Problem 0: I did not state the first problem on last week's homework with enough precision. The correct statement is that for connected manifolds $H^1(M;\mathbb{Z}) \cong [M,S^1]$. If one starts with integral cohomology. The idea: each class in $H^1(M;\mathbb{Z})$ can be represented by a closed 1-form α whose integral round each closed loop in M is an integer. Given such α define $f_\alpha : M \to S^1 = \mathbb{R}/\mathbb{Z}$ that takes the base point $x_0 \in M$ to $0 \in \mathbb{R}/\mathbb{Z}$ by defining $f_\alpha(x) = \int_\gamma \alpha$ where γ is any smooth path from x_0 to x. Now check that $f_\alpha^* (d\theta) = \alpha$. **Hint:** You must calculate the value of $f_\alpha^*(d\theta)$ in the direction $v \in T_x(M)$. Since $f_\alpha(x)$ is independent of the choice of path γ you may assume that γ is tangent to v at its endpoint x.

Problem 1: I promised a homework problem about **basepoints**, good and bad, to help answer the question of when X is homeomorphic to the quotient X/A (for some closed subset $A \subset X$.) There does not seem to be a good general answer to this question. In the cases we are interested in (e.g. $\mathbb{R}^n/\partial \mathbb{R}^n \cong S^n$) the quotient X/A is an n-manifold. In this case the base point x_0 in X/A has a neighborhood that is homeomorphic to an open n-ball and so X is homeomorphic to X/A iff A has a neighborhood N such that $N \setminus A$ is homeomorphic to the annulus $S^{n-1} \times (0,1)$.

There is a notion of a **nondegenerate** base point x_0 in a space X. Here the condition is that the inclusion $x_0 \hookrightarrow X$ has the HEP. This condition has its uses, but it does not help in the homeomorphism problem. Here are some questions.

(i) Suppose that A is a closed subset of X with the HEP. Show that the base point $x_0 \in X/A$ also has the HEP.

(ii) Find an example of a closed contractible subset $A \subset X$ such that the base point in X/A is nondegenerate but X is not homeomorphic to X/A.

NOTE: the next defn is slightly changed from what I said in lecture: it is probably better to stick to the language in the text book.

A **map** $j : A \to X$ is called a **cofibration** if given any homotopy $F : A \times I \to Z$ and any map $f : X \to Z$ that extends $F(\cdot,0) : A \to Z$ in the sense that $f \circ j = F(\cdot,0)$, the map f is the time 0 map of a homotopy $\tilde{F} : X \times I \to Z$ such that $\tilde{F}(j(a),t) = F(a,t)$ for all $a \in A, t \in [0,1]$. (If we are in the based category all maps are assumed to preserve the base point.)

A **pair** (X,A) is said to have the HEP (**Homotopy Extension Property**) if the inclusion $j : A \to X$ is a cofibration. It follows from Ex 3 below that a map $j : A \to X$ is a cofibration iff j is a homeomorphism onto its image and the pair $(X,j(A))$ has the HEP.

Problem 2 (The Hopf map) Think of S^3 as the unit sphere in \mathbb{C}^2:

$$S^3 = \{ (z_1,z_2) : |z_1|^2 + |z_2|^2 = 1 \}.$$

Define $f : S^3 \to S^2 = \mathbb{C} \cup \{ \infty \}$ by $f(z_1,z_2) = z_1/z_2$.

(i) Show that the inverse image of each point in S^2 is a circle in S^3.

February 17, 2004
(ii) Show that the complex projective plane may be decomposed as $S^2 \cup_f B^4$ where $f: \partial B^4 = S^3 \to S^2$ is the Hopf map.

Hint: Think of $\mathbb{C}P^2$ as the space of all complex lines through 0 in \mathbb{C}^3. The subset of lines that intersect the plane $z_3 = 1$ forms an open subset U of $\mathbb{C}P^2$ whose complement can be identified with $S^2 := \mathbb{C}P^1$, “the line at infinity”. Identify U with the interior of the (real) 4-ball $B^4 \subset \mathbb{R}^4$ in such a way that you see the attaching map is f. As a warmup, it is probably a good idea to do the real projective plane $\mathbb{R}P^2$ and the complex projective line $S^2 = \mathbb{C}P^1 = \text{pt} \cup B^2$.

Problem 3 (More on the HEP and cofibrations) (i) Show that if $j: A \to X$ is a cofibration then $j: A \to j(A)$ is a homeomorphism (where $j(A)$ is given the subspace topology). i.e. we can think of j as the inclusion of a subset A of X into X. (Hint: take Z to be the mapping cylinder or the mapping cone of j.)

(ii) Let $A \subset X$ be closed. Show that (X, A) has the HEP iff $W := X \times \{0\} \cup A \times I$ is a retract of $X \times I$, i.e. there is a map $r : X \times I \to W$ that is the identity on $W \subset X \times I$.

(iii) Show that if X is normal and A is closed, the pair (X, A) has the HEP iff there is a neighborhood V of A in X such that (V, A) has the HEP. (i.e in this case having the HEP is a local property for A, depending only on a neighborhood of A in X.) *Recall: X is normal* if any two closed sets can be separated by disjoint open sets. The relevant property is given by Urysohn’s lemma.

NOTE There is an interesting class of metric spaces called ANRs (ANR= Absolute Neighborhood Retract) with the property that if X and A are ANRs such that A is a closed subset of X then (X, A) has the HEP. Every finite dimensional manifold and every paracompact manifold modelled on a Banach space is an ANR. I won’t have time to go into this, but this is often a useful technical condition.

Problem 4 (More on mapping cones) The first part spells out what it means for the mapping cone to be a “natural” construction; the second part shows that its homotopy type only depends on the “homotopy class” of $f: X \to Y$.

Let \mathcal{C} be the category whose objects are morphisms $f: X \to Y$ in the category \mathcal{T}_* of based top spaces, and whose morphisms are commutative diagrams

$$
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow g_X & & \downarrow g_Y \\
X' & \xrightarrow{f'} & Y'.
\end{array}
$$

More formally, $\text{Mor}_\mathcal{C}((X, Y, f), (X', Y', f'))$ is the set of pairs (g_X, g_Y) that make the diagram commute, where $g_X \in \text{Mor}_{\mathcal{T}_*}(X, X')$ and $g_Y \in \text{Mor}_{\mathcal{T}_*}(Y, Y')$.

(i) Show that the mapping cone $f \sim C_f$ is a functor from \mathcal{C} to \mathcal{T}_*.

(ii) Show that if the morphisms g_X, g_Y are homotopy equivalences then C_f is homotopy equivalent to $C_{f'}$.
