Problem 1: (Excision for π_1) Suppose that $X = A \cup B$ and set $C := A \cap B$. Find the best conditions you can under which the inclusion $\pi_1(A, C) \to \pi_1(X, B)$ is an isomorphism (of pointed sets). Prove your claim.
Hint: Adapt the proof of the Seifert–van Kampen theorem.

Problem 2: (Step 2 in Blakers–Massey theorem.) Let X be a CW complex that is the union of the subcomplexes A, B. Set $C := A \cap B$. Suppose that (A, C) is $(m-1)$-connected and that (B, C) is $(n-1)$-connected. The Blakers–Massey thm says that the map $i_* : \pi_q(A, C) \to \pi_q(X, B)$ is an isomorphism for $2 \leq q < m + n - 2$ and an epi for $q = m + n - 2$. We proved this in class when $A = C \cup \text{cells of dim } \leq m$ and $B = C \cup \text{cells of dim } \geq n$.
Hint: You only need to prove this when A, B are obtained by adding a finite number of cells. (Why?) Therefore you can argue by induction on the numbers of added cells. Suppose you obtain A by adding a single cell to $A' \supset C$. Let $X' = A' \cup B$. Then consider the relation of the triads $(X; A, B)$, $(X'; A', B)$ and $(X; A, X')$. The argt is easier when you add cells to B.

Problem 3: (Calculating $\pi_n(S^n)$.) There is a homomorphism $\phi : \pi_n(S^n) \to \mathbb{Z}$ given by taking the degree of any smooth map homotopic to $f : S^n \to S^n$.
(i) Define ϕ precisely, show it is well defined.
(ii) Show that ϕ is injective.
Hint: Assume f is smooth, pick a regular value x and then homotop f so that it is “linear” (ie has standard form) in a finite set of disjoint discs centered on the points in $f^{-1}(x)$. Then homotop f so it takes the interiors of these discs onto $S^n \setminus y$ (where y is the antipode of x) and takes the rest of S^n to y. Then f is a composite $S^n \to S^n \vee \ldots \vee S^n \xrightarrow{g} S^n,$ where the middle space is the one point union of k copies of S^n, $k := \#\{f^{-1}(x)\}$. If f has degree 0 then $k = 2\ell$ and you can construct g to be the identity on ℓ of the spheres and a reflection on the other ℓ spheres. Now show how to homotop such a pair of maps $S^n \vee S^n \to S^n$ to zero.
Go through the above steps first for $n = 1$ and then for $n = 2$. It would be okay to write out the above proof in the case $n = 2$.
Note: In general I am rather lax in my treatment of base points. But this is permissible. eg if X is simply connected then there is a bijective correspondence between the homotopy classes of based maps $(X, x_0) \to (X, x_0)$ and the homotopy classes of arbitrary (unbased) maps $X \to X$. So when $n > 1$ we need not worry about keeping the base point fixed when calculating $\pi_n(S^n)$.