ. An orbit of Tf is called a trivial or-
bit if it is contained in the zero section of the bundle TΛ.

Definition 2.2. We say that f is quasihyperbolic on Λ if
Tf : TΛ → TΛ has no nontrivial bounded orbit.

This definition is much simpler than that of uni-
form hyperbolicity and is a purely topological condi-
tion for Tf . It is easy to see that hyperbolicity im-
plies quasihyperbolicity. The converse is not true in gen-
eral, although the hyperbolicity of periodic points and
the nonexistence of a tangency follows from quasihyper-
bolicity.

However, when f |Λ is chain-recurrent, these two no-
tions coincide.

Theorem 2.3. [Churchill et al. 77, Sacker and Sell 74]
Assume that f |Λ is chain-recurrent, that is, R(f |Λ) = Λ.
Then f is uniformly hyperbolic on Λ if and only if f is
quasihyperbolic on it.

Remark 2.4. The assumption of chain-recurrence is es-
sential for uniform hyperbolicity. For example, consider
two hyperbolic saddle fixed points p and q in R

3, with
1- and 2-dimensional unstable direction respectively. As-
sume that the unstable manifold Wu(p) of p intersects
the stable manifold W s(q) of q in a way that the sum of
the tangent spaces of these two 1-dimensional manifolds
span a 2-dimensional subspace of R

3 (see Figure 2). Let
Λ := {p} ∪ {q} ∪ (Wu(p) ∩ W s(q)). Then Λ is quasihy-
perbolic, but clearly not uniformly hyperbolic because it
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contains fixed points with different unstable dimensions
and a connecting orbit between them.

Next, we rephrase the definition of quasihyperbolicity
in terms of isolating neighborhoods. Recall that a com-
pact set N is an isolating neighborhood (see [Mischaikow
and Mrozek 02]) with respect to f if the maximal invari-
ant set

Inv(f,N) := {x ∈ N | fn(x) ∈ N for all n ∈ Z}

is contained in intN , the interior of N . An invariant
set S of f is said to be isolated if there is an isolating
neighborhood N such that Inv(f,N) = S.

Note that the linearity of Tf in the fibers of TΛ
implies that if there is a nontrivial bounded orbit of
Tf : TΛ → TΛ, then its multiplication by a constant
is also a nontrivial bounded orbit, and hence any com-
pact neighborhood N of the zero section of TΛ contains
a nontrivial bounded orbit. Therefore, the definition of
quasihyperbolicity is equivalent to saying that the zero
section of the tangent bundle TΛ is an isolated invariant
set with respect to Tf : TΛ → TΛ.

Furthermore, it suffices to find an isolating neighbor-
hood that contains the zero section.

Proposition 2.5. Assume that N ⊂ TΛ is an isolating
neighborhood with respect to Tf : TΛ → TΛ and N con-
tains the image of the zero section of TΛ. Then Λ is
quasihyperbolic.

Proof: For a subset S of TM and δ ≥ 0, we define δS :=
{δ · v | v ∈ S}. By linearity of Tf , if S is Tf -invariant,
so is δS. Now we assume that N is an isolating neigh-
borhood, that is, Inv(Tf,N) ⊂ int N . A standard com-
pactness argument shows that there is δ > 1 such that
δ Inv(Tf,N) ⊂ N . Since δ Inv(Tf,N) is Tf -invariant
and contained in N , we have δ Inv(Tf,N) ⊂ Inv(Tf,N),
by definition of the maximal invariant set. It follows
that if v ∈ Inv(Tf,N), we have δnv ∈ Inv(Tf,N) for all
n ≥ 0. Since Inv(Tf,N) is compact and hence bounded,
v must be the zero vector. This implies that there is no
nontrivial bounded orbit of Tf : TΛ → TΛ.

3. ALGORITHMS

In this section, we assume that M = R
n and consider a

family of diffeomorphisms fa : R
n → R

n that depends
on an r-tuple of real parameters a = (a1, . . . , ar) ∈ R

r.
Define F : R

n × R
r → R

n and TF : TR
n × R

r → TR
n

by

F (x, a) := fa(x) and TF (x, v, a) := Tfa(x, v),

where x ∈ R
n and v ∈ TxR

n.
We denote by F the set of floating-point numbers, or

the set of numbers our computer can handle. Let IF be
the set of intervals whose endpoints are in F. That is,

IF := {I = [a, b] ⊂ R | a, b ∈ F}.
Similarly, we define a set of n-dimensional cubes by

IF
n := {I1 × · · · × In ⊂ R

n | Ii ∈ IF}.
Let X,F ∈ IF

n and A ∈ IF
r. We consider these cubes

respectively as subspaces of the manifold M , the tangent
space of M , and the parameter space. What we want to
compute is the image of these cubes under the maps F

and TF , namely F (X×A) and TF (X×V ×A). Note that
these images are not objects of IF

n or IF
2n in general.

By this fact and the effect of rounding errors, we cannot
hope that a computer can exactly compute these images.
Instead, we require that our computer be able to enclose
these images using elements of IF

n and IF
2n.

Assumption 3.1. There exists a computational method
such that for any X,V ∈ IF

n and A ∈ IF
r, it can compute

Y ∈ IF
n and W ∈ IF

2n such that

F (X × A) ⊂ intY

and
TF (X × V × A) ⊂ intW

hold rigorously.

Obviously, if the outer approximations Y and W in
Assumption 3.1 are too large, we cannot derive any in-
formation about F or TF . As we will mention in the last
section, for many classes of dynamical systems including
polynomial maps, the rigorous interval arithmetic can be
used to satisfy this assumption, and it gives effectively
good outer approximations.

Let K ⊂ R
n be a compact set that contains Λ and

L ⊂ TR
n, the product of K and [−1, 1]n. We assume

that K is decomposed into a finite union of elements of
IF

n, namely

K =
k⋃

i=1

Ki, where Ki ∈ IF
n.

We also decompose the fiber [−1, 1]n ⊂ TxR
n into a finite

union of elements of IF
n. By making products of cubes
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contained in the decompositions of K and [−1, 1], we
obtain a decomposition of L such as

L =
�⋃

j=1

Lj , where Lj ∈ IF
2n.

By Assumption 3.1, we can compute Yi ∈ IF
n and Wj ∈

IF
2n such that

F (Ki × A) ⊂ int Yi and TF (Lj × A) ⊂ int Wj

for any 1 ≤ i ≤ k and 1 ≤ j ≤ �.
From this information about Yi and Wj , we then con-

struct directed graphs G(F,K,A) and G(TF , L,A) as fol-
lows:

• G(F,K,A) has k vertices {v1, v2, . . . , vk}.
• There exists an edge from vp to vq if and only if

Yp ∩ Kq �= ∅.

And similarly,

• G(TF , L,A) has � vertices {w1, w2, . . . , w�}.
• There exists an edge from wp to wq if and only if

Wp ∩ Nq �= ∅.

The most important property of G(F,K,A) is that if
there exists x ∈ Kp that is mapped into Kq by fa for
some a ∈ A, then there must be an edge of G(F,K,A)
from vp to vq. This property also holds for G(TF , L,A).

We use these directed graphs to enclose the chain-
recurrent set of fa and the maximal invariant set of N .
For this purpose, we define the following notions.

Definition 3.2. Let G be a directed graph. The vertices
of Inv G, the invariant set of G, is defined by

{v ∈ G | ∃ a bi-infinitely long path through v}.
The vertices of Scc G, the set of strongly connected com-
ponents of G, is

{v ∈ G | ∃ a path from v to itself}.
The edges of these graphs are defined to be the restriction
of those of G.

Note that by definition, SccG is a subgraph of Inv G.
For subgraphs G of G(F,K,A) and G′ of G(TF , L,A),

we define their geometric representations |G| ⊂ R
n and

|G′| ⊂ R
2n by

|G| :=
⋃

vi∈G

Ki

and
|G′| :=

⋃
wj∈G′

Lj .

Obviously, |G(F,K,A)| = K and |G(TF , L,A)| = L.

Proposition 3.3. For any a ∈ A,

Inv(fa,K) ⊂ | Inv G(F,K,A)|

and
Inv(Tfa, L) ⊂ | Inv G(TF , L,A)|.

Furthermore, if R(fa) ⊂ intK holds for all a ∈ A, then
we have

R(fa) ⊂ |SccG(F,K,A)|
for all a ∈ A.

Proof: The claims for maximal invariant sets follow from
the construction of G(F,K,A) and G(TF , L,A). We
prove only R(fa) ⊂ |SccG(F,K,A)|. Since F (Ki ×
{a}) ⊂ int Yi holds for all i and the number of cubes
in K is finite, we can choose ε > 0 such that for any i

and x ∈ Ki, if y is a point with d(fa(x), y) < ε, then y

must be contained in Yi. Here d denotes a fixed metric
of R

n.
This implies that if such y is contained in Kj , there

must be an edge from vi to vj . Let x ∈ R(fa). From
the assumption, there exists p such that x ∈ Kp. Since
R(fa) ⊂ int K, we can assume that there is an ε-
chain from x to itself that is contained in K by choos-
ing ε smaller if necessary. It follows that there must
be a path of G(F,K,A) from vp to itself and therefore
x ∈ |SccG(F,K,A)|. This proves the claim.

For the computation of Inv G, the algorithm of [Szym-
czak 97] can be used. There is also an algorithm for com-
puting SccG that is standard in algorithmic graph theory
(see [Sedgewick 83], for example).

Now we can describe the algorithm to prove quasi-
hyperbolicity. It involves the subdivision algorithm [Dell-
nitz and Junge 02]. Roughly speaking, this means that if
we fail to prove quasihyperbolicity, then we subdivide all
of the cubes in K and L to obtain a better approximation
of the invariant set, and repeat the whole step until we
succeed with the proof.

In the following, we first develop an algorithm for a
fixed set of parameter values. That is, we fix the set A

and try to check whether R(fa) is quasihyperbolic for all
a ∈ A. Note that we do not exclude the case in which
A contains only one parameter value, namely A = {a},
where a is an r-tuple of floating-point numbers.
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Algorithm 3.4. (For proving quasihyperbolicity for all
a ∈ A.)

1. Find K such that R(fa) ⊂ int K holds for all a ∈ A

and let L := K × [−1, 1]n.

2. Compute SccG(F,K,A) and replace K with
|SccG(F,K,A)|.

3. Replace L with L ∩ (K × [−1, 1]n).

4. Compute Inv G(TF , L,A).

5. If | Inv G(TF ,K,A)| ⊂ K × int[−1, 1]n, then stop.

6. Otherwise, replace L with | Inv G(TF , L,A)| and re-
fine the decomposition of K and L by bisecting all
cubes in them. Then go to step 2.

Theorem 3.5. If Algorithm 3.4 stops, then fa is quasihy-
perbolic on R(fa) for every a ∈ A.

Proof: Assume that Algorithm 3.4 stops and choose a ∈
A. Let

Na = L ∩ (R(fa) × [−1, 1]n).

Then Na contains the zero-section of TR(fa). By Propo-
sition 2.5, it suffices to show that Na is an isolating neigh-
borhood with respect to Tfa : TR(fa) → TR(fa). Since
the algorithm stops, then

Inv(Tfa, Na) ⊂ Inv(Tfa, L)

⊂ | Inv G(TF , L)|
⊂ K × int[−1, 1]n.

Then it follows from Inv(Tfa, Na) ⊂ Na ⊂ R(fa) ×
[−1, 1]n that

Inv(Tfa, Na) ⊂ R(fa) × int[−1, 1]n.

But R(fa)× int[−1, 1]n is the interior of Na with respect
to TR(fa), and this proves Inv(Tfa, Na) ⊂ int Na.

In other words, if A contains a nonquasihyperbolic
parameter value, then Algorithm 3.4 never stops. There-
fore, if we want to apply the method for a large family
of diffeomorphisms, the algorithm should involve an au-
tomatic selection of parameter values.

We can also use the subdivision algorithm to realize
such a procedure. That is, we will inductively decompose
A into a finite union of elements of IF

r and remove cubes
in which the hyperbolicity has been proved. We denote
by A the set of cubes in the decomposition of A.

Algorithm 3.6. (Adaptive selection of quasihyperbolic
parameters.)

1. Find K such that R(fa) ⊂ K holds for all a ∈ A.

2. Let A = {A0}, where A0 = A and K0 = K, L0 =
K0 × [−1, 1]n.

3. Choose a cube Ai ∈ A according to the “selection
rule.”

4. Apply steps 2, 3, and 4 of Algorithm 3.4 with A =
Ai, K = Ki, and L = Li.

5. If | Inv G(TF , Li)| ⊂ int Li, then remove Ai from A
and go to step 2.

6. Otherwise, bisect Ai into two cubes Aj , Ak. Remove
Ai from A and add Aj , Ak to A. Put Kj = Kk = Ki

and Lj = Lk = Inv G(TF , Li) and then go to step 2.

This algorithm does not stop if there is a nonquasi-
hyperbolic parameter in A. But it follows from Theo-
rem 3.5 that if the cube Ai is removed in the procedure
of Algorithm 3.6, then Ai consists of quasihyperbolic pa-
rameter values.

We did not specify the “selection rule” that appears
in step 2 of Algorithm 3.6. Various rules can be applied,
and the effectiveness of a rule depends on the case.

One example of such a rule is to select Ai such that
Ni and Ki consist of smaller numbers of cubes. Since the
computational cost of the algorithm depends on the num-
ber of cubes, this rule implies that our computation will
be concentrated on parameter values on which the com-
putation is relatively fast. By applying this rule, we can
avoid wasting too much time trying to prove the hyper-
bolicity for apparently nonhyperbolic parameter values.
This rule works sufficiently well for general purposes.

The problem with this rule is that sometimes the com-
putation is focused only on parameters with a small in-
variant set, for example, in the case that R(fa) is a single
fixed point. If this is the case, then most of the computa-
tion will be done on parameter cubes close to the bifur-
cation curve of the fixed point. To avoid this, we can use
the number of cubes multiplied by the subdivision depth
of Ai instead of the number of cubes itself.

Alternatively, we can distribute our computational ef-
fort across the whole of the parameter space equally sim-
ply by selecting all cubes in A sequentially.
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FIGURE 3. Results after computations of 1, 10, and 100 hours.

4. APPLICATION TO THE HÉNON MAP

In this section we apply the method developed in Sections
2 and 3 to the chain-recurrent set R(Ha,b) of the Hénon
family.

In order to apply the algorithm, we must know a priori
the size of R(Ha,b). Further, to apply Theorem 2.3, we
need to check that the dynamics restricted to R(Ha,b)
are chain-recurrent.

First we recall the numbers defined in [Devaney and
Nitecki 79]. Let

R(a, b) :=
1
2

(
1 + |b| +

√
(1 + |b|)2 + 4a

)
,

S(a, b) :=
{
(x, y) ∈ R

2 : |x| ≤ R(a, b), |y| ≤ R(a, b)
}

.

Then we can prove the following.

Lemma 4.1. The chain-recurrent set R(Ha,b) is con-
tained in S(a, b), and Ha,b restricted to R(Ha,b) is chain-
recurrent.

Proof: If x �∈ S(a, b), we can choose ε0 > 0 so small that
if ε < ε0, then all ε-chains through x must diverge to
infinity, and hence x cannot be chain-recurrent (this is a
special case of [Bedford and Smillie 91, Corollary 2.7]).
The proof for the second claim is the same as that for the
compact case (see [Robinson 99], for example), because
we can choose a compact neighborhood S′ of S(a, b) and
ε0 > 0 such that if ε < ε0, then all ε-chains from x ∈ R
to x must be contained in S′.

In the case of the Hénon map, Assumption 3.1 can
be satisfied with rigorous interval arithmetic on a CPU
that satisfies the IEEE754 standard for binary floating-
point arithmetic. This is also the case for an arbitrary
polynomial map of R

n.
We remark that we need to consider only the case

b ∈ [−1, 1], because the inverse of the Hénon map Ha,b

is again conjugate to the Hénon map Ha/b2,1/b, whose
Jacobian is 1/b, and the hyperbolicity of a diffeomor-
phism is equivalent to that of the inverse map. Fur-
ther, we can restrict our computation to the case (a, b) ∈
[−1, 12] × [−1, 1], for otherwise it follows from the proof
of [Devaney and Nitecki 79] that R(Ha,b) is hyperbolic
or empty.

Therefore, we start with A := [−1, 12] × [−1, 1], K :=
[−8, 8]× [−8, 8], and L = K × [−1, 1]2. Then Lemma 4.1
implies that R(Ha,b) ⊂ int K holds for all (a, b) ∈ A.
With this initial data, Theorem 1.1 is proven by applying
Algorithm 3.6.

To obtain Theorem 1.2, we fix b = −1 and start the
computation with A := [4, 12]. The sets K and L are the
same as in the computation for Theorem 1.1.

Finally, we mention the computational cost of the
method. To achieve Theorem 1.1, we needed 1000 hours
of computation using a 2-GHz PowerPC 970 CPU. With
the same CPU, 260 hours were used for Theorem 1.2.
Figure 3 shows the intermediate results obtained after 1,
10, and 100 hours of computation toward Theorem 1.2.
We remark that as these figures suggest, almost all com-
putation time was spent on parameter values close to the
bifurcation curves.
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All of the source code used in these computa-
tions is available at the home page of the au-
thor, http://www.math.kyoto-u.ac.jp/∼arai/, as well
as at http://www.expmath.org/expmath/volumes/16/
16.2/Arai/realhenon.tar.gz. The data structure and the
subdivision algorithm are implemented in the GAIO pack-
age, available at http://math-www.uni-paderborn.de/
∼agdellnitz/gaio/; see also [Dellnitz and Junge 02]. For
the interval arithmetic, we use the package CAPD (http:
//capd.wsb-nlu.edu.pl/). You can also use the PRO-
FIL/BIAS interval arithmetic package for this purpose
(http://www.ti3.tu-harburg.de/knueppel/profil).
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