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Chapter 1

Introduction

Let us begin with the following (elementary) problem.
(S-C) We are given two domains D ⊂ Rp, G ⊂ Rq and a function

f : D ×G −→ R

that is separately continuous on D ×G, i.e.:
• f(a, ·) is continuous on G for arbitrary a ∈ D,
• f(·, b) is continuous on D for arbitrary b ∈ G.

We ask whether the above conditions imply that f is continuous on D ×G.
It is well known that the answer is negative. However, recall that the answer

was not known for instance to A. Cauchy
(
1
)

, who in 1821 in his Cours d’Analyse
claimed that f must be continuous (cf. [Pio 1985-86], [Pio 1996], [Pio 2000]). Ac-
cording to C.J. Thomae (cf. [Tho 1870], p. 13, [Tho 1873], p. 15)

(
2
)

, the error

had been first discovered by E. Heine
(
3
)

. As an counterexample may serve the
function

p = q = 1, D = G = R, f(x, y) :=

{
xy

x2+y2 , if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)
, (*)

which was already known to G. Peano in 1884
(
4
)

(cf. [Gen 1884], p. 173).
Since the answer is in general negative, one can ask how big is the set SC(f) of

discontinuity points (a, b) ∈ D×G of a separately continuous function f . A partial
answer was first given in 1899 by R. Baire

(
5
)

([Bai 1899], see also [Rud 1981]),
who proved that every separately continuous function f : R × R −→ R is of the
first Baire class, i.e. there exists a sequence (fk)∞k=1 ⊂ C(R2,R) such that fk −→ f
pointwise on R2. Consequently, if f : R× R −→ R is separately continuous, then
f is Borel measurable and SC(f) must be of the first Baire category, i.e. SC(f) ⊂⋃∞
k=1 Fk, where intF k = ∅, k ∈ N. Moreover, Baire proved that if f : [0, 1] ×

[0, 1] −→ R is separately continuous, then SC(f) is an Fσ–set
(
6
)

whose projections
are of the first Baire category. Conversely, if S ⊂ [0, 1] × [0, 1] is an Fσ–set whose
projections are of the first Baire category, then there exists a separately continuous
function f : [0, 1] × [0, 1] −→ R with SC(f) = S (cf. [Ker 1943], [Mas-Mik 2000]).

It is natural to ask whether the above results may be generalized to the case
of separately continuous functions f : Rn −→ R, n ≥ 3, i.e. those functions f for
�
1� Augustin Cauchy (1789–1857) — French mathematician and physicist.�
2� Carl Johannes Thomae (1840–1921) — German mathematician.�
3� Eduard Heine (1821–1881) — German mathematician.�
4� Giuseppe Peano (1858–1932) — Italian mathematician.�
5� René-Louis Baire (1874–1932) — French mathematician.�
6� That is, a countable union of closed sets.
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which f(x1, . . . , xj−1, ·, xj+1, . . . , xn) ∈ C(R) for arbitrary (x1, . . . , xn) ∈ Rn and
j ∈ {1, . . . , n}. H. Lebesgue

(
7
)

proved ([Leb 1905]) that every such a function
is of the (n − 1) Baire class, i.e. there exists a sequence (fk)∞k=1 of functions of
the (n − 2) Baire class such that fk −→ f pointwise on Rn. In particular, every
separately continuous function f : Rn −→ R is Borel measurable. Moreover,
H. Lebesgue proved that the above result is exact, i.e. for n ≥ 3 there exists a
separately continuous function f : Rn −→ R that is not of the (n− 2) Baire class.

It is clear that one may formulate similar problems substituting the class C of
continuous functions by other classes F , e.g.:

• F = Ck = the class of Ck–functions, k ∈ N ∪ {∞, ω}, where Cω means the
class of real analytic functions,

• F = H = the class of harmonic functions,
• F = SH = the class of subharmonic functions (in this case we allow that

f : D ×G −→ [−∞,+∞)).
Thus our more general problem is the following one.

(S-F) We are given two domains D ⊂ Rp, G ⊂ Rq and a function

f : D ×G −→ R

that is separately of class F on D ×G, i.e.:
• f(a, ·) ∈ F(G) for arbitrary a ∈ D,
• f(·, b) ∈ F(D) for arbitrary b ∈ G.

We ask whether f ∈ F(D ×G).
Moreover, in the case where the answer is negative, one may study the set

SF (f) of all points (a, b) ∈ D×G such that f /∈ F(U) for every neighborhood U
of (a, b).

Observe that the Peano function (*) is separately real analytic. Consequently,
our problem has the negative solution for F = Ck with arbitrary k ∈ N ∪ {∞, ω}
and, therefore, one may be interested in the structure of SCk(f). The structure of
SCω (f) was completely characterized in [Ray 1988], [Sic 1990]

(
8
)

, and [B lo 1992]
(cf. Theorem 4.6.2).

Surprisingly, in the case of harmonic functions the answer is positive — every
separately harmonic function is harmonic — cf. [Lel 1961]

(
9
)

(Theorem 4.5.1).
In the case of subharmonic functions the answer is once again negative —

cf. [Wie-Zei 1991].

Analogous problems may be formulated in the case where D ⊂ Cp, G ⊂ Cq are
domains and f : D ×G −→ C is a function that is separately of class F with:

• F = O = the class of all holomorphic functions,
• F = M = the class of all meromorphic functions,
• F = PSH = the class of all plurisubharmonic functions (in this case we

allow that f : D ×G −→ [−∞,+∞)).

�
7� Henri Lebesgue (1875–1941) — French mathematician.�
8� Józef Siciak (1931– ) — Polish mathematician.�
9� Pierre Lelong (1912– ) — French mathematician.
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In the case of holomorphic functions the answer is positive — every separately
holomorphic function is holomorphic (Theorem 2.1.5) — this is the famous Hartogs
theorem

(
10

)
(cf. [Har 1906]). In the sequel we will be mostly concentrated on the

holomorphic case. We would like to point out that investigations of the separately
holomorphic functions begun at 1899 ([Osg 1899])

(
11

)
, that is almost at the same

time as first Baire’s results on separately continuous functions ([Bai 1899]).

Since the answer to the main question (S-O) is positive, we may consider the
following strengthened problem.

(S-OH) Given two domains D ⊂ Cp, G ⊂ Cq, a non-empty set B ⊂ G, and
a function f : D ×G −→ C such that:

• f(a, ·) ∈ O(G) for every a ∈ D,
• f(·, b) ∈ O(D) for every b ∈ B (only in B),

we ask whether f ∈ O(D ×G).
The problem has a long history that began with [Huk 1930]

(
12

)
(Theorem

2.2.2) and has been continued in [Ter 1967], [Ter 1972]
(
13

)
— Theorems 4.1.1 and

4.1.4. Terada was the first who used the pluripotential theory — the newest tool
at that tme. Roughly speaking, the final result says that the answer is positive
iff the set B is not pluripolar (i.e. B is not thin from the point of view of the
pluricomplex potential theory — cf. Definition 3.3.18).

The problem (S-OH) leads to the following general question.
(S-OC) Given two domains D ⊂ Cp, G ⊂ Cq, two non-empty sets A ⊂ D,

B ⊂ G, and a function f : (A×G) ∪ (D ×B) −→ C such that:
• f(a, ·) ∈ O(G) for every a ∈ A,
• f(·, b) ∈ O(D) for every b ∈ B,

we ask whether f may be holomorphically extended to an open (independent of f)
neighborhood of the cross X := (A×G) ∪ (D ×B) (note that (S-OH) is just the
case where A = D). Investigations of (S-OC) began with [Ber 1912]

(
14

)
and have

been continued for instance in [Ber 1912], [Sic 1969a], [Sic 1969b], [Akh-Ron 1973],
[Zah 1976], [Sic 1981a], [Shi 1989], [Ngu-Sic 1991], [Ngu-Zer 1991], [Ngu-Zer 1995],
[NTV 1997], [Ale-Zer 2001], [Zer 2002] in which it has been completely solved —
Theorem 4.3.1. Roughly speaking, if the sets A, B are not pluripolar and regular
(i.e. every point of A (resp. B) is a density point of A (resp. B) in the sense of the

pluricomplex potential theory), then there exists a universal neighborhood X̂ of X

such that every function f separately holomorphic on X extends holomorphically

to X̂.

The results extend (in a non-trivial way) to N–fold crosses

X :=

N⋃

j=1

A1 × · · · ×Aj−1 ×Dj ×Aj+1 × · · · ×AN

�
10 � Friedrich Hartogs (1874–1943) — German mathematician.�
11 � William Osgood (1864–1943) — American mathematician.�
12 � Masuo Hukuhara (1905– ) — Japanese mathematician.�
13 � Toshiaki Terada (1941– ) — Japanese mathematician.�
14 � Sergei Natanovich Bernstein (1880 — 1968)) — Russian mathematician.
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with Aj ⊂ Dj ⊂ Cnj , j = 1, . . . , N , and separately holomorphic functions, i.e. func-
tions f : X −→ C such that f(a1, . . . , aj−1, ·, aj+1, . . . , aN) ∈ O(Dj) for all
(a1, . . . , aN ) ∈ A1 × · · · ×AN and j ∈ {1, . . . , N}) — Theorem 4.3.1.

So far our separately holomorphic functions f : X −→ C had no singularities
on X . The fundamental paper by E.M. Chirka and A. Sadullaev ([Chi-Sad 1988])
and next some applications to mathematical tomography ([Ökt 1998], [Ökt 1999])
showed that the following problems seems to be important.

(S-OS) Let A ⊂ D ⊂ Cp, B ⊂ G ⊂ Cq be as in (S-OC), let

M ⊂ X := (A×G) ∪ (D ×B),

and let f : X \M −→ C be a separately holomorphic on X \M , i.e.:
• f(a, ·) is holomorphic in {w ∈ G : (a,w) /∈M} for every a ∈ A,
• f(·, b) is holomorphic in {z ∈ D : (z, b) /∈M} for every b ∈ B.

We ask whether there exist a universal open neighborhood X̂ of X and a relatively

closed set M̂ ⊂ X̂ (both independent of f) such that f extends holomorphically

to X̂ \ M̂ .
Observe that the case where M = ∅ reduces to (S-OC). The problem general-

izes to N–fold crosses and to separately meromorphic functions. A solution of (S-
OS) has been found in a series of papers [Sic 2001], [Jar-Pfl 2001a], [Jar-Pfl 2001b],
[Jar-Pfl 2003a], [Jar-Pfl 2003b], [Jar-Pfl 2003c], [Jar-Pfl 2007] — Chapters 5 and
7.

Analogous problems may be also stated for separately meromorphic functions,
for example:

(S-M) Given two domains D ⊂ Cp, G ⊂ Cq, a “thin” (in a certain sense)
relatively closed set S ⊂ D × G, and a function f : D × G \ S −→ C that is
separately meromorphic on D ×G, i.e.:

• f(a, ·) extends meromorphically to G for every a ∈ D with {a} ×G 6⊂ S,
• f(·, b) extends meromorphically to D for every b ∈ B with D × {b} 6⊂ S,

we ask under which assumptions on S the function f extends meromorphically to
D ×G.

The problem generalizes in a natural way to crosses and N–fold crosses (also
with singularities), cf. e.g. [Kaz 1978a], [Kaz 1978b], [Kaz 1984], [Shi 1989],
[Shi 1991], [Jar-Pfl 2003c] — Chapter 6.

Similar questions as above may be formulated for a boundary cross. To be
more precise:

(S-OB) Given two domains D ⊂ Cp, G ⊂ Cq, two non-empty sets A ⊂ ∂D,
B ⊂ ∂G, and a function f : (A× (G ∪B)) ∪ ((D ∪A) ×B) −→ C such that:

• f(a, ·) ∈ O(G) for every a ∈ A,
• f(·, b) ∈ O(D) for every b ∈ B,
• f(a, b) = lim

D3z→a
f(z, b) = lim

G3w→b
f(a,w), (a, b) ∈ A × B, where the limits

are taken in a certain sense (e.g. non-tangential), we ask whether f may be holo-

morphically extended to a function f̂ on an open (independent of f) subset X̂ of
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D × G such that X ⊂ X̂ and f(a, b) = lim
�

X3(z,w)→(a,b)
f̂(z, w), (a, b) ∈ X (where

the limit has to be specialized) — Chapter 9.

Another possible generalization of the problem of holomorphicity of separately
holomorphic functions is to consider non-linear fibers. Let us illustrate the main
idea by the following particular case (cf. [Chi 2006]).

(S-OF) Let D ⊂ Cp, G ⊂ Cq, Ω ⊂ D × Cq be domains and let

D ×G 3 (z, w) 7−→ (z, ϕ(z, w)) ∈ Ω

be a homeomorphic mapping such that ϕ(·, w) is holomorphic for every w ∈ G.
Suppose that f : Ω −→ C is such that:

• f(a, ·) is holomorphic on the fiber domain ϕ({a} ×G) for every a ∈ D,
• f(·, ϕ(·, b)) ∈ O(D) every b ∈ G.

We ask whether f ∈ O(Ω). The answer is positive — Chapter 10. Note that the
classical Hartogs theorem is just the case where ϕ(z, w) := w and Ω := D ×G.

All above problems may be also formulated in the category of Riemann domains
over Cn and/or complex manifolds.

The graph below represents interrelations between different parts of the book.
We hope that it may help the reader to find an optimal path through the text.

[Road map of the book. Will be completed. . . . . . . . . . . . . ]



Chapter 2

Classical results

2.1 Osgood and Hartogs theorems (1899 – 1906)

Definition 2.1.1. Let ∅ 6= Ω ⊂ Cn be open. We say that a function f : Ω −→ C
is separately holomorphic on Ω (f ∈ Os(Ω)) if for any a = (a1, . . . , an) ∈ Ω and
j ∈ {1, . . . , n}, the function ζ 7−→ f(a1, . . . , aj−1, ζ, aj+1, . . . , an) is holomorphic
in a neighborhood of ζ = aj (as a function of one complex variable).

Clearly, O(Ω) ⊂ Os(Ω). At the end of the 19th century, due to the Cauchy
integral representation, the following equivalence was well known.

Theorem 2.1.2. Let Ω ⊂ Cn be open and let f : Ω −→ C. Then the following
conditions are equivalent:

(i) f is complex differentiable at any point of Ω;

(ii) f ∈ O(Ω);

(iii) f ∈ Os(Ω) ∩ C(Ω).

Thus O(Ω) = Os(Ω)∩C(Ω). The first result dealing with separately holomor-
phic functions without the continuity assumption was the following one.

Theorem 2.1.3 (Osgood). (a) [Osg 1899] If f ∈ Os(Ω) is locally bounded, then
f is continuous. Consequently, by Theorem 2.1.2(iii), O(Ω) = {f ∈ Os(Ω) : f is
locally bounded}.

(b) [Osg 1900] Suppose that n = p+ q and f : Ω −→ C is such that for every
(a, b) ∈ Ω ⊂ Cp×Cq the functions z 7−→ f(z, b) and w 7−→ f(a,w) are holomorphic
in neighborhoods of a and b, respectively (e.g. n = 2, p = q = 1, f ∈ Os(Ω)). Then
the set SO(f) is nowhere dense in Ω.

Recall that SO(f) denotes the set of all points a ∈ Ω such that f /∈ O(U) for
every neighborhood U of a. It is clear that SO(f) is relatively closed in Ω.

Define

‖z‖∞ := max{|z1|, . . . , |zn|}, z = (z1, . . . , zn) ∈ Cn,
P(a, r) = Pn(a, r) := {z ∈ Cn : ‖z − a‖∞ < r}, a ∈ Cn, r > 0,

P(r) = Pn(r) := Pn(0, r),

K(a, r) := P1(a, r), K(r) := P1(r), D := K(1), T = ∂D.

Proof. (a) Nowadays a standard proof of (a) is based on the Schwarz lemma. If
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|f(z)| ≤ C for z ∈ P(a, r) ⊂ Ω, then

|f(z) − f(a)| ≤ |f(z1, z2, z3, . . . , zn) − f(a1, z2, z3, . . . , zn)|
+ |f(a1, z2, z3, . . . , zn) − f(a1, a2, z3, . . . , zn)| + . . .

+ |f(a1, . . . , an−1, zn) − f(a1, . . . , an−1, an)|

≤ 2C

r
(|z1 − a1| + |z2 − a2| + · · · + |zn − an|),

and consequently f is continuous at a.
Another proof, based on the Montel theorem, may be done by induction on n.

Suppose the result is true for n− 1 and let f ∈ Os(Ω) be locally bounded. Take a
polydisc P(a, r) b Ω. Write z = (z′, zn) ∈ Cn−1×C. By the inductive assumption,
f(·, zn) ∈ O(Pn−1(a′, r)) for all zn ∈ K(an, r). Take a sequence P(a, r) 3 ak −→ a
such that f(ak) −→ α ∈ C. We like to show that α = f(a). By the Montel
theorem (applied to the sequence (f(·, akn))∞k=1 ⊂ O(Pn−1(a′, r))), there exists a
subsequence (ks)

∞
s=1 such that f(·, aksn ) −→ g locally uniformly in Pn−1(a′, r).

Since f(z′, ·) ∈ C(K(an, r)) for all z′ ∈ Pn−1(a′, r), we must have g = f(·, a). Thus
α = lims→+∞ f((aks)′, aksn )) = g(a′) = f(a).

(b) follows from a Baire argument. Let Pp(a, r) × Pq(b, r) b Ω be arbitrary.
Define

Ak := {z ∈ Pp(a, r) : ∀w∈Pq(b,r) : |f(z, w)| ≤ k}, k ∈ N.
Then Ak is closed in Pp(a, r) and Pp(a, r) =

⋃∞
k=1 Ak. Hence, by Baire’s theorem,

there exists a k0 such that Ak0 has a non-empty interior. Thus f is bounded on a
non-empty open set U = Pp(c, δ)×Pq(b, r) ⊂ Pp(a, r)×Pq(b, r). By (a), f ∈ O(U).
Hence U ⊂ Ω \ SO(f).

W. Osgood also observed that the proof of Theorem 2.1.3(b) shows that in
order to prove that Os(Ω) = O(Ω) for arbitrary open set Ω ⊂ Cn, it suffices to
check the following lemma, which is nowadays called the Hartogs lemma.

Lemma 2.1.4 (Hartogs lemma). Let f : K(r) × Pm(r) −→ C be such that:
• f(a, ·) ∈ O(Pm(r)) for every a ∈ K(r),
• f ∈ O(K(r) × Pm(δ)) for some 0 < δ < r.

Then f ∈ O(K(r) × Pm(r)).

Proof that Lemma 2.1.4 implies that Os(Ω) = O(Ω). We use induction on n. For
n = 1 the theorem is trivial. Suppose that Os(Ω) = O(Ω) for arbitrary open set
Ω ⊂ Cn−1. Fix Ω ⊂ Cn = C × Cn−1 and f ∈ Os(Ω). It is sufficient to show
that f is holomorphic in a neighborhood of an arbitrary point (z0, w0) ∈ Ω. Let
Pn((z0, w0), 2r) ⊂ Ω, and let

Ak := {w ∈ Pn−1(w0, r) : ∀z∈K(z0,r) : |f(z, w)| ≤ k}, k ∈ N.

Clearly Ak ⊂ Ak+1. Since f(z, ·) ∈ C(Pn−1(w0, 2r)) for arbitrary z ∈ K(z0, 2r)
(by the inductive assumption), the sets Ak are closed in Pn−1(w0, r). Moreover,⋃
k∈NAk = Pn−1(w0, r). Using Baire’s property we conclude that intAk0 6= ∅
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for some k0. Let Pn−1(ξ0, δ) ⊂ Ak0 . In particular, by Theorem 2.1.3(a), f ∈
O(K(z0, r) × Pn−1(ξ0, δ)). Now we apply Lemma 2.1.4 (with m := n − 1) to the
function K(r) × Pn−1(r) 3 (z, w) −→ f(z0 + z, ξ0 + w), and we conclude that
f ∈ O(Pn((z0, ξ0), r)).It remains to observe that (z0, w0) ∈ Pn((z0, ξ0), r).

The main step, based on the above remark by Osgood, was done by Hartogs
in [Har 1906].

Theorem 2.1.5 (Hartogs theorem). The Hartogs lemma (Lemma 2.1.4) is true.
Consequently, Os(Ω) = O(Ω) for arbitrary open set Ω ⊂ Cn.

Nowadays there exist various proofs of the Hartogs lemma. We present below
two of them:

• Leja’s proof [Lej 1950]
(
1
)

, based on the Leja’s polynomial lemma (Lemma
2.1.6),

• Koseki’s proof [Kos 1966]
(
2
)

, based on an elementary version of the Har-
togs lemma (Lemma 2.1.7).

We like to point out that both proofs are based on classical complex analy-
sis and are independent of the Hartogs lemma for plurisubharmonic functions
(cf. Proposition 3.3.13).

2.1.1 Leja’s proof of the Hartogs lemma

Let P(Cn) denote the space of all complex polynomials of n complex variables.

Lemma 2.1.6 (Leja’s polynomial lemma, cf. [Lej 1933a], [Lej 1933b]). Let K ⊂ C
be a compact set such that

inf{diamS : S is a connected component of K} > 0

(e.g. K is a continuum
(
3
)
) and let F ⊂ P(C) be such that

∀z∈K : sup
p∈F

|p(z)| < +∞,

i.e. F is pointwise bounded on K. Then

∀a∈K ∀ω>1 ∃M=M(K,a,ω,F)>0 ∃η=η(K,a,ω)>0 : sup
p∈F

sup
z∈K(a,η)

|p(z)| ≤Mωdegp,

or equivalently,

∀ω>1 ∃M=M(K,ω,F)>0 ∃ Ω=Ω(K,ω)
K⊂Ω – open

: sup
p∈F

sup
z∈Ω

|p(z)| ≤Mωdeg p.

�
1� Franciszek Leja (1885 — 1979) — Polish mathematician.�
2� Ken’iti Koseki (1917–1980) — Japanese mathematician.�
3� That is, a compact connected set having more than one point.
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Notice that η and Ω are independent of F .

Proof. Let r > 0 be such that diamS ≥ 2r for every connected component S of
K.

Step 10: Let A ⊂ [0, r] be a closed set with m := L1(A) > 0. Then for every
d ∈ N there exist t0, . . . , td ∈ A, 0 ≤ t0 < · · · < td ≤ r, such that

tk − tj ≥
k2 − j2

d2
m, j, k = 0, . . . , d, j < k.

Proof of Step 10. Let t0 = minA, s0 := t0 + 12

d2m. Then A1 := A\ [0, s0). Observe
that A1 is closed and non-empty (indeed, if A ⊂ [t0, s0), then m = L1(A) <

s0 − t0 = 12

d2m ≤ m — a contradiction).

Put t1 := minA1, s1 := t1 + 22−12

d2 m. Then t1 − t0 ≥ s0 − t0 = 12−02

d2 m.
Let A2 := A \ [0, s1); A2 is again non-empty (if A ⊂ [t0, s0) ∪ [t1, s1)), then

m < s0 − t0 + s1 − t1 = 22

d2m ≤ m — a contradiction). Let t2 := minA2. Then

t2 − t1 ≥ s1 − t1 = 22−12

d2 m.

We continue and we get t0, . . . , td−1 := minAd−1, sd−1 := td−1 + d2−(d−1)2

d2 m,
Ad := A \ [0, sd−1). Suppose that Ad = ∅. Then A ⊂ [t0, s0) ∪ . . . [td−1, sd−1)

and hence m < s0 − t0 + · · · + sd−1 − td−1 = d2

d2m = m — a contradiction. Thus

td := minAd is well defined and td − td−1 ≥ sd−1 − td−1 = d2−(d−1)2

d2 m.

Step 20: For any B ⊂ K and a ∈ K, let

πa(B) := {t ∈ [0, r] : B ∩ ∂K(a, t) 6= ∅}.

Observe that if B is closed, then so is πa(B).
Step 30: Let

I(α) := exp
( ∫ 1

0

log
α2 + x2

x2
dx

)
, α ≥ 0.

Observe that log I(α) = log(1 + α2) + 2α arctan(1/α). In particular, log I(α) ≤
(π + α)α.

Step 40: From now on p will denote an arbitrary polynomial from the family
F and d := deg p.

For any closed set B ⊂ K, a ∈ K and η > 0 we have

|p(z)| ≤ ‖p‖BId(α), z ∈ K(a, η),

where

α2 :=
η + r − L1(A)

L1(A)
, A := πa(B).

In particular, if B = K, then A = [0, r] and, consequently,

|p(z)| ≤ ‖p‖KId(
√
η/r), z ∈ K(η),

where K(η) :=
⋃
a∈K Pn(a, η); notice that K(η) is also compact.
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Proof of Step 40
. The case where L1(A) = 0 is obvious. Assume that m :=

L1(A) > 0. Let t0, . . . , td be as in Step 10. Take arbitrary zk ∈ B ∩ ∂K(a, tk),
k = 0, . . . , d. Let Td := {z0, . . . , zd},

L(k)(z, Td) :=

d∏

j=0
j 6=k

z − zj
zk − zj

, k = 0, . . . , d.

If z ∈ K(a, η), then |z − zj| ≤ |z − a| + |zj − a| ≤ η + tj . Moreover, since

r− tj ≥ td − tj ≥ d2−j2

d2 m, we get tj ≤ r−m+ j2

d2m, and, consequently, |z − zj | ≤
(α2 + j2

d2 )m, j = 0, . . . , d. On the other hand, |zk − zj | ≥ |tk − tj | ≥ |k2−j2|
d2 m.

Thus, if z ∈ K(a, η), then

|L(k)(z, Td)| ≤
d∏

j=0
j 6=k

α2 + j2

d2

|k2−j2|
d2

≤ 2

d∏

j=1

α2 + j2

d2

j2

d2

≤ 2Id(α),

where the last inequality follows from the following inequality

1

d

d∑

j=1

log
α2 + j2

d2

j2

d2

≤
∫ 1

0

log
α2 + x2

x2
dx = log I(α).

Then, for z ∈ K(a, η), we have

|p(z)|s =
∣∣∣
sd∑

k=0

ps(zk)L(k)(z, Tsd)
∣∣∣ ≤ ‖p‖sB(sd+ 1)2Isd(α),

which implies that

|p(z)| ≤ ‖p‖B s
√

2(sd+ 1)Id(α).

It remains to let s −→ +∞.

Step 50: Let (Ks)
∞
s=1 be a sequence of compact subsets of K such that Ks ⊂

Ks+1, K =
⋃∞
s=1Ks. Then for every η > 0 there exists a sequence (ms(η))∞s=1 ⊂

[0, r], ms(η) −→ r such that

|p(z)| ≤ ‖p‖Ks
(
I(

√
η/r)I(αs)

)d
, z ∈ K(η),

where

α2
s :=

η + r −ms(η)

ms(η)
, s ∈ N.

Proof of Step 50. Take a1, . . . , aN ∈ K such that K ⊂ ⋃N
k=1K(ak, η) =: L.

Let Ak,s := πak(Ks). Then Ak,s ↗ [0, r] when s ↗ +∞, which implies that
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L1(Ak,s) ↗ r when s ↗ +∞, k = 1, . . . , N . Put ms(η) := mink=1,...,N L1(Ak,s).
It is clear that ms(η) −→ r. By Step 40 we know that

|p(z)| ≤ ‖p‖KsId(αk,s) ≤ ‖p‖KsId(αs), z ∈ K(ak, η),

where

α2
k,s :=

η + r − L1(Ak,s)

L1(Ak,s)
.

Hence,

|p(z)| ≤ ‖p‖KsId(αs), z ∈ L,

and, finally, by Step 40, we get the required inequality.

Step 60: Let

Ks := {z ∈ K : ∀p∈F : |p(z)| ≤ s}, s ∈ N.

Observe that Ks is compact, Ks ⊂ Ks+1, and K =
⋃∞
s=1Ks (because F is point-

wise bounded on K). Let Fs,d = {zs,0, . . . , zs,d} be the d–th system of Fekete
points for Ks, i.e. Fs,d realizes the maximum of the continuous function

Kd+1
s 3 (z0, . . . , zd) 7−→

∏

0≤j<k≤d

|zj − zk|.

Put

L(k)(z, Fs,d) :=

d∏

j=0
j 6=k

z − zs,j
zs,k − zs,j

, k = 0, . . . , d.

Observe that |L(k)(z, Fs,d)| ≤ 1 for z ∈ Ks. Hence, by Step 50, we get

|p(z)| =
∣∣∣
d∑

k=0

p(zs,k)L(k)(z, Fs,d)
∣∣∣ ≤ s(d+ 1)

(
I(

√
η/r)I(αs)

)d
, z ∈ K(η), s ∈ N.

Step 60: We move to the main proof. Fix an ω > 1. Let d0 = d0(ω) ∈ N
be such that d

√
d+ 1 ≤ 3

√
ω for d ≥ d0. Let η = η(r, ω) > 0 be so small that

I(
√
η/r) < 3

√
ω. Finally, let s0 = s0(r, ω) ∈ N be such I(αs) ≤ 3

√
ω for s ≥ s0. In

view of Step 50, if d ≥ d0, then

|p(z)| ≤ s(d+ 1)
(
I(

√
η/r)I(αs)

)d
≤ sωd, z ∈ K(η), s ≥ s0

It remains to find an estimate for d < d0. Let S := {z0, . . . , zd0} ⊂ K be an
arbitrary set of d0 + 1 distinct points. Put

M0 := max
k=0,...,d0

sup
p∈F

|p(zk)| < +∞.
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Then, for d ≤ d0 we get

|p(z)| =
∣∣∣
d0∑

k=0

f(zk)L(k)(z, S)
∣∣∣ ≤M0

d0∑

k=0

max
z∈K(η)

|L(k)(z, S)| = M ≤Mωd,

z ∈ K(η).

Proof of Lemma 2.1.4 via Leja’s polynomial lemma. Let n := 1+m. Observe that
it is sufficient to show that f ∈ O(Pn(r′)) for arbitrary 0 < r′ < r. Thus we may
assume that |f | ≤ C < +∞ in K(r) × Pm(δ) and f(z, ·) is bounded for any
z ∈ Pm(r). We have

f(z, w) =
∑

α∈Zm+

fα(z)wα, z ∈ K(r), w ∈ Pm(r),

where

fα(z) =
1

α!
(Dαf(z, ·))(0) =

1

α!
(D(0,α)f)(z, 0), z ∈ K(r), α ∈ Zm+ .

The last equality follows from the fact that f ∈ O(K(r) × Pm(δ)). In particular,
fα ∈ O(K(r)) for arbitrary α. Moreover, by the Cauchy inequalities, we obtain

|fα(z)| ≤ C/δ|α|, z ∈ K(r), α ∈ Zm+ .

Applying once more the Cauchy inequalities (for the function f(z, ·)), we have

|fα(z)| ≤ ‖f(z, ·)‖Pm(r)

r|α|
, z ∈ K(r), α ∈ Zm+ ,

where for a function ϕ : A −→ C we set ‖ϕ‖A := sup{|ϕ(x)| : x ∈ A}. Conse-
quently,

lim sup
|α|→+∞

|fα(z)|1/|α| ≤ 1/r, z ∈ K(r).

Our aim is to show that the series
∑

α∈Zm+
fα(z)wα converges locally normally in

K(r) × Pm(r).
Take an arbitrary θ ∈ (0, 1) and let ω > 1 be such that θ0 := ω2θ < 1. Fix a

point a ∈ K(r) and 0 < ρ < r − |a|. Let 0 < ρ0 < ρ be so small that rρ0 ≤ ωδρ.
Write

fα(z) =

∞∑

k=0

fα,k(z − a)k, z ∈ K(a, r − |a|),

pα(z) :=

|α|∑

k=0

fα,k(z − a)k, F := {(r/ω)|α|pα : α ∈ Zm+ }.

In view of (2.1.1), the Cauchy inequalities imply that

|fα,k| ≤
C

δ|α|ρk
.
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Consequently, in view of (2.1.2), if z ∈ K(a, ρ0), then

|pα(z)| ≤ |fα(z)| +

∞∑

k=|α|+1

|fα,k(z − a)k| ≤ C(z)
(ω
r

)|α|

+
C

δ|α|

(ρ0

ρ

)|α|+1 1

1 − ρ0
ρ

≤ C(z)
(ω
r

)|α|

+
C

1 − ρ0
ρ

ρ0

ρ

(ρ0

δρ

)|α|

≤ C(z)
(ω
r

)|α|

+ C1

(ω
r

)|α|

.

Hence, the family F is pointwise bounded on K(a, ρ0). By Leja’s polynomial
lemma there exist 0 < η ≤ ρ0 and M > 0 such that

( r
ω

)|α|

|pα(z)| ≤Mω|α|, z ∈ K(a, η), α ∈ Zm+ .

Finally, for (z, w) ∈ K(a, η) × Pm(θr) we get

|fα(z)wα| ≤
(
|pα(z)|+C1

(ω
r

)|α|)
(θr)|α| ≤M(ω2θ)|α|+C1(ωθ)|α| ≤ (M+C1)θ

|α|
0 ,

which implies that the series
∑

α∈Zm+
fα(z)wα converges normally in K(a, η) ×

Pm(θr).

2.1.2 Koseki’s proof of the Hartogs lemma

The main ingredient of Koseki’s proof is the following lemma.

Lemma 2.1.7 (Koseki’s lemma, cf. [Kos 1966]). Let Ω ⊂ C be open, ϕν ∈ O(Ω),
pν > 0, ν ≥ 1. Assume that the sequence (|ϕν |pν )∞ν=1 is locally uniformly bounded
in Ω and

lim sup
ν→+∞

|ϕν(z)|pν ≤ c, z ∈ Ω.

Then for any K b Ω and ε > 0 there exists a ν0 such that

|ϕν(z)|pν ≤ c+ ε, z ∈ K, ν ≥ ν0.

Proof. The result is local — it is sufficient to show that for any ε > 0 and a ∈ Ω
there exist a disc K(a, η) ⊂ Ω and ν0 such that

|ϕν(z)|pν ≤ c+ ε, z ∈ K(a, η), ν ≥ ν0.

We may assume that Ω = K(2), a = 0. Let C > 0 be such that |ϕν |pν ≤ C in D
for arbitrary ν. We may also assume that ϕν 6≡ 0, ν ≥ 1. Write ϕν = Bνψν in D,
where Bν is a finite Blaschke product and ψν has no zeros in D. Let χν ∈ O(D)
be a branch of ψpνν in D. Given arbitrary ζ ∈ ∂D, we have

lim sup
D3z→ζ

|χν(z)| = lim sup
D3z→ζ

|ψν(z)|pν = lim sup
D3z→ζ

|ϕν(z)|pν ≤ C,
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and so |χν | ≤ C in D, ν ∈ N. In particular, the family (χν)∞ν=1 is equicontinuous
in D. Fix an ε > 0 and let 0 < η < 1 be such that |χν(z) − χν(0)| ≤ ε/2 for
z ∈ K(η) and ν ≥ 1. Then

|ϕν(z)|pν ≤ |ψν(z)|pν = |χν(z)| ≤ ε/2 + |χν(0)|, z ∈ K(η), ν ≥ 1.

It remains to estimate χν(0). Observe that

|χν(0)| ≤ 1

2π

∫ 2π

0

|ϕν(eiθ)|pν dθ, ν ≥ 1.

Let
Ak := {θ ∈ [0, 2π] : |ϕν(eiθ)|pν ≤ c+ ε/4, ν ≥ k}.

The sets Ak are closed, Ak ⊂ Ak+1, and
⋃
k∈NAk = [0, 2π]. For ν ≥ k we have

|χν(0)| ≤ 1

2π

(∫

Ak

|ϕν(eiθ)|pνdθ +

∫

[0,2π]\Ak

|ϕν(eiθ)|pνdθ
)

≤ 1

2π

(
(c+ ε/4)L1(Ak) + C(2π − L1(Ak))

)
−→ c+ ε/4,

where L1 denotes the Lebesgue measure in R. Hence |χν(0)| ≤ c + ε/2 for ν �
1.

Proof of Lemma 2.1.4 via Koseki’s lemma. We begin as in the proof based on
Leja’s polynomial lemma:

f(z, w) =
∑

α∈Zm+

fα(z)wα, z ∈ K(r), w ∈ Pm(r),

where

fα ∈ O(K(r)), |fα(z)| ≤ C/δ|α|, z ∈ K(r), α ∈ Zm+ , (2.1.1)

lim sup
|α|→+∞

|fα(z)|1/|α| ≤ 1/r, z ∈ K(r). (2.1.2)

Write Zm+ = {α1, α2, . . . } so that |αν | ≤ |αν+1|, ν = 1, 2, . . . . Let Ω := K(r),
ϕν := fαν , pν := 1/|αν|. Fix a θ ∈ (0, 1) and let ε > 0 be such that (1 + rε)θ < 1.
Applying Lemma 2.1.7 to K := K(θr), we obtain |ϕν(z)|pν ≤ 1/r+ε for z ∈ K(θr)
and ν ≥ ν0. This means that

|fα(z)| ≤ (1/r + ε)|α|, z ∈ K(θr), |α| � 1.

Hence

|fα(z)wα| ≤ ((1 + rε)θ)|α|, z ∈ K(θr), w ∈ Pm(θr), |α| � 1.

Consequently, the series
∑

α∈Zm+
fα(z)wα is convergent normally in Pn(θr), which

implies that f ∈ O(Pn(θr)). Since θ was arbitrary, we conclude that f ∈ O(Pn(r)).
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2.1.3 Generalized Hartogs lemma. Counterexamples

Lemma 2.1.4 may be easily generalized (Exercise) to the following form.

Lemma 2.1.8 (Hartogs lemma). Let U ⊂ Ω ⊂ D × Cq be domains such that
for every a ∈ D the fiber Ua := {w ∈ Cq : (a,w) ∈ U} is non-empty and Ωa is
connected. Let f : Ω −→ C be such that:

• f(a, ·) ∈ O(Ωa), a ∈ D,
• f ∈ O(U).

Then f ∈ O(Ω).

Lemma 2.1.4 is not true without the assumption that f ∈ O(K(r) × Pm(δ))
for some 0 < δ < r (even if f satisfies some additional regularity conditions) —
cf. for instance [Har 1906], [Lej 1950], [Fuk 1983].

Example 2.1.9 ([Lej 1950]). We construct a function f : C×C −→ C such that:
• f(a, ·) ∈ O(C) for every a ∈ C,
• f ∈ O((C \ R−) × C), where R− := {x ∈ R : x ≤ 0},

but f is unbounded near (0, 0) (in particular, f is not holomorphic near (0, 0)).
Let

Lk :=
⋃

x∈R−

K(x, 1/k) ⊂ C,

Ak := K(k) \ Lk, Bk := K(k) ∩ (Lk+1 \ Lk+2), Ck := K(k) ∩ Lk+3, k ∈ N.

By the Runge theorem, for each k ∈ N, there exists a polynomial Pk ∈ P(C) such
that

|Pk(z)| ≤ 1/kk, z ∈ Ak ∪ Ck, |Pk(z)| ≥ kk, z ∈ Bk.

Let

f(z, w) :=

∞∑

k=1

Pk(z)wk, (z, w) ∈ C2.

Observe that f is well defined because for any z ∈ C there exists a k0(z) ∈ N such
that z ∈ Ak ∪Ck for any k ≥ k0(z) and therefore

|Pk(z)wk| ≤ (|w|/k)k, k ≥ k0(z).

In particular, f(z, ·) ∈ O(C) for any z ∈ C. Moreover, for any z0 ∈ C \ R− there
exist r0 > 0 and k0 ∈ N such that K(z0, r0) ⊂ Ak for k ≥ k0. Hence

|Pk(z)wk| ≤ (|w|/k)k, (z, w) ∈ K(z0, r0) × C, k ≥ k0,

and consequently, by the Weierstrass theorem, f ∈ O((C \ R−) × C).
Suppose that f is bounded in a neighborhood of (0, 0), i.e. |f(z, w)| ≤ C,

(z, w) ∈ P2(r). Then, by the Cauchy inequalities, we get

|Pk(z)| ≤ C/rk, k ∈ N, z ∈ K(r).
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Consequently, taking z ∈ Bk ∩K(r) with k � 1, we get

kk ≤ |Pk(z)| ≤ C/rk, k � 1;

a contradiction.

Example 2.1.10 ([Fuk 1983]). We construct a function f : C × D −→ C such
that:

• f(a, ·) ∈ O(D), a ∈ C,
• for any w0 ∈ D∗ the function f(·, w0) is unbounded near 0 (in particular,

not holomorphic near (0, w0)).
Let

Ak :=
{
x+ iy ∈ K(k) : x ≤ 1

2k
− 1

2k+2
or x ≥ 1

2k
+

1

2k+2

}
, Ωk := intAk,

Bk :=
{
x+ iy ∈ K(k) :

1

2k
− 1

2k+3
≤ x ≤ 1

2k
+

1

2k+3

}
, Uk := intBk.

By the Runge approximation theorem for each k there exists a polynomial Pk ∈
P(C) such that |Pk| ≤ 1/2k on Ak and |Pk| ≥ 2k

2

on Bk. Observe that:
• C =

⋃∞
k=1

⋂∞
s=k Ωs,

• 1/2k ∈ Uk ∩
⋂∞
s=k+1Ωs, k ∈ N,

• 1/2s ∈ Ak for s 6= k.
Define

f(z, w) :=

∞∑

k=1

Pk(z)wk, (z, w) ∈ C× D.

Then:
• if a ∈ ⋂∞

k=k0
Ωk, then |Pk(a)wk| ≤ 1/2k for k ≥ k0, and hence f(a, ·) ∈

O(D);
• if w0 ∈ D∗ and 1/2k0 < |w0|, then

|f(1/2kk0 , w0)| ≥ |Pkk0 (1/2kk0)wkk00 | −
∑

s∈N, s6=kk0

|Ps(1/2kk0)ws0|

≥ 2(kk0)2 |w0|kk0 −
∑

s∈N, s6=kk0

1/2s ≥ (2k0 |w0|)kk0 − 1 −→
k→+∞

+∞.

2.2 Hukuhara and Shimoda theorems (1930–1957)

Theorem 2.1.5 and Lemma 2.1.8 suggest the following problem, nowadays called
the Hukuhara problem.

(S-OH) Given two domains D ⊂ Cp, G ⊂ Cq, a non-empty set B ⊂ G, and
a function f : D ×G −→ C that is separately holomorphic in the following sense:

• f(a, ·) ∈ O(G) for every a ∈ D,
• f(·, b) ∈ O(D) for every b ∈ B,
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we ask whether f ∈ O(D ×G).
In the above situation we write f ∈ Os(X) with X := (D × G) ∪ (D × B).

Notice that from the set-theoretic point of view the set X is nothing else as
the Cartesian product D × G which is, of course, independent of B. Writing
X = (D ×G) ∪ (D ×B) we point out the role played by the set B.

Remark 2.2.1. (a) Theorem 2.1.5 and Lemma 2.1.8 guaranties that the answer
is positive (i.e. Os(X) = O(D ×G)) whenever B is open.

(b) Observe that the answer must be negative if B is too “thin”. For example,
if B := g−1(0), where g ∈ O(G), g 6≡ 0, then for arbitrary function ϕ : D −→ C,
the function f(z, w) := ϕ(z)g(w), (z, w) ∈ D × G, belongs to Os(X) (and, of
course, may be not holomorphic on D ×G).

The next step in the development started in 1930 with the paper by M.
Hukuhara [Huk 1930].

Theorem 2.2.2 (Hukuhara). If p = q = 1 and B has an accumulation point in
G, then every locally bounded function f ∈ Os(X) is holomorphic on D ×G.

Below (Theorem 2.2.4) we present a more general result (cf. [Ter 1972]) whose
proof uses the same ideas as the original proof by Hukuhara.

Definition 2.2.3. We say that a set B ⊂ Cq is an identity set at a point b0 ∈ B
if for any open connected neighborhood U of b0 and f ∈ O(U), if f = 0 on B ∩U ,
then f ≡ 0 on U .

Observe that if q = 1 and B ⊂ G has an accumulation point b0 ∈ G, then B is
an identity set at b0 in the sense of the above definition.

Theorem 2.2.4. For arbitrary p and q, if B is an identity set at a point b0 ∈ G,
then every locally bounded function f ∈ Os(X) is holomorphic on D ×G.

The following notion will be very useful in the sequel.

Definition 2.2.5. Let Ω be a topological space (e.g. an open set in Cn). We say
that a sequence (Ωk)∞k=1 of open subsets of Ω is an exhaustion sequence for Ω if
Ωk b Ωk+1 b Ω, k ∈ N, and Ω =

⋃∞
k=1Ωk.

In the case where Ω is connected we will always assume that each Ωk is also
connected.

Proof. Let (Dk)∞k=1 and (Gk)∞k=1 be exhaustion sequences for D and G, respec-
tively, with b0 ∈ G1. It suffices to prove that f is holomorphic on each Dk ×Gk.
Thus, we may additionally assume that f is bounded.

Observe that f must be continuous. Indeed (cf. the proof of Theorem 2.1.3(a)),
let

D ×G 3 (zk, wk) −→ (z0, w0) ∈ D ×G

and f(zk, wk) −→ α ∈ C. By a Montel argument we may assume that f(zk, ·) −→
g locally uniformly in G with g ∈ O(G). In particular, f(zk, wk) −→ g(w0) = α.
Recall that if b ∈ B, then f(·, b) ∈ O(D). Hence, f(zk, b) −→ f(z0, b) = g(b),
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b ∈ B. Since B is an identity set, we conclude that f(z0, ·) ≡ g. Thus α =
g(w0) = f(z0, w0).

Fix an arbitrary polydisc P = P(a, r) b D and define

f̃(z, w) :=
1

(2πi)p

∫

∂0P

f(ζ, w)

z − ζ
dζ, (z, w) ∈ P ×G,

where ∂0P(a, r) := ∂K(a1, r) × · · · × ∂K(ap, r). Then f̃ ∈ Os(P ×G) ∩ C(P ×G)

and so f̃ ∈ O(P ×G). Moreover, by the Cauchy integral formula, f̃(z, b) = f(z, b)

for (z, b) ∈ P × B. Since B is an identity set, we conclude that f̃ = f in P ×G,
which finishes the proof.

It took another 30 years before I. Shimoda came back to the Hukuhara prob-
lem. He proved in [Shi 1957] an analogous result to the one of Osgood (Theorem
2.1.3(b)).

Theorem 2.2.6 (Shimoda
(
4
)

). If p = q = 1 and B has an accumulation point
in G, then for every function f ∈ Os(X) the set SO(f) is nowhere dense.

Below we present a more general result (cf. [Ter 1972]) whose proof goes along
the same ideas as the original proof by Shimoda.

Theorem 2.2.7. For arbitrary p and q, if B is an identity set at a point b0 ∈ G,
then for every function f ∈ Os(X) the set Ω0 := D×G\SO(f) is dense in D×G.
Moreover, Ω0 = U0 ×G, where U0 is an open dense subset of D.

Proof. First observe that if Pp(a, r)×Pq(b, r) ⊂ Ω0 and Pp(a, r)×Pq(b, R) ⊂ D×G,
then Lemma 2.1.8 implies that Pp(a, r) × Pq(b, R) ⊂ Ω0. Consequently, Ω0 must
be of the form Ω0 = U0 ×G.

Take an arbitrary polydisc P = P(a, r) ⊂ D and a point b ∈ G. Let G0 b G
be a subdomain of G such that b, b0 ∈ G0. Define

Ak := {z ∈ P : ∀w∈G0 : |f(z, w)| ≤ k}, k ∈ N.

Then obviously Ak ⊂ Ak+1, k ∈ N, and P =
⋃∞
k=1 Ak. Moreover, each Ak is

closed in P . Indeed, let Ak 3 zs −→ z0 ∈ P . Using a Montel argument, we may
assume that f(zs, ·) −→ g locally uniformly in G0 with g ∈ O(G0), |g| ≤ k. Since
B is an identity set at b0, we conclude that g = f(z0, ·).

Now, a Baire argument implies that there exists a k0 such that U := intAk0 6=
∅. Consequently, by Theorem 2.2.4, f ∈ O(U ×G0).

�
4� Isae Shimoda (1916– ) — Japanese mathematician.



Chapter 3

Prerequisities

For the reader’s convenience we decided to collect in the present chapter various
auxiliary results. Most of them may be found (with proofs) in [Jar-Pfl 2000].
Therefore, all the proofs which may be found in [Jar-Pfl 2000] will be skipped.
Some of the results presented below will be very specialized — the reader should
consult the Road map of the book at the end of Introduction to see where a given
item will be really needed. We recommend to follow the graph from the Road map
of the book.

3.1 Extension of holomorphic functions

Riemann domains appear in a very natural way while discussing problems related
to holomorphic continuation. There exists an example of a bounded domain D ⊂
C2 such that every function f ∈ O(D) extends beyond D, but there is no domain

D̂ ⊂ C2 such that D ⊂ D̂ and each function f ∈ O(D) extends holomorphically

to D̂ (cf. [Sha 1976]).

3.1.1 Riemann regions

See [Jar-Pfl 2000], § 1.1.

Definition 3.1.1. A pair (X, p) is called a Riemann region over Cn
(
1
)

(shortly
(X, p) ∈ R(Cn)) if:

• X is a topological Hausdorff space,

• p : X −→ Cn is locally homeomorphic, i.e. each point a ∈ X has an
open neighborhood U such that p(U) is open in Cn and p|U : U −→ p(U) is
homeomorphic.

The mapping p is called the projection. For z ∈ p(X) the set p−1(z) is called
the stalk over z. A subset A ⊂ X is said to be univalent if p|A : A −→ p(A) is
homeomorphic.

If X is connected, then we say that (X, p) is a Riemann domain over Cn

((X, p) ∈ Rc(Cn)).

If X is σ–compact, i.e. X =
⋃∞
ν=1Kν , where each Kν is compact, then we say

that (X, p) is countable at infinity ((X, p) ∈ R∞(Cn)).

�
1� Georg Riemann (1826–1866) — German mathematician.
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We say that a Riemann region (X, p) ∈ R(Cn) is relatively compact ((X, p) ∈
Rb(Cn)) if there exists (X ′, p′) ∈ R(Cn) such that X is a relatively compact open
set in X ′ and p = p′|X ,

Remark 3.1.2. (a) If Ω ⊂ Cn is an open set, then (Ω, id) ∈ R∞(Cn). This is
the standard identification of open sets in Cn with Riemann regions.

(b) If (X, p) ∈ R(Cn), then p is an open mapping. In particular, the set p(X) is
open in Cn. For any a ∈ p(X) the stalk p−1(a) is a discrete subset of X .

(c) If (X, p) ∈ R(Cn), then the family (U, p|U )U , where U runs over all univalent
open subsets of X , introduces on X an atlas of an n–dimensional complex
manifold.

(d) If (X, p) ∈ R(Cn), (Y, q) ∈ R(Cm), then (X × Y, p × q) ∈ R(Cn+m), where
(p× q)(x, y) := (p(x), q(y)).

(e) Let (X, p) ∈ Rc(Cn) and let Y be an open univalent subset such that p(Y ) =
p(X). Then Y = X .

(f) Every Riemann domain is metrizable.

(g) Rc(Cn) ⊂ R∞(Cn). Consequently, a Riemann region is countable at infinity
iff it has an at most countable number of connected components.

Let (X, p) ∈ R(Cn). For a ∈ X and 0 < r ≤ +∞, we introduce on X the
notion of a polydisc centered at a of radius r as an open univalent neighborhood
P̂(a, r) = P̂X(a, r) of a such that p(P̂X(a, r)) = Pn(p(a), r), where Pn(p(a),+∞) :=

Cn. Notice that P̂X(a, r) exists for small r > 0. We define:
• the distance to the boundary dX : X −→ (0,+∞]:

dX(a) := sup{r ∈ (0,+∞] : P̂X(a, r) exists}, a ∈ X ;

• the maximal polydisc centered at a point a ∈ X : P̂X(a) = P̂X(a, dX(a));
• pa := p|�PX(a),

• dX(A) := inf{dX(a) : a ∈ A}, A ⊂ X ;

• A(r) :=
⋃
x∈A P̂X(x, r), 0 < r < dX(A);

• X∞ := {a ∈ X : dX(a) = +∞}.

Remark 3.1.3. (a) The set X∞ is the union of all connected components Y ⊂ X
such that p|Y : Y −→ Cn is homeomorphic (cf. Remark 3.1.2(e)). Moreover,

|dX(x) − dX(a)| ≤ ‖p(x) − p(a)‖∞, a ∈ X \X∞, x ∈ P̂X(a).

In particular, the function dX is continuous.

(b) If K ⊂ X is compact, then set K(r) is compact for any 0 < r < dX(K).

(c) If K is compact and univalent, then K(r) is univalent for small r > 0.
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For z, ξ ∈ Cn and 0 < r ≤ +∞ let ∆ξ(z, r) := z+K(r)ξ, where ∆ξ(z,+∞) :=
z + Cξ. For a point a ∈ X , 0 < r ≤ +∞, and ξ ∈ Cn, we introduce on X the
notion of a disc in direction ξ centered at a of radius r as a univalent set ∆̂ξ(a, r)

containing a such that p(∆̂ξ(a, r)) = ∆ξ(p(a), r). Observe that ∆̂ξ(a, r) exists

for small r > 0. Note that ∆̂0(a, r) = {a} for every r > 0. We define the distance
to the boundary in direction ξ:

δX,ξ : X −→ (0,+∞], δX,ξ(a) := sup{r > 0 : ∆̂ξ(a, r) exists}, a ∈ X.

Remark 3.1.4. (a) The function

X × Cn 3 (x, ξ) −→ δX,ξ(x) ∈ (0,+∞]

is lower semicontinuous.

(b) The polydisc P̂X(a, r) exists iff the disc ∆̂ξ(a, r) exists for any ξ with ‖ξ‖∞ = 1.
Moreover,

P̂X(a, r) =
⋃

ξ∈Cn

‖ξ‖∞=1

∆̂ξ(a, r), dX = inf{δX,ξ : ξ ∈ Cn, ‖ξ‖∞ = 1}.

For f : X −→ C and a ∈ X , we define the formal derivatives of f at a

∂f

∂zj
(a) :=

∂(f ◦ p−1
a )

∂zj
(p(a)),

∂f

∂zj
(a) :=

∂(f ◦ p−1
a )

∂zj
(p(a)), j = 1, . . . , n,

provided that the right hand sides exist, where ∂
∂zj

and ∂
∂zj

on the right hand

side are taken in the classical sense. If f is of class Ck in an open neighborhood of
a and α, β ∈ Zn+ are such that |α| + |β| ≤ k, then we may define the derivatives

Dα,βf(a) :=
( ∂

∂z1

)α1

◦ · · · ◦
( ∂

∂zn

)αn
◦

( ∂

∂z1

)β1

◦ · · · ◦
( ∂

∂zn

)βn
f(a),

Dαf(a) := Dα,0f(a).

3.1.2 Holomorphic functions on Riemann regions

See [Jar-Pfl 2000], § 1.1.

Definition 3.1.5. Let (X, p) ∈ R(Cn). A function f : X −→ C is said to be
holomorphic (f ∈ O(X)) if for each open univalent subset U ⊂ X the function
f ◦ (p|U )−1 is holomorphic in the standard sense on the open set p(U) ⊂ Cn.

If (Y, q) ∈ R(Cm), then a continuous mapping F : X −→ Y is said to be
holomorphic (F ∈ O(X,Y )) if q ◦ F ∈ O(X,Cm).
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For f ∈ O(X) and a ∈ X , we define the Taylor series of f at a:

Taf(z) :=
∑

α∈Zn+

Dαf(a)

ν!
(z − p(a))α = Tp(a)(f ◦ p−1

a )(z), z ∈ Cn,

and its radius of convergence Taf ,

d(Taf) := sup{r > 0 : Taf(z) is convergent for z ∈ P(p(a), r)}.

Notice that d(Taf) ≥ dX(a) and f(x) = Taf(p(x)) for x ∈ P̂X(a). Moreover,

1

d(Taf)
= lim sup

k→+∞

(
max
α∈Zn+
|α|=k

1

α!
|Dαf(a)|

)1/k

.

Proposition 3.1.6 (Identity principle). Let (X, p) ∈ Rc(Cn), (Y, q) ∈ R(Cm),
F , G ∈ O(X,Y ), and assume that int{x ∈ X : F (x) = G(x)} 6= ∅. Then F ≡ G
on X.

3.1.3 Lebesgue measure on Riemann regions

Let (X, p) ∈ R∞(Cn). A set A ⊂ X is called (Lebesgue) measurable if for any
open univalent set U ⊂ X the set p(A ∩ U) is Lebesgue measurable in Cn (in the
classical sense). Then:

• any Borel subset of X is measurable,
• a set A ⊂ X is measurable iff any point a ∈ X has an open univalent

neighborhood U such that p(A∩U) is Lebesgue measurable in the classical sense.
Since X is countable at infinity we may write X =

⋃∞
j=1 Uj , where each Uj is

open and univalent. Put B1 := U1, Bj := Uj \ (U1 ∪ · · · ∪ Uj−1), j ∈ N2. For any
measurable set A ⊂ X put

LX(A) :=

∞∑

j=1

L2n(p(A ∩Bj)),

where L2n denotes the standard Lebesgue measure in Cn. One can prove that LX
is a regular measure which is independent of the choice of the sequence (Uj)

∞
j=1.

It is called the Lebesgue measure on X . If f : A −→ [0,+∞] is a measurable
function, then ∫

A

fdLX =

∞∑

j=1

∫

p(A∩Bj)

f ◦ (p|Uj )−1dL2n.

3.1.4 Sheaf of I–germs of holomorphic functions

See [Jar-Pfl 2000], Example 1.6.6.
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Let I be an arbitrary non-empty set of indices. For a ∈ Cn define

ÕI
a := {(U,f) : U is an open neighborhood of a, f = (fi)i∈I ⊂ O(U)},

For (U,f), (V, g) ∈ ÕI
a we define an equivalence relation

(U,f)
a' (V, g) :⇐⇒ ∃W− neighborhood of a : W ⊂ U ∩ V, fi|W = gi|W , i ∈ I.

Put
OI
a := ÕI

a/
a' .

The class f̂a := [(U,f)] a
'

is called the I–germ of f at a. Notice that the value of

f̂a at a understood as

f̂a(a) := (fi(a))i∈I

is well defined.
Let RI

a be the ring of all families (Si)i∈I of power series centered at a that are
convergent in a common (independent of i ∈ I) neighborhood of a, which may
depend on the family (Si)i∈I (i.e. inf{d(Si) : i ∈ I} > 0). Then the mapping

OI
a 3 f̂a −→ (Tafi)i∈I ∈ RI

a (3.1.1)

is an isomorphism. This gives an equivalent description of OI
a, which also intro-

duces on OI
a a structure of a commutative ring with the unit element — the ring

of I–germs of holomorphic functions at a. Put

OI :=
∨

a∈Cn
OI
a

and let πI : OI −→ Cn be given by the formula πI(f̂a) := a.

For f̂a = [(U,f)] a
'

put

V(f̂a, U) := {[(U,f)] b
'

: b ∈ U}.

One may easily check that:
• the system {V(f̂a, U) : f̂a ∈ OI , (U,f) ∈ f̂a} is a neighborhood basis of a

Hausdorff topology on OI such that πI |V(
�

fa,U) : V(f̂a, U) −→ U is homeomorphic.

Thus (OI , πI) ∈ R(Cn). It is called the sheaf of I–germs of holomorphic functions
in Cn. One can easily prove that

dOI (f̂a) = inf{d(Tafi) : i ∈ I}.

For i0 ∈ I define Fi0 : OI −→ C, Fi0(f̂a) := fi0(a). Then

Fi0 ◦ (πI |V(
�

fa,U))
−1 = fi0 on U.

This shows that Fi0 ∈ O(OI).
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3.1.5 Holomorphic extension of Riemann regions

See [Jar-Pfl 2000], § 1.4.

Definition 3.1.7. Let (X, p), (Y, q) ∈ R(Cn). A continuous mapping ϕ : X −→ Y
is said to be a morphism if q ◦ ϕ = p.

If ϕ : (X, p) −→ (Y, q) is a morphism such that ϕ is bijective and ϕ−1 : Y −→ X
is also a morphism, then we say that ϕ is an isomorphism.

Observe that if Ω1, Ω2 ⊂ Cn are open and ϕ : (Ω1, id) −→ (Ω2, id) is a
morphism, then Ω1 ⊂ Ω2 and ϕ is the inclusion operator.

Remark 3.1.8. Let ϕ : (X, p) −→ (Y, q) be a morphism.

(a) If ψ : (X, p) −→ (Y, q) is a morphism with ϕ(a) = ψ(a) for some a ∈ X , then
ϕ = ψ on the connected component of X that contains a.

(b) ϕ is locally biholomorphic. In particular, ϕ is an open mapping.

(c) ϕ is an isomorphism iff ϕ is bijective.

(d) If A ⊂ X is univalent, then ϕ(A) is univalent. In particular:

• ϕ(P̂X(a, r)) = P̂Y (ϕ(a), r), a ∈ X , 0 < r ≤ dX(a),

• dY ◦ ϕ ≥ dX ,

• if ϕ is an isomorphism, then dY ◦ ϕ = dX .

(e) If every connected component of Y intersects ϕ(X) and dY ◦ ϕ = dX , then
ϕ(X) = Y .

(f) The mapping

ϕ∗ : O(Y ) −→ O(X), ϕ∗(g) := g ◦ ϕ,

is injective iff every connected component of Y intersects ϕ(X).

(g) Tϕ(a)g = Ta(g ◦ ϕ), g ∈ O(Y ), a ∈ X . In particular, d(Taf) ≥ dY (ϕ(a)) for
any a ∈ X and f ∈ ϕ∗(O(Y )).

Definition 3.1.9. Let (X, p) ∈ R(Cn) and let ∅ 6= F ⊂ O(X). We say that
a morphism ϕ : (X, p) −→ (Y, q) is an F–extension if ϕ∗ is injective and F ⊂
ϕ∗(O(Y )), i.e. for each f ∈ F there exists exactly one g =: fϕ ∈ O(Y ) such that
g ◦ ϕ = f . Put

Fϕ := {fϕ : f ∈ F} = {g ∈ O(Y ) : g ◦ ϕ ∈ F}.

Notice that if X is connected, then Y must be connected.
If F = O(X), then we say that ϕ : (X, p) −→ (Y, q) is a holomorphic extension.
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Remark 3.1.10. Let (X, p) ∈ R(Cn) and let ∅ 6= F ⊂ O(X). We define a
morphism (cf. § 3.1.4 with I := F):

ϕ = ϕF : (X, p) −→ (O(F), π(F)),

ϕ(x) := [(Pn(p(x), dX(x)), (f ◦ p−1
x )f∈F )]p(x)

'
, x ∈ X.

After the identification (3.1.1), the mapping ϕ may be written as

ϕ(x) := (Txf)f∈F , x ∈ X.

Then ϕ is a morphism and Ff ◦ ϕ = f for any f ∈ F . Consequently, if X̂
denotes the union of those connected component of O(F) that intersect ϕ(X) and
p̂ := π(F)| �X , then

ϕ : (X, p) −→ (X̂, p̂)

is an F–extension.

Remark 3.1.11. Let ϕ : (X, p) −→ (Y, q) be a holomorphic extension. Then
f(X) = fϕ(Y ) for every f ∈ O(X).

3.1.6 Regions of existence

See [Jar-Pfl 2000], § 1.7.

Definition 3.1.12. Let (X, p) ∈ R(Cn) and let ∅ 6= F ⊂ O(X). We say that
(X, p) is an F–region of existence if

dX(a) = inf{d(Taf) : f ∈ F}, a ∈ X ;

equivalently, for any r > dX(a) there exists an f ∈ F such that d(Taf) < r.
If F = {f}, then we say that (X, p) is a region of existence of f .
If F = O(X), then we say that (X, p) is a region of existence.
If X is connected, then we say that (X, p) is an F–domain of existence, domain

of existence of f , and domain of existence, respectively.

Remark 3.1.13. (a) (X, p) is an F–region of existence iff for any F–extension

ϕ : (X, p) −→ (Y, q)

we have dY ◦ ϕ ≡ dX (i.e. ϕ is surjective — cf. Remark 3.1.8(e)).

(b) If (X, p) = (Ω, id), where Ω is an open set in Cn, then (Ω, id) is an F–region

of existence iff there are no domains Ω0, Ω̃ ⊂ Cn with ∅ 6= Ω0 ⊂ Ω ∩ Ω̃,
Ω̃ 6⊂ Ω, such that for each f ∈ F there exists an f̃ ∈ O(Ω̃) with f̃ = f on Ω0.

(c) (X, p) is an F–region of existence iff there exists a dense subset A ⊂ X such
that dX(a) = inf{d(Taf) : f ∈ F}, a ∈ A.
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3.1.7 Maximal holomorphic extensions

See [Jar-Pfl 2000], § 1.8.

Definition 3.1.14. An F–extension ϕ : (X, p) −→ (X̂, p̂) is called maximal if for

any F–extension ψ : (X, p) −→ (Y, q) there exists a morphism σ : (Y, q) −→ (X̂, p̂)
such that σ ◦ ψ = ϕ. The maximal F–extension is uniquely determined up to an
isomorphism. In the above situation we say that ϕ : (X, p) −→ (X̂, p̂) is the
F–envelope of holomorphy of (X, p). If F = O(X), then we simply say that

ϕ : (X, p) −→ (X̂, p̂) is the envelope of holomorphy of (X, p).
We say that (X, p) is an F–region of holomorphy if for every F–extension

ϕ : (X, p) −→ (Y, q)

the mapping ϕ is an isomorphism.
If (X, p) is an O(X)–region of holomorphy, then we say that (X, p) is a region

of holomorphy. If X is connected, then we say that (X, p) is an F–domain of
holomorphy and domain of holomorphy, respectively.

Remark 3.1.15. If ϕ : (X, p) −→ (X̂, p̂) is the maximal F–extension, then (X̂, p̂)
is an Fϕ–region of holomorphy.

Theorem 3.1.16 (Thullen theorem
(
2
)

). Let (X, p) be a Riemann region over
Cn and let ∅ 6= F ⊂ O(X). Then (X, p) has an F–envelope of holomorphy.

Proof. It suffices to prove that the F–extension

ϕF : (X, p) −→ (X̂, p̂),

constructed in Remark 3.1.10, is maximal. Let ψ : (X, p) −→ (Y, q) be another
F–extension. By the same method as in Remark 3.1.10 we construct a morphism

ϕFψ : (Y, q) −→ (O(Fψ), π(Fψ)).

Observe that (O(Fψ), π(Fψ)) ' (O(F), π(F)). Moreover, ϕFψ ◦ ψ = ϕF . Conse-

quently, ϕFψ(Y ) ⊂ X̂ (up to an isomorphism).

Definition 3.1.17. We say that F separates points in X if for any x1, x2 ∈ X
with x1 6= x2 there exist f ∈ F such that f(x1) 6= f(x2).

We say that F weakly separates points in X if for any x1, x2 ∈ X with x1 6= x2

and p(x1) = p(x2) there exist f ∈ F and α ∈ Zn+ such that Dαf(x1) 6= Dαf(x2),
i.e. the exists an f ∈ F such that Tx1f 6= Tx2f .

We say that F is d–stable if: f ∈ F =⇒ Dαf ∈ F , α ∈ Zn+.

Observe that in F is d–stable and p ∈ Fn, then F separates points in X iff F
weakly separates points in X .

If (X, p) is univalent, then every family F weakly separates points in X .
�
2� Peter Thullen (1907–1996) — German mathematician.
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Remark 3.1.18. The morphism ϕF is injective iff F weakly separates points in
X . Recall that d �

X(ϕF (x)) = inf{d(Txf) : f ∈ F}, x ∈ X .

Proposition 3.1.19. Let (X, p) ∈ R(Cn), ∅ 6= F ⊂ O(X). Then the following
conditions are equivalent:

(i) (X, p) is an F–region of holomorphy;
(ii) F weakly separates points in X and (X, p) is an F–region of existence;
(iii) there exists a dense subset A ⊂ X with A = p−1(p(A)) such that:
• for any x′, x′′ ∈ A with x′ 6= x′′ and p(x′) = p(x′′) there exists an f ∈ F

such that Tx′f 6= Tx′′f ,
• dX(x) = inf{d(Txf) : f ∈ F}, x ∈ A.

Proposition 3.1.20. Let (X, p) ∈ R∞(Cn). Then the following conditions are
equivalent:

(i) (X, p) is a region of holomorphy;
(ii) N(O(X)) := {f ∈ O(X) : (X, p) is an {f}–domain of existence} 6= ∅;
(iii) N(O(X)) is of the second Baire category in O(X).

Remark 3.1.21. The above result remains true if we substitute O(X) by a natural
Fréchet space

(
3
)
F , i.e. a vector space F ⊂ O(X) endowed with a structure of a

Fréchet space such that if fk −→ f in F , then fk −→ f locally uniformly in X .
For example: F = H∞(X) := the space of all bounded holomorphic functions on
X with the topology of uniform convergence.

3.1.8 Singular sets

See [Jar-Pfl 2000], § 3.4.
Let (X, p) ∈ R(Cn), let M be a closed subset of X satisfying the following

condition

for any domain D ⊂ X the set D \M is connected and dense in D, (3.1.2)

and let ∅ 6= F ⊂ O(X \M).
Notice that:
• intM = ∅;
• every pluripolar set (cf. Definition 3.3.18) satisfies (3.1.2);
• consequently, every thin set (cf. Definition 3.1.26) satisfies (3.1.2);
• in particular, every analytic set of dimension ≤ n− 1 satisfies (3.1.2).

Definition 3.1.22. We say that a point a ∈M is non-singular with respect to F
(a ∈Mns,F) if there exists an open neighborhood U of a such that for each f ∈ F
there exists a function f̃ ∈ O(U) with f̃ = f on U \M .

If a ∈Ms,F := M \Mns,F , then we say that a is singular with respect to F . If
Mns,F = ∅, i.e. Ms,F = M , then we say that M is singular with respect to F . If
F = O(X \M), then we simply say that M is singular and we skip the index F .
�
3� René Fréchet (1878–1973) — French mathematician.
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Remark 3.1.23. Notice the difference between the notion of “the singular analytic
subset M of X” and “the singular points Sing(M) of an analytic subset M of X”.
Recall that if M is an analytic subset of X , then a point a ∈ M is called regular
(a ∈ Reg(M)) if there exists an open neighborhood U of a such that M ∩ U is a
complex manifold. If a ∈ Sing(M) := M \ Reg(M), then we say that a is singular
— cf. [Chi 1989], § 2.3.

Remark 3.1.24. (a) The set Ms,F is closed in M and satisfies (3.1.2).

(b) Each function f ∈ F has a holomorphic extension f̃ ∈ O(X \Ms,F).

(c) Ms,F = (Ms,F)s,
�

F , where F̃ := {f̃ : f ∈ F}, i.e. Ms,F is singular with

respect to F̃ .

(d) Ms,F ∩ U = (M ∩ U)s,F|U\M
for every open set U ⊂ X .

(e) If M is an analytic subset of X , then {a ∈ M : dimaM ≤ n − 2} ⊂ Mns

(cf. [Chi 1989], Appendix I). In other words, if M 6= ∅ is singular, then M is of
pure codimension one.

Proposition 3.1.25. Let M ⊂ X be an analytic subset of pure dimension (n−1),
and let M =

⋃
i∈IMi be the decomposition of M into irreducible components

(cf. [Chi 1989], Section 5.4). Then Ms,F =
⋃
i:Mi⊂Ms,F

Mi. In particular, the set
Ms,F is also analytic.

Definition 3.1.26. A set M ⊂ X is thin in X if for any a ∈ X there exist a
connected neighborhood U ⊂ X of a and a holomorphic function ϕ ∈ O(U), ϕ 6≡ 0,
such that P ∩ U ⊂ ϕ−1(0). Note that every thin set is pluripolar (cf. Definition
3.3.18).

Proposition 3.1.27. If M is a closed thin set, then Ms,F is analytic.

3.2 Holomorphic convexity

See [Jar-Pfl 2000], § 1.10.

Definition 3.2.1. Let (X, p) ∈ R(Cn). For a compact set K b X put

K̂O(X) := {x ∈ X : ∀f∈O(X) : |f(x)| ≤ ‖f‖K}.

The set K̂O(X) is called the holomorphic hull of K. We say that K is holomor-
phically convex if K = K̂O(X). We say that (X, p) is holomorphically convex if

K̂O(X) is compact for every compact K b X .

Proposition 3.2.2. Let (X, p) ∈ R∞(Cn). Then X is holomorphically convex iff
there exists a sequence (Kj)

∞
j=1 of holomorphically convex compact sets such that

Kj ⊂ intKj+1, j ∈ N, and X =
⋃∞
j=1Kj.
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Theorem 3.2.3 (Cartan–Thullen theorem
(
4
)

). Let (X, p) ∈ R∞(Cn). Then the
following conditions are equivalent:

(i) (X, p) is a region of holomorphy;

(ii) O(X) separates points in X and dX(K̂O(X)) = dX(K) for every compact
K b X;

(iii) O(X) separates points in X and dX(K̂O(X)) > 0 for every compact K b

X;
(iv) O(X) separates points in X and for any set A ⊂ X with dX(A) = 0 there

exists an f ∈ O(X) such that supA |f | = +∞;
(v) O(X) separates points in X and X is holomorphically convex;
(vi) O(X) separates points in X and for any infinite set A ⊂ X with no limit

points in X there exists an f ∈ F such that supA |f | = +∞.

Notice that in fact, if X is holomorphically convex, then O(X) separates points
in X — cf. Theorem 3.5.9.

Definition 3.2.4. Any (X, p) ∈ R∞(Cn) satisfying (vi) is called a Riemann–Stein
region over Cn.

3.3 Plurisubharmonic functions

See [Jar-Pfl 2000], § 2.1.
Let (X, p) ∈ R∞(Cn) (notice that in fact the majority of results remains true

for arbitrary (X, p) ∈ R(Cn)).

Definition 3.3.1. For u : X −→ R−∞ := [−∞,+∞), a ∈ X , and ξ ∈ Cn, we put

λ
ua,ξ7−→ (u ◦ p−1

a )(p(a) + λξ).

A function u : X −→ R−∞ is called plurisubharmonic (psh) in X (u ∈ PSH(X))
if:

• u is upper semicontinuous on X ,
• for every a ∈ X and ξ ∈ Cn the function ua,ξ is subharmonic in a neigh-

borhood of zero (as a function of one complex variable).
Notice that the above definition has a local character. Consequently, whenever

we are interested in local properties of psh functions, we may assume that (X, p) =
(D, id), where D is a domain in Cn.

We say that a function u : X −→ R+ is logarithmically plurisubharmonic (log–
psh) if log u ∈ PSH(X).

For I ⊂ R−∞ we put PSH(X, I) := {u ∈ PSH(X) : u(X) ⊂ I}.

Remark 3.3.2. (a) For an upper semicontinuous function u : X −→ R−∞ the
following conditions are equivalent:

�
4� Henri Cartan (1904–2008) — French mathematician.
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(i) u ∈ PSH(X);

(ii) ∀a∈X ∀ξ∈Cn:‖ξ‖∞=1 ∃0<R≤dX(a):

u(a) = ua,ξ(0) ≤ 1

2π

∫ 2π

0

ua,ξ(re
iθ)dθ, 0 < r < R;

(iii) ∀a∈X ∀ξ∈Cn:‖ξ‖∞=1 ∃0<R≤dX(a):

u(a) ≤ 1

πr2

∫

K(r)

ua,ξ(ζ)dL2(ζ), 0 < r < R;

(iv) ∀a∈X ∀ξ∈Cn:‖ξ‖∞=1 ∃0<R≤dX(a) ∀0<r<R ∀f∈P(C): if ua,ξ ≤ Re f on ∂K(r),
then u(a) ≤ Re f(0) (where P(C) stands for the space of all complex polyno-
mials of one complex variable);

(v) ∀a∈X ∀ξ∈Cn:‖ξ‖∞=1 ∃0<R≤dX (a) ∀0<r<R ∀h∈H(K(r))∩C(K(r)): if ua,ξ ≤ h on

∂K(r), then u(a) ≤ h(0) (where H(Ω) stands for the space of all functions
harmonic in Ω);

(vi) for any a ∈ X and ξ ∈ Cn the function

K(δX,ξ(a)) 3 λ 7−→ (u ◦ (p| �∆(a,ξ))
−1)(p(a) + λξ)

is subharmonic;

(vii) u ◦ (p|U )−1 ∈ PSH(p(U)) for any univalent open set U ⊂ X .

(b) PSH(X) + PSH(X) = PSH(X), R>0 · PSH(X) = PSH(X).

(c) |f | is log–psh on X for any f ∈ O(X).

(d) If (uν)∞ν=1 ⊂ PSH(X) and uν ↘ u pointwise on X , then u ∈ PSH(X).

In particular, if (uν)∞ν=1 ⊂ PSH(X, [−∞, 0]), then
∑∞

ν=1 uν ∈ PSH(X).

(e) If (uν)∞ν=1 ⊂ PSH(X) and uν −→ u locally uniformly in X , then u ∈
PSH(X).

(f) If u1, . . . , uN ∈ PSH(X), then max{u1, . . . , uN} ∈ PSH(X) (cf. Proposition
3.3.11).

(g) (Liouville type theorem) If u ∈ PSH(Cn) and supCn u < +∞, then u ≡ const.

(h) Let I ⊂ R be an open interval and let ϕ : I −→ R be convex and increasing.
Then ϕ ◦ u ∈ PSH(X) for every u ∈ PSH(X, I). Consequently:

If u ∈ PSH(X), then eu ∈ PSH(X) (in particular, any log–psh function is
psh).

If u ∈ PSH(X,R+), then up ∈ PSH(X) for every p ≥ 1.
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(i) If u1, u2 are log–psh, then u1 + u2 is log–psh.

(j) (Maximum principle) If X is connected, u ∈ PSH(X), and u ≤ u(a) for some
a ∈ X , then u ≡ u(a). Consequently, if Y b X is a domain, u ∈ PSH(Y ),
and u 6≡ const, then

u(x) < sup{lim sup
Y 3y→ζ

u(y) : ζ ∈ ∂Y }, x ∈ Y.

Let Ω ⊂ Cn be open and let u ∈ C2(Ω,R). We define the Levi form of u at a(
5
)

Lu(a; ξ) :=
∑

j,k=1

∂2u

∂zj∂zk
(a)ξjξk, a ∈ Ω, ξ = (ξ1, . . . , ξn) ∈ Cn.

Observe that

Lu(a; ξ) =
∂2ua,ξ

∂λ∂λ
(0).

Consequently, we have the following

Proposition 3.3.3. Let u ∈ C2(X,R). Then

u ∈ PSH(X) ⇐⇒ ∀a∈Ω, ξ∈Cn : Lu(a; ξ) ≥ 0.

Remark 3.3.4. Let (Y, q) ∈ R(Cm), F ∈ O(Y,X), u ∈ C2(X,R). Then

L(u ◦ F )(b; η) = Lu(F (b); (p ◦ F )′(b)(η)), b ∈ Y, η ∈ Cm.

Consequently, if u ∈ PSH(Ω) ∩ C2(X,R), then u ◦ F ∈ PSH(Y ) — cf. Propo-
sition 3.3.16.

Definition 3.3.5. We say that a function u ∈ C2(X,R) is strictly plurisubhar-
monic if

∀a∈Ω, ξ∈(Cn)∗ : Lu(a; ξ) > 0.

Proposition 3.3.6. Let Y ⊂ X be open, v ∈ PSH(Y ), u ∈ PSH(X). Assume
that

lim sup
Y 3y→ζ

v(y) ≤ u(ζ), ζ ∈ ∂Y.

Put

ũ(x) :=

{
max{v(x), u(x)}, x ∈ Y

u(x), x ∈ X \ Y
.

Then ũ ∈ PSH(X).

�
5� Eugenio Elia Levi (1883–1917) — Italian mathematician.
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To simplify notation we will use the following abbreviations:

ez := (ez1 , . . . , ezn), z · w := (z1w1, . . . , znwn),

z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn.

Let a = (a1, . . . , an) ∈ Cn, r = (r1, . . . , rn) ∈ Rn>0 := (R>0)n. If

∂0P(a, r)
u−→ R−∞

is bounded from above and measurable, i.e. the function

[0, 2π)n 3 θ 7−→ u(a+ r · eiθ)

is Lebesgue measurable, then we define

P (u; a, r; z) :=
1

(2π)n

∫

[0,2π]n

( n∏

j=1

r2j − |zj − aj |2
|rjeiθj − (zj − aj)|2

)
u(a+ r · eiθ)dLn(θ),

z = (z1, . . . , zn) ∈ P(a, r),

J(u; a, r) := P (u; a; r; a) =
1

(2π)n

∫

[0,2π]n
u(a+ r · eiθ)dLn(θ).

If u : P(a, r) −→ R−∞ is bounded from above and measurable, then we define

A(u; a, r) :=
1

(πr21) . . . (πr2n)

∫

P(a,r)

u dL2n =
1

L2n(P(a, r))

∫

P(a,r)

u dL2n.

Proposition 3.3.7. Let Ω ⊂ Cn be open, u ∈ PSH(Ω), a ∈ Ω. Then

J(u; a, r) ↘ u(a), A(u; a, r) ↘ u(a) when r ↘ 0.

Proposition 3.3.8. Let u1, u2 ∈ PSH(X). If u1 ≤ u2 almost everywhere in X,
then u1 ≤ u2 everywhere.

Proposition 3.3.9. Let Ω ⊂ Cn be open, u ∈ PSH(Ω), P(a, r) b Ω, r ∈ Rn>0.
Then

u(z) ≤ P (u; a, r; z), z ∈ P(a, r),

u(a) ≤ J(u; a, r),

u(a) ≤ A(u; a, r).

Proposition 3.3.10. If X is connected, u ∈ PSH(X), and u 6≡ −∞, then u is
locally integrable; in particular, the set u−1(−∞) is of zero measure.

Proposition 3.3.11. If a family (ui)i∈I ⊂ PSH(X) is locally bounded from above,
then the function

u := (sup
i∈I

ui)
∗

is psh in X.
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Here v∗ denotes the upper regularization of v, v∗(x) := lim supy→x v(y), x ∈ X .

Proposition 3.3.12. If a sequence (uν)∞ν=1 ⊂ PSH(X) is locally bounded from
above, then the function

u := (lim sup
ν→∞

uν)∗

is psh on X.

Proposition 3.3.13 (Hartogs lemma). Let (uk)∞k=1 ⊂ PSH(X) be a sequence
locally bounded from above. Assume that for some m ∈ R

lim sup
k→+∞

uk ≤ m.

Then for every compact subset K ⊂ X and for every ε > 0, there exists a k0 such
that

max
K

uk ≤ m+ ε, k ≥ k0.

Definition 3.3.14 (Regularization). Let

Φ(z1, . . . , zn) := Ψ(z1) · · · · · Ψ(zn), z = (z1, . . . , zn) ∈ Cn,

where Ψ ∈ C∞
0 (C,R+) is such that:

suppΨ = D, Ψ(z) = Ψ(|z|), z ∈ C,
∫
ΨdL2 = 1.

Put

Φε(z) :=
1

ε2n
Φ(
z

ε
), z ∈ Cn, ε > 0.

Let
Xε := {x ∈ X : dX(x) > ε}, ε > 0.

For every function u ∈ L1(X, loc), define

uε(x) : =

∫
�

PX(x)

u(y)Φε(p(x) − p(y))dLX(y)

=

∫

Dn
(u ◦ p−1

x )(p(x) + εw)Φ(w)dL2n(w), x ∈ Xε.

The function uε is called the ε–regularization of u. Observe that for a ∈ Xε and
x ∈ P̂X(a, dX(a) − ε) we get

uε(x) =

∫
�

PX(a)

u(y)Φε(p(x) − p(y))dLX(y)

=

∫

Dn
(u ◦ p−1

a )(p(x) + εw)Φ(w)dL2n(w). (†)
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Proposition 3.3.15. If u ∈ PSH(X), u 6≡ −∞, then uε ∈ PSH(Xε) ∩ C∞(Xε)
and uε ↘ u pointwise in X when ε↘ 0.

Proposition 3.3.16. Let (Y, q) ∈ R(Cm), F ∈ O(Y,X). Then u ◦ F ∈ PSH(Y )
for any u ∈ PSH(X).

Corollary 3.3.17. Let u : X −→ R−∞ be upper semicontinuous. Then u is psh
on X iff for any analytic disc ϕ : D −→ X the function u ◦ ϕ is subharmonic in
D.

Definition 3.3.18. A set M ⊂ X is called (locally) pluripolar (M ∈ PLP) if any
point a ∈ M has a connected neighborhood Ua and a function va ∈ PSH(Ua)
with va 6≡ −∞, M ∩ Ua ⊂ v−1

a (−∞). For A ⊂ X put

PLP(A) := {P ∈ PLP(X) : P ⊂ A}.

By Proposition 3.3.10, if M is pluripolar, then LX(M) = 0. It is clear that
any thin set (cf. Definition 3.1.26) is pluripolar.

Proposition 3.3.19. (a) Let (ui)i∈I ⊂ PSH(X) be locally bounded from above.
Put u := supi∈I ui. Then the set {x ∈ X : u(x) < u∗(x)} is of zero measure.

(b) Let (uν)ν∈N ⊂ PSH(X) be a sequence locally bounded from above. Put
u := lim supν→+∞ uν . Then the set {x ∈ X : u(x) < u∗(x)} is of zero measure.

Notice that in fact the set {x ∈ X : u(x) < u∗(x)} is pluripolar — cf. Theorem
3.3.29.

Theorem* 3.3.20 (Josefson theorem; cf. [Jos 1978]). If M ⊂ Cn is pluripolar,
then there exists a v ∈ PSH(Cn), v 6≡ −∞, such that M ⊂ v−1(−∞).

Proposition 3.3.21. Let Mj ⊂ Cn be pluripolar, j ∈ N. Then M :=
⋃∞
j=1Mj is

pluripolar.

Theorem 3.3.22. Let M ⊂ X be pluripolar. Then there exists a v ∈ PSH(X),
v 6≡ −∞, such that M ⊂ v−1(−∞).

Proof. We may assume thatX is connected. LetX =
⋃∞
k=1 Uk be an open covering

by univalent sets (cf. Remark 3.1.2(g)). Then each set Ak := p(M ∩Uk) is pluripo-
lar, and consequently, by Proposition 3.3.21, the set A :=

⋃∞
k=1 Ak is pluripolar.

Hence, by the Josefson theorem (Theorem 3.3.20), there exists a u ∈ PSH(Cn),
u 6≡ −∞, such that u = −∞ on A. By Proposition 3.3.10, u|p(X) 6≡ −∞. Now,
we only need to put v := u ◦ p. Then v ∈ PSH(X) (Proposition 3.3.16), v 6≡ −∞,
and v = −∞ on M .

Remark 3.3.23. [Will be completed [El 1980]. . . . . . . . . . . . . ]

Proposition 3.3.24. Let Mj ⊂ X be pluripolar, j ∈ N. Then M :=
⋃∞
j=1Mj is

pluripolar.
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Proposition 3.3.25 (Removable singularities of psh functions). Let M be a closed
pluripolar subset of X.

(a) Let u ∈ PSH(X \M) be locally bounded from above in X
(
6
)
. Define

ũ(z) := lim sup
X\M3w→z

u(w), z ∈ X

(notice that ũ is well-defined). Then ũ ∈ PSH(X).
(b) For every function u ∈ PSH(X) we have

u(z) = lim sup
X\M3w→z

u(w), z ∈ X.

(c) The set X \M is connected.

Corollary 3.3.26. Let M be a closed pluripolar subset of X. Let f ∈ O(X \M)
be locally bounded in X. Then f extends holomorphically to X.

Proposition 3.3.27. Let (Y, q) ∈ R∞(Cm).
(a) If A ⊂ X × Y is pluripolar, then

P := {z ∈ X : A(z,·) /∈ PLP(Y )} ∈ PLP(X),

where
A(z,·) := {w ∈ Y : (z, w) ∈ A}.

(b) If A ⊂ X × Y is thin, then

P := {z ∈ X : A(z,·) is not thin in Y } ∈ PLP(X).

(c) Let Q ⊂ X × Y be such that Q(a,·) ∈ PLP(Y ), a ∈ X. Let C ⊂ X × Y be
such that

{z ∈ X : C(z,·) /∈ PLP(Y )} /∈ PLP(X)

(e.g. C = C′ × C′′ ⊂ X × Y , where C′ /∈ PLP(X), C′′ /∈ PLP(Y )). Then
C \Q /∈ PLP(X × Y ).

Proof. We may assume that X = D and Y = G are domains in Cn and Cm,
respectively.

(a) Let v ∈ PSH(D × G), v 6≡ −∞, be such that A ⊂ v−1(−∞) (Theorem
3.3.20). Fix a compact K b G with intK 6= ∅. Define

u(z) := sup{v(z, w) : w ∈ K}, z ∈ D.

Then u ∈ PSH(D) and u 6≡ −∞. If z ∈ P , then A(z,·) /∈ PLP. Hence, v(z, ·) ≡
−∞, and consequently, u(z) = −∞. Thus A ⊂ u−1(−∞).

(b) Using the definition of a thin sets and Lindelöf theorem, we get

A ⊂
∞⋃

k=1

{(z, w) ∈ Uk × Vk : ϕk(z, w) = 0},

�
6� That is every point a ∈ X has a neighborhood Va such that u is bounded from above in

Va \ M .
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where Uk×Vk ⊂ D×G is connected, ϕk ∈ O(Uk×Vk), and ϕk 6≡ 0. Observe that
for any k the set

Pk := {z ∈ Uk : ϕk(z, ·) ≡ 0} =
⋂

w∈Vk

{z ∈ Uk : ϕk(z, w) = 0}

is analytic in Uk. Hence the set P0 :=
⋃∞
k=1 Pk is pluripolar. If a /∈ P0, then

A(a,·) ⊂
⋃

k∈N: a∈Uk

{w ∈ Vk : ϕk(a,w) = 0},

and consequently, the set A(a,·) is thin.
(c) Suppose that C \ Q is pluripolar. Then, by (a), there exists a pluripolar

set P ⊂ D such that the fiber (C \Q)(a,·) is pluripolar, a ∈ D \ P . Consequently,
the fiber C(a,·) is pluripolar, a ∈ D \ P ; a contradiction.

Exercise 3.3.28. The set P in Proposition 3.3.27(b) need not be thin. Complete
the following example. Let X = Y := D,

A := ({0} × {|w| = 1/4}) ∪
⋃

k∈N2

{1/k} × {|w| = 1 − 1/k}.

Then P = {0} ∪ {1/k : k ∈ N, k ≥ 2}.

Theorem* 3.3.29 (Bedford–Taylor theorem; cf. [Kli 1991], Th. 4.7.6). (a) As-
sume that a family (ui)i∈I ⊂ PSH(X) is locally bounded from above. Put u :=
supi∈I ui. Then the set {x ∈ X : u(x) < u∗(x)} is pluripolar.

(b) Assume that a sequence (uν)∞ν=1 ⊂ PSH(X) is locally bounded from above.
Put u := lim supν→+∞ uν . Then the set {x ∈ X : u(x) < u∗(x)} is pluripolar.

3.4 Relative extremal function

Let (X, p) ∈ R∞(Cn), A ⊂ X .

Definition 3.4.1. The relative extremal function of A with respect to X is defined
as the upper semicontinuous regularization h∗A,X of the function

hA,X := sup{u : u ∈ PSH(X), u ≤ 1, u|A ≤ 0}.

For an open set Y ⊂ X we put hA,Y := hA∩Y,Y , h∗A,Y := h∗A∩Y,Y .

Put ωA,X := limk→+∞ h∗A,Xk , where (Xk)∞k=1 is an exhaustion sequence for X
(cf. Definition 2.2.5). The function ωA,X is called the generalized relative extremal
function of A in X . One can easily check that the definition is independent of the
exhausting sequence (Xk)∞k=1.
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Proposition 3.4.2. (a) If Y is a connected component of X, then hA,X = hA,Y
and ωA,X = ωA,Y on Y .

(b) h∗A,X ∈ PSH(X) (cf. Proposition 3.3.11), ωA,X ∈ PSH(X) (cf. Remark
3.3.2(d)). In particular, by the maximum principle (cf. Proposition 3.3.2(j)), if X
is connected and h∗A,X 6≡ 1, then h∗A,X(z) < 1, z ∈ X.

(c) If Y1 ⊂ Y2 ⊂ X are open, A1 ⊂ Y1, and A1 ⊂ A2 ⊂ Y2, then hA2,Y2 ≤ hA1,Y1

(and so h∗A2,Y2
≤ h∗A1,Y1

) on Y1. In particular, h∗A,X ≤ ωA,X.
(d) There exists a P ∈ PLP(A) such that h∗A,X = 0 on A \ P (cf. Theo-

rem 3.3.29(a)) and hence, by (b), h∗A,X ≤ hA\P,X . Consequently, by Proposition
3.3.24, there exists a P ∈ PLP(A) such that ωA,X = 0 on A \ P and hence, by
(b,c), h∗A,X ≤ ωA,X ≤ hA\P,X ≤ h∗A\P,X .

Proposition 3.4.3. If A /∈ PLP, then ωA,Cn ≡ 0 (and so h∗A,Cn ≡ 0).

Proof. Let u := ωA,Cn . Then u ∈ PSH(Cn) and u ≤ 1. Thus u ≡ const (cf. Re-
mark 3.3.2(g)). Since A /∈ PLP, Proposition 3.4.2(d) implies that there exists an
a ∈ A such that u(a) = 0.

Definition 3.4.4. We say that a set A ⊂ X is pluriregular at a point a ∈ A if
h∗A,U (a) = 0 for any open neighborhood U of a. Observe that A is pluriregular
at a iff there exists a basis U(a) of neighborhoods of a such that h∗A,U (a) = 0 for
every U ∈ U(a). Define

A∗ := {a ∈ A : A is pluriregular at a}.

We say that A is locally pluriregular if A 6= ∅ and A is pluriregular at every
point a ∈ A, i.e. ∅ 6= A ⊂ A∗. Observe that any non-empty open set is locally
pluriregular.

Remark 3.4.5. ωA,X = 0 on A∗. Consequently:
(a) h∗A,X ≤ ωA,X ≤ hA∗,X ≤ h∗A∗,X ,
(b) if A is locally pluriregular, then ωA,X = h∗A,X .

Proposition 3.4.6. A \A∗ ∈ PLP.

Proof. We may assume that X is connected. Let (Uk)∞k=1 be a basis of the topology
of X . Put Pk := {z ∈ Uk : hA,Uk(z) < h∗A,Uk(z)}, P :=

⋃∞
k=1 Pk. Then P ∈ PLP

(cf. Theorem 3.3.29(a) and Proposition 3.3.24). If a ∈ (A\P )∩Uk , then h∗A,Uk(a) =
hA,Uk(a) = 0, k ∈ N. Thus A \A∗ ⊂ P .

Proposition 3.4.7 ([Ale-Hec 2004]). Assume that X is connected. The following
conditions are equivalent:

(i) for every A ⊂ X we have ωA,X ≡ h∗A,X;
(ii) for any A ⊂ X and P ∈ PLP(X) we have h∗A∪P,X ≡ h∗A,X;
(iii) for every P ∈ PLP(X) we have h∗P,X ≡ 1;
(iv) for every P ∈ PLP(X) there exists a v ∈ PSH(X), v 6≡ −∞, v ≤ 0, such

that P ⊂ v−1(−∞);
(v) for every A ⊂ X we have h∗A,X ≡ h∗A∗,X .
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Moreover:
• by Theorem 3.3.22, condition (iv) (and, consequently, each other condition)

is always satisfied if (X, p) is relatively compact (cf. Definition 3.1.1);
• conditions (ii), (iii), (iv) are also equivalent if we fix a pluripolar set P ⊂ X.

Proof. (ii) =⇒ (iii): h∗P,X ≡ h∗∅,X ≡ 1.
(iii) =⇒ (iv): By Proposition 3.3.19(a) there exists an a ∈ X such that

hP,X(a) = 1. Take a sequence (uk)∞k=1 ⊂ PSH(X) with uk ≤ 1, uk ≤ 0 on
P , and uk(a) ≥ 1 − 1/2k, k ∈ N. Define v :=

∑∞
k=1(uk − 1). Then v ∈ PSH(X),

v ≤ 0, P ⊂ v−1(−∞), and v(a) ≥ −1.
(iv) =⇒ (ii): Let u ∈ PSH(X), u ≤ 1 on X , u ≤ 0 on A. Then, for every

ε > 0, we get u + εv ≤ 1 on X and u+ εv ≤ 0 on A ∪ P . Thus u+ εv ≤ hA∪P,X

and hence u + εv ≤ h∗A∪P,X . Thus u ≤ h∗A∪P,X on X \ v−1(−∞). Consequently,
by Proposition 3.3.8, u ≤ h∗A∪P,X and, finally, h∗A,X ≤ h∗A∪P,X .

(ii) =⇒ (i): By Proposition 3.4.2(d) there exists a set P ∈ PLP(A) such that

h∗A,X ≤ ωA,X ≤ h∗A\P,X

(ii)
= h∗A,X .

(i) =⇒ (ii): Using the fact that (iv) is always satisfied for relatively compact
open sets and the implication (iv) =⇒ (ii), for every exhaustion sequence (Xk)∞k=1,
we have

h∗A∪P,X = ωA∪P,X = lim
k→+∞

h∗A∪P,Xk
= lim
k→+∞

h∗A,Xk = ωA,X = h∗A,X .

(v) =⇒ (iii): h∗P,X = h∗P∗,X = h∗∅,X ≡ 1.
(ii) =⇒ (v): The inequality “≤” follows from Remark 3.4.5. By Proposition

3.4.6(b) and (ii) we get h∗A,X = h∗A∩A∗,X ≥ h∗A∗,X .

Proposition 3.4.8. Let G ⊂ Cn−k be an arbitrary domain and let A ⊂ Ck×G =:
D. Then hA,D(z, w) = hB,G(w), (z, w) ∈ D, where

B := prG(A) = {w ∈ G : ∃z∈Ck : (z, w) ∈ A}.

Proof. It is clear that hB,G(w) ≤ hA,D(z, w). Conversely, if u ∈ PSH(D), u ≤ 1
on D and u ≤ 0 on A, then u(z, w) = v(w) with v ∈ PSH(G). Obviously, v ≤ 1
on G and v ≤ 0 on B. hence v ≤ hB,G.

Proposition 3.4.9 ([Ale-Hec 2004]). Let G ⊂ Cn−1 be an arbitrary bounded do-
main, let B ⊂ C be polar, and let C ⊂ G, C /∈ PLP. Put D := C × G ⊂ Cn,
A := B × C. Then h∗A,D(z) < ωA,D(z) = 1, z ∈ D.

Proof. By Propositions 3.4.7 and 3.4.8, h∗A,D(z, w) = h∗C,G(w) < 1, (z, w) ∈ D.
Since A ∈ PLP, Proposition 3.4.7 implies that for very exhaustion sequence
(Dk)∞k=1 we have ωA,D = limk→+∞ h∗A,Dk = 1.

Theorem 3.4.10 (Product property; [Edi-Pol 1997], [Edi 2002]). Let Dj ⊂ Cnj

be a domain, Aj ⊂ Dj, j = 1, 2. Assume that A1, A2 are open or A1, A2 are
compact. Then

hA1×A2,D1×D2(z1, z2) = max{hA1,D1(z1), hA2,D2(z2)}, (z1, z2) ∈ D1 ×D2.
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Moreover, if D1, D2 are bounded, then for arbitrary subsets A1 ⊂ D1, A2 ⊂ D2

we have

h∗A1×A2,D1×D2
(z1, z2) = max{h∗A1,D1

(z1), h∗A2,D2
(z2)}, (z1, z2) ∈ D1 ×D2.

Proposition 3.4.11. (a) ωA,X = h∗A∗,X .
(b) If X ∈ Rb(Cn) (cf. Definition 3.1.1), then h∗A∪P,X ≡ h∗A,X for any A ⊂ X

and P ∈ PLP(X).
(c) If X ∈ Rb(Cn), then a set P ⊂ X is pluripolar iff h∗P,X ≡ 1.
(d) ωA∪P,X ≡ ωA,X for arbitrary A ⊂ X and P ∈ PLP(X).
(e) If P ∈ PLP, then (A \P )∗ = A∗. In particular, if A is locally pluriregular,

then A \ P is locally pluriregular.
(f) A ∩A∗ is locally pluriregular.
(g) If A ⊂ X, B ⊂ Y are locally pluriregular, then A × B ⊂ X × Y is locally

pluriregular.
(h) Let P ⊂ A × B ⊂ X × Y . Assume that B is locally pluriregular and for

any a ∈ A the fiber P(a,·) is pluripolar (we do not assume that P is pluripolar).
Then for any open set V ×W ⊂ D × G we have ω(A×B)\P, V×W = ωA×B, V×W .
In particular, if A is also locally pluriregular, then A×B \P is locally pluriregular
(cf. (g, e)).

Proof. (a) The inequality “≤” follows from Remark 3.4.5. Take an arbitrary ex-
haustion sequence (Xk)∞k=1. By Proposition 3.4.7(v) (applied to the relatively
compact open sets Xk, k ∈ N), we get

ωA,X = lim
k→+∞

h∗A,Xk = lim
k→+∞

h∗A∗,Xk
≥ h∗A∗,X .

(b) and (c) follow directly from Proposition 3.4.7.
(d) follows from (b).
(e) We only need to show that A∗ ⊂ (A \ P )∗. Fix a point a ∈ A∗. If U is an

open bounded neighborhood of a, then, using (b), we have h∗A\P,U (a) = h∗A,U (a) =

0. It remains to observe that a ∈ A \ P (otherwise, a has a bounded neighborhood
U such that U ∩ (A \ P ) = ∅, which implies that 1 = hA\P,U (a) = h∗A,U (a) = 0; a
contradiction).

(f) follows from (e) and Proposition 3.4.6(b).
(g) Take (a, b) ∈ A×B and let U , V be arbitrary univalent relatively compact

neighborhoods of a and b, respectively. By Theorem 3.4.10, we get

h∗A×B,U×V (a, b) = max{h∗A,U(a), h∗B,V (b)} = 0.

(h) Take an open set V ×W ⊂ D × G. We may assume that V and W are
relatively compact. Take a u ∈ PSH(V ×W ), u ≤ 1, with u ≤ 0 on (A × B) ∩
(V ×W ) \ P . Then for any a ∈ A ∩ V we have u(a, ·) ≤ 0 on (B ∩W ) \ P(a,·).
Hence u(a, b) ≤ h∗B\P(a,·),W

(b) = h∗B,W (b) = 0, b ∈ B ∩W .

Proposition 3.4.12. Let Xk ↗ X b Y and let Ak ⊂ Xk, Ak ↗ A. Then
h∗Ak,Xk ↘ h∗A,X .
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Proof. Let uk := hAk,Xk . Obviously, uk+1 ≤ uk. Let v := limk→+∞ u∗k. Then
v ∈ PSH(X) and h∗A,X ≤ v ≤ 1. Put Pk := {z ∈ Xk : uk(z) < u∗k(z)}. Then

Pk ∈ PLP, k ∈ N (cf. Theorem 3.3.29(a)), and hence P :=
⋃∞
k=1 Pk ∈ PLP .

Observe that v = limk→+∞ uk ≤ 0 on A \ P . Consequently, by Proposition
3.4.11(b), v ≤ h∗A\P,X = h∗A,X .

Proposition 3.4.13. (a) If A ⊂ X ∈ Rb(Cn), A /∈ PLP, 0 < µ < 1, and

Ωµ := {z ∈ X : h∗A,X(z) < µ},

then A∩S /∈ PLP for any connected component S of Ωµ (in particular, A∩S 6= ∅).

(b) If A is locally pluriregular, then h∗A,Ωµ = (1/µ)h∗A,X on Ωµ.

Proof. (a) By Proposition 3.4.11(c) we have to prove that h∗A,Ωµ(z) < 1, z ∈ Ωµ.

Let B := {z ∈ A : h∗A,X(z) = 0}. Then B ⊂ A ∩ Ωµ and therefore it suffices to
show that h∗B,Ωµ(z) < 1 for any z ∈ Ωµ. Observe that

A \B ⊂ {z ∈ X : hA,X(z) < h∗A,X(z)}.

Consequently, the set A \ B is pluripolar and hence, by Proposition 3.4.11(b),
h∗A,X = h∗B,X . Put

P := {z ∈ X : hB,X(z) < h∗B,X(z)} ∪ {z ∈ Ωµ : hB,Ωµ(z) < h∗B,Ωµ(z)};

P is pluripolar. Define

u :=

{
max{h∗B,X , µh∗B,Ωµ} on Ωµ

h∗B,X on X \Ωµ
.

Then u ∈ PSH(X) (cf. Proposition 3.3.6), u ≤ 1 on X , and u = 0 on B \P . Thus
u ≤ h∗B\P,X = h∗B,X and, finally, h∗B,Ωµ ≤ (1/µ)u ≤ (1/µ)h∗B,X < 1 in Ωµ.

(b) If A is locally pluriregular, then B = A and hence h∗A,Ωµ ≤ (1/µ)h∗A,X in
Ωµ. The converse inequality is obvious.

Proposition 3.4.14. Let Dj be Riemann a domain over Cnj and let Aj ⊂ Dj be
locally pluriregular, j = 1, . . . , N . Put

X̂ :=
{

(z1, . . . , zN) ∈ D1 × · · · ×DN :
N∑

j=1

h∗Aj ,Dj (zj) < 1
}
.

Then

h∗
A1×···×AN ,

�

X
(z) =

N∑

j=1

h∗Aj ,Dj (zj), z = (z1, . . . , zN) ∈ X̂.
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Proof. The inequality “≥” is obvious. To get the opposite inequality we proceed
by induction on N ≥ 2.

Let N = 2 (cf. [Sic 1981a]): Put u := h∗
A1×A2,

�

X
∈ PSH(X̂) and fix a point

(a1, a2) ∈ X̂. If a1 ∈ A1, then u(a1, ·) ∈ PSH(D2), u(a1, ·) ≤ 1, and u(a1, ·) ≤ 0
on A2. Therefore,

u(a1, ·) ≤ h∗A2,D2
= h∗A1,D1

(a1) + h∗A2,D2
on D2.

In particular, u(a1, a2) ≤ h∗A1,D1
(a1) + h∗A2,D2

(a2). The same argument works if
a2 ∈ A2. If a1 /∈ A1, then h∗A1,D1

(a1) + h∗A2,D2
(a2) < 1 and hence

µ := 1 − h∗A1,D1
(a1) ∈ (0, 1].

Put
(D2)µ := {z2 ∈ D2 : h∗A2,D2

(z2) < µ}.
It is clear that A2 ⊂ (D2)µ 3 a2. Put

v :=
1

µ

(
u(a1, ·) − h∗A1,D1

(a1)
)
∈ PSH((D2)µ).

Then v ≤ 1 and v ≤ 0 on A2. Therefore, by Proposition 3.4.13(b),

v ≤ h∗A2,(D2)µ
(a2) =

1

µ
h∗A2,D2

(a2) on (D2)µ.

Consequently, u(a1, a2) ≤ h∗A1,D1
(a1) + h∗A2,D2

(a2), which finishes the proof for
N = 2.

Now, assume that the formula is true for N − 1 ≥ 2. Put

Ŷ := {(z1, . . . , zN−1) ∈ D1 × · · · ×DN−1 :
N−1∑

j=1

h∗Aj ,Dj (zj) < 1}.

By the inductive hypothesis, we conclude that

h∗
A1×···×AN−1,

�

Y
(z′) =

N−1∑

j=1

h∗Aj ,Dj (zj), z′ = (z1, . . . , zN−1) ∈ Ŷ .

Now we apply the case N = 2 to the following situation:

Ẑ := {(z′, zN) ∈ Ŷ ×DN : h∗
A1×···×AN−1,

�

Y
(z′) + h∗AN ,DN (zN ) < 1}.

So

h∗
A1×···×AN−1,

�

Y
(z′) + h∗AN ,DN (zN ) = h∗

A1×···×AN ,
�

Z
(z), z = (z′, zN) ∈ Ẑ.

It remains to observe that Ẑ = Ŷ .
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Definition 3.4.15. We say that an Riemann region (X, p) is hyperconvex if there
exists a function u ∈ PSH(X,R−) such that

{x ∈ X : u(x) < t} b X, t < 0.

Theorem* 3.4.16 ([Bed-Tay 1976], [Bed 1981]). Let (X, p) ∈ R∞(Cn). There
exists a Monge–Ampère operator

PSH(X) ∩ L∞(X, loc) 3 u 7−→ (ddcu)n ∈ K(X),

where K(X) denotes the space of all non-negative Borel measure on X, such that:

(a) if u ∈ PSH(X) ∩ C2(X,R), then (ddcu)n = 4nn! det
[

∂2u
∂zj∂zk

]
j,k=1,...,n

LX ,

(b) if PSH(X) ∩ L∞(X, loc) 3 uν ↘ u ∈ PSH(X) ∩ L∞(X, loc), then we get
(ddcuν)n −→ (ddcu)n in the weak sense.

Definition 3.4.17. The measure µA,X := (ddch∗A,X)n is called the equilibrium
measure for A.

Theorem* 3.4.18 ([Bed 1981], [Zer 1986], [Kli 1991], [Ale-Zer 2001]). Let X b Y
be a hyperconvex open set and let K b X be compact.

(a) µK,X(X \K) = 0.
(b) Let P ⊂ K be such that µK,X(P ) = 0. Then h∗K\P,X ≡ h∗K,X .

3.5 Pseudoconvexity

See [Jar-Pfl 2000], § 2.2.

Definition 3.5.1. Let S ⊂ PSH(X). For a compact set K ⊂ X we put

K̃S := {x ∈ X : ∀u∈S : u(x) ≤ sup
K
u}.

We say that a Riemann region (X, p) ∈ R∞(Cn) is pseudoconvex if for any

compact set K ⊂ X the set K̃PSH(X) is relatively compact.

Remark 3.5.2. (a) K̃PSH(X) ⊂ K̂O(X). Consequently, if (X, p) ∈ R∞(Cn) is
holomorphically convex, then (X, p) is pseudoconvex.

(b) If (X, p) is hyperconvex (Definition 3.4.15), then (X, p) is pseudoconvex.

3.5.1 Smooth regions

Let (X, p) ∈ R∞(Cn) and let Ω b X be open.
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Definition 3.5.3. We say that ∂Ω is smooth of class Ck (or Ck–smooth) at a point
a ∈ ∂Ω if there exist an open neighborhood U of a and a function u ∈ Ck(U,R)
such that

Ω ∩ U = {x ∈ U : u(x) < 0}, U \Ω = {x ∈ U : u(x) > 0},
gradu(x) 6= 0, x ∈ U ∩ ∂Ω,

where

gradu(x) :=
( ∂u

∂z1
(x), . . . ,

∂u

∂zn
(x)

)
.

Here k ∈ N∪{∞}∪{ω}, where u ∈ Cω means that u is real analytic. The function
u is called a local defining function for Ω at a. We say that Ω is Ck–smooth if ∂Ω
is Ck–smooth at any point a ∈ ∂Ω. Put

TCx (∂Ω) :=
{
ξ ∈ Cn :

n∑

j=1

∂u

∂zj
(x)ξj = 0

}
, x ∈ U ∩ ∂Ω.

The space TCx (∂Ω) is called the complex tangent space to ∂Ω at x. The definition
of TCx (∂Ω) is independent of u. If n = 1, then TCx (∂Ω) = {0}.

We say that ∂Ω is strongly pseudoconvex at a point a ∈ ∂Ω if there exist an
open neighborhood U of a and a local defining function u ∈ C2(U,R) such that

Lu(x; ξ) > 0, x ∈ U ∩ ∂Ω, ξ ∈ TCx (∂Ω) \ {0}.

The definition is independent of u. We say that Ω is strongly pseudoconvex if ∂Ω
is strongly pseudoconvex at any point a ∈ ∂Ω. If n = 1, then any C2–smooth open
set Ω b X is strongly pseudoconvex.

3.5.2 Pseudoconvexity in terms of the boundary distance

Proposition 3.5.4. Let (X, p) ∈ R(C). Then − log dX ∈ SH(X).

Theorem 3.5.5. Let (X, p) ∈ R∞(Cn). Then the following conditions are equiv-
alent:

(i) for any compact K ⊂ X the set K̃PSH(X)∩C∞(X) is compact;

(ii) (X, p) is pseudoconvex;

(iii) for any ξ ∈ Cn the function − log δX,ξ is psh on X;

(iv) − log dX ∈ PSH(X);

(v) there exists an exhaustion function u ∈ PSH(X)∩C(X), i.e. for any t ∈ R
the set {x ∈ X : u(x) < t} is relatively compact;

(vi) there exists an exhaustion function u ∈ PSH(X);

(vii) there exists a strictly psh exhaustion function u ∈ C∞(X) (cf. Definition
3.3.5).
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3.5.3 Basic properties of pseudoconvex domains

Theorem 3.5.6. Let (X, p) ∈ Rc(Cn), (Y, q) ∈ Rc(Cm).

(a) If X =
⋃
ν∈NXν , where Xν is a pseudoconvex open subset of X with Xν ⊂

Xν+1, ν ∈ N, then X is pseudoconvex.

(b) If Y = int
⋂
ν∈NXν , where Xν is a pseudoconvex open subset of X, ν ∈ N,

then Y is pseudoconvex.

(c) If (Xj , pj) ∈ Rc(Cnj ) is pseudoconvex, j = 1, . . . , N , then X1 × · · · ×XN is
pseudoconvex.

(d) Any Riemann domain over C is pseudoconvex.

(e) If X is pseudoconvex and u ∈ PSH(X), then Y := {x ∈ X : u(x) < 0} is
pseudoconvex.

(f) If X is pseudoconvex and Y ⊂ X is an open set such that for any point a ∈ ∂Y
there exists an open neighborhood Ua such that Y ∩ Ua is pseudoconvex, then
Y is pseudoconvex.

(g) If X is pseudoconvex and M is an analytic subset of X of pure dimension
(n− 1), then X \M is pseudoconvex.

(h) If Z ⊂ X × Y is pseudoconvex, then for any y0 ∈ Y the fiber Zy0 := {x ∈ X :
(x, y0) ∈ Z} is a pseudoconvex open subset of X.

(i) If X is pseudoconvex, f : X −→ Y be holomorphic, and Z ⊂ Y is open
pseudoconvex, then f−1(Z) is pseudoconvex.

3.5.4 Smooth pseudoconvex domains

So far, pseudoconvex domains were characterized by the plurisubharmonicity of
the function − log dX . In the case of smooth open subsets Ω b X we can say
more, namely:

Theorem 3.5.7. Let (X, p) ∈ Rc(Cn) and let Ω b X be a C2–smooth open set.
Then (Ω, p|Ω) is pseudoconvex iff any local defining function u ∈ C2(U,R) satisfies
the following Levi condition

Lu(x; ξ) ≥ 0, x ∈ U ∩ ∂Ω, ξ ∈ TCx (∂Ω).

Theorem 3.5.8. Let Ω b X be strongly pseudoconvex.
(a) If Ω is Ck–smooth (k ≥ 2), then there exist an open neighborhood U of Ω

and a strictly psh defining function u ∈ Ck(U,R).
In particular, any strongly pseudoconvex open set is hyperconvex.
(b) For any open neighborhood U of Ω there exists a strongly pseudoconvex

C∞–smooth open set Ω′ such that Ω ⊂ Ω′ ⊂ U . Consequently, every function
f ∈ O(Ω) may be approximated locally uniformy in Ω by functions holomorphic
in a neighborhood of Ω (cf. [Jar-Pfl 2000], Proposition 2.7.7).
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3.5.5 Levi problem

In view of Remark 3.5.2(a) it is natural to ask whether any pseudoconvex Riemann
region is a region of holomorphy. This is the famous Levi Problem. The problem,
formulated by E.E. Levi in 1910 , was solved by Oka only in 1942 for n = 2 and in
1954 by Oka, Norguet, and Bremermann for n > 2

(
7
) (

8
) (

9
)
. [Biographical

data of Norguet. Will be completed. . . . . . . . . . . . . . . . ]

Theorem 3.5.9 (Solution of the Levi problem ). Let (X, p) ∈ R∞(Cn). Then the
following conditions are equivalent:

(i) (X, p) is a region of holomorphy;
(ii) O(X) separates points in X and (X, p) is holomorphically convex;
(iii) (X, p) is holomorphically convex;
(iv) (X, p) is pseudoconvex.

Proposition 3.5.10. If (X, p) ∈ Rc(Cn) is a domain of holomorphy, then every
u ∈ PSH(X) is a Hartogs plurisubharmonic function, i.e. there exists a sequence
(fk)∞k=1 ⊂ O(X) such that:

• the sequence (|fk|1/k)∞k=1 is locally bounded in X,
• u = v∗, where v := lim supk→+∞(1/k) log |fk|.

Proof. The Hartogs domain

Y := {(z, w) ∈ X × C : |w| < e−u(z)}

is a domain of holomorphy (cf. Theorem 3.5.6(e)). Let f ∈ O(Y ) be non-continu-
able beyond Y . Write f in form of the Hartogs series

f(z, w) =

∞∑

k=0

fk(z)wk, (z, w) ∈ Y,

where fk ∈ O(X), k ∈ N. Obviously v := lim supk→+∞(1/k) log |fk| ≤ u. In
particular, v∗ ≤ u and, by the Hartogs lemma (Proposition 3.3.13), the sequence
(|fk|1/k)∞k=1 is locally bounded in X . Suppose that v∗(a) < u(a). Then v(z) ≤
v∗(z) < − logR < u(a), z ∈ P̂X(a, r) b X . Thus f(z, ·) extends holomorphically

to K(R) for every z ∈ P̂X(a, r). Consequently, by the Hartogs lemma (Lemma

2.1.4), the function f extends holomorphically to P̂X(a, r) × K(R). Since f is
non-continuable, we conclude that R ≤ e−u(a); a contradiction.

3.6 The Grauert boundary of a Riemann domain

See [Jar-Pfl 2000], § 1.5.
�
7� Kiyoshi Oka (1901–1978) — Japanese mathematician.�
8� François Norguet (1929– ) — French mathematician.�
9� Hans–Joachim Bremermann (1926–1996) — German mathematician.



46 3 Prerequisities

Let (X, p), (Y, q) ∈ Rc(Cn) and let ϕ : X −→ Y be a morphism. Our aim is to

define an abstract boundary
=ϕ

∂ X of X with respect to the morphism ϕ. The idea
of such an abstract boundary is due to H. Grauert

(
10

)
.

In the case where (X, p) = (G, id) (G is a domain in Cn), (Y, q) = (Cn, id),

ϕ = id, the abstract boundary
=id

∂ G coincides with the set of, so-called, prime ends
of G.

For a ∈ X let Bc(a) denote the family of all open connected neighborhoods U
of a.

Definition 3.6.1. We say that a filter basis a of subdomains of X is a ϕ–boundary
point of X

(
11

)
if:

• a has no accumulation points in X ,
• there exists a point y0 ∈ Y such that limϕ(a) = y0,
• for any V ∈ Bc(y0) there exists exactly one connected component U =:

C(a, V ) of ϕ−1(V ) such that U ∈ a,
• for any U ∈ a there exists a V ∈ Bc(y0) such that U = C(a, V ).

Let
=ϕ

∂ X denote the set of all ϕ–boundary points of X . We put

=ϕ

X := X ∪
=ϕ

∂ X

and we extend ϕ to
=
ϕ :

=ϕ

X −→ Y by putting
=
ϕ(a) := y0 if a and y0 are as

above. Moreover, we put
=ϕ
p := q ◦ =

ϕ. We endow
=ϕ

X with a Hausdorff topology
which coincides with the initial topology on X and is such that the mapping

=
ϕ is

�
10� Hans Grauert (1930– ) — German mathematician.�
11� We say that a non-empty family F of subsets of a topological space X is a filter if:
• A ∈ F, A ⊂ B =⇒ B ∈ F,
• A1, A2 ∈ F =⇒ A1 ∩ A2 ∈ F,
• ∅ /∈ F.
A non-empty family P of non-empty subsets of X is said to be a filter basis if:
• ∀A1,A2∈P ∃A∈P : A ⊂ A1 ∩ A2.
It is clear that for each filter basis P the family FP := {A ⊂ X : ∃B∈P : B ⊂ A} is a filter.
We say that a filter F is convergent to a point a ∈ X if each neighborhood of a belongs to F.

We shortly write a ∈ limF.
We say that a filter basis P is convergent to a if a ∈ limFP (equivalently, each neighborhood

of a contains an element of P); we put limP := limFP .

We say that a is an accumulation point of a filter F (resp. filter basis P) if a ∈ A for any A ∈ F

(resp. A ∈ P).
Let us recall a few elementary properties of filters:
• If F⊂ F′ are filters and if a is an accumulation point of F′, then a is an accumulation point

of F.
• If a ∈ limF, then a ∈ limF′ for any filter F′ ⊃ F.
• If a is an accumulation point of F, then there exists a filter F′ ⊃ F such that a ∈ limF′.
• a ∈ A iff there exists a filter basis P consisting of subsets of A such that a ∈ limP.
• Let Y be another topological space and let ϕ : X −→ Y . Then ϕ is continuous iff for any

filter basis P in X the filter basis ϕ(P) := {ϕ(A) : A ∈ P} satisfies the relation: ϕ(limP) ⊂
limϕ(P).

• X is Hausdorff iff any filter in X converges to at most one point. If X is a Hausdorff space
and limF = {a}, then we write lim F = a.
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continuous: by an open neighborhood of a point a ∈
=ϕ

∂ X we mean any set of the
form

Ûa := U ∪ {b ∈
=ϕ

∂ X : U belongs to the filter generated by b},

where U ∈ a.

Proposition 3.6.2. For any a ∈
=ϕ

∂ X and for any neighborhood Ûa ⊂
=ϕ

X there
exists a neighborhood Ŵa ⊂ Ûa such that dX = dU on W . In particular,

lim
X3y→a

dX(y) = 0.

Let K(A) denote the family of all relatively closed pluripolar subsets of A.

Proposition 3.6.3. (a) Assume that a ∈
=ϕ

∂ X is such that there exists a neigh-

borhood U ⊂
=ϕ

X of a with the following properties:
• V :=

=
ϕ(U) is open in Y ,

• P :=
=
ϕ(U ∩

=ϕ

∂ X) ∈ K(V ),

• ϕ : U \
=ϕ

∂ X −→ V \ P is biholomorphic.

Then the mapping
=
ϕ|U : U −→ V is homeomorphic.

(b) Let Σ denote the set of all points a ∈
=ϕ

∂ X which satisfies the above condi-
tions. Put

∗ϕ

X := X ∪ Σ.

Then:

• (
∗ϕ

X ,
=ϕ
p | ∗ϕ

X
) is a Riemann domain over Cn,

• =
ϕ| ∗ϕ
X

: (
∗ϕ

X ,
=ϕ
p | ∗ϕ

X
) −→ (Y, q) is a morphism,

• Σ ∈ K(
∗ϕ

X ).

The following proposition shows that
∗ϕ

X is in some sense maximal.

Proposition 3.6.4. Suppose that W ⊂ X is an open subset such that:
• ϕ(W ) = V \ P , where V is an open subset of Y and P ∈ K(V ),
• ϕ : W −→ V \ P is biholomorphic.

Then there exists an open set U ⊂
∗ϕ

X such that W ⊂ U and
=
ϕ : U −→ V is

biholomorphic.

3.7 The Docquier–Grauert criteria

See [Jar-Pfl 2000], § 2.9.



48 3 Prerequisities

The aim of this section is to localize the description of the pseudoconvexity.
The main local criteria for the pseudoconvexity are contained in the following
theorem. Let (X, p) ∈ Rc(Cn). Put

∆ := Dn−1 × D, δ∆ := Dn−1 × ∂D.

Theorem 3.7.1 (Docquier–Grauert criteria). The following conditions are equiv-
alent:

(p0) (X, p) is a Riemann–Stein domain;
(p1) there exists a function u ∈ PSH(X) such that {x ∈ X : u(x) < t} b X

for any t ∈ R;
(p2) int(K̃PSH(X)) b X for any compact K ⊂ X;
(p3) X =

⋃∞
ν=1Ων , where Ων is a is strongly pseudoconvex domain with real

analytic boundary, and Ων b Ων+1, ν ≥ 1;
(p4) there exist a Riemann–Stein domain (Y, q) over Cn and a morphism

ϕ : (X, p) −→ (Y, q)

such that any point a ∈
=ϕ

∂ X has a neighborhood U ⊂
=ϕ

X (cf. § 3.6) such that the
region (X ∩ U, p) is holomorphically convex;

(p5) (Kontinuitätssatz) for any sequence of holomorphic mappings

ψν : Dν −→ X,

where Dν ⊂ C is a neighborhood of D, ν ≥ 1, we have the following implication:
if

⋃∞
ν=1 ψν(∂D) b X, then

⋃∞
ν=1 ψν(D) b X;

(p6) for any biholomorphic mapping f : W −→ f(W ) ⊂ X, where W ⊂ Cn is
a neighborhood of ∆, if f(δ∆) b X, then f(∆) b X;

(p7) there exist a Riemann–Stein domain (Y, q) over Cn and a morphism

ϕ : (X, p) −→ (Y, q)

such that there is no continuous mapping f : D
n −→

=ϕ

X with the following prop-
erties:

(†1) f(δ∆) b X,
(†2) f(Dn) ⊂ X,

(†3) f(D
n
) ∩

=ϕ

∂ X 6= ∅,

(†4)
=
ϕ ◦ f extends to a biholomorphic mapping in a neighborhood of D

n
;

(p∗
7) there exist a Riemann–Stein domain (Y, q) over Cn and a morphism

ϕ : (X, p) −→ (Y, q)

such that any point a ∈
=ϕ

∂ X has an open neighborhood U ⊂
=ϕ

X such that there is
no continuous mapping f : D

n −→ U with the above properties (†1 – †4).

Notice that the Docquier–Grauert criteria remain true in the case where (X, p)
be a Riemann domain over an n–dimensional connected Stein manifold M .
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3.8 Meromorphic functions

See [Jar-Pfl 2000], § 3.6.
Let (X, p) ∈ Rc(Cn).

Definition 3.8.1. A function f : X \ S −→ C, where S = S(f) is a closed subset
of X with (3.1.2), is said to be meromorphic on X (f ∈ M(X)) if:

(a) f ∈ O(X \ S) and S is singular for f in the sense of § 3.1.8,
(b) for any point a ∈ S there exist an open connected neighborhood U of a and

functions ϕ, ψ ∈ O(U), ψ 6≡ 0, such that ψf = ϕ on U \ S. we say that (ϕ, ψ) is
a local representation of f at a. Note that in view of (a) we must have ψ(a) = 0.
Consequently, either S = ∅ or S is an (n−1)–dimensional set of pure codimension
one.

The set R(f) := X \ S(f) is called the set of regular points of f .
We say that a point a ∈ S is a pole of f (a ∈ P(f)) if there exists a local

representation (ϕ, ψ) of f at a such that ϕ(a) 6= 0.
We say that a point a ∈ S is a point of indeterminacy of f (a ∈ I(f)) if for

every local representation (ϕ, ψ) of f at a we have ϕ(a) = 0.
Obviously, S(f) = P(f) ∪ I(f) and P(f) ∩ I(f) = ∅. Moreover, I(f) is an

analytic set of dimension ≤ n− 2. In particular, if n = 1, then I(f) = ∅.

The theory of extension of holomorphic mappings developed in § 3.1 may be
repeated word for word for meromorphic functions and leads to the following
Thullen theorem (cf. Theorem 3.1.16).

Theorem 3.8.2 (Thullen theorem). Let ∅ 6= F ⊂ M(X). Then (X, p) has an

F–envelope of meromorphy α : (X, p) −→ (X̃, p̃) such that (X̃, p̃) is a Riemann–
Stein domain. In particular, the envelope of meromorphy of (X, p) coincides with
its envelope of holomorphy.

Theorem 3.8.3. Let f ∈ M(X). Then there exist ϕ, ψ ∈ O(X), ψ 6≡ 0, such
that f = ϕ/ψ.

3.9 Sections of regions of holomorphy

This section is based on [Jar-Pfl 2005b].

Remark 3.9.1. (a) Let (X, p) be an S–region of holomorphy and let U ⊂ X be
a univalent domain for which there exists a domain V ⊃ p(U) such that for every
f ∈ S there exists a function Ff ∈ O(V ) such that Ff = f ◦ (p|U )−1 on p(U).
Then there exists a univalent domain W ⊃ U with p(W ) = V .

Indeed, we only need to observe that we may assume that (X, p) coincides with

(X̂, p̂) constructed in Remark 3.1.10.
(b) If (X, p) ∈ R∞(Cn) is an S–region of holomorphy, then there exists a finite

or countable subfamily S0 ⊂ S such that (X, p) is an S0–region of holomorphy.
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Indeed, we may assume that X is connected. The case where (X, p) ' (Cn, id)
is trivial. Thus assume that dX(x) < +∞, x ∈ X . Let A ⊂ X be a countable
dense subset such that A = p−1(p(A)). By proposition 3.1.19, for any x ∈ A and
r > dX(x) there exists an fx,r ∈ S such that d(Txfx,r) < r, and for x′, x′′ ∈ A,
with x′ 6= x′′ and p(x′) = p(x′′), there exists an fx′,x′′ ∈ S such that Tx′fx′,x′′ 6=
Tx′′fx′,x′′ . Now, we may take

S0 := {fx,r : x ∈ A, Q 3 r > dX(x)}
∪ {fx′,x′′ : x′, x′′ ∈ A, x′ 6= x′′, p(x′) = p(x′′)}.

Let (X, p) ∈ R(Cn), Cn = Ck × C`,

p = (u, v) : X −→ Ck × C`.

Put Ω := p(X), Ωk := u(X), Ω` := v(X). For a ∈ Ωk define Xa := u−1(a),
pa := v|Xa . Similarly, for b ∈ Ω`, put Xb := v−1(b), pb := u|Xb .

Remark 3.9.2. For every a ∈ Ωk, (Xa, pa) is a Riemann region over C`. If (X, p)
is countable at infinity, then so is (Xa, pa).

Let ∅ 6= S ⊂ O(X). For a ∈ Ωk define fa := f |Xa , Sa := {fa : f ∈ S} ⊂
O(Xa), and analogously, f b := f |Xb , Sb := {f b : f ∈ S} ⊂ O(Xb), b ∈ Ω`.

Theorem 3.9.3 ([Jar-Pfl 2005b]). Let (X, p) ∈ R∞(Cn) and let ∅ 6= S ⊂ O(X).
Assume that (X, p) is an S–region of holomorphy. Then there exists a pluripo-
lar set Pk ⊂ Ωk such that for every a ∈ Ωk \ Pk, (Xa, pa) is an Sa–region of
holomorphy.

Proof. By Remark 3.9.1(b), we may assume that S is finite or countable.
Step 1. There exists a pluripolar set P ⊂ Ωk such that for any a ∈ Ωk \ P ,

(Xa, pa) is an Sa–region of existence.

Define Rf,b(x) := d(Txfu(x)), f ∈ S, b ∈ Ω`, x ∈ Xb. Recall that

1/Rf,b(x) = lim sup
ν→+∞

(
max

β∈Z`+: |β|=ν

1

β!
|Ω(0,β)f(x)|

)1/ν

, x ∈ Xb.

Obviously, Rf,b(x) ≥ dX(x), x ∈ Xb. By the Cauchy inequalities, we get

1

β!
|Ω(0,β)f(x)| ≤

sup�

PX(x0,r)
|f |

r|β|
, 0 < r < dX(x0), x ∈ P̂X(x0, r/2), β ∈ Z`+.

Consequently, the function − log(Rf,b)∗ (where ∗ denotes the lower semicontinuous
regularization on Xb) is plurisubharmonic on Xb. Put

Pf,b := u({x ∈ Xb : (Rf,b)∗(x) < Rf,b(x)}) ⊂ Ωk.

It is known that Pf,b is pluripolar (cf. Theorem 3.3.29(b)). Put

Rb := inf
f∈S

Rf,b, R̂b := inf
f∈S

(Rf,b)∗.
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Observe that − log(R̂b)∗ is plurisubharmonic on Xb. Put

Pb := u({x ∈ Xb : (R̂b)∗(x) < R̂b(x)}) ⊂ Ωk.

The set Pb is also pluripolar (cf. Theorem 3.3.29(a)). Now let B ⊂ Ω` be a dense
countable set. Define

P :=
( ⋃

f∈S, b∈B

Pf,b

)
∪

( ⋃

b∈B

Pb

)
⊂ Ωk.

Then P is pluripolar.
Take an a ∈ Ωk\P and suppose that Xa is not an Sa–region of existence. Then

there exist a point x0 ∈ Xa and a number r > dXa(x0) such that b := v(x0) ∈ B
and Rb(x0) > r. Since a /∈ P , we have

(R̂b)∗(x0) = R̂b(x0) = inf
f∈S

(Rf,b)∗ = inf
f∈S

Rf,b = Rb(x0) > r.

In particular, there exists 0 < ε < dX(x0) such that (R̂b)∗(x) > r, x ∈ P̂Xb(x0).
Since,

Rb(x) = inf
f∈S

Rf,b(x) ≥ inf
f∈S

(Rf,b)∗(x) = R̂b(x) ≥ (R̂b)∗(x),

we conclude that Rb(x) > r, x ∈ P̂Xb(x0). Put U := P̂X(x0, ε). Hence, by the
classical Hartogs lemma (cf. Lemma 2.1.4), for every f ∈ S, the function f◦(p|U )−1

extends holomorphically to V := P(a, ε) × P(b, r). Since (X, p) is an S–domain of
holomorphy, by Remark 3.9.1(a), there exists a univalent domain W ⊂ X , U ⊂W ,
such that p(W ) = V . In particular, dXa(x0) ≥ r; a contradiction.

Step 2. There exists a pluripolar set P ⊂ Ωk such that for any a ∈ Ωk \ P the

family Sa weakly separates points in Xa.

Take a ∈ Ωk, x′, x′′ ∈ Xa with x′ 6= x′′ and pa(x′) = pa(x′′) =: b. Since S
weakly separates points in X , there exists an f ∈ S such that Tx′f 6= Tx′′f . Put
r := min{d(Tx′f), d(Tx′′f)} and let

Pa,x′,x′′ :=
⋂

w∈P(b,r)

{z ∈ P(a, r) : Tx′f(z, w) = Tx′′f(z, w)}.

Then Pa,x′,x′′  P(a, r) is an analytic subset. For any z ∈ P(a, r)\Pa,x′,x′′ we have
Tx′f(z, ·) 6≡ Tx′′f(z, ·) on P(b, r).

Take a countable dense set A ⊂ Ωk. For any a ∈ A let Ba ⊂ Xa be a countable
dense subset such that p−1

a (pa(Ba)) = Ba. Then

P :=
⋃

a∈A, x′,x′′∈Ba
x′ 6=x′′, pa(x

′)=pa(x
′′)

Pa,x′,x′′

is a pluripolar set.
Fix a0 ∈ Ωk \P , x′0, x

′′
0 ∈ Xa0 , with x′0 6= x′′0 and pa0(x′0) = pa0(x′′0 ) =: b0. Put

r := min{dX(x′0), dX(x′′0 )}. Let a ∈ A ∩ P(a0, r/2) and x′, x′′ ∈ Ba be such that
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x′ ∈ PX(x′0, r/2), x′′ ∈ PX(x′′0 , r/2), pa(x′) = pa(x′′). Since a0 /∈ P , we conclude
that Tx′f(a0, ·) 6≡ Tx′′f(a0, ·) on P(b0, r/2). Consequently, Tx′

0
f(a0, ·) 6≡ Tx′′

0
f(a0, ·)

on P(b0, r/2), which implies that Tx′
0
fa0 6= Tx′′

0
fa0 .

Corollary 3.9.4. Let D ⊂ Ck × C` be a domain, let ∅ 6= S ⊂ O(D) and let
A ⊂ prCk(D). Assume that for any a ∈ A we are given a domain G(a) ⊃ Da in
C` such that:

• for any f ∈ S, the function f(a, ·) extends to an f̂a ∈ O(G(a)),

• the domain G(a) is a {f̂a : f ∈ S}–domain of holomorphy.

Let (X, p) be the S–envelope of holomorphy of D. Then there exists a pluripolar
set P ⊂ A such that for every a ∈ A \ P we have (Xa, pa) ' (G(a), id).

Proposition 3.9.5. Let D ⊂ Cp be a domain, let (G, πG) ∈ Rc(Cq), and let
Ω ⊂ D × G be a Riemann domain of holomorphy over Cp × Cq (Ω is considered
with the projection πΩ := idD ×πG). Let M ⊂ Ω be a relatively closed pluripolar
set that is singular with respect to a family S ⊂ O(Ω \M). Then there exists a
pluripolar set P ⊂ D such that for any a ∈ D \ P , the fiber M(a,·) is singular with
respect to the family Sa := {f(a, ·) : f ∈ S} ⊂ O(Ω(a,·) \M(a,·)).

Proof. Observe that Ω \M is a domain of holomorphy with respect to the family
F0 := F ∪O(Ω). By Theorem 3.9.3, there exists a pluripolar set P ⊂ D such that
for any a ∈ D \P , the fiber Ω(a,·) \M(a,·) is a domain of holomorphy with respect
to the family (F0)a. In particular, for any a ∈ D \ P , the fiber M(a,·) is singular
with respect to Fa.

Lemma 3.9.6. Let D ⊂ Ck, G0 ⊂ G ⊂ C` be domains of holomorphy and let
A ⊂ D. Assume that for every a ∈ A we are given a relatively closed pluripolar
set M(a) ⊂ G. Let S denote the set of all functions f ∈ O(D ×G0) such that for

every a ∈ A, the function f(a, ·) extends to an f̂a ∈ O(G \M(a)). Assume that

for every a ∈ A the set M(a) is singular with respect to the family {f̂a : f ∈ S}.
Then there exists a pluripolar set P ⊂ A such that if we put A0 := A \P , then the
set

M(A0) :=
⋃

a∈A0

{a} ×M(a)

is relatively closed in A0 ×G.

Proof. First observe that every function from O(G) may be regarded as an element
of S, which implies that for every a ∈ A the domain G(a) := G \ M(a) is a

{f̂a : f ∈ S}–domain of holomorphy.
Let (X, p) be the S–envelope of holomorphy of D × G0. Since D and G are

domains of holomorphy, we may assume that p(X) ⊂ D ×G.
By Corollary 3.9.4, there exists a pluripolar set P ⊂ A such that for every

a ∈ A0 := A \ P we have (Xa, pa) ' (G(a), id). Thus p is injective on the set
B := p−1(A0 × G) and p(B) =

⋃
a∈A0

{a} × G(a) = (A0 × G) \M(A0). Hence
p(B) = p(X)∩ (A0 ×G) and, consequently, p(B) is relatively open in A0 ×G.
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Classical cross theorem

4.1 Terada theorem (1967 – 1972)

Recall the Hukuhara problem (§ 2.2):
(S-OH) Given two domains D ⊂ Cp, G ⊂ Cq, a non-empty set B ⊂ G, and a

function f ∈ Os(X), where X := (D×G)∪(D×B), we ask whether f ∈ O(D×G).
After Theorems 2.2.4 and 2.2.7, the next important step was the one by T. Terada
([Ter 1967]) who finally was able to answer the question raised by Hukuhara. We
are going to present a “modern” proof of Terada’s theorem, based on the notion
of relative extremal function — cf. § 3.4.

Theorem 4.1.1 (Terada). If B /∈ PLP, then Os(X) = O(D ×G).

Proof. Fix an f ∈ Os(X). By Theorem 2.2.7, f ∈ O(U0 × G), where U0 is an
open dense subset of D. To prove that U0 = D we only need to show that if
P(a, r) b U0 and P(a,R) ⊂ D for 0 < r < R, then P(a,R) ⊂ U0. Write

f(z, w) =
∑

α∈Zp+

fα(w)(z − a)α, (z, w) ∈ P(a, r) ×G, (4.1.1)

where fα ∈ O(G), α ∈ Zp+. Moreover, by the Cauchy inequalities, for every
compact K b G, we get

‖fα‖K ≤ ‖f‖P(a,r)×K
r|α|

, α ∈ Zp+.

Consequently, the sequence of log-psh functions

uk :=
( ∑

|α|=k

|fα|
)1/k

, k ∈ N,

is locally bounded in G. Define u := lim supk→+∞ uk. Notice that log u∗ ∈
PSH(G) — cf. Proposition 3.3.12. We know that u ≤ 1/r on G and u ≤ 1/R on
B. We may assume that G is bounded and B is locally pluriregular (cf. Proposition
3.4.6(b)). By Theorem 3.3.29(a) and Proposition 3.4.11(b),

log u∗ + log r

logR/r
+ 1 ≤ h∗B,G

(cf. Definition 3.4.1). Hence

u(w) <
1

R

(R
r

)µ
, w ∈ Gµ := {w ∈ G : h∗B,G(w) < µ}, 0 < µ < 1. (4.1.2)
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Recall that B ⊂ Gµ (cf. Remark 3.4.5) and every connected component of Gµ
intersects B (cf. Proposition 3.4.13).

Inequality (4.1.2) and the Hartogs lemma for plurisubharmonic functions (cf.
Proposition 3.3.13) imply that the series (4.1.1) converges locally uniformly to a

(holomorphic) function f̃ in the open set

⋃

0<µ<1

P(a,R(r/R)µ) ×Gµ.

A standard argument shows that f̃ = f and, finally P(a,R) ⊂ U0.

Exercise 4.1.2. Simplify the proof of Theorem 4.1.1 under additional assumption
that B is of positive Lebesgue measure.

Exercise 4.1.3. Prove the Hartogs, Hukuhara, Shimoda, and Terada theorems
in the case where D and G are Riemann domains over Cp and Cq, respectively.

Theorem 4.1.4 ([Ter 1972]). Assume that D ⊂ Cp is a domain such that:
(†) there exist a sequence (Ωk)∞k=1 of open subsets of D and a sequence

(zk)∞k=1 ⊂ D for which:

(*) D =
⋃∞
k=1

⋂∞
s=k Ωs, zk ∈ (

⋂∞
s=k+1Ωs) \Ωk, zk −→ z0 ∈ D,

(**) ∀k∈N ∀M>0 ∀ε>0 ∃ϕ∈O(D) : |ϕ(zk)| ≥M, |ϕ| ≤ ε on Ωk.

Let G ⊂ Cq be a domain of holomorphy and let B ⊂ G be an Fσ pluripolar set.
Then Os(X)  O(D ×G).

Remark 4.1.5. (a) D := D satisfies (†).
Indeed, if Ak, k ∈ N, are as in Example 2.1.10, then we take Ωk := int(Ak∩D),

zk := 1/2k, z0 := 0. Condition (**) may be checked using Runge’s theorem (like
in Example 2.1.10).

(b) Taking Ωk × Dp−1, we easily conclude that Dp also satisfies (†). Thus
every polydisc P(a, r) satisfies (†) with arbitrary z0 ∈ P(a, r) (use a biholomorphic
mapping Φ : P(a, r) −→ Dn with Φ(z0) = 0).

(c) Consequently, every bounded domain D ⊂ Cp satisfies (†) with arbitrary
z0 ∈ D.

(d) Assumption that G is a domain of holomorphy is unessential — we may
always substitute G by its envelope of holomorphy (which may be a Riemann
domain over Cq).

(e) ? We do not know whether the assumption that B ∈ Fσ is essential ?

Proof of Theorem 4.1.4. Let u ∈ PSH(Cq), u 6≡ −∞, be such that B ⊂ u−1(−∞)
(cf. Theorem 3.3.20). Since G is a domain of holomorphy, u = v∗, where

v = lim sup
m→+∞

1

m
log |gm|

(gm)∞m=1 ⊂ O(G) is such that the sequence (|gm|1/m)∞m=1 is locally bounded in
G (cf. Proposition 3.5.10). Let w0 ∈ G be such that u(w0) = v(w0) > −∞
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(cf. Propositions 3.3.10, 3.3.19). Fix a sequence (Gk)∞k=1 of subdomains of G such
that w0 ∈ Gk b Gk+1 b G, G =

⋃∞
k=1Gk and B =

⋃∞
k=1 Bk, where Bk is compact,

∅ 6= Bk ⊂ B ∩Gk, Bk ⊂ Bk+1.

Let ck := supGk+1
u. Observe that

lim sup
m→+∞

1

m
log |e−mckgm(w)| = v − ck ≤ u− ck

{
< 0 on Gk+1

= −∞ on Bk
.

Put Qk := ck − u(w0) > 0. Using the Hartogs lemma for plurisubharmonic
functions (cf. Proposition 3.3.13), for every nk > 0, we choose an mk ∈ N such
that with ψk := e−mkckgmk ∈ O(G) we have:

(1) |ψk| ≤ 1 on Gk,

(2) |ψk(w0)| ≥ e−2mkQk ,

(3) |ψk| ≤ e−mknkQk on Bk.

Take an arbitrary exhaustion sequence (Dk)∞k=1 for D. Using (**), we construct
inductively Mk > 0, ϕk ∈ O(D), and nk > 0 such that:

(4) Mke
−mkQk ≥ k + 1 +

∑k−1
s=1 |ϕs(zk)ψs(w0)| (we choose Mk > 0),

(5) |ϕk(zk)| ≥Mk, |ϕk| ≤ 1/2k on Ωk (we choose ϕk),

(6) |ϕk|e−mknkQk ≤ 1/2k on Dk (we choose nk > 0).

Define

f(z, w) :=

∞∑

k=1

ϕk(z)ψk(w), (z, w) ∈ D ×G.

Take an arbitrary a ∈ D, say a ∈ Ωk for k ≥ k0. Then we get

|ϕk(a)ψk(w)|
(1),(5)

≤ 1

2k
, w ∈ Gk, k ≥ k0.

Hence f(a, ·) ∈ O(G).

Take an arbitrary b ∈ B, say b ∈ Bk for k ≥ k0. Then we get

|ϕk(z)ψk(b)|
(3)

≤ |ϕk(z)|e−mknkQk
(6)

≤ 1

2k
, z ∈ Dk, k ≥ k0.

Thus f(·, b) ∈ O(D). Consequently, f ∈ Os(X), X := (D × G) ∪ (D × B). To
prove that f /∈ O(D ×G) it suffices to show that |f(zk, w0)| ≥ k, k ∈ N. We have

|f(zk, w0)| ≥ |ϕk(zk)ψk(w0)| −
k−1∑

s=1

|ϕs(zk)ψs(w0)| −
∞∑

s=k+1

|ϕs(zk)ψs(w0)|

(1),(2),(4),(5)

≥ Mke
−2mkQk − (Mke

−2mkQk − k − 1) −
∞∑

s=k+1

1

2s
≥ k.
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4.2 Crosses

After Terada’s results (cf. Theorems 4.1.1, 4.1.4) it was clear that the next step
should be a solution of the following general problem (cf. Chapter 1).

(S-OC) We are given two domains D ⊂ Cp, G ⊂ Cq, two non-empty sets
A ⊂ D, B ⊂ G. Define the cross

X = K(A,B;D,G) := (A×G) ∪ (D ×B).

We say that a function f : X −→ C is separately holomorphic on X (f ∈ Os(X))
if:

• f(a, ·) ∈ O(G) for every a ∈ A,

• f(·, b) ∈ O(D) for every b ∈ B.

We ask whether there exists an open neighborhood X̂ ⊂ D × G of X such that

every function f ∈ Os(X) extends holomorphically to X̂. Observe that the

Hukuhara problem was just the case where A = D and X̂ = D × G. Notice
once again that different crosses may have the same geometric image.

Cp

Cq

︸ ︷︷ ︸
A

a

︸ ︷︷ ︸
D

B





b

G





X̂

Figure 4.2.1. X = (A × G) ∪ (D × B) ⊂
�

X .

Remark 4.2.1. To get an insight into the problem consider the following elemen-
tary situation.
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Recall that a domain Ω ⊂ Cn is a Reinhardt domain if for every a = (a1, . . . ,
an) ∈ Ω the set

{(z1, . . . , zn) ∈ Cn : |zj| = |aj |, j = 1, . . . , n}

is contained in Ω (cf. [Jar-Pfl 2008], Definition 1.5.2). A domain Ω ⊂ Cn is
acomplete Reinhardt domain if for every a = (a1, . . . , an) ∈ Ω the set

{(z1, . . . , zn) ∈ Cn : |zj| ≤ |aj |, j = 1, . . . , n}

is contained in Ω (cf. [Jar-Pfl 2008], Definition 1.3.8) A Reinhardt
(
1
)

domain
Ω ⊂ Cn with 0 ∈ Ω is a domain of holomorphy iff Ω is logarithmically convex,
i.e. the set logΩ is convex (cf. [Jar-Pfl 2008], Theorem 1.11.13), where

logΩ := {(x1, . . . , xn) ∈ Rn : (ex1 , . . . , exn) ∈ Ω.

Moreover, if Ω ⊂ Cn is a Reinhardt domain with 0 ∈ Ω, then its envelope of
holomorphy is a complete Reinhardt Ω̂ with log Ω̂ = conv(logΩ), where conv(A)
denotes the convex hull of A (cf. [Jar-Pfl 2008], § 1.12).

Assume that each of the sets A ⊂ D ⊂ Cp, B ⊂ G ⊂ Cq is complete Reinhardt
domains of holomorphy. Then Ω := (A × G) ∪ (D × B) is a Reinhardt domain
in Cp+q with 0 ∈ Ω. Observe that, by the Hartogs lemma (cf. Lemma 2.1.4),
Os(X) = O(Ω). Consequently, every function f ∈ Os(X) extends holomorphi-

cally to the envelope Ω̂ of holomorphy of Ω, which satisfies log Ω̂ = conv(logΩ).
Note that logΩ = (logA × logG) ∪ (logD × logB), where each of the sets
logA ⊂ logD ⊂ Rp, logB ⊂ logG ⊂ Rq is a convex domain. Thus

log Ω̂ = {t(a′, b′) + (1 − t)(a′′, b′′) :

(a′, b′) ∈ logA× logG, (a′′, b′′) ∈ logD × logB, t ∈ [0, 1]}.

[Will be completed. . . . . . . . . . . . . . . . . . . . . . . . . ]

Finally,

Ω̂ = {(z, w) ∈ D ×G : h∗A,D(z) + h∗B,G(w) < 1}.

In the general situation, in view of the above remark, we put

X̂ = K̂(A,B;D,G) := {(z, w) ∈ D ×G : ωA,D(z) + ωB,G(w) < 1}.

4.2.1 N–fold crosses

The extension problem (S-OC) may be generalized to more complicated objects.

�
1� Karl August Reinhardt (1895–1941) — German mathematician.
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Definition 4.2.2. Let Dj be a Riemann domain over Cnj and let ∅ 6= Aj ⊂ Dj ,
j = 1, . . . , N , N ≥ 2. Let

A′
j := A1 × · · · ×Aj−1, j = 2, . . . , N, A′′

j := Aj+1 × · · · ×AN , j = 1, . . . , N − 1.

Similarly, for a = (a1, . . . , aN ) ∈ A1 × · · · × AN , we write a′j := (a1, . . . , aj−1),
a′′j := (aj+1, . . . , aN ). Define the N–fold cross

X = K(A1, . . . , AN ;D1, . . . , DN) = K((Aj , Dj)
N
j=1) :=

N⋃

j=1

(A′
j ×Dj ×A′′

j ),

where A′
1 ×D1 ×A′′

1 := D1 ×A′′
1 and A′

N ×DN ×A′′
N := A′

N ×DN .

Define the center of the cross X

c(X) := A1 × · · · ×AN .

Observe that the geometric image of X may be the same for different systems
(Aj , Dj)

N
j=1. For example, if Aj = Dj , j = 1, . . . , N − 1, then the geometric image

of X is just the Cartesian product D1 × · · · ×DN independently of AN .

We say that a function f : X −→ C is separately holomorphic on X (f ∈
Os(X)) if for any (a1, . . . , aN) ∈ A1 × · · · ×AN and j ∈ {1, . . . , N}, the function

Dj 3 zj 7−→ f(a′j, zj , a
′′
j ) ∈ C

is holomorphic in Dj.

(S-OC) We ask whether there exists an open neighborhood X̂ ⊂ D1 × · · · ×
DN of X such that every f ∈ Os(X) extends holomorphically to X̂.

Define

X̂ = K̂(A1, . . . , AN ;D1, . . . , DN ) = K̂((Aj , Dj)
N
j=1) :

=
{

(z1, . . . , zN ) ∈ D1 × · · · ×DN :

N∑

j=1

ωAj ,Dj (zj) < 1
}
.

Exercise 4.2.3. Prove the following properties of N–fold crosses.

(a) X is connected.

(b) If A1, . . . , AN /∈ PLP , then X /∈ PLP.

(c) If A1, . . . , AN are locally pluriregular, then X ⊂ X̂ (use Remark 3.4.5).

(d) If D1, . . . , DN are domains of holomorphy, then X̂ is a region of holomorphy
(use Theorem 3.5.6(e)).
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Cn1

Cn2

Cn3

Figure 4.2.2. X = (D1 × A2 × A3) ∪ (A1 × D2 × A3) ∪ (A1 × A2 × D3).

(e) If (Dj,k)∞k=1 is a sequence of subdomains of Dj with Dj,k ⊂ Dj,k+1, Aj,k :=
Dj,k ∩Aj 6= ∅, k ∈ N, and Dj =

⋃∞
k=1Dj,k, j = 1, . . . , N , then

K̂((Aj , Dj,k)Nj=1) ↗ X̂.

(f) If Dj ∈ Rb(Cnj ) (cf. Definition 3.1.1), (Dj,k)∞k=1 is a sequence of subdomains
of Dj such that Dj,k ↗ Dj , Dj,k ⊃ Aj,k ↗ Aj , j = 1, . . . , N , then

K̂((Aj,k, Dj,k)Nj=1) ↗ X̂

(use Proposition 3.4.12).

(g) If A1, . . . , AN are locally pluriregular, then X̂ is connected.

Hint: We may assume that Dj ∈ Rb(Cnj ), j = 1, . . . , N . It suffices to show

that every point a = (a1, . . . , aN ) ∈ X̂ may be connected in X̂ with a point

from c(X). Put ε :=
∑N−1

j=1 h∗Aj ,Dj (aj). If ε = 0, then {(a1, . . . , aN−1)} ×
DN ⊂ X̂. If ε > 0, then by Proposition 3.4.13, the connected component S
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of the open set {zN ∈ DN : h∗AN ,DN (zN ) < 1− ε} that contains aN , intersects

AN . Consequently, a may be connected inside of X̂ with (a1, . . . , aN−1, bN),
where bN ∈ AN . Repeating the above argument, we easily show that a may

be connected inside of X̂ with a point b ∈ c(X).

(h) If Pj ∈ PLP(Dj), j = 1, . . . , N , then

K̂((Aj \ Pj , Dj)
N
j=1) = X̂

(use Proposition 3.4.11(d)). In particular,

K̂((Aj ∩A∗
j , Dj)

N
j=1) = X̂,

where A∗
j is given in Definition 3.4.4, j = 1, . . . , N (use Proposition 3.4.6).

(i) If A1, . . . , AN are locally pluriregular and

Ŷ := K̂((Aj , Dj)
N−1
j=1 ) ⊂ D1 × · · · ×DN−1,

then
K̂(A′

N , AN ; Ŷ , DN) = X̂

(use Proposition 3.4.14).

(j) Assume that Bj ⊂ Aj , Bj /∈ PLP, j = 1, . . . , N . Let f ∈ Os(X) be such that
f = 0 on B1 × · · · ×BN . Then f = 0 on X.

Hint: It suffices to show that f = 0 on c(X). Fix a point (a1, . . . , aN ) ∈
c(X). We know that that for any bj ∈ Bj , j = 1, . . . , N − 1, we have
f(b1, . . . , bN−1, ·) = 0 on BN . Since BN /∈ PLP , we conclude that f(b1,
. . . , bN−1, ·) = 0 on Dj and, therefore, f(b1, . . . , bN−1, aN ) = 0. Now we re-
peat the same procedure with respect to the (N − 1)-th variables: f(b1, . . . ,
bN−2, ·, aN ) = 0 on BN−1 and hence f(b1, . . . , bN−2, aN−1, aN) = 0. Finite
induction finishes the proof.

4.3 Main cross theorem (1969 — 2001)

The problem of holomorphic continuation of separately holomorphic functions de-
fined on N–fold crosses has been investigated in several paper, e.g. [Ber 1912],
[Sic 1969a], [Sic 1969b], [Akh-Ron 1973], [Zah 1976], [Sic 1981a], [Shi 1989], [Ngu-Sic 1991],
[Ngu-Zer 1991], [Ngu-Zer 1995], [NTV 1997], [Ale-Zer 2001], [Zer 2002] and has
led to the following result. The breaking point of the proof was made in [Zah 1976].

Theorem 4.3.1. Assume that Dj is a Riemann domain over Cnj such that O(Dj)
separates points in Dj (cf. Definition 3.1.17) and Aj ⊂ Dj is locally pluriregular,
j = 1, . . . , N . Put X := K((Aj , Dj)

N
j=1). Let f ∈ Os(X). Then

(*) there exists an f̂ ∈ O(X̂) such that f̂ = f on X and sup �

X
|f̂ | = supX |f |.
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A proof will be presented in § 4.8.

Remark 4.3.2. (a) Let (X, p) ∈ Rc(Rn) be such that O(X) separates points in

X . Let α : (X, p) −→ (X̂, p̂) be a maximal holomorphic extension (cf. Theorem
3.1.16). Then α is injective (Remark 3.1.18). Thus we may assume that X is a

subdomain of X̂, p = p̂|X , α = id.

(b) Let D̂j denote the envelope of holomorphy ofDj withDj being a subdomain

of D̂j (cf. (a)). Then for every function g ∈ O(Dj) there exists (exactly one)

extension ĝ = Ej(g) ∈ O(D̂j) with g̃ = g on Dj and sup �

Dj
|ĝ| = supDj |g|,

j = 1, . . . , N (cf. Remark 3.1.11).

Put Y = K((Aj , D̂j)
N
j=1). Since ωAj ,

�

Dj
≤ ωAj ,Dj on Dj , j = 1, . . . , N , we get

X̂ ⊂ Ŷ . For f ∈ Os(X) define g : Y −→ C,

g(a′j , zj, a
′′
j ) := Ej(f(a′j , ·, a′′j ))(zj), (a′j , zj, a

′′
j ) ∈ A′

j × D̂j ×A′′
j , j = 1, . . . , N.

It is clear that g ∈ Os(Y ) and supY |g| = supX |f |. Suppose that g extends to an

ĝ ∈ O(Ŷ ) with sup �

Y
|ĝ| = supY |g|. Then f̂ := ĝ| �

X
gives the extension to X̂ with

sup �

X
|f̂ | = supX |f |. Consequently,

• in the extension problem described in Theorem 4.3.1 we may always assume
that D̂j = Dj, i.e. Dj is a Riemann domain of holomorphy over Cnj , j = 1, . . . , N .

Sometimes the assumption that A1, . . . , AN are locally pluriregular is too re-
strictive and it is better to consider the following equivalent form of Theorem
4.3.1.

Theorem 4.3.3. Let Dj be as in Theorem 4.3.1 and let Aj ⊂ Dj be non-
pluripolar, j = 1, . . . , N . Put

X := K((Aj , Dj)
N
j=1), Y := K((Aj ∩A∗

j , Dj)
N
j=1)

(recall that Ŷ = X̂ — cf. Exercise 4.2.3(h)). Let f ∈ Os(X). Then

(**) there exists an f̂ ∈ O(X̂) such that f̂ = f on Y and sup �

X
|f̂ | ≤ supX |f |.

It is obvious that Theorem 4.3.3 =⇒ Theorem 4.3.1. Conversely, since Aj ∩A∗
j

is locally pluriregular (cf. Proposition 3.4.11(f)), j = 1, . . . , N , Theorem 4.3.1

implies that there exists an f ∈ O(X̂) such that f̂ = f on Y and sup �

X
|f̂ | =

supY |f | ≤ supX |f |.

Remark 4.3.4. Let Dj , Aj , j = 1, . . . , N , X, and X̂ be as in Theorem 4.3.1.
In the case where N = 2 we will always write D := D1, p := n1, G := D2,

q := n2, A := A1, B := A2.
We present below procedures which allow us to prove Theorems 4.3.1 and 4.3.3

under some additional useful assumptions.
(P1) Let (Dj,k)∞k=1 be an exhaustion sequence for Dj with Aj,k := Aj ∩

Dj,k 6= ∅ (observe that Aj,k is locally pluriregular), k ∈ N, j = 1, . . . , N . Put

Xk := K((Aj,k, Dj,k)Nj=1). Notice that Xk ↗ X, X̂k ↗ X̂ (cf. Exercise 4.2.3(e)).
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Obviously, if f ∈ Os(X), then f |Xk
∈ Os(Xk), k ∈ N. Suppose that for each k

there exists an f̂k ∈ O(X̂k) with f̂k = f on Xk and sup �

Xk
|f̂k| ≤ supXk

|f |. Then
(*) is true.

Indeed, since f̂k+1 = f̂k on the non-pluripolar set Xk, we conclude that f̂k+1 =

f̂k in the domain X̂k. Thus, we obtain an f̂ ∈ O(X̂) with f̂ = f on X and

sup �

X
|f̂ | = supk∈N sup �

Xk
|f̂k| ≤ supk∈N supXk

|f | = supX |f |.
In particular:
• (†) we may always assume that Dj ∈ Rb(Cnj ), j = 1, . . . , N ,
• if D1, . . . , DN are Riemann domains of holomorphy, then we may assume

that they are strongly pseudoconvex with real analytic boundaries (cf. § 3.5.1),
• we may always assume that f(a1, . . . , aj−1, ·, aj+1, . . . , aN ) ∈ O(Dj) for

every (a1, . . . , aN ) ∈ A1 × · · · ×AN , j = 1, . . . , N .

(P2) Assume that Dj ∈ Rb(Cnj ), j = 1, . . . , N (as in (†)). Let Aj,k ↗ Aj ,
j = 1, . . . , N . We assume that each set Aj,k is non-pluripolar. Put

Xk := K((Aj,k, Dj)
N
j=1), Y k := K((Aj,k ∩A∗

j,k, Dj)
N
j=1).

Observe that Y k ⊂ Xk ↗ X and Ŷ k = X̂k ↗ X̂ (cf. Proposition 3.4.6 and

Exercise 4.2.3(f)). Suppose that (**) holds for each k, i.e. there exists an f̂k ∈
O(X̂k) with f̂k = f on Y k and sup �

Xk
|f̂k| ≤ supXk

|f | ≤ supX |f |. Then (*) is
true.

Indeed, since Y k /∈ PLP, we get f̂k+1 = f̂k on X̂k. Thus we get a function

f̂ ∈ O(X̂) such that sup �

X
|f̂ | ≤ supX |f | and f̂ = f on each Y k. It remains to

use Exercise 4.2.3(j) to show that f̂ = f on every Xk and hence f̂ = f on X.
In particular,
• if Dj ∈ Rb(Cnj ), j = 1, . . . , N (as in (†)), then we may always assume that

Aj b Dj, j = 1, . . . , N .

(P3) We may additionally assume that N = 2.
Indeed, suppose that the result is true for N = 2. We proceed by induc-

tion on N ≥ 2. Suppose that the theorem is true for N − 1 ≥ 2. Put Y :=
K((Aj , Dj)

N−1
j=1 ), Z := K(A′

N , AN ; Ŷ , DN ). Observe that if zN ∈ AN , then

f(·, zN) ∈ Os(Y ). By inductive assumption there exists an f̂zN ∈ O(Ŷ ) with

f̂zN = f(·, zN) on Y and sup �

Y
|f̂zN | ≤ supY |f(·, zN)| ≤ supX |f |. Define g :

Z −→ C,

g(z′, zN ) :=

{
f̂zN (z′), if (z′, zN ) ∈ Ŷ ×AN

f(z′, zN), if (z′, zN ) ∈ A′
N ×DN

.

Obviously, g is well-defined and g ∈ Os(Z). It is clear that holomorphic functions

on Ŷ separate points and A′
N is locally pluriregular. Using the case N = 2, we

find an f̂ ∈ O(Ẑ) with f̂ = g on Z and sup�

Z
|f̂ | ≤ supZ |g| ≤ supX |f |. It remains

to recall that Ẑ = X̂ (cf. Exercise 4.2.3(i)).
Observe that the above proof shows that if the main theorem is true for N = 2

and bounded functions f ∈ Os(X), then it holds for arbitrary N and bounded
separately holomorphic functions.



4.3 Main cross theorem (1969 — 2001) 63

(P4) If N = 2, then we may additionally assume that f is bounded.

Indeed, we already know (by (P1)) that we may assume that Dj ∈ Rb(Cnj ),
j = 1, 2 (as in (†)) and that for arbitrary (a1, a2) ∈ A1 × A2 we have f(a1, ·) ∈
O(D2), f(·, a2) ∈ O(D1). Define

A1,k : = {z1 ∈ A1 : |f(z1, ·)| ≤ k on D2},
A2,k : = {z2 ∈ A2 : |f(·, z2)| ≤ k on D1}, k ∈ N.

Observe that Aj,k ↗ Aj . We may assume that Aj,k /∈ PLP, k � 1, j = 1, 2.
Observe that |f | ≤ k on K(A1,k, A2,k;D1, D2), k ∈ N. Now we only need to use
(P2).

(P5) Assume that N = 2 and let f ∈ Os(X) be bounded.

(a) If B is an identity set, then f |A×G is continuous.

(b) If B is an identity set and A b D, then f extends to an f̃ ∈ Os(Z), where
Z := K(A,B;D,G).

(c) If A,B are identity sets, then f is continuous on X.

(d) If A b D, B b G are identity sets, then f extends to a continuous function

f̃ ∈ Os(Z), with Z := K(A,B;D,G).

Indeed, for the proof of (a) let A × G 3 (zs, ws) −→ (z0, w0) ∈ A × G,
f(zs, ws) −→ α. The sequence of holomorphic functions (f(zs, ·))∞s=1 is bounded.
Consequently, by the Montel theorem, we may assume that f(zs, ·) −→ g locally
uniformly in G with g ∈ O(G). In particular, f(zs, ws) −→ g(w0) = α. On the
other hand, f(zs, w) −→ f(z0, w) for w ∈ B. Hence, g = f(z0, ·) on B and, finally,
g = f(z0, ·) on G, which gives (a).

(b) Let A 3 zk −→ z0 ∈ A ⊂ D. By a Montel argument there exists a
subsequence (ks)

∞
s=1 such that f(zks , ·) −→ gz0 locally uniformly in G. Observe

that gz0(w) = f(z0, w), w ∈ B. Consequently, gz0 does not depend neither on the
subsequences and nor the sequence (zk)∞k=1 ⊂ A with zk −→ z0. Define

f̃(z, w) :=

{
f(z, w), on X,

gz(w), on A×G
.

Then f̃ is well defined and separately holomorphic on Y .

(c) In view of (a), to prove that f is continuous on X, we only need to consider
the case where

A×G 3 (zs, ws) −→ (z0, w0) ∈ (D ×B) \ (A×G),

f(zs, ws) −→ α. Analogously as in the first part of the proof, we may assume
that f(zs, ·) −→ g locally uniformly in G. Hence g(ws) −→ g(w0) = α. Moreover,
g(w) = f(z0, w) on w ∈ B. In particular, g(w0) = f(z0, w0), which finishes the
proof.

(d) follows from (b).
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(P6) Assume that N = 2, D,G are relatively compact (as (†)), and A b D,
B b G are non-pluripolar. Put

Y := K(A ∩A∗, B ∩B∗;D,G), Z := K(A,B;D,G),

W := K(A ∩ (A)∗, B ∩ (B)∗;D,G).

Let f ∈ Os(X) be bounded. We know by (P5) that f extends a continuous

f̃ ∈ Os(Z). Suppose that (**) holds for Z, i.e. there exists an f̂ ∈ O(Ẑ) such

that f̂ = f̃ on W and sup �

Z
|f̂ | ≤ supZ |f̃ |. Observe that Y ⊂ Z and X̂ = Ŷ ⊂

Ŵ = Ẑ. Thus f̂ | �
X

solves (**) for X.

(P7) Summarizing, to prove Theorem 4.3.1 in its full generality, it suffices
to prove Theorem 4.3.3 under the following additional assumptions:

• N = 2,
• D,G are strongly pseudoconvex domains with real analytic boundaries,
• A, B are compact non-pluripolar,
• f(a, ·) ∈ O(G), a ∈ A, f(·, b) ∈ O(D), b ∈ B,
• |f | ≤ 1 on X (and f is continuous on X).

4.4 Siciak’s approach

The aim of this section is present some of Siciak’s results from the paper [Sic 1969a].
J. Siciak was the one who initiated modern theory of separately holomorphic func-
tions on crosses. To be historically correct, one should mention that already in
1911 Bernstein (cf. [Ber 1912]) discussed the following general 2-fold cross situa-
tion: n1 = n2 = 1, D1 = D2 = an ellipse with foci 1, −1, A1 = A2 = [−1, 1],
f ∈ Os(K(A1, A2;D1D2)) bounded. It seems that this result has been not recog-
nized for a long time up to a paper by Akhiezer and Ronkin (cf. [Akh-Ron 1973],
see also [Ron 1977]).

Observe that in the following results the domains D1, . . . , DN and sets A1,
. . . , AN satisfy very restrictive assumptions, much more restrictive than those
considered in Remark 4.3.4. Since not all reduction procedures (from Remark
4.3.4) preserve these special additional assumptions, we can apply only some of
them.

Theorem 4.4.1. Let D ⊂ Cp be a domain and let G1, . . . , Gq ⊂ C be simply
connected domains symmetric with respect to the real axis R. Assume that A ⊂ D
is locally pluriregular and Bj = [aj , bj] ⊂ Gj ∩ R, aj < bj, j = 1, . . . , q. Put
X := K(A,B1, . . . , Bq;D,G1, . . . , Gq). Let f ∈ Os(X) be bounded on X. Then

there exists an f̂ ∈ O(X̂) such that f̂ = f on X and sup �

X
|f̂ | = supX |f |. If A is

additionally compact, then the result remains true for locally bounded f ∈ Os(X).

Notice that the assumptions that f is bounded or locally bounded are, in fact,
superfluous (cf. Theorem 4.3.1).

We need some auxiliary results, whose proofs may be found e.g. in [Gol 1983].
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Lemma 4.4.2. Let D ⊂ H+ := {x + iy : x ∈ R, y > 0} be a simply connected
domain and let L ⊂ R ∩ ∂D be an open interval. Assume that g : D −→ H+

is a biholomorphic mapping. Then g extends to a continuous injective mapping

g̃ : D ∪ L −→ H
+

with g̃(L) ⊂ R.

Lemma 4.4.3. For every −∞ ≤ c < −1 < 1 < d ≤ +∞ there exist 0 < ρ ≤ +∞
and a biholomorphic mapping h : H+ −→ R with

R = R(ρ) := {u+ iv : u ∈ (0, ρ), v ∈ (0, π)},

such that h̃(c) = ρ + iπ, h̃(−1) = iπ, h̃(1) = 0, h̃(d) = ρ, where h̃ denotes the

extension of h to a homeomorphic mapping h̃ : H
+ −→ R (which exists by the

Carathéodory theorem).

Corollary 4.4.4. Let D ⊂ H+ be a simply connected domain such that (c, d) ⊂
R ∩ ∂D with −∞ ≤ c < −1 < 1 < d ≤ +∞. Then there exist 0 < ρ ≤ +∞
and a biholomorphic mapping g : H+ −→ R with R = R(ρ) that extends to a
continuous injective mapping g̃ : D∪(c, d) −→ R such that g̃((c,−1]) = (ρ+iπ, iπ],
g̃(−1) = iπ, g̃([−1, 1]) = [iπ, 0], g̃(1) = 0, g̃([1, d)) = [0, ρ).

Lemma 4.4.5. Let D ⊂ C be a simply connected domain symmetric with respect
to a line L. Let [a, b] ⊂ L ∩ D, a 6= b. Then there exist uniquely determined
R ∈ (1,+∞] and

g : D −→ E := {w ∈ C : |w +
√
w2 − 1| < R}, g biholomorphic,

such that g([a, b]) = [−1, 1], g(a) = −1, g(b) = 1, and the branch of
√
w2 − 1 is

chosen so that
√
x2 − 1 > 0 for x ∈ (1,+∞).

Proof. Let

g1(z) :=
2

b− a

(
z − a+ b

2

)
, z ∈ C.

Then g1 maps biholomorphicallyD onto the simply connected domainD1 := g1(D)
that is symmetric with respect to the real axis, g1([a, b]) = [−1, 1], g1(a) = −1,
g1(b) = 1. If D1 = C, then we put R := +∞, g := g1.

Assume that D1 6= C. Let (c, d) := D1 ∩ R (observe that D1 ∩ R must be
connected because D1 is symmetric and simply connected — Exercise). Put

D+
1 := {z ∈ D1 : Im z > 0};

observe that D+
1 is a simply connected domain. Then there exist ρ ∈ (0,+∞] and

a biholomorphic mapping

g2 : D+
1 −→ D2 := {u+ iv : u ∈ (0, ρ), v ∈ (0, π)}

such that g̃2((c,−1]) = (ρ + iπ, iπ], g̃2(−1) = iπ, g̃2([−1, 1]) = [iπ, 0], g̃2(1) = 0,
g̃2([1, d)) = [0, ρ) (Corollary 4.4.4). The mapping g3 := exp maps biholomorphi-
cally D2 onto the domain

D3 := {w ∈ C : 1 < |w| < R := eρ, Imw > 0},
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g3([ρ + iπ, iπ] = [−R,−1], g3([iπ, 0]) = C+ := {ζ ∈ T : Im ζ ≥ 0}, g3([0, ρ]) =
[1, R].

Next, the Zhukovski mapping g4(z) := 1
2 (z + 1/z) maps D3 onto the domain

E+ := {w ∈ E : Imw > 0}, g4([−R,−1]) = [− 1
2 (R + 1/R),−1], g4(C+) = [−1, 1],

g4([1, R]) = [1, 1
2 (R+ 1/R].

Let g5 := g4 ◦ g3 ◦ g2 : D+
1 −→ E

+,

g6(w) :=





g5(w), w ∈ D+
1

g4 ◦ g3 ◦ g̃2(w), w ∈ (c, d)

g5(w), w ∈ D+
1

.

Finally, g := g6 ◦ g1 satisfies all the required properties.

It remains to prove that R and g are uniquely determined. Suppose that
h : D −→ E′ := {w ∈ C : |w +

√
w2 − 1| < R′} is another biholomorphic mapping

with the above properties. Then the biholomorphic mapping f := g−1
4 ◦h◦g−1◦g4 :

A(1, R) −→ A(1, R′) with f(±1) = ±1, where

A(r−, r+) := {z ∈ C : r− < |z| < r+}.
Consequently, R′ = R and g ≡ h.

Corollary 4.4.6. Assume that D is a simply connected domain symmetric with
respect to the real line R and [a, b] ⊂ D ∩ R, a < b. Let R and g be as in Lemma
4.4.5. Then the function Φ(z) := g(z) +

√
g2(z) − 1, z ∈ D \ [a, b], is the unique

biholomorphic mapping of D \ [a, b] onto A(1, R) such that Φ(a) = −1, Φ(b) = 1.
Moreover:

• Φ(z) = Φ(z), z ∈ D \ [a, b],
• the limits Φ(x+i0) := limy→0+ Φ(x+iy) and Φ(x−i0) := limy→0− Φ(x+iy)

exist for x ∈ [a, b],
• Φ(x+ i0) = Φ(x − i0) = 1/Φ(x− i0), x ∈ [a, b],
• the functions (a, b) 3 x 7−→ Φ(x + i0) and (a, b) 3 x 7−→ Φ(x − i0) are real

analytic,
• the function m(x) := g′(x)/

√
1 − g2(x) = iΦ′(x− i0)/Φ(x− i0), x ∈ (a, b),

is Riemann integrable and
∫ b
a
m(x)dx = arcsin g|ba = π.

Put

Φk(z) :=
1

2

{
Φk(z) + Φ−k(z), z ∈ D \ [a, b]

Φk(x− i0) + Φ−k(x− i0), z = x ∈ [a, b]
, k ∈ Z+

Then:
• Φk ∈ O(D),
• |Φk| ≤ |Φ|k,
• |Φk| ≤ 1 on [a, b].

Corollary 4.4.7. Let D, a, b, R, and Φ be as in Corollary 4.4.6. Then

ω[a,b],D = h∗[a,b],D =
log |Φ|
logR

.
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Proof. Let u := log |Φ|
logR . It clear that u ∈ H(D \ [a, b]) and 0 < u < 1 on D \ [a, b].

Moreover, u is continuous on D and u = 0 on [a, b]. Hence u ∈ SH(D) and,
consequently, h[a,b],D ≥ u. Applying the maximum principle to the subharmonic
function h∗[a,b],D − u on D \ [a, b], gives the converse inequality.

Lemma 4.4.8. Let D, a, b, R, m, Φ, and (Φk)∞k=1 be as in Corollary 4.4.6. Let
f ∈ O(D). Then

f(z) =

∞∑

k=0

ckΦk(z), z ∈ D, (4.4.1)

where

ck :=
2sgn k

π

∫ b

a

m(x)f(x)Φk(x)dx, k ∈ Z+.

Moreover:
• the series converges locally uniformly in D,
• if |f | ≤M , then |ck| ≤ 2M/Rk, k ∈ N.

Proof. Applying the Laurent expansion to the function F := f ◦Φ−1 in the annulus
A(1, R) gives

F (w) = a0 +

∞∑

k=1

(akw
k + a−kw

−k), 1 < |w| < R,

where

ak =
1

2πi

∫

|w|=r

F (ζ)

ζk+1
dζ =

1

2πi

∫

|Φ(z)|=r

f(z)

Φk+1(z)
Φ′(z)dz, 1 < r < R, k ∈ Z+.

Since F is continuous for 1 ≤ |w| < R, we have

ak =
1

2πi

∫

T

F (ζ)

ζk+1
dζ

=
1

2πi

∫ b

a

f(x)

Φk+1(x− i0)
Φ′(x− i0)dx− 1

2πi

∫ b

a

f(x)

Φk+1(x + i0)
Φ′(x+ i0)dx

=
1

2π

∫ b

a

m(x)f(x)
(
Φk(x − i0) + Φ−k(x− i0)

)
dx =

1

π

∫ b

a

m(x)f(x)Φk(x)dx.

In particular, c0 = a0, ck = 2ak = 2a−k, k ∈ N. Consequently, we get (4.4.1) on
D \ [a, b], the series being locally uniformly convergent in D \ [a, b]. It remains to
observe that series (4.4.1) is uniformly convergent in {z ∈ D : |Φ(z)| ≤ θR} for
arbitrary 0 < θ < 1. In fact, if |Φ(z)| ≤ θR, then

|ckΦk(z)| ≤ 2M

Rk
|Φ(z)|k ≤ 2Mθk, k ∈ N.
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Proof of Theorem 4.4.1. First observe that, using the same procedures as in Re-
mark 4.3.4, we may reduce the proof to the case where D is bounded, A b D, and
q = 1. In the case where A is compact we easily reduce the proof to the case where
f is bounded, |f | ≤ M on X. In particular, f is continuous on X (cf. Remark
4.3.4(P5)).

Write G := G1, [a, b] := [a1, b1], F := [a, b]. Let R, g be associated to (G, [a, b])
as in Lemma 4.4.5 and let m, Φ, (Φk)∞k=1 be associated by Corollary 4.4.6. Define

ck(z) :=
2sgn k

π

∫ b

a

m(t)f(z, t)Φk(t)dt, z ∈ D, k ∈ Z+.

We have (cf. Lemma 4.4.8):

f(z, w) =
∞∑

k=0

ck(z)Φk(w), (z, w) ∈ A×G,

ck ∈ O(D), |ck| ≤ 2M, |ck(z)| ≤ 2M

Rk
, z ∈ A, k ∈ Z+.

Hence

|ck| ≤ 2MRk(h
∗
A,D−1) on D, k ∈ N.

For 0 < θ < 1 define

Ωθ :=
{

(z, w) ∈ D ×G : h∗A,D + h∗B,G(w) = h∗A,D +
log |Φ(w)|

logR
< 1 +

log θ

logR

}
.

Observe that Ωθ ↗ X̂ when θ ↗ 1. For (z, w) ∈ Ωθ we get

|ck(z)Φk(w)| ≤ 2MRk(h
∗
A,D(z)−1)|Φ(w)|k ≤ 2M(Rh

∗
A,D(z)−1|Φ(w)|)k ≤ 2Mθk,

k ∈ N.

Thus, the series is uniformly convergent on Ωθ and its sum f̂ satisfies the inequality

sup
Ωθ

|f̂ | ≤ 2M

1 − θ
.

Using the same argument for the function fm instead of f we conclude that

sup
Ωθ

|f̂m| ≤ 2Mm

1 − θ
,

which gives

sup
Ωθ

|f̂ | ≤M
( 2

1 − θ

)1/m

.

Letting m −→ +∞ leads to the conclusion that |f̂ | ≤M on Ωθ.
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Theorem 4.4.9. Let D1, . . . , Dn ⊂ C be simply connected domains symmetric
with respect to the real axis R and let Aj = [aj, bj ] ⊂ Dj∩R, aj < bj, j = 1, . . . , n.

Put X := K((Aj , Dj)
n
j=1). Let f ∈ Os(X). Then there exists an f̂ ∈ O(X̂) such

that f̂ = f on X and sup �

X
|f̂ | ≤ supX |f |.

We need some auxiliary results.

Theorem 4.4.10 (Leja’s polynomial lemma). Let K1, . . . ,Kn ⊂ C be continua,
K := K1 × · · · ×Kn ⊂ Cn, and let F ⊂ P(Cn) be such that

∀z∈K : sup
p∈F

|p(z)| < +∞,

i.e. F is pointwise bounded on K. Then

∀a∈K ∀ω>1 ∃M=M(K,a,ω,F)>0 ∃η=η(K,a,ω)>0 : sup
p∈F

sup
z∈P(a,η)

|p(z)| ≤Mωdeg p,

equivalently,

∀ω>1 ∃M=M(K,ω,F)>0 ∃ Ω=Ω(K,ω)
K⊂Ω – open

: sup
p∈F

sup
z∈Ω

|p(z)| ≤Mωdeg p.

Notice that η is independent of F .

Proof. The case n = 1 is covered by Lemma 2.1.6. Assume that the result is
true for (n − 1) variables and consider the case of n variables. Take a point
a′ ∈ K ′ := K1 × · · · ×Kn−1 and put Fa′ := {p(a′, ·) : p ∈ F}. By Lemma 2.1.6
there exist an open neighborhood Ωn :=

⋃
ζ∈Kn

K(ζ, η(Kn, ζ,
√
ω)) of Kn (Ωn

does not depend on a′) and a constant M(a′) such that

|p(a′, zn)| ≤M(a′)
√
ω

deg p
, zn ∈ Ωn, f ∈ F .

Now, let F ′ := {√ω− deg p
p(·, zn) : zn ∈ Ωn}. Observe that F ′ is pointwise

bounded on K ′. Thus, by the inductive assumption, there exist an open neigh-
borhood Ω′ of K ′ and a constant M such that

√
ω
− deg p|p(z′, zn)| ≤M

√
ω

deg p
, z′ ∈ Ω′, zn ∈ Ωn, p ∈ F .

Theorem 4.4.11. Let K be a compact subset of an open set Ω ⊂ Cn. Assume
that for every point a ∈ A there exist continua K1, . . . ,Kn ⊂ C such that a ∈
K1×· · ·×Kn ⊂ K. Let a sequence (fα)α∈Zm+ ⊂ O(Ω) be locally uniformly bounded
in Ω and such that

lim sup
|α|→+∞

(|fα(z)|Rα)1/|α| ≤ 1, z ∈ K,

where R ∈ Rn>0. Then for every ω > 1 there exist a constant M = M(ω) > 0 and
an open neighborhood Ωω of K, Ωω ⊂ Ω, such that

|fα(z)|Rα ≤Mω|α|, z ∈ Ωω, α ∈ Zm+ .
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Proof. Take an arbitrary ω > 1. It suffices to show that for every point a ∈ K
there exist M,η > 0 such that

|fα(z)|Rα ≤Mω|α|, z ∈ B(a, η), α ∈ Zm+ .

Fix a point a ∈ K and let

B(a, r0) ⊂ Ω, 0 < ρ < r < r0, ρ/r ≤ ω/max{R1, . . . , Rm}.

Put
M1 := sup

α∈Zm+

max
z∈B(a,r)

|fα(z)| < +∞.

Write

fα(z) =

∞∑

k=0

fα,k(z − a), z ∈ B(a, r0),

where fα,k is a homogeneous polynomial of degree k. Put

pα(z) :=

|α|∑

k=0

fα,k(z − a), F := {(R/ω)αpα : α ∈ Zm+ }.

The Cauchy inequalities imply that

|fα,k| ≤
M1

rk

Consequently, if z ∈ B(a, ρ), then

|pα(z)| ≤ |fα(z)| +

|α|+1∑

k=0

|fα,k(z − a)| ≤M2(z)
ω|α|

Rα
+M1

∞∑

k=|α|+1

(ρ
r

)k

≤M2(z)
ω|α|

Rα
+M1

(ρ
r

)|α|+1 1

1 − ρ
r

≤M2(z)
ω|α|

Rα
+M3

(ρ
r

)|α|

≤M4(z)
ω|α|

Rα
.

Hence, the family F is pointwise bounded on B(a, ρ). By Leja’s polynomial lemma
(Theorem 4.4.10) there exist 0 < η ≤ ρ and M > 0 such that

(R/ω)α|pα(z)| ≤Mω|α|, z ∈ B(a, η), α ∈ Zm+ .

Finally, for z ∈ B(a, η), we get

Rα|fα(z)| ≤ Rα|pα(z)| +M3ω
|α| ≤Mω2|α| +M3ω

|α| ≤ (M +M3)ω2|α|.

Proof of Theorem 4.4.9. We use induction on n. The case n = 1 is trivial (X =

X = X̂ = D). Suppose that the result is true for n − 1. Fix an f ∈ Os(X).
In view of Theorem 4.4.1 we only need to show that f is locally bounded on X ,
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i.e. for any subdomains D0
j b Dj with Aj ⊂ D0

j , j = 1, . . . , n, the function f is

bounded on K((Aj , D
0
j )
n
j=1). Fix an j0 ∈ {1, . . . , n}. We are going to show that

f is bounded on A′
j0
×D0

j0
× A′′

j0
. We may assume that j0 = n.

We want to prove that f is bounded on A′
n ×D0

n. Put

Y := K((Aj , Dj)
n−1
j=1 ), Z := K(A′

n, An; Ŷ , Dn).

Recall that Ẑ = X̂. In view of the inductive assumption, for every zn ∈ An, the
function f(·, zn) extends to a function f̂zn holomorphic on Ŷ with f̂zn = f(·, zn)
on Y . Define g : Z −→ C,

g(z′, zn) :=

{
f(z′, zn), (z′, zn) ∈ A′

n ×Dn

f̂zn(z′), (z′, zn) ∈ Ŷ ×An
.

Then g ∈ Os(Z). For 0 < ε < 1 put

Ŷ ε :=
{

(z1, . . . , zn−1) ∈ Ŷ :

n−1∑

j=1

h∗Aj ,Dj (zj) < 1 − ε
}
.

Using a Baire argument, we show that there exist a constant C > 0 and a non-
trivial interval [a′n, b

′
n] ⊂ [an, bn] such that |g(z′, zn)| ≤ C on Ŷ ε × [a′n, b

′
n] and

g| �
Y ε×[a′n,b

′
n] is continuous (cf. Remark 4.3.4(d, f)). Let R, g, m, Φ, (Φk)∞k=1 be

associated to (Dn, [a
′
n, b

′
n]). Define

ck(z′) :=
2sgn k

π

∫ b′n

a′n

mq(t)g(z′, t)Φk(t)dt, z′ ∈ Ŷ ε, k ∈ Z+.

We have

g(z′, zn) =

∞∑

k=0

ck(z′)Φk(zn), (z′, zn) ∈ A′
n ×Dn,

ck ∈ O(Ŷ ε), |ck| ≤ 2C, |ck(z′)| ≤
2 maxt∈[a′n,b

′
n] |g(z′, t)|

Rk
, z′ ∈ A′

n, k ∈ Z+.

Hence, by Theorem 4.4.10,

|ck| ≤
C(ε)

(Rqe−ε)k
on A′

n, k ∈ Z+.

Finally, if
Dn,ε := {zn ∈ Dn : |Φ(zn)| ≤ Re−2ε},

then

|g(z′, zn)| ≤ C(ε)

∞∑

k=0

(Re−2ε)k

(Re−ε)k
=

C(ε)

1 − e−ε
, (z′, zn) ∈ A′

n ×Dn,ε.

In remains to observe that for sufficiently small ε we get D0
n ⊂ Dn,ε.
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4.5 Browder and Lelong theorems

Theorem 4.5.1 ([Bro 1961], [Lel 1961]). (a) If Ω ⊂ Rn ' Rn + i0 ⊂ Cn is open,
then

A(Ω) = {f ∈ As(Ω) : ∀a∈Ω ∃r>0 ∀x∈Rn∩P(a,r)⊂Ω ∀j∈{1,...,n} :

f(x1, . . . , xj−1, ·, xj+1, . . . , xn) ∈ O(K(aj , r))} =: LΩ ,

where A(Ω) denotes the space of all real analytic functions f : Ω −→ R.

(b) If Ω ⊂ Rn1 ×· · ·×RnN , then H(n1,...,nN )(Ω) = H(Ω), where H(n1,...,nN )(Ω)
denotes the space of all functions f : Ω −→ R such that for every (a1, . . . , aN ) ∈ Ω,
the function xj 7−→ f(a1, . . . , aj−1, xj , aj+1, . . . , aN ) is harmonic in a neighborhood
of aj (as a function of nj variables), j = 1, . . . , N .

Notice that the function

f(x, y) :=

{
xye

− 1
x2+y2 , (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

is separately analytic and of class C∞(R2), but not analytic (near (0, 0)) (Exer-

cise).

Proof. (a) Fix an f ∈ LΩ and an a = (a1, . . . , an) ∈ Ω. Let r be as in the definition
of LΩ . Take an arbitrary 0 < s < r and put

X := K(([aj − s, aj + s],K(aj, r))
n
j=1).

Directly from the definition of LΩ it follows that f extends to an f̃ ∈ Os(X).

Now Theorem 4.4.9 implies that f̃ extends holomorphically to X̂, which is a Cn–
neighborhood of a. In particular, f is real analytic in an Rn–neighborhood of
a.

(b) It suffices to show that H(n1,...,nN )(Ω) ⊂ LΩ . In fact, we only need to

observe that if f ∈ H(B(r) ∩ Rn), then f extends holomorphically to P(r/
√
n).

Indeed, it is well known that f may be represented by its real Taylor se-
ries f(x) =

∑
α∈Zn+

cαx
α, x ∈ B(r) ∩ Rn that is convergent locally uniformly in

B(r) ∩ Rn. Consequently, the complex series
∑

α∈Zn+
cαz

α is locally convergent in

P(r/
√
n).

4.6 p–separately analytic functions

Definition 4.6.1. Let Ω ⊂ Rn1 × · · · × RnN (N ≥ 2) be open, let f : Ω −→ R,
and let 1 ≤ p ≤ N − 1. We say that f is p–separately analytic in Ω (f ∈
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A(n1,...,nN ),p(Ω)), if for any a = (a1, . . . , aN ) ∈ Ω and 1 ≤ i1 < · · · < ip ≤ N the
function

(xi1 , . . . , xip) 7−→ f(a1, . . . , ai1−1, xi1 , ai1+1, . . . , aip−1, xip , aip+1, . . . , aN)

is analytic in an open neighborhood of (ai1 , . . . , aip).

Observe that A(n1,...,nN ),1(Ω) = A(n1,...,nN )(Ω) =: the space of all functions
f : Ω −→ R such that for any (a1, . . . , aN ) ∈ Ω and j ∈ {1, . . . , N}, the function
xj 7−→ f(a1, . . . , aj−1, xj , aj+1, . . . , aN ) is analytic in a neighborhood of aj (as a
function of nj variables).

Theorem 4.6.2. Let Ω ⊂ Rn1 × · · · ×RnN be open, f : Ω −→ R, 1 ≤ p ≤ N − 1,
and let

S = SA(f) := {a ∈ Ω : ∀a∈U⊂Ω : f /∈ A(U)}.
(a) If f ∈ A(n1,...,nN ),p(Ω), then:
(*) prRnj1×···×R

njN−p (S) ∈ PLP(Cnj1 × · · · × CnjN−p ) for all 1 ≤ j1 < · · · <
jN−p ≤ N .

(b) For every relatively closed set S ⊂ Ω with (*), there exists a function
f ∈ A(n1,...,nN ),p(Ω) such that S = SA(f).

In the case where N = 2, n1 = n2 = 1, the result was proved in [Ray 1989],
[Ray 1990]. In the general case, part (a) with p ≥ N/2 and part (b) with an
arbitrary p were proved in [Sic 1990]. Finally, part (a) with arbitrary p was proved
in [B lo 1992].

Proof. [A sketch of the proof. Will be completed. . . . ]

4.7 Separate subharmonicity

See [Jar-Pfl 2000], § 2.1. Let Ω ⊂ Rn1 × · · · × RnN be open. A function u :
Ω −→ R−∞ is said to separately subharmonic (u ∈ SH(n1,...,nN )(Ω)) if for every
(a1, . . . , aN ) ∈ Ω, the function xj 7−→ f(a1, . . . , aj−1, xj , aj+1, . . . , aN) is subhar-
monic in a neighborhood of aj (as a function of nj variables), j = 1, . . . , N .

In view of Theorem 4.5.1(b), one could conjecture every separately subhar-
monic functions is subharmonic.

In the case where Ω ⊂ Cn is open, one could at least conjecture that a function
u : Ω −→ R−∞ is plurisubharmonic iff every a ∈ X and ξ ∈ Cn the function ua,ξ is
subharmonic in a neighborhood of zero, i.e. iff u is subharmonic on complex affine
lines through Ω. Observe that every such a function is of class SH(2,...,2)(Ω). The
above conjecture has been formulated by P. Lelong, who proved ([Lel 1945]) that
the answer is positive if we additionally assume that u is locally bounded from

above in Ω. ? The general answer is still not known ?
It is known that if Ω ⊂ Rn1×· · ·×RnN is open and u ∈ SH(n1,...,nN )(Ω) is such

that for every point a ∈ Ω there exist an open neighborhood U ⊂ Ω, a number
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0 < r ≤ +∞, and a function v ∈ Lr(Ω) such that u ≤ v in U , then u ∈ SH(Ω)
([Rii 1989]). The case r = +∞ is due to Avanissian [Ava 1961]. The case r = 1 is
due to Arsove [Ars 1966].

In particular, if Ω ⊂ Cn is open and u : Ω −→ R−∞ is subharmonic on
every complex affine line and such that for every point a ∈ Ω there exist an open
neighborhood U ⊂ Ω, a number 0 < r ≤ +∞, and a function v ∈ Lr(Ω) such that
u ≤ v in U , then u ∈ PSH(Ω).

The example constructed in [Wie-Zei 1991] shows that in general the answer
is negative and we have SH(n1,...,nN )(Ω) 6⊂ SH(Ω). More precisely, there exists
a function u : C2 −→ R+ such that for every (z0, w0) ∈ C2 the functions u(z0, ·)
and u(·, w0) are C∞ subharmonic, but u /∈ SH(C2).

Indeed, let

ũk(z) :=

{
kk Re(−izk), if 0 < Arg z < π/k

0, otherwise
, z ∈ C,

uk := ũk ∗ Φ1/k3

(
z − 1

k2
exp(

πi

2k
)
)
, z ∈ C,

u(z, w) :=
∞∑

k=1

uk(z)uk(w), (z, w) ∈ C2,

where (Φε)ε>0 are regularization functions as in Definition 3.3.14. Observe that:
• if z = reiϕ, then Re(−izk) = rk sin(kϕ);
• consequently, ũk is a non-negative continuous function;
• ũk is subharmonic on ∆k := {0 < Arg z < π/k} and, consequently, on C;
• uk is a non-negative subharmonic function on C (cf. Proposition 3.3.15);
• suppuk ⊂ ∆k for k � 1;
• for every z0 ∈ C we have uk(z0) = 0 for k � 1;
• consequently, u(z0, ·) is a well defined non-negative C∞ subharmonic func-

tion on C;

•
√
u( 2

k exp( πi2k ), 2
k exp( πi2k )) ≥ uk( 2

k exp( πi2k )) ≥ ũk( 2
k exp( πi2k )− 1

k2 exp( πi2k )) =

ũk(( 2
k − 1

k2 ) exp( πi2k )) = kk Re(−i( 2
k − 1

k2 )k(exp( πi2k ))k) = (2 − 1
k )k −→ +∞.

4.8 Proof of the cross theorem

We need some auxiliary results. We begin with the following general theorem from
functional analysis.

Theorem 4.8.1 ([Mit 1961], see also [Jar-Pfl 2000], Lemma 3.5.9). Let H0,H1 be
separable Hilbert spaces with dimH0 = dimH1 = ∞, and let T : H0 −→ H1 be a
linear injective compact operator

(
2
)

such that T (H0) is dense in H1. Then there
exists an orthogonal basis (bk)k∈N ⊂ H0 such that:
�
2� Recall that a linear operator T : X −→ Y , where X and Y are locally convex topological

vector spaces, is compact if for any bounded set B ⊂ X the set T (B) is relatively compact in Y .



4.8 Proof of the cross theorem 75

• (T (bk))∞k=1 is an orthonormal basis in H1,
• ‖bk‖H0 =: νk ↗ +∞ when k ↗ +∞.

Moreover, if there exist a locally convex nuclear space V and linear continuous

operators H0
T1−→ V

T2−→ H1 such that T = T2 ◦ T1, then the above basis (bk)k∈N
may be chosen in such a way that the series

∑∞
k=1 ν

−ε
k is convergent for any ε > 0.

In the case of the cross theorem the above general result implies the following
fundamental theorem.

Theorem 4.8.2 ([Zah 1976], [Zer 1982], [Zer 1986], [Ngu-Zer 1991], [Zer 1991],
[Ale-Zer 2001], [Zer 2002], see also [Jar-Pfl 2000], Lemma 3.5.10). Let Ω b X be
a strongly pseudoconvex open set on a Riemann region (X, p) over Cn and let
A ⊂ Ω be compact and such such that A∩ S is non-pluripolar for every connected
component S of Ω. Put

• H0 := L2
h(Ω)

(
3
)
,

• H1 := clL2(A,µA,Ω)(L
2
h(Ω)|A) = the closure of L2

h(Ω)|A in L2(A, µA,Ω),
where µA,Ω is the equilibrium measure for A (cf. Definition 3.4.17).
Then the linear operators

H0 3 f
T1−→ f ∈ O(Ω), O(Ω) 3 f

T2−→ f |A ∈ H1

are well defined, injective, and continuous
(
4
)
. Moreover, T1 is compact. In par-

ticular, the operator H0 3 f
T :=T2◦T1−→ f |A ∈ H1 is compact.

Let (bk)∞k=1 ⊂ H0, (νk)∞k=1 be as in Theorem 4.8.1. Then for any α ∈ (0, 1)
and for any compact

K ⊂ {z ∈ Ω : h∗A,Ω(z) < α}
there exists a constant C = C(α,K) > 0 such that

‖bk‖K ≤ Cναk , k ∈ N. (4.8.1)

Remark 4.8.3. An independent proof of Theorem 4.8.2 has been given by A. Ze-
riahi in [Zer 2002].

Proof of Theorem 4.3.3. To simplify the proof we assume additionally that D1,
. . . , DN are domains of holomorphy.

We already know (cf. Remark 4.3.4(P7)) that we may assume that N = 2,
D,G are strongly pseudoconvex domains with real analytic boundaries, A b D,
B b G are compact and non-pluripolar, f(a, ·) ∈ O(G), a ∈ A, f(·, b) ∈ O(D),
b ∈ B, |f | ≤ 1 on X, and f is continuous on X.

Let µ := µA,D, H0 := L2
h(D), H1 := the closure of H0|A in L2(A, µ), and let

(bk)∞k=1 be the basis from Theorem 4.8.2; νk := ‖bk‖H0 , k ∈ N. For any w ∈ B we
have f(·, w) ∈ H0 and f(·, w)|A ∈ H1. Hence

f(·, w) =

∞∑

k=1

ck(w)bk,

�
3� L2

H(Ω) := L2(Ω) ∩ O(Ω); observe that L2
h(Ω) is a complex Hilbert space with the scalar

product given by the formula (f, g) 7−→
�
Ω

fgdLΩ .�
4� Recall that O(Ω) is a nuclear space.
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where

ck(w) =
1

ν2
k

∫

D

f(z, w)bk(z)dL2n(z) =

∫

A

f(z, w)bk(z)dµ(z), k ∈ N;

cf. Theorem 4.8.1. The series is convergent in L2
h(D) (in particular, locally uni-

formly in D) and in L2(A, µ). Since f is continuous, the formula

ĉk(w) :=

∫

A

f(z, w)bk(z)dµ(z), w ∈ G,

defines a holomorphic function on G, k ∈ N. We are going to prove that the series

∞∑

k=1

ĉk(w)bk(z)

converges locally uniformly in X̂.

Take a compact K × L ⊂ X̂ and let α > maxK h
∗
A,D, β > maxL h

∗
B,G be such

that α+ β < 1. First, we will prove that there exists a constant C′(L, β) > 0 such
that

‖ĉk‖L ≤ C′(L, β)νβ−1
k , k ∈ N. (4.8.2)

Suppose for a moment that (4.8.2) is true. Then, using Theorems 4.8.2 and 4.8.1,
we get

∞∑

k=1

‖ĉk‖L‖bk‖K ≤
∞∑

k=1

C′(L, β)νβ−1
k C(K,α)ναk

= C′(L, β)C(K,α)

∞∑

k=1

να+β−1
k =: M(K,L) < +∞,

which gives the normal convergence on K × L. Let

f̂(z, w) :=

∞∑

k=1

ĉk(w)bk(z), (z, w) ∈ X̂ ;

obviously f̂ is holomorphic. Recall that f̂ = f on D × B. Hence f̂ = f on

Y := K(A ∩A∗, B ∩B∗;D,G) ⊂ X ∩ X̂.
Moreover, if K, L are as above, then

sup
K×L

|f̂ | ≤M(K,L) < +∞.

Taking fm instead of f , we conclude that

sup
K×L

|f̂m| ≤M(K,L) < +∞, m ∈ N,
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which implies that |f̂ | ≤ 1.

We move to the proof of (4.8.2). By the Hölder inequality, we get

|ĉk(w)| ≤
√
µ(A), w ∈ G, k ∈ N

(recall that |f | ≤ 1). On the other hand, if w ∈ B, then

|ĉk(w)| = |ck(w)| =
∣∣∣ 1

ν2
k

∫

D

f(z, w)bk(z)dL2n(z)
∣∣∣ ≤ 1

νk

√
L2n(D).

For k ∈ N such that νk > 1, let

uk :=
log |ĉk|
log νk

.

The sequence (uk)∞k=1 is bounded from above in G, u := lim supk→+∞ uk ≤ 0, and
u ≤ −1 on B. Let P := {w ∈ G : u(w) < u∗(w)}; P ∈ PLP . Thus u∗ ∈ PSH(G),
u∗ ≤ 0, and u∗ = u ≤ −1 on B \ P . Consequently, 1 + u∗ ≤ h∗B\P,G = h∗B,G
(cf. Proposition 3.4.11(d)). Hence 1 + u∗ < β on L. Now, by the Hartogs lemma,
uk < β − 1 on L for k � 1, which implies (4.8.2).

4.9 Cross theorem for generalized crosses

Definition 4.9.1. Let Dj ∈ Rc(Cnj ), let ∅ 6= Aj ⊂ Dj , and let Σj ⊂ A′
j × A′′

j ,
j = 1, . . . , N . We define a generalized N -fold cross

T := GK(A1, . . . , AN ;D1, . . . , DN ; Σ1, . . . ,ΣN ) = GK((Aj , Dj ,Σj)
N
j=1) :

=

N⋃

j=1

{
(a′j , zj, a

′′
j ) ∈ A′

j ×Dj ×A′′
j : (a′j , a

′′
j ) /∈ Σj

}

and its center

c(T ) := T ∩ (A1 × · · · ×AN ) = (A1 × · · · ×AN ) \∆0,

where

∆0 :=
N⋂

j=1

{
(a′j , aj , a

′′
j ) ∈ A′

j ×Aj ×A′′
j : (a′j , a

′′
j ) ∈ Σj

}
.

We say that a function f : T −→ C is separately holomorphic on T (f ∈ Os(T ))
if for any j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ A′

j ×A′′
j \ Σj , the function

Dj 3 zj 7−→ f(a′j , zj, a
′′
j ) ∈ C

is holomorphic in Dj .
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Cn1

Cn2

Cn3

Figure 4.9.1. Generalized 3–fold cross.

Observe that:
• GK((Aj , Dj,∅)Nj=1) = K((Aj , Dj)

N
j=1);

• if N = 2, then GK(A1, A2;D1, D2; Σ1,Σ2) = K(A1 \ Σ2, A2 \Σ1;D1, D2);
roughly speaking, generalized 2–fold crosses are nothing new in comparison with
the standard 2–fold crosses; for N ≥ 3 generalizedN–fold crosses are geometrically
different than the standard ones — for instance, this makes the theory of extension
with singularities for N ≥ 3 essentially more difficult — cf. Chapters 5, 7;

• if one of the sets Σ1, . . . ,ΣN is pluripolar, then ∆0 ∈ PLP.

Theorem 4.9.2 (Extension theorem for generalized crosses). Assume that Dj

is a Riemann domain of holomorphy over Cnj , Aj ⊂ Dj is locally pluriregular,
Σj ⊂ A′

j × A′′
j is pluripolar, j = 1, . . . , N , X := K((Aj , Dj)

N
j=1), and T :=

GK((Aj , Dj,Σj)
N
j=1). Then for every f ∈ Os(T ) such that

(*) for any j ∈ {1, . . . , N} and bj ∈ Dj, the function

A′
j ×A′′

j \ Σj 3 (z′j , z
′′
j ) 7−→ f(z′j, bj , z

′′
j )

is continuous,

there exists an f̂ ∈ O(X̂) such that f̂ = f on T and sup �

X
|f̂ | = supT |f |.
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Remark 4.9.3. (a) The assumption (*) is obviously a necessary condition for a

function f ∈ Os(T ) to be holomorphically extendible to X̂. ? We do not know

whether the theorem remains true without (*) ?
(b) If N = 2, then every generalized 2–fold cross is a “standard” 2–fold cross

and X̂ = T̂ . Consequently, the result follows from Theorem 4.3.1 for arbitrary
f ∈ Os(T ) (without the assumption (*)).

(c) The case where Σ1 = · · · = ΣN = ∅ follows immediately from Theorem
4.3.1 (without (*)).

Proof of Theorem 4.9.2. We apply induction on N . As we already observed the
result is true for N = 2. Assume that the result is true for N − 1 ≥ 2. Take an
f ∈ Os(T ) with (*). Let

Q := {zN ∈ AN : ∃j∈{1,...,N−1} : (Σj)(·,zN ) /∈ PLP}.

Then, by Proposition 3.3.27, Q ∈ PLP. Take a zN ∈ AN \Q and define

T (zN ) := GK((Aj , Dj , (Σj)(·,zN ))
N−1
j=1 ), Y := K((Aj , Dj)

N−1
j=1 ).

Put Ã′′
j := Aj+1 × · · · ×AN−1, ã′′j := (aj+1, . . . , aN−1), j = 1, . . . , N − 1. Observe

that
T (·,zN) = T (zN ) ∪ (A′

N \ ΣN ).

It is clear that f(·, zN) ∈ Os(T (zN )). Moreover, the function f(·, zN ) satisfies (*)
on T (zN ). Indeed, let j ∈ {1, . . . , N − 1}, bj ∈ Dj. Then the continuity of the
function

A′
j × Ã′′

j \ (Σj)(·,zN) 3 (z′j , z̃
′′
j ) 7−→ f(z′j, bj , z̃

′′
j , zN )

follows directly from the condition (*) for the function f .

By the inductive assumption, there exists an f̂zN ∈ O(Ŷ ) with f̂zN = f(·, zN)

on T (zN ) and sup �

Y
|f̂zN | = supT (zN ) |f(·, zN )|. Consider the 2–fold cross

Z := K̂(A′
N \ ΣN , AN \Q; Ŷ , DN ) = ((A′

N \ ΣN ) ×DN) ∪ (Ŷ × (AN \Q)).

Observe that Ẑ = X̂ (cf. Proposition 3.4.14). Let g : Z −→ C be given by the
formula

g(z′, zN ) :=

{
f(z′, zN), if (z′, zN ) ∈ (A′

N \ ΣN ) ×DN

f̂zN (z′), if (z′, zN ) ∈ Ŷ × (AN \Q)
.

Observe that g is well-defined.
Indeed, let (z′, zN) ∈ ((A′

N \ΣN )×DN)∩ (Ŷ × (AN \Q)). If z′ ∈ T (zN ), then

obviously f̂zN (z′) = f(z′, zN). Suppose that z′ /∈ T (zN ). Then z′ ∈ P (zN ), where

P (zN ) :=

N−1⋂

j=1

{
(w′

j , wj , w̃
′′
j ) ∈ A′

j ×Aj × Ã′′
j : (w′

j , w̃
′′
j ) ∈ (Σj)(·,zN )

}
.
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In view of the definition of Q, the set P (zN ) is pluripolar. Take a sequence

A′
N \ (ΣN ∪ P (zN )) 3 z′ν −→ z′.

Then z′ν ∈ T (zN ). Thus f̂zN (z′ν) = f(z′ν , zN ) and, by (*) (with j := N and

bN := zN ), f̂zN (z′) = f(z′, zN).

It is clear that g ∈ Os(Z) and supZ |g| ≤ supT |f |.
By Theorem 4.3.1, we get a holomorphic extension f̂ ∈ O(X̂) with f̂ = g on

Z and sup �

X
|f̂ | = supZ |g| ≤ supT |f |. It remains to show that f̂ = f on T .

Take a point a ∈ T . If a ∈ (A′
N \ΣN )×DN ⊂ Z, then f̂(a) = g(a) = f(a). In

the remaining case we may assume that for instance a = (a1, a
′′
1) ∈ D1× (A′′

1 \Σ1).

Let T0 :=
⋃
zN∈AN\Q T (zN ) × {zN} ⊂ Ŷ × (AN \ Q) ⊂ Z. On the other

hand T0 ⊂
⋃
zN∈AN\Q T (·,zN) × {zN} ⊂ T . Observe that if b = (b′, bN) ∈ T0,

then f̂(b) = g(b) = f̂bN (b′) = f(b). Thus, we only need to show that there exists
a sequence (bν)∞ν=1 ⊂ T0 ∩ ({a1} × (A′′

1 \ Σ1)) with bν −→ a (and then use the
continuity of f(a1, ·) on A′′

1 \ Σ1).

Since Q is pluripolar, we may find a sequence bνN −→ aN with bνN ∈ AN \ Q.
Let P :=

⋃∞
ν=1(Σ1)(·,bνN ). In view of the definition of Q, the set P is pluripolar.

In particular, we may find a sequence (bν2 , . . . , b
ν
N−1) −→ (a2, . . . , aN−1) with

(bν2 , . . . , b
ν
N−1) ∈ (A2 × · · · ×AN−1) \P . Put bν := (a1, b

ν
2 , . . . , b

ν
N ). Then bν −→ a

and obviously bν ∈ T (bνN ) × {bνN} ⊂ T0.

Remark 4.9.4. In the context of Theorem 4.9.2, one may formulate the following
general problem:

Assume that Dj is a Riemann domain of holomorphy over Cnj , Aj ⊂ Dj is
locally pluriregular, ∅ 6= Bj ⊂ A′

j ×A′′
j , j = 1, . . . , N ,

W :=
N⋃

j=1

{
(a′j , aj , a

′′
j ) ∈ A′

j ×Dj ×A′′
j : (a′j , a

′′
j ) ∈ Bj

}
.

We say that a function f : W −→ C is separately holomorphic on W (f ∈ Os(W ))
if for any j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ Bj , the function

Dj 3 zj 7−→ f(a′j, zj , a
′′
j ) ∈ C

is holomorphic in Dj.

? Given an f ∈ Os(W ), we look for conditions on B1, . . . , BN , and f , under
which the exists an open neighborhood Ω of W (independent of f) such that f

extends holomorphically to Ω ?

It is clear that the configuration of the sets must be special. For example, if
one of the branches {(a′j , aj , a

′′
j ) ∈ A′

j×Dj×A′′
j : (a′j , a

′′
j ) ∈ Bj} does not intersect

the others, then the answer is definitively negative.
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4.10 Chirka–Sadullaev theorem

Theorem 4.10.1 ([Chi-Sad 1988]
(
5
)
). Let A ⊂ Dp be locally pluriregular, let

X := K(A,D;Dp,C) = (A × C) ∪ Dp+1 and let M ⊂ X be a relatively closed set
such that:

• M ∩ Dp+1 = ∅,
• M(a,·) is polar for every a ∈ A.

Then there exists a relatively closed pluripolar set M̂ ⊂ X̂ = Dp × C such that:
• M̂ ∩ X ⊂M ,
• for every f ∈ O(Dp+1) such that for every a ∈ A, the function f(a, ·)

extends holomorphically to C \M(a,·), there exists an f̂ ∈ O(X̂ \ M̂) such that

f̂ = f on X \M ,

• Dp × C \ M̂ is a domain of holomorphy,

• if all the fibers M(a,·), a ∈ A, are discrete, then M̂ is analytic.

Proof. It is known (cf. [Chi-Sad 1988]) that each function f ∈ Os(X \M) has
the univalent domain of existence Gf ⊂ Dp × C. Let G denote the connected

component of int
⋂
f∈Os(X\M)Gf that contains Dp+1 and let M̂ := Dp × C \ G.

It remains to show that M̂ is pluripolar. Take (a, b) ∈ A× C \M . Since M(a,·) is
polar, there exists a curve γ : [0, 1] −→ C \M(a,·) such that γ(0) = 0, γ(1) = b.
Since M is relatively closed, there exists an ε > 0 so small that P(a, ε) ⊂ Dp and

(P(a, ε) × (γ([0, 1]) +K(ε))) ∩M = ∅.

Put Vb := D ∪ (γ([0, 1]) +K(ε)) and consider the cross

Y := K(A ∩ P(a, ε),D;P(a, ε), Vb) ⊂ X \M.

Then f |Y ∈ Os(Y ) for any f ∈ Os(X \M). Consequently, by Theorem 4.3.1, we

get Ŷ ⊂ G. In particular, (a, b) ∈ {a} × Vb ⊂ Ŷ ⊂ G.

Thus M̂(a,·) ⊂ M(a,·) for all a ∈ A, and therefore, by Lemma 5 from

[Chi-Sad 1988], M̂ is pluripolar.
In the case where all the fibers M(a,·), a ∈ A, are discrete, Lemma 8 from

[Chi-Sad 1988] implies that M̂ is analytic.
[A more detailed proof. Will be completed. . . . . . ]

4.11 Grauert–Remmert, Dloussky, and Chirka the-
orems

The following three extensions theorems with singularities, which are nowadays
standard tools in complex analysis.
�
5� See also [Jar-Pfl 2001b].
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Theorem 4.11.1. Let G be a Riemann domain over Cn such that O(G) separates

points in G and let Ĝ be its envelope of holomorphy. We assume that G is a
subdomain of Ĝ.

(a) (Grauert–Remmert — [Gra-Rem 1956]) Let M ⊂ Ĝ be an analytic subset

of codimension one. Then Ĝ \M is the envelope of holomorphy of G \M .
(b) (Dloussky — [Dlo 1977], see also [Por 2002]) Let M ⊂ G be a relatively

closed thin subset. Then there exists an analytic subset M̂ of Ĝ such that M̂ ∩G ⊂
M and Ĝ \ M̂ is the envelope of holomorphy of G \M .

(c) (Chirka — [Chi 1993]) Let M ⊂ G be a relatively closed pluripolar set.

Then there exists a relatively closed pluripolar set M̂ ⊂ Ĝ such that M̂ ∩ G ⊂ M
and Ĝ \ M̂ is the envelope of holomorphy of G \M .

Roughly speaking, the above results say that if M ⊂ G is analytic (resp.

pluripolar), then Ĝ \M = Ĝ \ M̂ where M̂ ⊂ Ĝ is analytic (resp. pluripolar) and

M̂ ∩G ⊂M . Observe that in general M̂ ∩G  M , e.g.:
• if M is analytic and dimM ≤ n − 2, then M̂ = ∅ (cf. [Jar-Pfl 2008],

Propositions 1.9.11, 1.9.14),

• if M is a compact pluripolar set, then M̂ = ∅ (cf. [Jar-Pfl 2008], Theorem
1.9.1).
[A sketch of Porten’s proof of the Dloussky theorem. Will be com-

pleted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]
[A sketch of the proof of the Chirka theorem. Will be completed. ]



Chapter 5

Cross theorem with singularities

5.1 Formulation of the extension problem with sin-

gularities

The notion of separately holomorphic functions on a cross X extends in a natural
way to X \M .

Definition 5.1.1. Let Dj ∈ Rc(Cnj ) and let ∅ 6= Aj ⊂ Dj , j = 1, . . . , N . Put
X := K((Aj , Dj)

N
j=1). Let M ⊂ X be such that for any a = (a1, . . . , aN ) ∈

c(X) = A1 × · · · ×AN and j ∈ {1, . . . , N} the fiber

M(a′j,·,a
′′
j ) := {zj ∈ Dj : (a′j , zj, a

′′
j ) ∈M}

is closed in Dj

(
1
)
. We say that a function f : X \ M −→ C is separately

holomorphic on X \M (f ∈ Os(X \M)) if for any a ∈ c(X) and j ∈ {1, . . . , N},
either M(a′j,·,a

′′
j ) = Dj or M(a′j ,·,a

′′
j )  Dj and the function

Dj \M(a′j,·,a
′′
j ) 3 zj 7−→ f(a′j , zj, a

′′
j ) ∈ C

is holomorphic.

In the context of Theorems 4.3.1 and 4.11.1, one may formulate the following
extension problem with singularities (in its elementary version).

Definition 5.1.2. Let Dj , Aj , j = 1, . . . , N , be as in Theorem 4.3.1. Let M be

an analytic subset of an open neighborhood U ⊂ X̂ of X (resp. M ⊂ X be a
relatively closed pluripolar set). We ask whether there exists an analytic subset

(resp. a relatively closed pluripolar set) M̂ ⊂ X̂ such that:

(A) M̂ ∩ U0 ⊂ M for an open neighborhood U0 ⊂ U of X (resp. M̂ ∩ T ⊂ M
for a set T ⊂ X with T \M /∈ PLP),

(B) if M is analytic in X̂ (i.e. U = X̂), then M̂ is the union of all one
codimensional irreducible components of M ,

(C) for every f ∈ Os(X \M) there exists an f̂ ∈ O(X̂ \ M̂) with f̂ = f on
X \M (resp. on T \M),

(D) the set M̂ is singular with respect to the family F̂ := {f̂ : f ∈ Os(X \M)}.

Roughly speaking, X̂ \M̂ is the envelope of holomorphy of X \M with respect

to Os(X \M). Obviously, by Theorem 4.3.1, if M = ∅, then M̂ = ∅.
�
1� For example, M is relatively closed in X. We do not exclude the cases where M(a′

j
,·,a′′

j
) = ∅

or M(a′
j
,·,a′′

j
) = Dj .
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Remark 5.1.3. (a) Observe that Theorem 4.10.1 solves a special case of our
extension problem with singularities (D = Dp, G := C, B = D).

(b) We will see in Theorem 5.3.1 that in the case N = 2 the set T will be
always of the form T = K(A′, B′;D,G), where A′ ⊂ A, B′ ⊂ B are such that
A \ A′, B \B′ are pluripolar and for any (a, b) ∈ A′ × B′ the fibers M(a,·), M(·,b)

are pluripolar. Observe that in such a case the set T \M is automatically non-
pluripolar (cf. Exercise 5.3.3(b)).

(c) Note that the function f̂ in (C) is uniquely determined because T \M /∈
PLP.

(d) Observe that if M̂ satisfies (A), (B), (C), then we may always replace M̂

by M̂s,
�

F (cf. § 3.1.8). Thus, condition (D) is a consequence of (A), (B), (C).

(e) Since X̂ is a domain of holomorphy and O(X̂)| �
X\�M ⊂ F̂ , condition (D) is

satisfied iff X̂ \ M̂ is an F̂–domain of holomorphy. Notice that if T = X , then

F̂ = O(X̂ \ M̂).

(f) Observe that in M̂ is analytic and non-empty, then M̂ must be of pure
codimension one (cf. Proposition 3.1.25).

Our next aim to is prove that the above (and even some more general) extension
problems with singularities have always solutions. This will be done in §§ 5.3, 5.4
and in Chapter 7.

First we like to clarify why we require M̂ ∩T ⊂M and not simply M̂ ∩X ⊂M
(like in the analytic case).

Remark 5.1.4. Let N = 2, n1 = n2 = 1, D1 = D2 = C, A1 := D, X :=

K(D, A2;C,C). Note that X̂ = C2 (cf. Proposition 3.4.3). Assume that M ⊂
{0}×C is a closed (pluripolar) set and suppose that M̂ is a solution of the above
extension problem with singularities for which T = X.

Put Y := K(D∗, A2;C∗,C) ⊂ X \ M ⊂ C2 \ M̂ . Then Ŷ = C∗ × C. If
f ∈ Os(X \M), then f |Y ∈ Os(Y ). Thus, every f ∈ Os(X \M) extends to an

f̃ ∈ O(C∗ × C) with f̃ = f in Y and, consequently, f̃ = f̂ on C∗ × C \ M̂ . Since

C2 \ M̂ is a domain of holomorphy, we conclude that M̂ ⊂ {0} ×C. Consider the
following two particular cases.

(a) Let A2 = D, M := {0} × D. Let f0 : X \M −→ C,

f0(z, w) :=

{
1/z, if z 6= 0

0, if z = 0, |w| > 1
,

and observe that f0 ∈ Os(X \M). Since f0 extends to an f̂0 ∈ O(C2 \ M̂) with

f̂0 = f0 on X \M , we conclude that f̂0(z, w) = 1/z, (z, w) ∈ (X̂ \ M̂)∩ (C∗ ×C).

Hence {0}×C ⊂ M̂ . Thus M̂ = {0}×C. Consequently, M̂ ∩ X = {0} ×C 6⊂M ;
a contradiction.

(b) Let A2 := {w ∈ C : r < |w| < 1}, where 0 < r < 1,

M := {0} × {w ∈ C : |w| = r}.
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Now we look at the function f0 ∈ Os(X \M) defined by

f0(z, w) :=

{
w, if z 6= 0 or z = 0, |w| > r

0, if z = 0, |w| < r
.

Obviously, f̂0(z, w) = w, (z, w) ∈ C2 \ M̂ . Since M̂ ∩ X ⊂ M and f̂0 = f0 on

X \M , we get w = f̂0(0, w) = f0(0, w) = 0, |w| < r; a contradiction.

5.2 Öktem and Siciak theorems

The next step after Theorem 4.10.1 was done 10 years later by Öktem who stud-
ied the following range problem in the mathematical tomography (cf. [Ökt 1998],
[Ökt 1999]).

For ω = (cosα, sinα) let ω⊥ := (− sinα, cosα). Define

`ω,p := {x = (x1, x2) ∈ R2 : 〈x, ω〉 = x1 cosα+ x2 sinα = p}, p ∈ R,

and let Lω,p be the Lebesgue measure on the line `ω,p. For µ ∈ R∗, the exponential
Radon transform is given by the following mapping

C∞
0 (R2,R) 3 h

Rµ7−→ Rµ(h), Rµ(h) : T× R −→ R,

Rµ(h)(ω, p) :=

∫

`ω,p

h(x)eµ〈x,ω
⊥〉dLω,p(x).

The main problem is to recover h from Rµ(h) which is measured. So it is important
to know the shape of the range of Rµ. For g : T×R −→ C let ĝ : T×C −→ C be
the Fourier transform of g with respect to the second variable, i.e.

ĝ(ω, ζ) :=

∫

R
g(ω, p)e−iζpdL1(p).

Theorem 5.2.1 (Öktem (1998)). Let g : T × R −→ C and µ 6= 0. Then the
following statements are equivalent:

(i) there is h ∈ C∞
0 (R2,C) with g = Rµ(h);

(ii) g ∈ C∞
0 (T × R,C) and ĝ(ω, it) = ĝ(σ,−it) whenever ω, σ ∈ T and t ∈ R

are such that tω + µω⊥ = −tσ + µσ⊥.

To prove this result Öktem used the following extension theorem with singu-
larities.

Theorem 5.2.2 (Öktem (1998/1999)). Let

X := K(R,R;C,C) = (R× C) ∪ (C× R), M := {(z1, z2) ∈ C2 : z1 = z2}

(note that C2 = X̂). Then for every f ∈ Os(X \M) there exists an f̂ ∈ O(C2\M)

with f̂ = f on X \M .
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Öktem’s result (Theorem 5.2.2) was extended by J. Siciak in [Sic 2001].

Theorem 5.2.3 (Siciak (2001)). Let Dj = C, let Aj ⊂ C be locally regular,

j = 1, . . . , N , and let X := K((Aj ,C)Nj=1) (note that X̂ = CN ). Let

M := {z ∈ CN : P (z) = 0},

where P is a non-constant polynomial of N–complex variables. Then for any
f ∈ Os(X \M) there is an f̂ ∈ O(CN \M) such that f̂ = f on X \M .

The above theorem has been generalized in cf. [Jar-Pfl 2001a], [Jar-Pfl 2001b],
[Jar-Pfl 2003a], [Jar-Pfl 2003b], [Jar-Pfl 2008] to various cross theorems with ana-
lytic and pluripolar singularities, which will be presented in the next sections.

5.3 Extension theorems with singularities in the

case where N = 2

We begin with the case N = 2. We should point out that this is case is essentially
simpler than the case N ≥ 3. Although in the present section we are interested in
the case N = 2, some results (whose proofs for N ≥ 3 are not essentially different
from the case N = 2) will be presented for arbitrary N . Our aim is to prove the
following theorem.

Theorem 5.3.1 (Extension theorem with singularities). Let D and G be a Rie-
mann domains of holomorphy over Cp and Cq, respectively. Let A ⊂ D, B ⊂ G be
locally pluriregular, X := K(A,B, ;D,G), and let M ⊂ X be a relatively closed
set. Put

A′ = A′(M) := {a ∈ A : M(a,·) ∈ PLP},
B′ = B′(M) := {b ∈ B : M(·,b) ∈ PLP}

and assume that A \ A′ ∈ PLP, B \ B′ ∈ PLP (e.g. M ∈ PLP — cf. Propo-
sition 3.3.27). Put X ′ := K(A′, B′;D,G). Then there exists a relatively closed

pluripolar set M̂ ⊂ X̂ such that:
• M̂ ∩ X ′ ⊂M ,

• for any f ∈ Os(X \M) there exists an f̂ ∈ O(X̂ \ M̂) with f̂ = f on
X ′ \M ,

• the set M̂ is singular with respect to the family {f̂ : f ∈ Os(X \M)},
• if for any (a, b) ∈ A′ × B′ the fibers M(a,·), M(·,b) are thin in G and D,

respectively, then M̂ is analytic,

• if M ⊂ U be an analytic subset of an open neighborhood U ⊂ X̂ of X, then

M̂ ∩ U0 ⊂ M for an open neighborhood U0 ⊂ U of X; moreover, if U = X̂, then
M̂ is the union of all irreducible one-codimensional components of M .
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The case where G = Cq, and B is open was studied in [Chi-Sad 1988] (for
q = 1)

(
2
)

and in [Kaz 1988] (for arbitrary q).
To simplify formulations we will use the following terminology related to The-

orem 5.3.1:
• we say that we are dealing with the pluripolar case if M ⊂ X is a relatively

closed such that A′(M), B′(M) ∈ PLP ;
• we say that we are dealing with the analytic case if M is an analytic subset

of an open neighborhood U of X.

Remark 5.3.2. (a) In the language of Definition 5.1.2 we have T = X ′.
(b) Observe that in the analytic case we have

A′ = {a ∈ A : M(a,·) 6= G}, B′ = {b ∈ B : M(·,b) 6= D}.

In particular, X \M = X ′ \M and if M̂ ∩X ′ ⊂M , then M̂ ∩X ⊂M . Thus, in
the analytic case we may take T = X.

(c) Suppose that the pluripolar case is already proved. Let M be an analytic
subset of U . Then M ∩ X is pluripolar and for all (a, b) ∈ A′ × B′, the fibers
M(a,·), M(·,b) are analytic.

We may apply the pluripolar case to M ∩X and we get an analytic set M̂ such
that:

• M̂ ∩ X ⊂M ,

• for any f ∈ Os(X \M) there exists an f̂ ∈ O(X̂ \M̂) with f̂ = f on X \M ,

• the set M̂ is singular with respect to the family {f̂ : f ∈ Os(X \M)}.
Thus in order to finish the proof in the analytic case we have to show that

M̂ ∩ U0 ⊂ M . ? Unfortunately, we do not know any elementary proof of this

inclusion (having the inclusion M̂ ∩ X ⊂ M) ? Consequently, the analytic case
will be proved using different methods.

(d) Suppose that the pluripolar case is already proved. Then, in order to prove

the analytic case, we may assume that U = X̂.
Indeed, as we have observed in (c), we only need to show that M̂ ∩ U0 ⊂ M ,

where M̂ constructed via the pluripolar case. Take arbitrary (a, b) ∈ A × B
and domains of holomorphy D′

b D, G′
b G with (a, b) ∈ D′ × G′. Since

({a} × G) ∪ (D × {b}) ⊂ X ⊂ U , there exists an r > 0 such that P̂(a, r) ⊂ D′,

P̂(b, r) ⊂ G′, and (P̂(a, r) ×G′) ∪ (D′ × P̂(b, r)) ⊂ U
(
3
)
. Put

Y := K(A ∩ P̂(a, r), B ∩ P̂(b, r); P̂(a, r), G′) ⊂ X,

Z := K(A ∩ P̂(a, r), B ∩ P̂(b, r);D′, P̂(b, r)) ⊂ X .

Observe that Ŷ ⊂ P̂(a, r) ×G′ ⊂ U . Consequently, M ∩ Y satisfies the “global”

assumptions (with respect to domains P̂(a, r), G′ and test sets A ∩ P̂(a, r), B ∩
�
2� Cf. Theorem 4.10.1.�
3� Here and in the sequel, to simplify notation, we will write

�

P(a, r) without specifying the
Riemann domain in which the “polydisc” is contained — it will always follow from the context.
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P̂(b, r)). Hence M̂ ∩ Y ⊂ M . It remains to show that M̂ ∩ Ŷ ⊂ M̂ ∩ Y . Indeed,
since Os(X\M)|Y \M ⊂ Os(Y \M), each function f ∈ Os(X\M) has an extension

f̂Y ∈ O(Ŷ \ M̂ ∩ Y ) with f̂Y = f on Y \M . Since M̂ is singular, we must have

M̂ ∩ Ŷ ⊂ M̂ ∩ Y .

Repeating the same argument with respect to Z we conclude that M̂∩Ẑ ⊂M .
Thus M̂ ∩ U0 ⊂M for an open neighborhood U0 ⊂ U of X.

(e) Let S ⊂ X̂ be an analytic set of pure codimension one. Then S ∩ X 6= ∅.

Indeed, suppose that S ∩ X = ∅. Since S is of pure codimension one, X̂ \ S
is a domain of holomorphy, and therefore, there exists a g ∈ O(X̂ \ S) such that

X̂ \ S is the domain of existence of g (cf. Proposition 3.1.20). Since X ⊂ X̂ \ S,

we conclude that g|X ∈ Os(X). By Theorem 4.3.1 there exists a ĝ ∈ O(X̂) such

that ĝ = g on X, and consequently, on X̂ \S. Thus g extends holomorphically to

X̂; a contradiction.

(f) Let M  X̂ be an analytic set. Suppose that M̂ ⊂ X̂ is an analytic set
such that:

• M̂ ∩ U0 ⊂M for an open neighborhood U0 ⊂ X̂ of X,

• every function f ∈ F := Os(X\M)∩C(X\M) extends to an f̂ ∈ O(X̂\M̂)

with f̂ = f on X \M ,

• the set M̂ is singular with respect to the family {f̂ : f ∈ F}.

Then M̂ is the union of all irreducible components of M of codimension one. In
particular, the last assertion of Theorem 5.3.1 follows from the others.

Indeed, let M̃ be the union of all irreducible components of M of codimension
one. Consider two cases:

M̃ 6= ∅: Similarly as in (a), there exists a non-continuable function g ∈ O(X̂ \
M̃). Then g|X\M ∈ Os(X \M) ∩ C(X \M) and, therefore, there exists a ĝ ∈
O(X̂ \ M̂) with ĝ = g on X \M . Hence, ĝ = g on X̂ \ (M̂ ∪ M̃). Since g is

non-continuable, we conclude that M̃ ⊂ M̂ . The set M̂ , as a non-empty singular
set, is also of pure codimension one. Since M̂ ∩U0 ⊂M and S ∩U0 6= ∅ for every
irreducible component of M̂ (by (e)), we conclude (using the identity principle for

analytic sets) that M̂ ⊂M (cf. [Chi 1993], § 5.3). Consequently, M̂ ⊂ M̃

M̃ = ∅: It remains to exclude the situation when M̂ 6= ∅. If M̃ = ∅, then the
codimension of M is ≥ 2. If M̂ 6= ∅ then the codimension of M̂ is 1. Since we
have M̂ ⊂M (as above), we get a contradiction.

(g) Our assumption that the fibers M(a,·), M(·,b), (a, b) ∈ A′×B′, are pluripolar
is in fact very weak and there is a lot of non-pluripolar sets M ⊂ X that fulfil this
condition — cf. Remark 5.4.9.

Exercise 5.3.3. Let T be an N–fold generalized cross and let M ⊂ c(T ). Prove
the following statements.

(a) Let A1, . . . , AN be locally pluriregular, let Σ′
N ⊃ ΣN be pluripolar, and

assume that the fiber M(a′
N
,·) is pluripolar for every a′N ∈ A′

N \ ΣN . Then the set
((A′

N \ Σ′
N ) ×AN ) \M is dense in c(T ) \M .
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Hint: Take an a = (a′, aN) ∈ c(T ) \ M . Since A′
N is locally pluriregular

and Σ′
N is pluripolar, there exists a sequence A′

N \ Σ′
N 3 a′k −→ a′. The set

P :=
⋃∞
k=1M(a′k,·) is pluripolar. In particular, there exists a sequence AN \ P 3

akN −→ aN . Then ((A′
N \ Σ′

N ) ×AN ) \M 3 (a′k, akN ) −→ a.

(b) If A1, . . . , AN /∈ PLP, Σ1, . . . ,ΣN ∈ PLP, and M(a′j,·,a
′′
j ) ∈ PLP for each

(a′j , a
′′
j ) ∈ (A′

j ×A′′
j ) \ Σj , then

{(a′j , aj , a
′′
j ) ∈ A′

j × Aj ×A′′
j : (a′j , a

′′
j ) /∈ Σj , aj /∈M(a′j ,·,a

′′
j )}, j = 1, . . . , N,

are not pluripolar and therefore, c(T ) \M /∈ PLP (use Proposition 3.3.27(c)).

(c) If A1, . . . , AN are locally pluriregular, Σ1, . . . , ΣN ∈ PLP , and M(a′j ,·,a
′′
j ) ∈

PLP for every (a′j , a
′′
j ) ∈ (A′

j ×A′′
j ) \ Σj , then the sets

{(a′j , aj , a
′′
j ) ∈ A′

j × Aj ×A′′
j : (a′j , a

′′
j ) /∈ Σj , aj /∈M(a′j ,·,a

′′
j )}, j = 1, . . . , N,

are locally pluriregular, and therefore, c(T )\M is locally pluriregular (use Propo-
sition 3.4.11(h)).

The main “technical tool” in the proof of Theorem 5.3.1 is the following theo-
rem.

Theorem 5.3.4 (Glueing theorem). Let D,G be Riemann domains of holomorphy
over Cp and Cq, respectively, let A ⊂ D, B ⊂ G be locally pluriregular, X :=
K(A,B;D,G), let M ⊂ X and let A′ ⊂ A, B′ ⊂ B be such that:

• for any (a, b) ∈ A×B the fibers M(a,·), M(·,b) are relatively closed in G and
D, respectively,

• A \A′, B \B′ are pluripolar,

• for any (a, b) ∈ A′ ×B′ the fibers M(a,·), M(·,b) are pluripolar.

In the analytic case we additionally assume that M  U is an analytic set in

a connected open neighborhood U ⊂ X̂ of X.

Fix a family ∅ 6= F ⊂ Os(X \M).

Let (Dk)∞k=1, (Gk)∞k=1 be exhaustion sequences of Riemann domains of holo-
morphy for D and G, respectively, such that

∅ 6= A′
k := A′ ∩Dk ⊂ A ∩Dk =: Ak,

∅ 6= B′
k := B′ ∩Gk ⊂ B ∩Gk =: Bk.

Put Ξk := A′
k ×B′

k \M or Ξk := Ak ×Bk, k ∈ N.

We assume that for each k ∈ N, (a, b) ∈ Ξk, there exist:

• polydiscs P̂D(a, rk,a) ⊂ Dk, P̂G(b, sk,b) ⊂ Gk,

• relatively closed pluripolar sets

Sk,a ⊂ P̂D(a, rk,a) ×Gk =: Vk,a, Sk,b ⊂ Dk × P̂G(b, sk,b) =: V k,b,

such that:
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•

Sk,a ∩ ((A′ ∩ P̂D(a, rk,a)) ×Gk) ⊂M,

Sk,b ∩ (Dk × (B′ ∩ P̂G(b, sk,b))) ⊂M,

• for any f ∈ F there exist f̃k,a ∈ O(Vk,a \ Sk,a), f̃k,b ∈ O(V k,b \ Sk,b) with

f̃k,a = f on (A′ ∩ P̂D(a, rk,a)) ×Gk \M,

f̃k,b = f on Dk × (B′ ∩ P̂G(b, sk,b)) \M,

• in the analytic case we additionally assume that

Vk,a ∪ V k,b ⊂ U, Sk,a ∪ Sk,b ⊂M.

Then there exists a relatively closed pluripolar set M̂ ⊂ X̂ such that:
• M̂ ∩ X ′ ⊂M , where X ′ := K(A′, B′;D,G),

• for any f ∈ F there exists an f̂ ∈ O(X̂ \ M̂) with f̂ = f on X ′ \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ F},
• if all the sets Sk,a, S

k,b, (a, b) ∈ Ξk, k ∈ N, are thin, then M̂ is analytic,

• in the analytic case we additionally have M̂ ∩ U0 ⊂ M for an open neigh-
borhood U0 ⊂ U of X ′; moreover, if Ξk = Ak×Bk, then M̂ ∩U0 ⊂M for an open
neighborhood U0 ⊂ U of X

(
4
)
.

Proof. We may assume that for any k ∈ N and (a, b) ∈ Ξk
• Sk,a is singular with respect to the family {f̃k,a : f ∈ F},

• Sk,b is singular with respect to the family {f̃k,b : f ∈ F}.
In particular, Sk,a (resp. Sk,b) is thin iff it is analytic.
Fix a k ∈ N and define (details are explained below):

Vk :=
⋃

(a,b)∈Ξk

Vk,a ∪ V k,b, f̃k :=
⋃

(a,b)∈Ξk

f̃k,a ∪ f̃k,b,

Sk :=
⋃

(a,b)∈Ξk

Sk,a ∪ Sk,b ⊂ Vk,

Xk := K(Ak, Bk;Dk, Gk), X ′
k := K(A′

k, B
′
k;Dk, Gk).

Observe that X ′
k ⊂ Vk. Indeed, let (z, w) ∈ X ′

k, e.g. z = a ∈ A′
k, w ∈ Gk. Since

M(a,·) is pluripolar, there exists a b ∈ B′
k \M(a,·). Then (a, b) ∈ A′

k ×B′
k \M and

(z, w) ∈ P̂D(a, rk,a) ×Gk = Vk,a.
Notice that in the case Ξk = Ak ×Bk we obviously have Xk ⊂ Vk. Moreover,

in the analytic case we get Vk ⊂ U .

Take an f ∈ F . We want to glue the sets {Sk,a, Sk,b : (a, b) ∈ Ξk} and the

functions {f̃k,a, f̃k,b : (a, b) ∈ Ξk} to obtain a global holomorphic function f̃k on
Vk \ Sk.
�
4� Note that this is the only place where the case Ξk = Ak × Bk plays an important role.
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Let (a, b) ∈ Ξk. Observe f̃k,a = f = f̃k,b on the non-pluripolar set

(A′ ∩ P̂D(a, rk,a)) × (B′ ∩ P̂G(b, sk,b)) \M

(cf. Exercise 5.3.3(b)). Hence

f̃k,a = f̃k,b on P̂D(a, rk,a) × P̂G(b, sk,b) \ (Sk,a ∪ Sk,b).

Since Sk,a and Sk,b are singular, we conclude that

Sk,a ∩ (P̂D(a, rk,a) × P̂G(b, sk,b)) = Sk,b ∩ (P̂D(a, rk,a) × P̂G(b, sk,b)).

Now let a′, a′′ ∈ A′
k be such that C := P̂D(a′, rk,a′) ∩ P̂D(a′′, rk,a′′ ) 6= ∅. Fix a

b ∈ B′
k \ (M(a′,·) ∪M(a′′,·)). We know that

f̃k,a′ = f̃k,b = f̃k,a′′ on C × P̂G(b, rk,b) \ (Sk,a′ ∪ Sk,b ∪ Sk,a′′).

Hence, by the identity principle, we conclude that

f̃k,a′ = f̃k,a′′ on C ×Gk \ (Sk,a′ ∪ Sk,a′′)

and, moreover,
Sk,a′ ∩ (C ×Gk) = Sk,a′′ ∩ (C ×Gk).

The same argument works for b′, b′′ ∈ B′
k.

Let Uk be the connected component of Vk ∩ X̂
′

k with X ′
k ⊂ Uk. Recall that

X̂
′

k = X̂k (cf. Exercise 4.2.3(h)). Observe that in the case where Ξk = Ak × Bk
we have Xk ⊂ Uk.

We have constructed a relatively closed pluripolar set Sk ⊂ Uk such that:
• Sk ∩ X ′

k ⊂M ,

• for any f ∈ F there exists an f̃k ∈ O(Uk \ Sk) with f̃k = f on X ′
k \M ,

• if all the sets {Sk,a, Sk,b : (a, b) ∈ Ξk} are thin, then Sk is analytic,
• in the analytic case we have Sk ⊂M .

Recall that X ′
k ⊂ Uk ⊂ X̂k. Observe that the envelope of holomorphy Ûk of

Uk coincides with X̂k. In fact, let h ∈ O(Uk), then h|X′
k
∈ Os(X

′
k). So, in virtue

of Theorem 4.3.1, there exists an ĥ ∈ O(X̂k) with ĥ = h on X ′
k. Hence ĥ = h on

Uk.
Applying Theorem 4.11.1, we find a relatively closed pluripolar set M̂k ⊂ X̂k

such that:
• M̂k ∩ Uk ⊂ Sk,

• for any f ∈ F there exists an function f̂k ∈ O(X̂k \ M̂k) with f̂k = fk on

Uk \ Sk (in particular, f̂k = f on X ′
k \M),

• the set M̂k is singular with respect to the family {f̂k : f ∈ F},

• if all the sets {Sk,a, Sk,b : (a, b) ∈ Ξk} are analytic, then M̂k is analytic.

Recall that Xk ↗ X and X̂k ↗ X̂. Using again the singularity of the M̂k’s,

we get M̂k+1 ∩ X̂k = M̂k and, consequently:
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• M̂ :=
⋃∞
k=1 M̂k is a relatively closed pluripolar subset of X̂ with M̂ ∩X ′ ⊂

M (in the analytic case we have M̂ ∩ X ⊂M),

• for each f ∈ F , the function f̂ :=
⋃∞
k=1 f̂k is holomorphic on X̂ \ M̂ with

f̂ = f on X ′ \M (in the analytic case we have X ′ \M = X \M),

• M̂ is singular with respect to the family {f̂ : f ∈ F},

• if all the sets {Sk,a, Sk,b : (a, b) ∈ Ξk, k ∈ N} are thin, then M̂ is analytic,
• in the analytic case, if U0 :=

⋃∞
k=1 Uk, then

M̂ ∩ U0 =

∞⋃

k=1

M̂k ∩ Uk ⊂
∞⋃

k=1

Sk ⊂M.

First we use Theorem 5.3.4 to prove that the analytic case may be always

reduced to the case where U = X̂.

Lemma 5.3.5. Suppose that Theorem 5.3.1 is true in the analytic case with U =

X̂. Then it is true in the analytic case with arbitrary U .

Proof. We only need to check all the assumptions of Theorem 5.3.4 with Ξk =
Ak×Bk (notice that this is the only place where this case will be used). Fix a k ∈ N
and (a, b) ∈ Ξk. We are going to construct rk,a, Sk,a, and f̃k,a (the construction of

sk,b, S
k,b, and f̃k,b is symmetric). Let r > 0 be such that P̂((a, b), r) b Dk ×Gk,

P̂(a, r) ×Gk+1 ⊂ U . Consider the 2–fold cross

Y k,(a,b) := K(A ∩ P̂(a, r), Bk+1; P̂(a, r), Gk+1) ⊂ X.

Observe that every function f ∈ Os(X \M) belongs to Os(Y k,(a,b) \M). Thus we
are in the special case and our assumptions imply that for every f ∈ Os(X \M)

extends to an f̃k,a ∈ O(Ŷ k,(a,b) \M) with f̃k,a = f on Y k,(a,b) \M . Note that

{a}×Gk+1 ⊂ Ŷ k,(a,b). Let rk,a ∈ (0, r) be so small that Vk,a := P(a, rk,a)×Gk ⊂
Ŷ k,(a,b). Then the triple (rk,a, M ∩ Vk,a, f̃k,a|Vk,a) solves our problem.

Remark 5.3.6. Observe that in the analytic case with U = X̂ we only need
to prove that every function f ∈ Os(X \M) extends holomorphically to an f̂ ∈
O(X̂ \M) with f̂ = f on X \M .

Lemma 5.3.7. In the analytic case with U = X̂ it suffices to consider only the

case where M = g−1(0) with g ∈ O(X̂), g 6≡ 0, in particular, M is of pure
codimension one.

Proof. Since X̂ is pseudoconvex, M may be written as

M = {z ∈ X̂ : g1(z) = · · · = gk(z) = 0},

where gj ∈ O(X̂), gj 6≡ 0, j = 1, . . . , k. Put Mj := g−1
j (0), j = 1, . . . , k.

Take an f ∈ Os(X \M). Observe that fj := f |X\Mj
∈ Os(X \Mj). Suppose

that for each j there exists an f̂j ∈ O(X̂ \ Mj) such that f̂j = f on X \Mj .
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Gluing the functions (f̂j)
k
j=1, leads to an f̂ ∈ O(X̂ \M) with f̂ = f̂j on X̂ \Mj,

j = 1, . . . , k. Therefore, f̂ = f on X \M .

We move to the proof of Theorem 5.3.1. In the analytic case we assume that
M is as in Lemma 5.3.7. The main idea is to apply Theorem 5.3.4 with Ξk =
A′
k ×B′

k \M . Thus in fact we have to check the following lemma.

Lemma 5.3.8. For any a ∈ A′ and a domain of holomorphy G′
b G with B′∩G′ 6=

∅ there exist an r > 0 and a relatively closed pluripolar set S ⊂ P̂(a, r) × G′ =:

V ⊂ X̂ such that:
• ((A′ ∩ P̂(a, r)) ×G′) ∩ S ⊂M ,

• for every function f ∈ Os(X \M) there exists an f̃ ∈ O(V \ S) such that

f̃ = f on (A′ ∩ P̂(a, r)) ×G′ \ S,
• if all the fibers M(z,·), z ∈ A′, are thin, then S is analytic,
• in the analytic case we have S ⊂M .

First, we reduce the proof of Lemma 5.3.8 to a proof of the following lemma.

Lemma 5.3.9. For any (a, b) ∈ A′ × G and for any polydiscs P̂(a, r0) b D,

P̂(b, R0) b G with R0 > r0, if M ∩ P̂((a, b), r0) = ∅, then for every 0 < R′ < R0

there exist an 0 < r′ < r0 and a relatively closed pluripolar set S ⊂ P̂(a, r′) ×
P̂(b, R′) =: V ⊂ X̂ such that:

• ((A′ ∩ P̂(a, r′)) × P̂(b, R′)) ∩ S ⊂M ,
• for every function h ∈ Os(Y \M), where

Y := K(A′ ∩ P̂(a, r0), P̂(b, r0); P̂(a, r0), P̂(b, R0))

= P̂((a, b), r0) ∪ ((A′ ∩ P̂(a, r0)) × P̂(b, R0)),
(
5
)

there exists an h̃ ∈ O(V \ S) such that h̃ = h on (A′ ∩ P̂(a, r′)) × P̂(b, R′) \M ,
• if all the fibers M(z,·), z ∈ A′, are thin, then S is analytic,
• in the analytic case we have S ⊂M .

Proof that Lemma 5.3.9 implies Lemma 5.3.8. Let a and G′ be as in Lemma 5.3.8.
Fix a domain G′′

b G with G′
b G′′. Let Ω be the set of all w ∈ G′′ such that

there exist rw > 0 with

P̂((a,w), rw) ⊂ X̂ ∩ (P̂(a, r) ×G′′)),

and a relatively closed pluripolar set Sw ⊂ P̂((a,w), rw) such that:

• Sw ∩ ((A′ ∩ P(a, rw)) × P̂(w, rw)) ⊂M ,

• every f ∈ Os(X \M) extends to an f̃w ∈ O(P̂((a,w), rw)\Sw) with f̃w = f

on (A′ ∩ P(a, rw)) × P̂(w, rw) \M ,
�
5� Notice that, by the Terada theorem (Theorem 4.1.1), the space Os(Y \ M) consist of all

functions h ∈ O(
�

P((a, b), r0) such that h(z, ·) extends holomorphically to
�

P(b, R0) for every

z ∈ A′ ∩
�

P(a, r0).
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• Sw is singular with respect to the family {f̃w : f ∈ Os(X \M)},
• if all the fibers M(z,·), z ∈ A′, are thin, then S is analytic,
• in the analytic case we have Sw ⊂M .
It is clear that Ω is open. Observe that Ω 6= ∅. Indeed, since B′ ∩ G′ \

M(a,·) 6= ∅, we find a point w ∈ B′ ∩ G′ \M(a,·). Therefore there is a polydisc

P̂((a,w), r′) ⊂ X̂ \M . Put

Z := K(A′ ∩ P(a, r′), B′ ∩ P̂(w, r′); P̂(a, r′), P̂(w, r′)).

Observe that for every f ∈ Os(X \M) the function f |Z belongs to Os(Z). Let

0 < rw < r′ be such that P̂((a,w), rw) ⊂ Ẑ. By Theorem 4.3.1, for any f ∈
Os(X \M) there exists an f̃w ∈ O(P̂((a,w), rw)) with

f̃w = f on P̂((a,w), rw) ∩ Z ⊃ (A′ ∩ P(a, rw)) × P̂(w, rw).

Consequently, w ∈ Ω.
Moreover, Ω is relatively closed in G′′. Indeed, let c be an accumulation point

of Ω in G′′ and let P̂(c, 3R) ⊂ G′′. Take a point w ∈ Ω ∩ P̂(c, R) \M(a,·) and let

0 < ρ < min{rw, 2R} be such that P̂((a,w), ρ) ∩ (M ∪ Sw) = ∅. Observe that

f̃w ∈ O(P̂((a,w), ρ)) and

f̃w(z, ·) = f(z, ·) ∈ O(P̂(w, ρ) \M(z,·)), z ∈ A′ ∩ P̂(a, ρ).

Define

Y := K(A′ ∩ P̂(a, ρ), P̂(w, ρ); P̂(a, ρ), P̂(w, 2R))

= P̂((a,w), ρ) ∪ ((A′ ∩ P̂(a, ρ)) × P̂(w, 2R))

and put
≈

fw : Y \M −→ C,

≈

fw :=

{
f̃w, on P̂((a,w), ρ)

f, on (A′ ∩ P̂(a, ρ)) × P̂(w, 2R) \M.

Then
≈

fw is well defined and
≈

fw ∈ Os(Y \ M). Now, by Lemma 5.3.9 (with
b := w, r0 := ρ, R0 := 2R, R′ := R) there exist 0 < r′ < ρ and a relatively closed

pluripolar set S ⊂ P̂(a, r′) × P̂(w,R) such that:

• S ∩ ((A′ ∩ P̂(a, r′)) × P̂(w,R)) ⊂M ,

• every f ∈ Os(X \M) extends to an f̂w ∈ O(P̂(a, r′) × P̂(w,R) \ S) with

f̂w =
≈

fw on (A′ ∩ P(a, r′)) × P̂(w,R) \M ,

• S is singular with respect to the family {f̂w : f ∈ Os(X \M)},
• if all the fibers M(z,·), z ∈ A′, are thin, then S is analytic,
• in the analytic case we have S ⊂M .
Take an rc > 0 so small that P̂((a, c), rc) ⊂ P̂(a, ρ′) × P̂(w,R) and put

Sc := S ∩ P̂((a, c), rc), f̃c := f̂w|�P((a,c),rc)\S .
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Obviously f̃c = f̂w =
≈

fw = f on (A′ ∩ P̂(a, rc)) × P̂(c, rc) \M . Hence c ∈ Ω.

Thus Ω = G′′. There exists a finite set T ⊂ G
′

such that

G
′ ⊂

⋃

w∈T

P̂(w, rw).

Define r := min{rw : w ∈ T }. Take w′, w′′ ∈ T with

C := P̂(w′, rw′) ∩ P̂(w′′, rw′′) 6= ∅.

Then f̃w′ = f = f̃w′′ on (A′∩P̂(a, r))×(P̂(w′, rw′)∩P̂(w′′, rw′′))\M . Consequently,

f̃w′ = f̃w′′ on P̂(a, r)×C\(Sw′∪Sw′′). Since Sw′ and Sw′′ are singular, we conclude

that they coincide on P̂(a, r)×C and that the functions f̃w′ and f̃w′′ glue together.

Thus we get a relatively closed pluripolar set S ⊂ P̂(a, r) × G′ =: V such

that S ∩ ((A′ ∩ P̂(a, r)) × G′) ⊂ M and any function f ∈ Os(X \ M) extends

holomorphically to an f̃ ∈ O(V \ S) with f̃ = f on (A′ ∩ P(a, r)) × G′ \ M .
Moreover, in the analytic case we have S ⊂M .

In the next step we reduce the proof of Lemma 5.3.9 to a proof of the following
lemma.

Lemma 5.3.10. Let A ⊂ P(r0) ⊂ Cp be locally pluriregular and let M be a
relatively closed subset of the cross Z := K(A,K(r0);P(r0),K(R0)) with R0 > r0
such that:

• the fiber M(z,·) is polar for all z ∈ A′ ⊂ A,
• A \A′ is pluripolar,

• M ∩ (P(r0) ×K(r0)) is pluripolar,

• B′ := {w ∈ K(r0) : M(·,w) ∈ PLP} (note that K(r0) \B′ ∈ PLP),

• in the analytic case we have M = g−1(0) with g ∈ O(Ẑ), g 6≡ 0, and
A′ := {z ∈ A : M(z,·) 6= K(R0)}.

Then there exists a relatively closed pluripolar set M̂ ⊂ Ẑ such that:

• M̂ ∩ Z ′ ⊂M , with Z ′ := K(A′, B′;P(r0),K(R0)),

• for every f ∈ F := O(P(r0) ×K(r0) \M) ∩Os(Z \M)
(
6
)

there exists an

f̂ ∈ O(Ẑ \ M̂) such that f̂ = f on Z ′ \M ,

• if M ∩ (P(r0)×K(r0)) is analytic and all the fibers M(z,·), z ∈ A′, are thin,

then M̂ is analytic,

• in the analytic case we have M̂ ⊂M .

Proof that Lemma 5.3.10 implies Lemma 5.3.9. Consider the configuration like in
Lemma 5.3.9. We may assume that P̂(a, r0) = Pp(r0) ⊂ Cp, P̂(b, R0) = Pq(R0) ⊂
�
6� Observe that if M ∩ (P(r0) × K(r0)) 6= ∅ and f ∈ Os(Z \ M), then f need not belong to

O(P(r0) × K(r0) \ M). For example: take p = 1, r0 = 1, assume additionally that A  D is
closed in D, and let M := A × {0}. Define f : Z \ M → C, f(z, w) := 0 if w 6= 0, f(z, 0) := 1.
Then f ∈ Os(Z \ M) \ O(D2 \ M).
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Cq. Put

Y := K(A′ ∩ Pp(r0),Pq(r0);Pp(r0),Pq(R0))

= Pp+q(r0) ∪ ((A′ ∩ Pp(r0)) × Pq(R0)).

Let R′
0 be the supremum of all 0 < R′ < R0 such that there exist an r = rR′ ∈

(0, r0), and a relatively closed pluripolar set S = SR′ ⊂ V := Pp(r) × Pq(R′) for
which:

• S ∩ ((A′ ∩ Pp(r)) × Pq(R0)) ⊂M ,

• for any function h ∈ Os(Y \M) there exists an h̃ = h̃R′ ∈ O(V \ S) such

that h̃ = h on (A′ ∩ Pp(r)) × Pq(R′) \M ,

• the set S is singular with respect to the family {h̃ : h ∈ Os(Y \M)} (in
particular, S ∩ Pp+q(r0) = ∅),

• if all the fibers M(z,·), z ∈ A′, are thin, then S is analytic,
• in the analytic case we have S ⊂M .

It suffices to show that R′
0 = R0. Suppose that R′

0 < R0. Fix R′
0 < R′′ < R0

and choose 0 < R′ < R̃′ < R′
0 such that

q
√
R′q−1R′′ > R′

0. Let r := r �R′ , S := S �

R′ ,

h̃ := h̃ �

R′ . Fix an R′′′ with R′
0 < R′′′ <

q
√
R′q−1R′′. Put

Mq :=
(
S ∩ (Pp(r) × Pq(R′))

)
∪

(
M \ (Pp(r) × Pq(R′))

)
.

Observe that:
• the set Mq ∩ (Pp(r) × Pq(R′)) = S ∩ (Pp(r) × Pq(R′)) is pluripolar,

• h̃ ∈ O(Pp(r) × Pq(R′) \Mq) for every h ∈ Os(Y \M),
• Mq ∩ Y ⊂M ,
• if all the fibers M(z,·), z ∈ A′, are thin, then the set Mq∩(Pp(r)×Pq(R′)) =

S∩(Pp(r)×Pq(R′)) is analytic and all the fibers (Mq)(z,·) ⊂M(z,·), z ∈ A′∩Pp(r),
are thin,

• in the analytic case we have Mq ⊂M .

Write w = (w′, wq) ∈ Cq = Cq−1 × C. Let

C := {(z, w′) ∈ (A′ ∩ Pp(r)) × Pq−1(R′) : (Mq)(z,w′,·) is polar}.

In the case where all the fibers M(z,·), z ∈ A′, are thin we put

C := {(z, w′) ∈ (A′ ∩ Pp(r)) × Pq−1(R′) : (Mq)(z,w′,·) is discrete}.

By Proposition 3.4.11(h), C is locally pluriregular. Observe that for every c ∈ C

and for every h ∈ Os(Y \ M), the function h̃(c, ·) is holomorphic in K(R0) \
(Mq)(c,·). Consequently, applying Lemma 5.3.10 to the cross

Zq := K(C,K(R′);Pp(r) × Pq−1(R′),K(R0)),

we conclude that there exists a relatively closed pluripolar set Sq ⊂ Ẑq such that:
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• Sq ∩ Z ′
q ⊂Mq,

• any function h ∈ Os(Y \M) extends holomorphically to a h̃q ∈ O(Ẑq \Sq)
with h̃q = h on Z ′

q \Mq,

• Sq is singular with respect to the family {h̃q : h ∈ Os(Y \M)},
• if all the fibers M(z,·), z ∈ A′, are thin, then Sq is analytic,
• in the analytic case we have Sq ⊂M .

Using the product property of the relative extremal function (Theorem 3.4.10),
we get

Ẑq = {(z, w′, wq) ∈ Pp(r) × Pq−1(R′) ×K(R0) :

h∗C,Pp(r)×Pq−1(R′)(z, w
′) + h∗K(R′),K(R0)

(wq) < 1}
= {(z, w′, wq) ∈ Pp(r) × Pq−1(R′) ×K(R0) :

h∗A′×Pq−1(R′),Pp(r)×Pq−1(R′)(z, w
′) + h∗K(R′),K(R0)

(wq) < 1}
= {(z, w′, wq) ∈ Pp(r) × Pq−1(R′) ×K(R0) :

h∗A,Pp(r)(z) + h∗K(R′),K(R0)
(wq) < 1}.

Consequently, since R′′ < R0, we find an rq ∈ (0, r) such that

Pp(rq) × Pq−1(R′) ×K(R′′) ⊂ Ẑq.

Thus any function h ∈ Os(Y \M) extends holomorphically to a function h̃q on
(Pp(rq) × Pq−1(R′) × K(R′′)) \ Sq and Sq is singular with respect to the family

{h̃q : h ∈ Os(Y \M)}.
Repeating the above argument for the coordinates wν , ν = 1, . . . , q − 1, and

gluing the obtained sets, we find an r∗ ∈ (0, r) and a relatively closed pluripolar
set S0 :=

⋃q
j=1 Sj such that any function h ∈ Os(Y \M) extends holomorphically

to a function h̃0 :=
⋃q
j=1 h̃j holomorphic in Pp(r∗) ×W \ S0, where

W :=

q⋃

j=1

Pj−1(R′) × P(R′′) × Pq−j(R′).

Observe that W is a complete Reinhardt domain in Cq. Let Ŵ denote the en-
velope of holomorphy of W (it is known that Ŵ is a complete logarithmically
convex Reinhardt domain in Cq (cf. Remark refRemReinhardt). Applying The-

orem 4.11.1, we find a relatively closed pluripolar subset Ŝ0 of Pp(r∗) × Ŵ such
that

• Ŝ0 ∩ (Pp(r∗) × Ŵ ) ⊂ S0,

• any function h ∈ Os(Y \M) extends to an h̃ ∈ O(Pp(r∗) × Ŵ \ Ŝ0),

• Ŝ0 is singular with respect to the family {h̃ : h ∈ Os(Y \M)},

• if all the fibers M(a,·), a ∈ A′, are thin, then Ŝ0 is analytic,

• in the analytic case we have Ŝ0 ⊂M .
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Since Ŵ is logarithmically convex, we must have Pq(
q

√
R′q−1R′

0) ⊂ Ŵ . Con-

sequently, Pq(R′′′) ⊂ Ŵ . Recall that R′′′ > R′
0. Let 0 < ρ < r∗ be such that

Pp(ρ)×Pq(R′′′) ⊂ Pp(r∗)×Ŵ . Put rR′′′ := ρ, S′ = SR′′′ := Ŝ0∩(Pp(ρ)×Pq(R′′′)).
Then any function h ∈ Os(Y \M) extends holomorphically to (Pp(ρ)×Pq(R′′′))\S′.

To get a contradiction it remains show that S′ ∩ ((A′ ∩Pp(ρ))×Pq(R′′′)) ⊂M(
7
)
. Take (z, w) ∈ ((A′ ∩ Pp(ρ)) × Pq(R′′′)) \M. Since M(z,·) is pluripolar, there

exists a curve γ : [0, 1] −→ Pq(R′′′) \M(z,·) such that γ(0) = 0, γ(1) = w. We may
assume that for small ε > 0 we have

Pp(z, ε) × (γ([0, 1]) + Pq(ε)) b (Pp(ρ) × Pq(R′′′)) \M.

Put Vw := γ([0, 1]) + Pq(ε). Consider the cross

W := K(A ∩ Pp(z, ε),Pq(ε);Pp(z, ε), Vw).

Then h ∈ Os(W ) for any h ∈ Os(Y \ M). Consequently, by Theorem 4.3.1,

(z, w) ∈ Ŵ ⊂ Pp(r) × Pq(R′′′) \ S′.

Thus, it remains to prove Lemma 5.3.10 in the pluripolar and analytic cases.

5.3.1 Proof of Lemma 5.3.10 in the pluripolar case

Theorem 5.3.11. Assume that:
• P(r0) ⊂ Cp, K(R0) ⊂ C, R0 > r0, A ⊂ P(r0) is locally pluriregular,
• Z = K(A,K(r0);P(r0),K(R0)),
• M ⊂ Z is a relatively closed set such that M ∩ (P(r0)∩K(r0)) is pluripolar

and M(a,·) ∈ PLP for every a ∈ A′, where A′ ⊂ A is such that A \A′ ∈ PLP.
Put

F := Os(Z \M) ∩ O(P(r0) ×K(r0) \M).

Then there exists a relatively closed pluripolar set M̂ ⊂ Ẑ such that:
• M̂ ∩ Z ′ ⊂M ,
• for any f ∈ F there exists an f̂ ∈ O(Ẑ \ M̂) with f̂ = f on Z ′ \M ,

• the set M̂ is singular with respect to the family {f̂ : f ∈ F},
• if all the fibers M(a,·), a ∈ A′, are discrete, then M̂ is analytic.

Proof. We are going to apply Theorem 5.3.4 (with D := P(r0), G := K(R0),
B := K(r0), B′ := {b ∈ B : M(·,b) ∈ PLP}). Keep all the notation from Theorem
5.3.4. Assume additionally that B = K(r0) b Gk for every k. Take (a, b) ∈ Ξk =
A′
k ×B′

k \M .
The “horizontal” direction is simple: we take s = sk,b > 0 such that K(b, s) ⊂

K(r0) and let S̃k,b := M ∩ (Dk × K(b, s)) =: V k,b; S̃k,b is relatively closed
�
7� Note that in the analytic case we have obviously S′ ⊂ M .
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pluripolar. Let Sk,b be the singular part of S̃k,b with respect to the family
{f |V k,b\M : f ∈ F} and let f̃k,b denote the extension of f |V k,b\M to V k,b \ Sk,b.

The “vertical” direction is more complicated: we have to show that there exist
an r = rk,a > 0 and a relatively closed pluripolar set S ⊂ P̂D(a, r) × Gk =: Vk,a
such that:

• P̂(a, r) ⊂ Dk,
• S ∩ ((A ∩ P(a, r)) ×Gk) ⊂M ,

• any function from f ∈ F extends holomorphically to an f̃ ∈ O(Vk,a \ S)

with f̃ = f on (A′ ∩ P̂(a, r)) ×Gk \M
(
8
)
.

For c ∈ K(R0), let ρ = ρc > 0 be such that K(c, ρ) b K(R0) and M(a,·) ∩
∂K(c, ρ) = ∅ (cf. [Arm-Gar 2001], Th. 7.3.9). Take ρ− = ρ−c > 0, ρ+ = ρ+

c > 0
such that ρ− < ρ < ρ+, K(c, ρ+) b K(R0), and M(a,·) ∩ P = ∅, where P =
Pc := A(c, ρ−, ρ+). Let γ : [0, 1] −→ G \M(a,·) be a curve such that γ(0) = 0 and
γ(1) ∈ ∂K(c, ρ). There exists an ε = εc > 0 such that

(
P(a, ε) × ((γ([0, 1]) +K(ε)) ∪ P )

)
∩M = ∅.

Put V = Vc := K(r0) ∪ (γ([0, 1]) +K(ε)) ∪ P and consider the cross

Y = Y c := K(A ∩ P(a, ε),K(r0);P(a, ε), V ).

Then f ∈ Os(Y ) for any f ∈ F . Consequently, by Theorem 4.3.1, any function

from F extends holomorphically to Ŷ ⊃ {a} × V . Shrinking P , ε and V , we may

assume that any function f ∈ F extends to a function f̃ = f̃c ∈ O(P(a, ε) ×W ),
where

W = Wc := K(r0 − ε) ∪ (γ([0, 1]) +K(ε)) ∪ P.

In particular, f̃ is holomorphic in P(a, ε) × P , and therefore may be represented
by the Hartogs–Laurent series

f̃(z, w) =

∞∑

ν=0

f̃ν(z)(w − c)ν +

∞∑

ν=1

f̃−ν(z)(w − c)−ν

=: f̃+(z, w) + f̃−(z, w), (z, w) ∈ P(a, ε) × P,

where f̃+ ∈ O(P(a, ε) × P(c, ρ+)) and f̃− ∈ O(P(a, ε) × (C \ P(c, ρ−))). Re-

call that for any z ∈ A′ ∩ P(a, ε) the function f̃(z, ·) extends holomorphically to

K(R0)\M(z,·). Consequently, for any z ∈ A′∩P(a, ε) the function f̃−(z, ·) extends

holomorphically to C \ (M(z,·) ∩K(c, ρ−)). Now, by Theorem 4.10.1, there exists

a relatively closed pluripolar set S = Sc ⊂ P(a, ε) ×K(c, ρ−) such that:
• S ∩ ((A′ ∩ P(a, ε)) ×K(c, ρ−)) ⊂M ,

• any function f̃− extends holomorphically to an
≈

f− ∈ O(P(a, ε) × C \ S).

�
8� Then we can take as Sk,a the singular part of S with respect to the family {

�

f : f ∈ F} and
�

fk,a := the extension of
�

f to Vk,a \ Sk,a.
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Since f̃ = f̃+ + f̃−, the function f̃ extends holomorphically to a function
f̂ = f̂c ∈ O(P(a, ε) × K(c, ρ+) \ S). We may assume that the set S is singular

with respect to the family {f̂ : f ∈ F}. In particular, if c′, c′′ ∈ K(R0) and
C := K(c′, ρ+

c′) ∩K(c′′, ρ+
c′′) 6= ∅, then

Sc′ ∩ (P(a, η) × C) = Sc′′ ∩ (P(a, η) × C), f̂c′ = f̂c′′ on P(a, η) × C,

where η := min{εc′ , εc′′}. Thus the functions f̂c′ , f̂c′′ and sets Sc′ , Sc′′ may be
glued together.

Now, select c1, . . . , cs ∈ K(R0) so that Gk ⊂
⋃s
j=1K(cj , ρ

+
cj ). Put

r = rk,a := min{εcj : j = 1, . . . , s}, Vk,a := P(a, r) ×Gk.

Then S := Vk,a ∩
⋃s
j=1 Scj gives the required relatively closed pluripolar subset of

Vk,a such that S ∩X ⊂M and for any f ∈ F , the function f̂ :=
⋃s
j=1 f̂cj extends

holomorphically f to Vk,a \ S.

5.3.2 Proof of Lemma 5.3.10 in the analytic case

Theorem 5.3.12. Assume that:
• P(r0) ⊂ Cp, K(R0) ⊂ C, R0 > r0, A ⊂ P(r0) is locally pluriregular,
• Z = K(A,K(r0);P(r0),K(R0)),

• M := g−1(0) with g ∈ O(Ẑ), g 6≡ 0.

Then for any f ∈ Os(Z \M) there exists an f̂ ∈ O(Ẑ \M) with f̂ = f on
Z \M .

Proof. First observe that Os(Z \ M) ⊂ O(P(r0) × K(r0) \ M). Indeed, take
an f ∈ Os(Z \ M) ⊂ O(P(r0) × K(r0) \ M). Using the Hukuhara theorem
(Theorem 2.2.2), one can easily prove that for any a ∈ A′, b ∈ K(r0) \ M(a,·),
and P((a, b), r) ⊂ P(r0) × K(r0) \ M , we have f ∈ O(P((a, b), r)). Now, let
(z0, w0) ∈ P(r0)×K(r0)\M be arbitrary. Since P(r0)\M(·,w0) is domain, we may
find a subdomain U b P(r0) \M(·,w0) such that z0 ∈ U and A′ ∩ U 6= ∅. Take
an a ∈ A′ ∩ U and let ε > 0 be so small that P(a, ε) ⊂ U and U × K(w0, ε) ⊂
P(r0) × K(r0) \M . In particular, f ∈ O(P(a, ε) × K(w0, ε)). Finally, using the
Hartogs lemma (Lemma 2.1.8), we conclude that f ∈ O(U ×K(w0, ε)).

The main proof will be based on Theorem 5.3.4 (similarly as the proof of The-
orem 5.3.11). As before, the “horizontal” case is simple. To prove the “vertical”
case define A′ as the set of all a ∈ A∩P(r0) which satisfy the following condition:

(†) For every R′ ∈ (r0, R0) there exist R′ < R′′ < R0, δ > 0, m ∈ N,
c1, . . . , cm ∈ K(R′′), ε > 0, and holomorphic functions ϕµ : P(a, δ) −→ K(cµ, ε),
µ = 1, . . . ,m, such that:

• P(a, δ) ⊂ P(r0),
• K(cµ, ε) b K(R′′), µ = 1, . . . ,m,
• K(cµ, ε) ∩K(cν , ε) = ∅ for µ 6= ν, µ, ν = 1, . . . ,m,

• H̃ := K(r0) ∩H 6= ∅, where H := K(R′′) \ ⋃m
µ=1K(cµ, ε),
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• (P(a, δ) ×K(R′′)) ∩M =
⋃m
µ=1{(z, ϕµ(z)) : z ∈ P(a, δ)}.

Notice that for every a ∈ A′ the fiber M(a,·) is discrete.

Now we prove that A \A′ is pluripolar. Write

M =

∞⋃

ν=1

{ζ ∈ Pν : gν(ζ) = 0},

where Pν b P(r0)×K(R0) is a polydisc and gν ∈ O(Pν ) is a defining function for
M ∩ Pj (cf. [Chi 1989], § 2.9). Define

Sν :=
{

(z, w) ∈ Pν : gν(z, w) =
∂gν
∂w

(z, w) = 0
}

and observe that, by the implicit function theorem,

A \
∞⋃

ν=1

prCp(Sν) ⊂ A′.

It is enough to show that each set prCp(Sν) is pluripolar. Fix a ν. Let S be an
irreducible component of Sν . We have to show that prCp(S) is pluripolar. If S
has codimension ≥ 2, then prCp(S) is contained in a countable union of proper
analytic sets (cf. [Chi 1989], § 3.8). Consequently, prCp(S) is pluripolar. Thus we
may assume that S is of pure codimension one. The same argument as above
shows that prCp(Sing(S)) is pluripolar. It remains to prove that prCp(Reg(S)) is
pluripolar. Since gν is a defining function, for any (z, w) ∈ Reg(S) there exists a
k ∈ {1, . . . , p} such that ∂gν

∂zk
(z, w) 6= 0. Thus

Reg(S) =

p⋃

k=1

Tk,

where Tk := {(z, w) ∈ Reg(S) : ∂gν∂zk
(z, w) 6= 0}. We only need to prove that each

set prCp(Tk) is pluripolar, k = 1, . . . , p. Fix a k. To simplify notation, assume that
k = 1. Observe that, by the implicit function theorem, we can write

T1 =

∞⋃

`=1

{(z, w) ∈ Q` : z1 = ψ`(z2, . . . , zp, w)},

where Q` ⊂ Pν is a polydisc, Q` = Q′
` × Q′′

` ⊂ C × Cp, and ψ` : Q′′
` −→ Q′

` is
holomorphic, ` ∈ N. It suffices to prove that the projection of each set T1,` :=
{(z, w) ∈ Q` : z1 = ψ`(z2, . . . , zp, w)} is pluripolar. Fix an `. Since

gν(ψ`(z2, . . . , zp, w), z2, . . . , zp, w) = 0, (z2, . . . , zp, w) ∈ Q′′
` ,

we conclude that ∂ψ`
∂w ≡ 0 and, consequently, ψ` is independent of w. Thus

prCp(T1,`) = {z1 = ψ`(z2, . . . , zp)} and therefore the projection is pluripolar. The
proof that A \A′ is pluripolar is completed.
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Similarly as in the proof of Theorem 5.3.11, we only need to check that for
any a ∈ A′ and 0 < R′ < R0 there exists an r > 0 such that P(a, r) ⊂ P(r0) and

for every f ∈ F there exists an f̃ ∈ O(P(a, r) ×K(R′) \M) such that f̃ = f on
(A′ ∩ P(a, r)) ×K(R′) \M .

Indeed, take an a ∈ A′ and apply (†). Put

Y := K(A ∩ P(a, δ), H̃ ;P(a, δ), H).

Notice that Y does not intersect M . In particular, f̂ |Y ∈ Os(Y ). Hence, by

Theorem 4.3.1, there exists an f̂1 ∈ O(Ŷ ) with f̂1 = f̂ on Y . Take R′′′ ∈ (R′, R′′),
and ε′′ > ε′ > ε, such that

• K(cµ, ε
′′) b K(R′′′), µ = 1, . . . ,m,

• K(cµ, ε
′′) ∩K(cν , ε

′′) = ∅ for µ 6= ν, µ, ν = 1, . . . ,m.
Then there exists δ′ ∈ (0, δ] such that

• P(a, δ′) ×H ′ ⊂ Ŷ , where H ′ := K(R′′′) \ ⋃m
µ=1K(cµ, ε

′).

In particular, f̂1 ∈ O(P(a, δ′) ×H ′).

Fix a µ ∈ {1, . . . ,m}. Then f̂1 ∈ O(P(a, δ′) × A(cµ, ε
′, ε′′))

(
9
)

and

f̂1(z, ·) ∈ O(K(cµ, ε
′′) \ {ϕµ(z)}), z ∈ A ∩ P(a, δ′).

Using the biholomorphic mapping

Φµ : P(a, δ′) × C −→ P(a, δ′) × C, Φµ(z, w) := (z, w − ϕµ(z)),

we see that the function g := f̂1 ◦ Φ−1
µ is holomorphic in P(a, δ′′) × A(η′, η′′)) for

some δ′′ ∈ (0, δ′] and ε′ < η′ < η′′ < ε′′. Moreover, g(z, ·) ∈ O(K∗(η′′))
(
10

)
for

any z ∈ A ∩ P(a, δ′′). Using Theorem 4.3.1 for the cross

K(A ∩ P(a, δ′′),A(η′, η′′);P(a, δ′′),K∗(η′′)),

immediately shows that g extends holomorphically to P(a, δ′′) × K∗(η′′). Trans-
forming the above information back via Φµ for all µ, we conclude that the function

f̂1 extends holomorphically to P(a, δ′′′)×K(R′′′) \M for some δ′′′ ∈ (0, δ′′]. Thus,

f̂1 extends holomorphically to P(a, δ′′′) ×K(R′) \M .

5.4 Extension theorems with singularities in the

case where N ≥ 3

Throughout this section Dj denotes a Riemann domain of holomorphy over Cnj ,
Aj ⊂ Dj is locally pluriregular, Σj ⊂ A′

j × A′′
j is pluripolar, j = 1, . . . , N , N ≥ 3,

X := K((Aj , Dj)
N
j=1), T := GK((Aj , Dj,Σj)

N
j=1).

�
9� Recall that A(a, r−, r+) := {z ∈ C : r− < |z − a| < r+}, A(r−, r+) := A(0, r−, r+).�

10� Recall that K∗(r) := K(r) \ {0}.
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Definition 5.4.1. Let M ⊂ T be relatively closed. We say that a function
f : T \ M −→ C is separately holomorphic (f ∈ Os(T \ M)) if for any j ∈
{1, . . . , N} and (a′j , a

′′
j ) ∈ (A′

j × A′′
j ) \ Σj the function f(a′j , ·, a′′j ) is holomorphic

in Dj \M(a′j ,·,a
′′
j ).

To shorten the presentation, we concentrate our results in the form of the fol-
lowing general extension theorem with singularities, which will be later developed
into four independent theorems.

Theorem 5.4.2 (Main extension theorem with singularities). Let W ∈ {X,T }
and let M ⊂ W be relatively closed and such that for every j ∈ {1, . . . , N} and
(a′j , a

′′
j ) ∈ A′

j ×A′′
j \ Σj, the fiber M(a′j,·,a

′′
j ) is pluripolar.

In the “analytic case” we additionally assume that:

• M is a proper analytic set in an open neighborhood U ⊂ X̂ of W ,
• if W = X, then Σj := {(a′j, a

′′
j ) ∈ A′

j × A′′
j : M(a′j,·,a

′′
j ) /∈ PLP}, j =

1, . . . , N .
Let

F ⊂
{
Os(X \M), if W = X

Os(T \M) ∩ C∗(T \M), if W = T
,

where C∗(T \M) denotes the set of all functions f : T \M −→ C such that
(*) for any j ∈ {1, . . . , N} and bj ∈ Dj, the function

A′
j ×A′′

j \ (Σj ∪M(·,bj,·)) 3 (z′j , z
′′
j ) 7−→ f(z′j, bj , z

′′
j )

is continuous (cf. condition (*) in Theorem 4.9.2). Then there exists a relatively

closed pluripolar set M̂ ⊂ X̂ such that:
• M̂ ∩ T ⊂M ,

• for any f ∈ F there exists an f̂ ∈ O(X̂ \ M̂) with f̂ = f on T \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ F},
• if for all j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ A′

j ×A′′
j \ Σj, the fiber M(a′j ,·,a

′′
j ) is

thin in Dj, then M̂ is analytic,

• in the analytic case we additionally have M̂ ∩ U0 ⊂ U for an open neigh-
borhood U0 ⊂ U of W ,

• in the analytic case with U = X̂, the set M̂ coincides with the union of all
irreducible components of M of codimension one.

Remark 5.4.3. Notice that in the analytic case we have

Σj = {(a′j , a
′′
j ) ∈ A′

j ×A′′
j : M(a′j ,·,a

′′
j )  Dj}, j = 1, . . . , N.

In particular, X \M = T \M .

Notice that Theorem 5.4.2 contains in fact the following four result.

Theorem 5.4.4 (Extension theorem with analytic singularities). Let M be a

proper analytic set in an open neighborhood U ⊂ X̂ of X. Then there exists an

analytic set M̂ ⊂ X̂ such that:
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• M̂ ∩ U0 ⊂M for an open neighborhood U0 ⊂ U of X,

• for any f ∈ Os(X \M) there exists an f̂ ∈ O(X̂ \ M̂) with f̂ = f on
X \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ Os(X \M)},
• if U = X̂, then the set M̂ coincides with the union of all irreducible com-

ponents of M of codimension one.

Theorem 5.4.5 (Extension theorem for generalized crosses with analytic sin-

gularities). Let M be a proper analytic set in an open neighborhood U ⊂ X̂ of
T . Assume that for every j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ A′

j × A′′
j \ Σj, the fiber

M(a′j,·,a
′′
j ) is pluripolar. Then there exists an analytic set M̂ ⊂ X̂ such that:

• M̂ ∩ U0 ⊂M for an open neighborhood U0 ⊂ U of T ,

• for any f ∈ Os(T \M) ∩ C∗(T \M) there exists an f̂ ∈ O(X̂ \ M̂) with

f̂ = f on T \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ Os(T \M)∩ C∗(T \M)},
• if U = X̂, then the set M̂ coincides with the union of all irreducible com-

ponents of M of codimension one.

Notice that Theorem 5.4.5 with M = ∅ reduces to Theorem 4.9.2.

Theorem 5.4.6 (Extension theorem with pluripolar singularities). Let M ⊂ X be
a relatively closed set such that for every j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ A′

j×A′′
j \Σj,

the fiber M(a′j ,·,a
′′
j ) is pluripolar. Then there exists a relatively closed pluripolar set

M̂ ⊂ X̂ such that:

• M̂ ∩ T ⊂M ,

• for any f ∈ Os(X \M) there exists an f̂ ∈ O(X̂ \M̂) with f̂ = f on T \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ Os(X \M)}.

Theorem 5.4.7 (Extension theorem for generalized crosses with pluripolar singu-
larities). Let M ⊂ T be a relatively closed set such that for every j ∈ {1, . . . , N}
and (a′j , a

′′
j ) ∈ A′

j ×A′′
j \ Σj, the fiber M(a′j,·,a

′′
j ) is pluripolar. Then there exists a

relatively closed pluripolar set M̂ ⊂ X̂ such that:

• M̂ ∩ T ⊂M ,

• for any f ∈ Os(T \M) ∩ C∗(T \M) there exists an f̂ ∈ O(X̂ \ M̂) with

f̂ = f on T \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ Os(T \M)∩ C∗(T \M)}.

Observe that Theorems 5.4.5, 5.4.7 are interesting also in the case where M =
∅.

Theorems 5.4.4, 5.4.6 say that the extension problem in Definition 5.1.2 has a
solution with T = X and T = T , respectively.

It is natural to ask how big is the class of all relatively closed sets M ⊂ W

with pluripolar fibers, that are not pluripolar.
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Proposition 5.4.8. Let S be a d–dimensional C1–submanifold of an open set
Ω ⊂ Cn with 1 ≤ d ≤ 2n − 2. Then for every point z0 ∈ M there exist an open
neighborhood U and a C–linear isomorphism L : Cn −→ Cn such that L(U) = Dn

and if M := L(S ∩U), then for any a = (a1, . . . , an) ∈ Dn and j ∈ {1, . . . , n}, the
fiber

M(a′j ,·,a
′′
j ) := {λ ∈ C : (a1, . . . , aj−1, λ, aj+1, . . . , an) ∈M}

is finite.

Remark 5.4.9. (a) M satisfies the assumptions of Theorems 5.4.6, 5.4.7 for ar-
bitrary cross with N = n.

(b) Notice that there are real analytic 2–dimensional submanifolds of C2 that
are not locally pluripolar. For example (cf. [Sad 2005]):

S :

{
y1 = x1 + x2

2

y2 = x2
1 + x2

, (x1 + iy1, x2 + iy2) ∈ C2.

Consequently, one may easily produce examples of sets M satisfying the assump-
tions of Theorems 5.4.6, 5.4.7 that are not pluripolar.

Proof of Proposition 5.4.8. [Will be completed. . . . . ]

As an elementary application of Theorem 5.4.5 and Proposition 5.4.8 we get
the following extension theorem (cf. [Kar 1998]).

Theorem 5.4.10. Let S be a connected d–dimensional C1–submanifold of a do-
main D ⊂ Cn with 1 ≤ d ≤ 2n − 2. Then every function f ∈ O(D \ S) extends
holomorphically to D unless M is a complex submanifold of codimension one.

Proof. Take a point a ∈ S. Using Proposition 5.4.8 we find a neighborhood Ua ⊂ D
of a and a C–linear isomorphism La such that La(Ua) = Dn and all the one
dimensional fibers of the manifold Ma := La(S ∩ Ua) are finite. Now we apply
Theorem 5.4.6 with N = n, Dj = Aj = D, j = 1, . . . , n, M = Ma. We get an

analytic set Ŝa ⊂ Ua with the following properties:
• Ŝa ⊂ S ∩ Ua,
• every function f ∈ O(Ua \ S) extends to an f̂a ∈ O(Ua \ Ŝa) with f̂a = f

on Ua \ S,

• Ŝa is either empty or of codimension one.
It is clear that if d ≤ 2n− 3, then each Ŝa must be empty and consequently, S

is removable. Thus assume that d = 2n− 2.
[Will be completed. . . . . . . . . . . ]

Observe that Remark 5.3.2(c, d) extends in a natural way to the case N ≥ 3.
The following proposition generalizes Remark 5.3.2(e, f).

Proposition 5.4.11. (a) Let S ⊂ X̂ be an analytic set of pure codimension one.
Then S ∩ T 6= ∅.



106 5 Cross theorem with singularities

(b) Let M  X̂ be an analytic set. Suppose that M̂ ⊂ X̂ is an analytic set
such that:

• M̂ ∩ U0 ⊂M for an open neighborhood U0 ⊂ X̂ of T ,

• every function f ∈ Os(T \M) ∩ C∗(T \M) extends to an f̂ ∈ O(X̂ \ M̂)

with f̂ = f on T \M ,

• the set M̂ is singular with respect to the family {f̂ : f ∈ Os(T \M)∩C∗(T \
M)}.
Then M̂ is the union of all irreducible components of M of codimension one.

Proof. (a) Suppose that S∩T = ∅. Since S is of pure codimension one, the domain

X̂ \S is a domain of holomorphy, and therefore, there exists a g ∈ O(X̂ \S) such

that X̂\S is the domain of existence of g (cf. Proposition 3.1.20). Since T ⊂ X̂\S,
we conclude that g|X ∈ Os(T )∩C(T ). By Theorem 5.4.5 with M = ∅, there exists

a ĝ ∈ O(X̂) such that ĝ = g on T , and consequently, on X̂ \ S. Thus g extends

holomorphically to X̂; a contradiction.

(b) Let M̃ be the union of all irreducible components of M of codimension one.

In the case where M̃ 6= ∅, similarly as in (a), there exists a non-continuable

function g ∈ O(X̂ \M̃). Then g|T \M ∈ Os(T \M)∩C(T \M) and, therefore, there

exists a ĝ ∈ O(X̂ \M̂) with ĝ = g on T \M . Hence, ĝ = g on X̂ \(M̂∪M̃). Since g

is non-continuable, we conclude that M̃ ⊂ M̂ . The set M̂ , as a non-empty singular
set, is also of pure codimension one. Since M̂ ∩U0 ⊂M and S ∩U0 6= ∅ for every
irreducible component of M̂ (by (a)), we conclude (using the identity principle for

analytic sets) that M̂ ⊂M (cf. [Chi 1993], § 5.3). Consequently, M̂ ⊂ M̃

It remains to exclude the situation where M̃ = ∅ (i.e. the codimension of M

is ≥ 2), but M̂ 6= ∅ (i.e. the codimension of M̂ is 1). Then M̂ ⊂ M (as above),
which obviously gives a contradiction.

The main “technical tool” in the proof of Theorem 5.4.2 is the following theo-
rem.

Theorem 5.4.12 (Glueing theorem). Let W ∈ {X,T }, M ⊂ W , and F be as
in Theorem 5.4.2. If N ≥ 4, then we additionally assume that Theorem 5.4.2 was
already proved for all (N − 2)–fold crosses.

Let (Dj,k)∞k=1 be an exhaustion sequence for Dj (in sense of Definition 2.2.5)
such that each Dj,k is a domain of holomorphy and Aj,k := Aj ∩Dj,k 6= ∅, k ∈ N,
j = 1, . . . , N . Put

A′
j,k := A1,k × · · · ×Aj−1,k, A′′

j,k := Aj+1,k × · · · ×AN,k,

Σj,k := Σj ∩ (A′
j,k ×A′′

j,k),

Xk := K((Aj,k, Dj,k)Nj=1) = X ∩ (D1,k × · · · ×DN,k),

T k := GK((Aj,k, Dj,k,Σj,k)Nj=1) = T ∩ (D1,k × · · · ×DN,k),

W k := W ∩ (D1,k × · · · ×DN,k) ∈ {Xk,T k}.
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Let Ξk := c(T k) \M . In the analytic case with W = X we take Ξk := c(Xk) =
A1,k × · · · ×AN,k.

Assume that for any k ∈ N, j ∈ {1, . . . , N}, and a ∈ Ξk, there exist:
• r = rk,a > 0,

• relatively closed pluripolar set Sj,k,a ⊂ P̂(a′j , r) ×Dj,k × P̂(a′′j , r) =: Vj,k,a,
such that:

• P̂(a, r) ⊂ D1,k × · · · ×DN,k and P̂(a, r) ∩M = ∅ if a /∈M ,
• Sj,k,a ∩ T j,k,a ⊂M , where

T j,k,a := {(z′j, zj , z
′′
j ) ∈ (A′

j,k ∩ P̂(a′j , r)) ×Dj,k × (A′′
j,k ∩ P̂(a′′j , r)) :

(z′j , z
′′
j ) /∈ Σj,k} ⊂ Vj,k,a ∩ T k,

• for any f ∈ F there exists an f̃j,k,a ∈ O(Vj,k,a \ Sj,k,a) with f̃j,k,a = f on
T j,k,a \M ,

• in the analytic case we additionally assume that Vj,k,a ⊂ U and Sj,k,a ⊂M .

Then there exists a relatively closed pluripolar set M̂ ⊂ X̂ such that:
• M̂ ∩ T ⊂M ,

• for any f ∈ F there exists an f̂ ∈ O(X̂ \ M̂) with f̂ = f on T \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ F},
• if each set Sj,k,a is thin in Vj,k,a, then M̂ is analytic,

• in the analytic case we additionally have M̂ ∩ U0 ⊂ U for an open neigh-
borhood U0 ⊂ U of W .

Thus, in order to prove Theorem 5.4.2, we only need to use induction on N
and verify all the assumptions of Theorem 5.4.12.

Proof. Step 1: We may assume that each set Sj,k,a is singular with respect to the

family {f̃j,k,a : f ∈ F}. In particular, Sj,k,a is thin in Vj,ka iff Sj,k,a is analytic in
Vj,k,a.

Step 2: If N ≥ 4, then for any 1 ≤ µ < ν ≤ N , define an auxiliary (N −2)–fold
cross

Y µ,ν := K((Aj , Dj)j∈{1,...,µ−1,µ+1,...,ν−1,ν+1,...,N}).

We may assume that the number r = rk,a is so small that

P̂((a1, . . . , aµ−1, aµ+1, . . . , aν−1, aν+1, . . . , aN), r) ⊂ Ŷ µ,ν , 1 ≤ µ < ν ≤ N.

Step 3: Fix a k ∈ N. Put

Vk :=
⋃

a∈Ξk

Vj,k,a, Sk :=
⋃

a∈Ξk

Sj,k,a, f̃k :=
⋃

a∈Ξk

f̃j,k,a.

In the case where Ξk = c(Xk) we obviously have Xk ⊂ Vk. Observe that in
general we have T k ⊂ Vk.
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Indeed, let c ∈ T k, e.g. c = (a′, cN ) ∈ (A′
N−1,k \ ΣN,k) ×DN,k. Since M(a′,·) is

pluripolar, there exists an aN ∈ AN,k \M(a′,·). Then a := (a′, aN ) ∈ c(T k) \M =

Ξk and c ∈ P̂(a′, rk,a) ×DN,k = VN,k,a.
Note that in the analytic case we additionally have Vk ⊂ U and Sk ⊂M .
The main problem is to show that

(*) for arbitrary a, b ∈ Ξk, i, j ∈ {1, . . . , N} with

Wi,j,k,a,b := Vi,k,a ∩ Vj,k,b 6= ∅

we have f̃i,k,a = f̃j,k,b on Wi,j,k,a,b \ (Si,k,a ∪ Sj,k,b) for all f ∈ F .

Suppose for a moment that (*) is proved (the proof will be given in Step 5)
and we finish the main proof.

Step 4: Since the sets Si,k,a and Sj,k,b are singular, we conclude that

Si,k,a ∩Wi,j,k,a,b = Sj,k,b ∩Wi,j,k,a,b,

which implies that the function f̃k is well defined on Vk \ Sk. Observe that:
• Sj,k,a∩T k ⊂M . Indeed, take a c ∈ Sj,k,a∩T k. If c ∈ T j,k,a, then obviously

c ∈ M . Suppose that c /∈ T j,k,a. Then c ∈ T i,k,b for some i ∈ {1, . . . , N} and
b ∈ c(T k) \ M . In particular, c ∈ Wj,i,k,a,b. Thus c ∈ Sj,k,a ∩ Wj,i,k,a,b =
Si,k,b ∩Wj,i,k,a,b. This means that c ∈ Si,k,b ∩ T i,k,b ⊂M .

• f̃j,k,a = f on T k∩Vj,k,a\M . Indeed, take a c ∈ T k∩Vj,k,a\M . If c ∈ T j,k,a,

then obviously f̃j,k,a(c) = f(c). Suppose c ∈ T i,k,b for some i ∈ {1, . . . , N} and
b ∈ c(T k)\M . Then c ∈Wj,i,k,a,b\(Si,k,a∪Sj,k,b). Thus fj,k,a(c) = fi,k,b(c) = f(c).
Moreover,

• Sk is a relatively closed pluripolar subset of Vk,
• Sk ∩ T k ⊂M ,
• f̃k ∈ O(Vk \ Sk),

• f̃k = f on T k \M ,

• Sk is singular with respect to the family {f̃k : f ∈ F},
• Sk is analytic provided that each set Sj,k,a is analytic.

Let Uk denote the union of all connected component of Vk ∩ X̂k that intersect

T k. Then X̂k is the envelope of holomorphy of Uk.

Indeed, since X̂k is a domain of holomorphy (Exercise 4.2.3(d)), we only need

to show that any function from O(Uk) extends holomorphically to X̂k. Take a
g ∈ O(Uk). Then g|Tk ∈ Os(T k) ∩ C(T k). By Theorem 4.9.2, g extends to

a ĝ ∈ O(X̂k) with ĝ = g on T k. Observe that T k is locally pluriregular. In
particular, U ∩T k is not pluripolar for any connected component U of Uk. Hence,
by the identity principle, ĝ = g on Uk

(
11

)
.

By virtue of Theorem 4.11.1(c), there exists a relatively closed pluripolar set

M̂k of X̂k, M̂k ∩ Uk ⊂ Sk, such that X̂k \ M̂k is the envelope of holomorphy

�
11� Since

�

Xk is a domain (Exercise 4.2.3(g)), Uk in fact must be connected.
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of Uk \ Sk. Moreover, if Sk is analytic, then so is M̂k. In particular, for each

f ∈ F there exists an f̂k ∈ O(X̂k \ M̂k) with f̂k = f̃k on Uk \ Sk. We may

assume that M̂k is singular with respect to the family {f̂k : f ∈ F}. In particular,

M̂k+1 ∩ X̂k = M̂k. Recall that X̂k ↗ X̂. Consequently:

• M̂ :=
⋃∞
k=1 M̂k is a relatively closed pluripolar subset of X̂ with M̂ ∩ T ⊂

M ,

• for each f ∈ F , the function f̂ :=
⋃∞
k=1 f̂k is holomorphic on X̂ \ M̂ with

f̂ = f on T \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ F},

• if each set Sj,k,a is analytic in Vj,k,a, then M̂ is analytic,
• in the analytic case, if U0 :=

⋃∞
k=1 Uk, then

M̂ ∩ U0 =

∞⋃

k=1

M̂k ∩ Uk ⊂
∞⋃

k=1

Sk ⊂M.

This completes the proof of Theorem 5.4.12 modulo (*).

Step 5: We move to the proof of (*). Fix a, b ∈ Ξk and i, j ∈ {1, . . . , N} such
that Wi,j,k,a,b := Vi,k,a ∩ Vj,k,b 6= ∅, and f ∈ F . We have the following two cases:

(a) i 6= j: We may assume that i = N − 1, j = N . Write

w = (w′, w′′) ∈ (D1 × · · · ×DN−2) × (DN−1 ×DN ).

Observe that

WN−1,N,k,a,b =
(
P̂(a′, rk,a) ∩ P̂(b′, rk,b)

)
× P̂(bN−1, rk,b) × P̂(aN , rk,a).

Consider the following two subcases:
• N = 3: Then W2,3,k,a,b = (P̂(a1, rk,a)∩ P̂(b1, rk,b))× P̂(b2, rk,b)× P̂(a3, rk,a).

We are going to show that

f̃N−1,k,a = f̃N,k,b on ((P̂(a1, rk,a) ∩ P̂(b1, rk,b)) × C) \ (S2,k,a ∪ S3,k,b),

where C ⊂ P̂(b2, rk,b) × P̂(a3, rk,a) is a non-pluripolar set; then, by the identity

principle, we obtain f̃2,k,a = f̃3,k,b on W2,3,k,a,b \ (S2,k,a ∪ S3,k,b).
Let

C := {c ∈ ((A2,k ∩ P̂(b2, rk,b)) × (A3,k ∩ P̂(a3, rk,a))) \ Σ1,k :

(S2,k,a)(·,c) ∈ PLP , (S3,k,b)(·,c) ∈ PLP}.

The set C is locally pluriregular (Exercise 5.3.3(c)). Fix a c = (c2, c3) ∈ C. Recall

that P̂(a1, rk,a) ∪ P̂(b1, rk,b) ⊂ D1,k. Thus, the functions f̃3,k,b(·, c) and f(·, c) are
holomorphic on

P̂(b1, rk,b) \ ((S3,k,b)(·,c) ∪M(·,c)).
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Moreover, they are equal on the non-pluripolar set (A1,k ∩ P̂(b1, rk,b)) \ M(·,c).
Hence, since the set (S3,k,b)(·,c) ∪M(·,c) is polar, we get

f̃3,k,b = f(·, c) on P̂(b1, rk,b) \ ((S3,k,b)(·,c) ∪M(·,c)).

An analogous argument shows that

f̃2,k,a = f(·, c) on P̂(a1, rk,a) \ ((S2,k,a)(·,c) ∪M(·,c)).

Hence,

f̃2,k,a(·, c) = f̃3,k,b(·, c) on (P̂(a1, rk,a) ∩ P̂(b1, rk,b)) \ ((S2,k,a)(·,c) ∪ (S3,k,b)(·,c)).

Consequently,

f̃2,k,a = f̃3,k,b on ((P̂(a1, rk,a) ∩ P̂(b1, rk,b)) × C) \ (S2,k,a ∪ S3,k,b).

• N ≥ 4: We are going to show that

f̃N−1,k,a = f̃N,k,b on ((P̂(a′, rk,a) ∩ P̂(b′, rk,b)) × C) \ (SN−1,k,a ∪ SN,k,b),

where C ⊂ P̂(bN−1, rk,b)× P̂(aN , rk,a) is a non-pluripolar set; then, by the identity
principle, we obtain

f̃N−1,k,a = f̃N,k,b on WN−1,N,k,a,b \ (SN−1,k,a ∪ SN,k,b).

Let

BN−1 := {cN−1 ∈ AN−1,k ∩ P̂(bN−1, rk,b) : (ΣN )(·,cN−1) ∈ PLP}.

By Proposition 3.3.27 the set BN−1 is locally pluriregular. Analogously, the set

BN := {cN ∈ AN,k ∩ P̂(aN , rk,a) : (ΣN−1)(·,cN ) ∈ PLP}

is locally pluriregular. Let

C := {c ∈ BN−1 ×BN : (SN−1,k,a)(·,c) ∈ PLP,
(SN,k,b)(·,c) ∈ PLP , (Σν)(·,c) ∈ PLP, ν = 1, . . . , N − 2}.

The set C is also locally pluriregular. Fix a c = (cN−1, cN) ∈ C.
Observe that T (·,c) ⊃ TN−1,N (c), where

TN−1,N(c) := GK((Aν , Dν , (Σν)(·,c))
N−2
ν=1 ).

Put A′′′
ν := Aν+1 × · · · ×AN−2, ν = 1, . . . , N − 2.

The (N − 2)–fold cross XN−1,N , the sets (Σν)(·,c), ν = 1, . . . , N − 2, and the
set M(·,c) satisfy the assumptions of Theorem 5.4.2.

Indeed,
• the sets (Σν)(·,c), ν = 1, . . . , N − 1, are pluripolar,
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• for any ν ∈ {1, . . . , N − 2} and (ζ′ν , ζ
′′′
ν ) ∈ (A′

ν ×A′′′
ν ) \ (Σν)(·,c),

(M(·,c))(ζ′ν ,·,ζ′′′ν ) = M(ζ′ν ,·,ζ
′′′
ν ,c)

is pluripolar.
Consequently, since Theorem 5.4.2 is true for (N − 2), there exists a relatively

closed pluripolar set M̂(c) ⊂ Ŷ N−1,N such that:

• M̂(c) ∩ TN−1,N(c) ⊂M(·,c),

• for any f ∈ Os(X \ M) there exists an f̂c ∈ O(Ŷ N−1,N \ M̂(c)) with

f̂c = f(·, c) on TN−1,N(c) \M(·,c).

Recall that P̂(a′, rk,a) ∪ P̂(b′, rk,b) ⊂ Ŷ N−1,N . Thus, the functions f̃N,k,b(·, c)
and f̂c are holomorphic on

P̂(b′, rk,b) \ ((SN,k,b)(·,c) ∪ M̂(c)).

Moreover, they are equal to f(·, c) on the set ((T k)(·,c)∩TN−1,N(c)))\M(·,c) =: S.
Observe that S is not pluripolar.

Indeed, put Ãν := Aν,k ∩ P̂(bν , rk,b), ν = 1, . . . , N − 2. First observe that

(Ã1 × · · · × ÃN−2) \ (ΣN )(·,cN−1) ⊂ (c(T k))(·,c).

On the other hand, (Ã1 × · · · × ÃN−2) \ P ⊂ c(TN−1,N), where P is pluripolar.
Hence, in view of the definition of the set BN−1, we conclude that

(Ã1 × · · · × ÃN−2) \Q ⊂ (c(T k))(·,c) ∩ c(TN−1,N(c)),

where Q is pluripolar. In particular, the set

R := {ξ ∈ Ã1 × · · · × ÃN−3 : Q(ξ,·) /∈ PLP}

is pluripolar. Moreover, for any ξ ∈ (Ã1 × · · · × ÃN−3) \ (ΣN−2)(·,c), the fiber
(M(·,c))(ξ,·) = M(ξ,·,c) is pluripolar. Thus, for any

ξ ∈ (Ã1 × · · · × ÃN−3) \ (R ∪ (ΣN−2)(·,c))

the set (Q∪M(·,c))(ξ,·) is pluripolar. Now, we are in a position to apply Proposition
3.3.27 and to conclude that S is not pluripolar.

Hence, since the set (SN,k,b)(·,c) ∪ M̂(c) is pluripolar, we get

f̃N,k,b = f̂c on P̂(b′, rk,b) \ ((SN,k,b)(·,c) ∪ M̂(c)).

An analogous argument shows that

f̃N−1,k,a = f̂c on P̂(a′, rk,a) \ ((SN−1,k,a)(·,c) ∪ M̂(c)).

Hence,

f̃N−1,k,a(·, c) = f̃N,k,b(·, c)
on (P̂(a′, rk,a) ∩ P̂(b′, rk,b)) \ ((SN−1,k,a)(·,c) ∪ (SN,k,b)(·,c)).
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Consequently,

f̃N−1,k,a = f̃N,k,b on ((P̂(a′, rk,a) ∩ P̂(b′, rk,b)) × C) \ (SN−1,k,a ∪ SN,k,b).

(b) i = j: We may assume that i = j = N . Write

w = (w′, wN ) ∈ (D1 × · · · ×DN−1) ×DN .

Observe that ∅ 6= Wk,N,N,a,b = (P̂(a′, rk,a) ∩ P̂(b′, rk,b)) ×DN,k. By (a) we know
that

f̃N,k,a = f̃N−1,k,a on (VN,k,a ∩ VN−1,k,a) \ (SN,k,a ∪ SN−1,k,a),

f̃N−1,k,a = f̃N,k,b on (VN−1,k,a ∩ VN,k,b) \ (SN−1,k,a ∪ SN,k,b).

Hence f̃N,k,a = f̃N,k,b on

(VN,k,a ∩ VN−1,k,a ∩ VN,k,b) \ (SN−1,k,a ∪ SN,k,a ∪ SN,k,b)
= ((P̂(a′, rk,a) ∩ P̂(b′, rk,b)) × P̂(aN , rk,a)) \ (SN−1,k,a ∪ SN,k,a ∪ SN,k,b),

and finally, by the identity principle, f̃N,k,a = f̃N,k,b on WN,N,k,a,b \ (SN,k,a ∪
SN,k,b).

The proof of (*) is completed.

We move to the main proof of Theorem 5.4.2.

Proof that Theorem 5.3.1 =⇒ Theorem 5.4.2. Consider the general situation as in
in Theorem 5.4.2. Our aim is to prove Theorem 5.4.2 via Theorem 5.4.12. We
keep all the notations from Theorem 5.4.12.

Fix a k ∈ N, a ∈ Ξk, and j ∈ {1, . . . , N}. We are going to construct,

rk,a, Sj,k,a, f̃j,k,a with all of the properties listed in Theorem 5.4.12.

First assume that j = N . Let r > 0 be such that P̂(a, r) b D1,k × · · · ×DN,k

and P̂(a, r) ∩M = ∅ in the case where a /∈M .

First consider the case where P̂(a, r) ∩M = ∅. Put

W k,a := W ∩ P̂(a, r) ∈ {Xk,a, T k,a}

with

Xk,a := X ∩ P̂(a, r) = K((Aj ∩ P̂(aj , r), P̂(aj , r))
N
j=1),

T k,a := T ∩ P̂(a, r) = GK((Aj ∩ P̂(aj , r), P̂(aj , r),Σj ∩ P̂((a′j , a
′′
j ), r))Nj=1).

Observe that for every function f ∈ F ∈ {Os(X\M), Os(T \M)∩C∗(T \M)}, the
function f |W k,a

belongs to Os(Xk,a) or to Os(T k,a) ∩ C∗(T k,a). Using Theorems

4.3.1 or 4.9.2, we know that f extends to an f̃k,a ∈ O(X̂k,a) with f̃k,a = f on
T k,a. Thus we may assume that the initial r is so small that every function f ∈ F
extends to an f̃k,a ∈ O(P̂(a, r)) with f̃k,a = f on T ∩ P̂(a, r).
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Consider the special 2–fold crosses

Y N,k,a := K((A′
N \ ΣN ) ∩ P̂(a′N , r), P̂(aN , r); P̂(a′N , r), DN,k+1)

= P̂(a, r) ∪ (((A′
N \ ΣN ) ∩ P̂(a′N , r)) ×DN,k+1) ⊂ P̂(a, r) ∪ T ,

with

p := n1 + · · · + nN−1, q := nN ,

D := P̂(a′N , r), G := DN,k+1, B := P̂(aN , r)

A = A′ := A′
N ∩ P̂(a′N , r) \ ΣN ,

Observe that every function from f ∈ F may be identified with the function
f ∪ f̃k,a ∈ Os(Y N,k,a \M). Since the case N = 2 was proved, we get a relatively

closed pluripolar set SN,k,a ⊂ Ŷ N,k,a such that:
• SN,k,a ∩ Y N,k,a ⊂M ,

• for any function f ∈ F there exists an f̃N,k,a ∈ O(Ŷ N,k,a \ SN,k,a) such

that f̃N,k,a = f on Y N,k,a \M ,

• SN,k,a is singular with respect to the family {f̃N,k,a : f ∈ F}; in particular,
SN,k,a ∩ P(a, r) = ∅,

• if all the fibers M(z′
N
,·), z

′
N ∈ A′, are thin, then SN,k,a is analytic.

Note that {a′N} × DN,k+1 ⊂ Ŷ N,k,a. Let ρ = rN,k,a ∈ (0, r) be so small

that VN,k,a := P(a′N , ρ) × DN,k ⊂ Ŷ N,k,a. We substitute SN,k,a and f̃N,k,a by

SN,k,a ∩ VN,k,a and f̃N,k,a|VN,k,a\SN,k,a , respectively.

In the analytic case we argue in a little bit different way. We may assume that
P̂(a′N , r) ×DN,k+1 ⊂ U . Consider the 2–fold crosses WN,k,a ∈ {XN,k,a, TN,k,a},

XN,k,a :=:= K(A′
N ∩ P̂(a′N , r), AN,k+1; P̂(a′N , r), DN,k+1) ⊂ X,

ZN,k,a := K((A′
N ∩ P̂(a′N , r)) \ ΣN , AN,k+1; P̂(a′N , r), DN,k+1).

Observe that every function f ∈ F belongs to Os(XN,k,a\M) or to Os(ZN,k,a\M).

Our assumptions imply that every f ∈ F extends to an f̂N,k,a ∈ O(X̂N,k,a \M)

with f̂N,k,a = f on WN,k,a \M . Now we continue as in the pluripolar case and
we end up with SN,k,a ⊂M .

It is clear that all the requirements from Theorem 5.4.12 are satisfied for j = N .
We repeat the same procedure with respect to each j ∈ {1, . . . , N − 1} and finally,
we put rk,a := min{rj,k,a : j = 1, . . . , N}.



Chapter 6

Separately meromorphic functions

6.1 Rothstein theorem

Theorem 6.1.1 (Cf. [Rot 1950]). Let f ∈ M(Dp × Dq). Assume that A ⊂ Dp

be a locally pluriregular set such that for any a ∈ Dp we have (S(f))(a,·) 6= Dq,
where S(f) denote the polar set of f , i.e. S(f) is the union of the set of all poles
of f and the set of all indeterminancy points of f ; recall that S(f) is analytic
and f ∈ O(Dp × Dq \ S(f)) — cf. § 3.8. Let G be a Riemann domain over Cp

such that Dq ⊂ G
(
1
)
. Assume that for every a ∈ A the function f(a, ·) extends

meromorphically to G. Then there exist an open neighborhood Ω of (Dp × Dq) ∪
(A×G) and a function f̂ ∈ M(Ω) such that f̂ = f on Dp × Dq.
Proof. (1) The case where A = Dp

(
2
)
, q = 1, G = K(R) (R > 1), and f ∈

O(Dp × D):
The proof may be found for instance in [Siu 1974].

[Will be completed. . . . . . . . . . . . . . . . . . . . . . . . . ]

(2) The case where A = Dp, q = 1, and G = K(R):
Recall that (S(f))(a,·) 6= Dq for any a ∈ Dp, and therefore, for any a ∈ Dp

there exists a b ∈ Dq such that f is holomorphic in a neighborhood of (a, b). By
applying locally (1), we get the required result.

(3) The case where A = Dp and G = Pq(R):
Let R0 denote the radius of the maximal polydisc Pq(R0) such that f extends

meromorphically to Dp × Pq(R0). We only need to show that R0 ≥ R. Obviously
R0 ≥ 1. Suppose that R0 < R.

Let Sq be the set of all (z, w′) ∈ Dp × Pq−1(R0) such that (S(f))(z,w′,·) = D.
It is well known that Sq is an analytic subset of Dp × Pq−1(R0). Moreover, our
assumptions imply that Sq 6= Dp × Pq−1(R0). Applying locally the Rothstein
theorem to (Dp × Pq−1(R0) \ Sq) × K(R) ⊂ Cp+q−1 × C, we conclude that f
extends meromorphically to ((Dp×Pq−1(R0)\Sq)×K(R))∪(Dp×Pq(R0)). Observe
that, by the Levi extension theorem ([Jar-Pfl 2000], Prop. 3.4.5), the envelope of
holomorphy of ((Dp × Pq−1(R0) ×K(R)) \ (Sq ×K(R))) ∪ (Dp × Pq(R0)) equals
Dp × Pq−1(R0) × K(R). Consequently, the function f extends meromorphically
to Dp × Pq−1(R0) × K(R). Repeating the same argument with respect to other
variables in Cq, we conclude that f extends meromorphically to the domainDp×H ,
where

H =

q⋃

j=1

Pj−1(R0) ×K(R) × Pq−j(R0).

�
1� That is, we identify Dq with certain “polydisc”

�

PG(b0, r).�
2� Observe that if A = Dp, then we have to prove that f extends meromorphically to Dp × G.
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The envelope of holomorphy of Dp ×H has the form Dp × Ĥ , where Ĥ contains a
polydisc Pq(R′

0) with R′
0 > R0. Thus f extends meromorphically to Dp × Pq(R′

0);
a contradiction — cf. the proof of Lemma 12 in [Jar-Pfl 2003b].

(4) The case where A ⊂ Dp is locally pluriregular and G = Pq(R):
For every z ∈ Dp, let ρf (z) denote the radius of the maximal polydisc Pq(r)

such that f(z, ·) extends meromorphically to Pq(r). Obviously, ρf ≥ 1 on Dp and
ρf ≥ R on A.

Using (3), one can easily conclude that f extends meromorphically to the
Hartogs domain

D := {(z, w) ∈ Dp × Cq : |w| < (ρf )∗(z)}.

Let f̃ ∈ M(D) be the meromorphic extension of f .
Moreover, − log(ρf )∗ ∈ PSH(Dp).
Indeed, let D̂ denote the envelope of holomorphy of D. It is known that

D̂ ⊂ Dp × Cq is a Hartogs domain with complete q–circled fibers ([Jar-Pfl 2000],

Remark 3.1.2(h)). Moreover, f̃ extends meromorphically to D̂ ([Jar-Pfl 2000], Th.
3.6.6). In particular,

(ρf )∗(z) = inf{δ �D,(0,ξ)(z, 0) : ξ ∈ Cq, |ξ| = 1}, z ∈ Dp,

where
δ �D,(0,ξ)(z, 0) = sup{r > 0 : (z, 0) +K(r)(0, ξ) ⊂ D̂}.

Consequently, − log(ρf )∗ ∈ PSH(Dp) ([Jar-Pfl 2000], Th. 2.2.9(iv)).

Thus − log(ρf )∗ ∈ PSH(Dp). Recall that ρf ≥ R on A. Hence, using the local
pluriregularity of A, we conclude that (ρf )∗ ≥ R on A

(
3
)
. Thus A× Pq(R) ⊂ D,

and therefore D is the required neighborhood.

(5) The general case where A ⊂ Dp is locally pluriregular and G is arbitrary:
Fix an a ∈ A. Let G0 denote the set of all b ∈ G such that there exist rb > 0

and fb ∈ M(P̂((a, b), rb)), P̂((a, b), rb) ⊂ Dp ×G, such that:

∀α∈A∩
�

P(a,rb)
: fb(α, ·) = f̃(α, ·) on P̂(b, rb)

(
4
)
.

Obviously G0 is open, G0 6= ∅ (Dq ⊂ G0). Using the Rothstein theorem with

G = P̂q(R), one can prove that G0 is closed in G. Thus G0 = G.

Moreover, one can also prove that if P̂(b′, rb′)∩P̂(b′′, rb′′) 6= ∅, then fb′ = fb′′ on

P̂((a, b′), rb′ )∩ P̂((a, b′′), rb′′ ). This gives a meromorphic extension of f to an open
neighborhood of {a}×G. Since a was arbitrary, we get the required neighborhood
Ω.

In the case where A = Dp the result may be strengthened as follows.

�
3� Suppose that h∗

A,Dp = hA,Dp on Dp \ P , where P is pluripolar. Put u :=
− log(ρf )∗

log R
+ 1.

Then u ≤ 1 and u ≤ 0 on A \ P . Consequently, u ≤ h∗
A\P,Dp = h∗

A,Dp . In particular, u ≤ 0 on

A, i.e. (ρf )∗ ≥ R on A.�
4� As before, f̃(α, ·) denotes the meromorphic extension of f(α, ·).
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Theorem 6.1.2 (Cf. [Rot 1950]). Let f ∈ M(Dp × Dq). Let G be a Riemann
domain over Cq such that D ⊂ G. Assume that for every a ∈ Dp the function
f(a, ·) extends meromorphically to G. Then there exists an f̂ ∈ M(Dp ×G) such

that f̂ = f on Dp × Dq.

Proof. Let S := {z ∈ Dp : {z}×Dq ⊂ S(f)}. It is known that S is a proper analytic
set. Let S0 := S × G. Using locally Theorem 6.1.1 on (Dp \ S) × G, we easily

conclude that f extends meromorphically to an f̂ ∈ M((Dp×Dq)∪ (Dp×G\S0)).
Using Proposition 3.1.25, we conclude that the envelope of holomorphy of the
domain (Dp × Dq) ∪ (Dp × G \ S0) contains Dp × G. Finally, Theorem 3.8.2, we

conclude that f̂ extends meromorphically on Dp ×G.

6.2 Extension of separately meromorphic

functions with singularities

It is known that the envelope of holomorphy (of any Riemann domain over Cn)
coincides with the envelope of meromorphy (cf. [Jar-Pfl 2000], Theorem 3.6.6).

Thus it is natural to conjecture that in the above situation the domain X̂ \ M̂ is
also the envelope of meromorphy of X \M with respect to separate meromorphic
functions.

Throughout this section Dj denotes a Riemann domain of holomorphy over
Cnj , Aj ⊂ Dj is locally pluriregular, Σj ⊂ A′

j × A′′
j is pluripolar, j = 1, . . . , N ,

X := K((Aj , Dj)
N
j=1), T := GK((Aj , Dj ,Σj)

N
j=1). Moreover, S ⊂ X, M ⊂ T ∩S

are relatively closed sets such that for any j ∈ {1, . . . , N} and (a′j , a
′′
j ) ∈ A′

j ×A′′
j \

Σj , the fiber S(a′j ,·.a
′′
j ) is pluripolar.

Definition 6.2.1. We say that a function f ∈ Os(X\S) is separately meromorphic
on T \M (f ∈ Os(X \ S)∩Ms(T \M)) if for any j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈

A′
j ×A′′

j \ Σj , the function

Dj \ S(a′j,·,a
′′
j ) 3 zj 7−→ f(a′j , zj , a

′′
j )

extends meromorphically to Dj \M(a′j,·,a
′′
j ).

Theorem 6.2.2 (Extension theorem for meromorphic functions). Let Ŝ and M̂
be constructed according to Theorems 5.4.6 and 5.4.7, respectively. Then for every

function f ∈ Os(X \ S)∩Ms(T \M) there exists an f̂ ∈ O(X̂ \ Ŝ)∩M(X̂ \ M̂)

such that f̂ = f on T \ S.

The case M = ∅ was studied for instance in [Sak 1957], [Kaz 1976],
[Kaz 1978b], [Kaz 1984], [Shi 1986], and [Shi 1989].

Proof. Obviously, by Theorem 5.4.6, every function f ∈ Os(X \ S) ∩Ms(T \M)

extends to an f̂ ∈ O(X̂ \ Ŝ) with f̂ = f on T \ S. We only need to show
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that f̂ ∈ M(X̂ \ M̂). Observe that it suffices to show that there exists an open

neighborhood Ω ⊂ X̂ of T \M (indepenedent of f) such that every connected

component of Ω intersects T \M and f̂ ∈ M(Ω) for every f .
Indeed, suppose such an Ω is already constructed. By Theorem 5.4.7, the

envelope of holomorphy of Ω coincides with X̂ \ M̂ .
In fact, if g ∈ O(Ω), then g|T \M ∈ Os(T \M)∩C(T \M). Hence, there exists

a ĝ ∈ O(X̂ \M) with ĝ = g on T \M . Consequently, ĝ = g on Ω because each
connected component of Ω intersects T \M .

Thus, by Theorem 3.6.6 from [Jar-Pfl 2000], X̂ \ M̂ is the envelope of mero-

morphy of Ω, which means that f̂ extends meromorphically to an
˜̂
f ∈ M(X̂ \ M̂)

with
˜̂
f = f̂ on Ω. The indentity principle for meromorphic functions implies that

˜̂
f ≡ f̂ .

Indeed, take an a ∈ T \M . We may assume that

a = (a′N , aN ) ∈ (A′
N \ ΣN ) ×DN .

Fix a bN ∈ AN \S(a′
N
,·) (recall that S(a′

N
,·) ∈ PLP). Put b := (a′N , bN ) ∈ c(T )\S.

Let r > 0 be such that P̂(b, r) ⊂ X̂ \ Ŝ. In particular, f̂ ∈ O(P̂(b, r)) for every
f ∈ Os(X \ S) ∩Ms(T \M).

Since M(a′N ,·)
is pluripolar, there exists a domain GN b DN \M(a′N ,·)

with

aN ∈ GN , P̂(bN , r) ⊂ GN . Since M is relatively closed in T , we may assume
that r is so small that ((A′

N \ ΣN ) ∩ P(a′N , r)) ×GN ⊂ T \M . By the Rothstein

theorem (Theorem 6.1.1), there exists an open connected neighborhood Ωa ⊂ X̂

of {a′N} ×GN such that f̂ ∈ M(Ωa) for every f .
We put Ω :=

⋃
a∈T \S Ωa. Observe that any connected component of Ω inter-

sects c(T ) \M .

6.3 The case N = 2

In the case where N = 2, M = ∅, Theorem 6.2.2 may be strengthened as follows.

Theorem 6.3.1 (Extension theorem for meromorphic functions). Let D, G be
Riemann domain of holomorphy over Cp and Cq, respectively, let ∅ 6= A ⊂ D,
∅ 6= B ⊂ G be locally pluriregular sets, and let

X := K(A,B;D,G) = (A×G) ∪ (D ×B).

Let S ⊂ X be a relatively closed set. Assume that:
(a) for every (a, b) ∈ A×B we have intG S(a,·) = ∅, intD S(·,b) = ∅,

(b) A×B ⊂ (A×B) \ S
(
5
)
,

�
5� In particular, for every (a, b) ∈ A × B and for every neighborhood U ⊂ D × G of (a, b) the

set (A × B) ∩ U \ S is not pluripolar.
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there exist exhaustions (Dk)∞k=1 and (Gk)∞k=1 of D and G, respectively, by do-
main of holomorphy such that:

(c) Ak := A ∩Dk 6= ∅, Bk := B ∩Gk 6= ∅,
(d) for every (a, b) ∈ Ak ×Bk we have Bk \ S(a,·) 6= ∅, Ak \ S(·,b) 6= ∅, k ∈ N.

Then for every function f ∈ Os(X \ S) ∩Ms(X) there exists a function f̂ ∈
M(X̂) such that f̂ = f on X \ S.

Let Ω be a Riemann region over Cn.

Definition 6.3.2. We say that a set A ⊂ Ω is plurithin at a point a ∈ Ω if either
a /∈ A or a ∈ A and lim supA\{a}3z→a u(z) < u(a) for a function u plurisubhar-
monic in a neighborhood of a.

Remark 6.3.3. (a) ([Kli 1991], Corollary 4.8.4) If A,B are plurithin at a, then
A ∪B is plurithin at a.

(b) ([Arm-Gar 2001], Th. 7.2.2) Every polar set P ⊂ C is thin at any point
a ∈ C.

(c) If A ⊂ C is not thin at a point a ∈ A, then for any polar set P ⊂ C, the
set A \ P is not thin at a ((c) follows directly from (a) and (b)).

(d) If A ⊂ Ω is locally pluriregular at a point a ∈ A, then A is not plurithin
at a.

If A ⊂ C is not thin at a point a ∈ A, then A is locally regular at a.
Indeed, suppose that A ⊂ Ω is locally pluriregular at a and

lim sup
A\{a}3z→a

u(z) < c < u(a)

for some u ∈ PSH(V ), where V is an open neighborhood of a. We may assume
that u ≤ 0 on V . Take an open neighborhood U ⊂ V of a such that u < c on
(A \ {a}) ∩ U . Put v := u

−c + 1. Then v ≤ 1 on U and v ≤ 0 on (A \ {a}) ∩ U .

Hence v ≤ h∗(A\{a})∩U,U = h∗A∩U,U on U . In particular, 0 = v(a) = u(a)
−c + 1 < 0; a

contradiction.
Now, suppose that A ⊂ C is not thin at a and h∗A∩U,U (a) > 0 for some neigh-

borhood U of a. Let P ⊂ U be a polar set such that h∗A∩U,U = hA∩U,U on U \ P
(cf. [Jar-Pfl 2000] Th. 2.1.41). In particular, h∗A∩U,U = 0 on A \P . By (c), the set
A \ P is not thin at a. Hence 0 < h∗A∩U,U (a) = lim supA\P3z→a h

∗
A∩U,U (z) = 0; a

contradiction.
(e) ([Arm-Gar 2001], Th. 7.3.9) If A ⊂ C is thin at a point a ∈ A, then there

is a sequence rk ↘ 0 such that {z ∈ A : |z − a| = rk} = ∅, k = 1, 2, . . . .

Proof. It suffices to prove that for each k there exists an open neighborhood Ωk ⊂
X̂k of the cross Xk := K(Ak, Bk;Dk, Gk) = (Ak × Gk) ∪ (Dk × Bk) such that

there exists an f̃k ∈ M(Ωk) with f̃k = f on Xk \ S.

Indeed, the envelope of holomorphy of Ωk coincides with X̂k (cf. the proof of

Theorem 5.4.12). Hence, by Theorem 3.6.6 from [Jar-Pfl 2000], the function f̃k
extends to a function f̂k ∈ M(X̂k). Since Xk \ S is not pluripolar (by (a)), we
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conclude that f̂k = f̂k+1 on X̂k. Finally, we glue up the functions (f̂k)∞k=1 and we
get the required extension.

Fix (a, b) ∈ Ak ×Bk \ S and let r > 0 be such that P̂((a, b), r) ⊂ Dk ×Gk \ S.

Define Y := K(A ∩ P̂(a, r), B ∩ P̂(b, r); P̂(a, r), P̂(b, r)). Then f ∈ Os(Y ) and

hence, by Theorem 4.3.1, f |Y extends holomorphically on Ŷ . In particular, f
extends holomorphically to an open neighborhood of (a, b).

By the Rothstein theorem (Theorem 6.1.1), we get an open set

Ωk,a,b = (P̂(a, ra,b) ×Gk) ∪ (Dk × P̂(b, ra,b)) ⊂ X̂k ⊂ Dk ×Gk

for which there exists a function f̂k,a,b ∈ M(Ωk,a,b) such that f̂k,a,b = f on X ∩
Ωk,a,b \ S.

Now we show that if Ωk,a,b ∩ Ωk,a′,b′ 6= ∅, then f̂k,a,b = f̂k,a′,b′ on Ωk,a,b ∩
Ωk,a′,b′ . Observe that

Ωk,a,b ∩Ωk,a′,b′ =
(

(P̂(a, ra,b) ∩ P̂(a′, ra′,b′)) ×Gk

)
∪

(
P̂(a, ra,b) × P̂(b′, ra′,b′)

)

∪
(
P̂(a′, ra′,b′) × P̂(b, ra,b)

)
∪

(
Dk × (P̂(b, ra,b) ∩ P̂(b′, ra′,b′))

)
.

First observe that f̂k,a,b = f = f̂k,a′,b′ on (Ak×Bk)∩(P̂(a, ra,b)×P̂(b′, ra′,b′))\S.

Hence, by (a), f̂k,a,b = f̂k,a′,b′ on P̂(a, ra,b)×P̂(b′, ra′,b′). The same argument works

on P̂(a′, ra′,b′) × P̂(b, ra,b).

If P̂(a, ra,b) ∩ P̂(a′, ra′,b′) 6= ∅, then for any β ∈ Bk we have f̂k,a,b(·, β) =

f(·, β) on Ak ∩ P̂(a, ra,b) \ S(·,β). Hence f̂k,a,b(·, β) = f̃(·, β) on P̂(a, ra,b), and,

consequently, f̂k,a,b(·, β) = f̃(·, β) = f̂k,a′,b′(·, β) on P̂(a, ra,b) ∩ P̂(a′, ra′,b′) for

any β ∈ Bk. The identity principle implies that f̂k,a,b = f̂k,a′,b′ on (P̂(a, ra,b) ∩
P̂(a′, ra′,b′)) ×Gk. The same argument works on Dk × (P̂(b, ra,b) ∩ P̂(b′, ra′,b′)).

It remains to observe that, by (d), Ωk :=
⋃

(a,b)∈Ak×Bk\S
Ωk,a,b is an open

neighborhood of Xk.

Corollary 6.3.4 (Cf. [Sak 1957]). Let S ⊂ D× D be a relatively closed set such
that:

• intS = ∅,
• for every domain U ⊂ D× D the set U \ S is connected

(
6
)
.

Let A (resp. B) denote the set of all a ∈ D (resp. b ∈ D) such that intC S(a,·) =
∅ (resp. intC S(·,b) = ∅). Put X := K(A,B;D,D) = (A× D) ∪ (D×B).

Then for every function f : X \ S −→ C which is separately meromorphic on

X, there exists an f̂ ∈ M(D× D) such that f̂ = f on X \ S.

Notice that the original proof of the above result is not correct — details may
be found in [Jar-Pfl 2003c].
�
6� We shortly say that S does not separate domains.
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Proof. First we check that the sets A and B are not thin at any point of D (in
particular, they are dense in D).

Indeed, suppose that A is thin at a point a ∈ D. By Remark 6.3.3(e), there
exist a circle C ⊂ D such that C ∩ A = ∅. Using a Baire category argument, we
conclude that there exist a non-empty open arc Γ ⊂ C and an open disc ∆ ⊂ D
such that the 3–dimensional real surface Γ ×∆ is contained in S. Hence, since S
is nowhere dense and does not separate domains, we get a contradiction.

Consequently, by Remark 6.3.3(d), the sets A and B are locally regular and

h∗A,D = h∗B,D = 0. In particular, X̂ = D× D.
Now, using the fact that A and B are dense in D, one can easily check that

all the assumptions of Theorem 6.3.1 (D = G = D) are satisfied with arbitrary
exhaustions Dj := K(rj), Gj := K(rj), 0 < rj ↗ 1, which satisfy condition
(c).

Corollary 6.3.5 (Cf. [Shi 1989]). Let D,G,A,B,X be as in Theorem 6.3.1.
Assume that S ⊂ X is a relatively closed set such that

• the set D \A is of zero Lebesgue measure,
• for every a ∈ A the fiber S(a,·) is pluripolar,
• for every b ∈ B the fiber S(·,b) is of zero Lebesgue measure.
Then for every function f : X \ S −→ C which is separately meromorphic on

X, there exists an f̂ ∈ M(D ×G) such that f̂ = f on X \ S.

Proof. One can easily check that all the assumptions of Theorem 6.3.1 are satisfied.
It remains to observe that h∗A,D ≡ 0 (because h∗A,D = 0 on A and the set D \A is

of zero measure). Hence X̂ = D ×G.
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General cross theorem with singularities

7.1 General extension theorem with singularities

Our aim is to generalize Theorems 5.3.1 5.4.6, and 5.4.7, by dropping the assump-
tion that M is relatively closed.

Throughout this section Dj ⊂ Cnj denotes a domain of holomorphy, Aj ⊂
Dj is locally pluriregular, Σj ⊂ A′

j × A′′
j is pluripolar, j = 1, . . . , N , X :=

K((Aj , Dj)
N
j=1), T := GK((Aj , Dj ,Σj)

N
j=1), W ∈ {X,T }, M ⊂ W is such

that for any j ∈ {1, . . . , N} and (a′j , a
′′
j ) ∈ (A′

j × A′′
j ) \ Σj the fiber M(a′j,·,a

′′
j )

is closed and pluripolar. If W = X , the we additionally assume that for any
j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ A′

j ×A′′
j the fiber M(a′j,·,a

′′
j ) is closed.

The definition of a separately holomorphic function f : W −→ C extends easily
to the above situation (cf. Definition 5.4.1).

The main result is the following theorem.

Theorem 7.1.1 (Extension theorem for generalized crosses with pluripolar sin-
gularities). Let W ∈ {X,T }, and let

F ⊂
{
Os(X \M), if W = X

Os(T \M) ∩ C∗(T \M), if W = T

be such that for every a ∈ c(W ) \M there exist a polydisc P(a, r) such that for

every f ∈ F there exists an f̃a ∈ O(P(a, r(a))) with f̃a = f on P(a, r(a))∩ (T \M)(
1
)
.

Then there exist pluripolar sets Σ′
j ⊂ A′

j ×A′′
j with Σj ⊂ Σ′

j, j = 1, . . . , N , and

relatively closed pluripolar set M̂ ⊂ X̂ such that:

• M̂ ∩ (T ′ ∪ c(T )) ⊂M , where T ′ := GK((Aj , Dj,Σ
′
j)
N
j=1),

• for any f ∈ F there exists an f̂ ∈ O(X̂ \ M̂) with f̂ = f on T ′ ∪ c(T ) \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ F},
• if for all j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ A′

j ×A′′
j \ Σj, the fiber M(a′j ,·,a

′′
j ) is

thin in Dj, then M̂ is analytic.

The main “technical tool” in the proof of Theorem 7.1.1 is the following theo-
rem.

�
1� Observe that if M is relatively closed in W , then an argument as in the first part of the proof

of Theorem 5.4.2 (cf. p. 112) shows that the above condition is satisfied with F := O(X \M) or
F := O(T \ M) ∩ C∗(T \ M).
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Theorem 7.1.2 (Glueing theorem). Let W ∈ {X,T }, M ⊂ W , and F be as in
Theorem 7.1.1. If N ≥ 4, then we additionally assume that Theorem 7.1.1 was
already proved for all (N − 2)–fold crosses.

Let (Dj,k)∞k=1 be an exhaustion sequence for Dj (in sense of Definition 2.2.5)
such that each Dj,k is a domain of holomorphy and Aj,k := Aj ∩Dj,k 6= ∅, k ∈ N,
j = 1, . . . , N . Put

A′
j,k := A1,k × · · · ×Aj−1,k, A′′

j,k := Aj+1,k × · · · ×AN,k,

Σj,k := Σj ∩ (A′
j,k ×A′′

j,k),

Xk := K((Aj,k, Dj,k)Nj=1) = X ∩ (D1,k × · · · ×DN,k),

T k := GK((Aj,k, Dj,k,Σj,k)Nj=1) = T ∩ (D1,k × · · · ×DN,k),

W k := W ∩ (D1,k × · · · ×DN,k) ∈ {Xk,T k}.

Let Ξk := c(W k) \M .

Assume that for any k ∈ N, j ∈ {1, . . . , N}, and a ∈ Ξk, there exist:

• r = rk,a, 0 < r < r(a),

• relatively closed pluripolar set Sj,k,a ⊂ P̂(a′j , r) ×Dj,k × P̂(a′′j , r) =: Vj,k,a,

• a pluripolar set Pj,k,a ⊂ A′
j,k ×A′′

j,k \ Σj,

such that:

• P̂(a, r) ⊂ D1,k × · · · ×DN,k,

• Sj,k,a ∩ T ′
j,k,a ⊂M , where

T ′
j,k,a := {(z′j , zj, z

′′
j ) ∈ (A′

j,k ∩ P̂(a′j , r)) ×Dj,k × (A′′
j,k ∩ P̂(a′′j , r)) :

(z′j , z
′′
j ) /∈ Σj,k ∪ Pj,k,a} ⊂ Vj,k,a ∩ T k,

• for any f ∈ F there exists an f̃j,k,a ∈ O(Vj,k,a \ Sj,k,a) with f̃j,k,a = f on
T ′
j,k,a \M .

Then there exist a relatively closed pluripolar set M̂ ⊂ X̂ and pluripolar sets
Pj ⊂ A′

j ×A′′
j \ Σj, j = 1, . . . , N , such that:

• M̂ ∩ T ′ ⊂M , where T ′ := GK((Aj , Dj ,Σj ∪ Pj)∞j=1),

• for any f ∈ F there exists an f̂ ∈ O(X̂ \ M̂) with f̂ = f on T ′ \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ F},
• if each set Sj,k,a is thin in Vj,k,a, then M̂ is analytic.

Proof. (Cf. the proof of Theorem 5.4.12.)

Step 1: We may assume that each set Sj,k,a is singular with respect to the

family {f̃j,k,a : f ∈ F}. In particular, Sj,k,a ∩ c(T k) ⊂ M and f̃j,k,a = f on
Vj,k,a ∩ c(T k) \M .

Step 2: If N ≥ 4, then for any 1 ≤ µ < ν ≤ N , define an auxiliary (N−2)–fold
cross

Y µ,ν := K((Aj , Dj)j∈{1,...,µ−1,µ+1,...,ν−1,ν+1,...,N}).
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We may assume that the number r = rk,a is so small that

P̂((a1, . . . , aµ−1, aµ+1, . . . , aν−1, aν+1, . . . , aN), r) ⊂ Ŷ µ,ν , 1 ≤ µ < ν ≤ N.

Step 3: Fix a k ∈ N. Put

Vk :=
⋃

a∈Ξk

Vj,k,a, Sk :=
⋃

a∈Ξk

Sj,k,a, f̃k :=
⋃

a∈Ξk

f̃j,k,a.

Then T k ⊂ Vk (the same proof as in Step 3 of Theorem 5.4.12).
The main problem is to show that

(*) for arbitrary a, b ∈ Ξk, i, j ∈ {1, . . . , N} with

Wi,j,k,a,b := Vi,k,a ∩ Vj,k,b 6= ∅

we have f̃i,k,a = f̃j,k,b on Wi,j,k,a,b \ (Si,k,a ∪ Sj,k,b) for all f ∈ F .
The proof of (*) is analogous as in the proof of Theorem 5.4.12 (and Theorem

5.3.4 for N = 2).

Step 4: Since the sets Si,k,a and Sj,k,b are singular, we conclude that

Si,k,a ∩Wi,j,k,a,b = Sj,k,b ∩Wi,j,k,a,b,

which implies that the function f̃k is well defined on Vk \ Sk. Moreover,
• Sk is a relatively closed pluripolar subset of Vk,
• Sk ∩ c(T k) ⊂M ,

• f̃k ∈ O(Vk \ Sk),

• f̃k = f on c(T k) \M ,

• Sk is singular with respect to the family {f̃k : f ∈ F},
• Sk is analytic provided that each set Sj,k,a is analytic.

Let Uk denote the union of all connected component of Vk ∩ X̂k that intersect

T k. Then X̂k is the envelope of holomorphy of Uk ((the same proof as in Step 3 of
Theorem 5.4.12). By virtue of Theorem 4.11.1(c), there exists a relatively closed

pluripolar set M̂k of X̂k, M̂k ∩ Uk ⊂ Sk, such that X̂k \ M̂k is the envelope of

holomorphy of Uk \ Sk. Moreover, if Sk is analytic, then so is M̂k. In particular,

for each f ∈ F there exists an f̂k ∈ O(X̂k \ M̂k) with f̂k = f̃k on Uk \Sk. We may

assume that M̂k is singular with respect to the family {f̂k : f ∈ F}. In particular,

M̂k+1 ∩ X̂k = M̂k. Recall that X̂k ↗ X̂. Consequently:

• M̂ :=
⋃∞
k=1 M̂k is a relatively closed pluripolar subset of X̂ with M̂∩c(T ) ⊂

M ,

• for each f ∈ F , the function f̂ :=
⋃∞
k=1 f̂k is holomorphic on X̂ \ M̂ with

f̂ = f on c(T ) \M ,

• M̂ is singular with respect to the family {f̂ : f ∈ F},

• if each set Sj,k,a is analytic in Vj,k,a, then M̂ is analytic.
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Observe that by Propositions 3.9.5 and 3.3.27, for any j ∈ {1, . . . , N} there
exists a pluripolar set Qj ⊂ A′

j×A′′
j \Σj such that for all (a′j , a

′′
j ) ∈ (A′

j×A′′
j )\(Σj∪

Qj), the fiber M̂(a′j ,·,a
′′
j ) is singular with respect to the family {f̂(a′j , ·, a′′j ) : f ∈ F}.

For any k ∈ N and j ∈ {1, . . . , N} exists a countable set Ik ⊂ Ξk such that
Ξk ⊂ ⋃

a∈Ik
P(a, rk,a). Put Pj :=

⋃∞
k=1

⋃
a∈Ik

Pj,k,a ∈ PLP .

Our construction shows that f̂(a′j , ·, a′′j ) = f(a′j , ·, a′′j ) on Dj \ M(a′j,·,a
′′
j ) for

(a′j , a
′′
j ) ∈ A′

j × A′′
j \ (Σj ∪ Pj). Hence M̂(a′j,·,a

′
j)

⊂ M(a′j,·,a
′′
j ) for (a′j , a

′′
j ) ∈ A′

j ×
A′′
j \ (Σj ∪Qj ∪ Pj). Thus we only need to put Σ′

j := Σj ∪Qj ∪ Pj .
This completes the proof of Theorem 7.1.2.

We move to the main proof of Theorem 7.1.1.

Proof of Theorem 7.1.1. We are going to apply Theorem 7.1.2.
Assume for simplicity that j = N . For each a ∈ c(T ) \M let P(a, r(a)) and

f̃a ∈ O(P(a, r(a)) be such that f̃a = f on P(a, r) ∩ (T \M), f ∈ F .

For each b′N ∈ A′
N \ΣN , let M̃N,b′

N
be the singular part of M(b′N ,·)

with respect

to the family {f(b′N , ·) : f ∈ F} (taken in the sense of § 3.1.8) and let f̃N,b′
N

stand for the holomorphic extension of f(b′N , ·) to DN \ M̃N,b′
N

. Observe that

f̃N,b′
N

= f̃a(b′N , ·) on P(aN , r(a)) \ M̃N,b′
N

, because f̃N,b′
N

= f(b′N , ·) = f̃a(b′N , ·) on

P(aN , r(a)) \M(b′
N
,·). In particular, M̃N,b′

N
∩ P(aN , r(a)) = ∅.

We are going to apply Lemma 3.9.6 with:
• k := n1 + · · · + nN−1, ` := nN ,
• D := P(a′N , r(a)), G0 := P(aN , r(a)), G := DN ,
• A := (A′

N \ ΣN ) ∩ P(a′N , r(a)),

• M(b′N) := M̃N,b′
N

, b′N ∈ A.

Notice that {f̃a : f ∈ F} ⊂ S, where S is defined in Lemma 3.9.6. Moreover,
for every b′N ∈ A the set M(b′N) is singular with respect to the family {ĝ(b′N , ·) :

g ∈ S}, because it is singular with respect to the subfamily {f̃N,b′
N

: f ∈ F}.
Consequently, by Lemma 3.9.6, there exists a pluripolar set P = PN,a such

that the set
MN,a :=

⋃

b′
N
∈A\P

{b′N} ×M(b′N )

is relatively closed in (A \ P ) ×G.
Consider the special 2–fold crosses

Y N,a := K(A \ P,G0;D,G) = (D ×G0) ∪ ((A \ P ) ×G) ⊂ (D ×G0) ∪ T .

Since MN,a is relatively closed in Y N,a, we may apply Theorem 5.3.1 for the family

FN,a := {g ∈ Os(Y N,a \MN,a) : ∃f∈F : g = f̃a on D ×G0} ⊂ Os(Y N,a \MN,a),

and consequently, we get a relatively closed pluripolar set SN,a ⊂ Ŷ N,a such that:
• SN,a ∩ ZN,a ⊂MN,a ⊂M ,

• for any function f ∈ FN,a there exists an f̂N,a ∈ O(Ŷ N,k,a \ SN,k,a) such

that f̂N,a = f on ZN,k,a \MN,a,



7.1 General extension theorem with singularities 125

• SN,k,a is singular with respect to the family {f̂N,a : f ∈ FN,a}; in particular,
SN,a ∩ P(a, r(a)) = ∅,

• if all the fibers M(b′N), b′N ∈ A \ P , are thin (in fact, analytic), then SN,a
is analytic.

Note that {a′N} × G ⊂ Ŷ N,a. Let (DN,k)∞k=1 be an exhaustion of DN by
domains of holomorphy. Then for every k ∈ N there exists a ρ = rN,k,a ∈ (0, r(a))

so small that VN,k,a := P(a′N , ρ) ×DN,k ⊂ Ŷ N,a. Define SN,k,a := SN,a ∩ VN,k,a
and f̃N,k,a := f̂N,a|VN,k,a\SN,k,a.

Obviously, an analogous construction may be dome for j ∈ {1, . . . , N − 1}.
This is shows that all the assumptions of Theorem 7.1.2 are satisfied.
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Discs method
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Boundary cross theorems
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Generalized Hartogs theorems



Symbols

General symbols

N := the set of natural numbers, 0 /∈ N; N0 := N ∪ {0}; Nk := {n ∈ N : n ≥ k};
Z := the ring of integer numbers;
Q := the field of rational numbers;
R := the field of real numbers;
C := the field of complex numbers;
Re z := the real part of z ∈ C, Im z := the imaginary part of z ∈ C;
z := x− iy = the conjugate of z = x+ iy;
|z| :=

√
x2 + y2 = the modulus of a complex number z = x+ iy;

An := the Cartesian product of n copies of the set A, e.g. Cn;
set A ⊂ C;
x ≤ y :⇐⇒ xj ≤ yj, j = 1, . . . , n, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn;
A∗ := A \ {0}, e.g. C∗, (Cn)∗; An∗ := (A∗)n, eg. Cn∗ ;
A+ := {a ∈ A : a ≥ 0}, e.g. Z+, R+; An+ := (A+)n, e.g. Zn+, Rn+;
A− := {a ∈ A : a ≤ 0};
A>0 := {a ∈ A : a > 0}, e.g. R>0; An>0 := (A>0)n, e.g. Rn>0;
A<0 := {a ∈ A : a < 0};
R−∞ := {−∞} ∪ R, R+∞ := R ∪ {+∞};
A + B := {a+ b : a ∈ A, b ∈ B}, a + B := {a} + B, A,B ⊂ X, a ∈ X, X is a
vector space;
A · B := {a · b : a ∈ A, b ∈ B}, A ⊂ C, B ⊂ Cn;

δj,k :=

{
0, if j 6= k

1, if j = k
= the Kronecker symbol;

e = (e1, . . . , en) := the canonical basis in Cn, ej := (δj,1, . . . , δj,n), j = 1, . . . , n;
1 = 1n := (1, . . . , 1) ∈ Nn; 2 := 2 · 1 = (2, . . . , 2) ∈ Nn;

〈z, w〉 :=
∑n
j=1 zjwj = the Hermitian scalar product in Cn;

w := (w1, . . . , wn), w = (w1, . . . , wn) ∈ Cn;
z · w := (z1w1, . . . , znwn), z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn;
ez := (ez1 , . . . , ezn), z = (z1, . . . , zn) ∈ Cn;

‖z‖ := 〈z, z〉1/2 =
(∑n

j=1 |zj |2
)1/2

= the Euclidean norm in Cn;

‖z‖∞ := max{|z1|, . . . , |zn|} = the maximum norm in Cn;
‖z‖1 := |z1| + · · · + |zn| = the `1–norm in Cn;

#A := the number of elements of A;
diamA := the diameter of the set A ⊂ Cn with respect to the Euclidean distance;
convA := the convex hull of the set A;
A b X :⇐⇒ A is relatively compact in X ;
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prX : X × Y −→ X , prX(x, y) := x, or prX : X ⊕ Y −→ X , prX(x+ y) := x;

Euclidean balls:
B(a, r) = Bn(a, r) := {z ∈ Cn : ‖z−a‖ < r} = the open Euclidean ball in Cn with
center a ∈ Cn and radius r > 0; Bn(a, 0) := ∅; B(a,+∞) := Cn;
B(a, r) = Bn(a, r) := Bn(a, r) = {z ∈ Cn : ‖z − a‖ ≤ r} = the closed Euclidean
ball in Cn with center a ∈ Cn and radius r > 0; Bn(a, 0) := {a};
B(r) = Bn(r) := Bn(0, r); B(r) = Bn(r) := Bn(0, r);
B = Bn := Bn(1) = the unit Euclidean ball in Cn;
K(a, r) := B1(a, r); K(r) := K(0, r);
K(a, r) := B1(a, r); K(r) := K(0, r);
K∗(a, r) := K(a, r) \ {a}; K∗(r) := K∗(0, r);
D := K(1) = {λ ∈ C : |λ| < 1} = the unit disc;
T := ∂D;

Polydiscs:
P(a, r) = Pn(a, r) := {z ∈ Cn : ‖z − a‖∞ < r} = the polydisc with center a ∈ Cn
and radius r > 0; Pn(a,+∞) := Cn;
P(a, r) = Pn(a, r) := Pn(a, r); Pn(a, 0) := {a};
P(r) = Pn(r) := Pn(0, r);
Pn := Pn(1) = Dn = the unit polydisc in Cn;

P(a, r) = Pn(a, r) := K(a1, r1)×· · ·×K(an, rn) = the polydisc with center a ∈ Cn
and multiradius (polyradius) r = (r1, . . . , rn) ∈ Rn>0; notice that P(a, r) =
P(a, r · 1);
P(r) = Pn(r) := Pn(0, r);
∂0P(a, r) := ∂K(a1, r1)×· · ·×∂K(an, rn) = the distinguished boundary of P(a, r);

Annuli:
A(a, r−, r+) := {z ∈ C : r− < |z − a| < r+}, a ∈ C, −∞ ≤ r− < r+ ≤ +∞,
r+ > 0; if r− < 0, then A(a, r−, r+) = K(a, r+); A(a, 0, r+) = K(a, r+) \ {a};
A(r−, r+) := A(0, r−, r+);

Laurent series:
zα := zα1

1 · · · zαnn , z = (z1, . . . , zn) ∈ Cn, α = (α1, . . . , αn) ∈ Zn (00 := 1);
α! := α1! · · ·αn!, α = (α1, . . . , αn) ∈ Zn+;
|α| := |α1| + · · · + |αn|, α = (α1, . . . , αn) ∈ Rn;(
α
β

)
:= α(α−1)···(α−β+1)

β! , α ∈ Z, β ∈ Z+;(
α
β

)
:=

(
α1

β1

)
· · ·

(
αn
βn

)
, α = (α1, . . . , αn) ∈ Zn, β = (β1, . . . , βn) ∈ Zn+;

Functions:
‖f‖A := sup{|f(a)| : a ∈ A}, f : A −→ C;
supp f := {x : f(x) 6= 0} = the support of f ;
P(Cn) := the space of all polynomials f : Cn −→ C;
Pd(Cn) := {F ∈ P(Cn) : degF ≤ d};
C↑(Ω) := the set of all upper semicontinuous functions u : Ω −→ R−∞;
∂f
∂zj

(a) := 1
2

(
∂f
∂xj

(a)−i ∂f∂yj (a)
)

, ∂f
∂zj

(a) := 1
2

(
∂f
∂xj

(a)+i ∂f∂yj (a)
)

= the formal partial

derivatives of f at a;
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gradu(a) := ( ∂u∂z1 (a), . . . , ∂u∂zn (a)) = the gradient of u at a;

Dα,β := ( ∂
∂z1

)α1 ◦ · · · ◦ ( ∂
∂zn

)αn ◦ ( ∂
∂z1

)β1 ◦ · · · ◦ ( ∂
∂zn

)βn ;

Ck(X,Y ) := the space of all Ck–mappings f : X −→ Y , k ∈ Z+ ∪ {∞} ∪ {ω} (ω
stands for the real analytic case);
Ck(Ω) := Ck(Ω,C);
Ck0 (Ω) := {f ∈ Ck(Ω) : supp f b Ω};
LN := Lebesgue measure in RN ;
Lp(Ω) := the space of all p–integrable functions on Ω;
‖ ‖Lp(Ω) := the norm in Lp(Ω);
Lp(Ω, loc) := the space of all locally p–integrable functions on Ω;
O(X,Y ) := the space of all holomorphic mappings f : X −→ Y ;
O(Ω) := O(Ω,C) = the space of all holomorphic functions f : Ω −→ C;
∂f
∂zj

(a) := lim
C∗3h→0

f(a+hej)−f(a)
h = the j-th complex partial derivative of f at a;

Dα := ( ∂
∂z1

)α1 ◦ · · · ◦ ( ∂
∂zn

)αn = α–th partial complex derivative;

Lph(Ω) := O(Ω) ∩Lp(Ω) = the space of all p–integrable holomorphic functions on
Ω;
H∞(Ω) := the space of all bounded holomorphic functions on Ω;
H(Ω) := the space of all harmonic functions on Ω, Ω ⊂ C;
SH(Ω) := the set of all subharmonic functions on Ω, Ω ⊂ C;
PSH(X) := the set of all plurisubharmonic functions on X ;

Lu(a; ξ) :=
∑n
j,k=1

∂2u
∂zj∂zk

(a)ξjξk = the Levi form of u at a.
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applications séparément holomorphes, C. R. Acad. Sci. Paris Sér.
I Math. 324 (1997), 149–152.

[Ale-Ama 2003] O. Alehyane, H. Amal, Separately holomorphic functions with
pluripolar singularities, Vietnam J. Math. 31 (2003), 333–340.

[Ale-Hec 2004] O. Alehyane, J-M. Hecart, Propriété de stabilité de la fonction
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